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Abstract

To analyse contingent propositions, this paper investigates how
branching time structures can be combined with probability theory. In
particular, it considers assigning infinitesimal probabilities—available
in non-Archimedean probability theory—to individual histories. This
allows us to introduce the concept of ‘remote possibility’ as a new
modal notion between ‘impossibility’ and ‘appreciable possibility’. The
proposal is illustrated by applying it to a future contingent and a his-
torical counterfactual concerning an infinite sequence of coin tosses.
The latter is a toy model that is used to illustrate the applicability of
the proposal to more realistic physical models.

1 Introduction

This paper addresses the issue of how to evaluate contingency claims about
the future or counterfactual possibility claims that involve events that are
logically and physically possible yet so unlikely that we usually assign prob-
ability zero to them. So, if we only use standard probability values as our
guide, we are forced to assign the same numerical value to possibilities that
we must also assign to the impossible event (represented by the empty set).
In doing so, we seem to lose some nuance in distinguishing contingent from
impossible events.

On the one hand, it could be argued that this is a virtue: after all, the
events are extremely unlikely, so perhaps they can be treated as ‘practically
impossible’, i.e., impossible for all practical intents and purposes. On the
other hand, it seems odd to be forced to give up the sharp distinction be-
tween possibility and impossibility even in purely theoretical contexts. In
models that include an infinitely long possible future, for instance, this future
will typically be assigned prior probability zero, even though this possibility
could become actual. Moreover, there are situations in which every possible
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future has a priori zero probability, such as for infinite sequences of coin
tosses. For these reasons, this paper investigates a new pair of modal no-
tions that are intended to give us a choice in the matter of whether we want
to include such unlikely events among the possibilities under consideration.

Let me first clarify which notion of possibility and probability appears
in this paper. It has been remarked that the concept of probability en-
compasses a duality. This was pointed out at least as early as 1837 (by
Poisson, 1837, Chapter I). Later, Hacking (1975) famously called probabil-
ity a Janus-faced concept: one face looks inwards, towards rational degrees
of belief (or credences), whereas the other face turns outwards, towards
mind-independent chance processes in the external world. The probability
functions from Kolmogorov’s (1933) theory are intended to be applicable
across this duality and can be interpreted as representing subjective cre-
dence as well as objective chance. Likewise, the probability functions from
the alternative (non-Archimedean) probability theory that we will consider
below can be interpreted as credences as well as chance functions.

In this paper, probability theory will be combined with branching time
(BT) structures (Prior, 1967, Belnap et al., 2001), which are used in the
tense-logical analysis of the problem of future contingents and of histori-
cal counterfactuals. BT structures only branch toward the future and are
usually employed to represent ontological indeterminism—for instance by
McCall (1994), whose model we discuss in section 1.1. Yet, they may also
represent merely epistemic uncertainty about the future. A congenial in-
terpretation is that this paper deals with credences informed by a physical
model of branching events.

The history of the development of BT structures is reviewed in sections
1.2–1.4, and the contemporary terminology and formalism can be found in
section 2. The main goal of this paper is to study how BT structures can be
supplemented with probability assignments. Section 3 reviews the proposal
of Müller (2011). This section also introduces an alternative probability
theory that enables us to assign infinitesimal probabilities to individual his-
tories in BT structures. Section 4 proposes the semantics for two new modal
operators, called ‘appreciable possibility’ and ‘remote possibility’. The lat-
ter applies to remote contingencies that are infinitely less probable than the
former. The term ‘appreciable’ comes from non-standard analysis, where
it refers to a hyperreal number that is neither infinitesimal (or zero) nor
infinite (see, e.g., Goldblatt, 1998, p. 50).

Throughout sections 1–4, the proposal is motivated and illustrated with
the example of a future contingent and a historical counterfactual concerning
an infinite sequence of coin tosses. This toy model may be considered as a
stand-in for the temporal evolution of a physical system, demonstrating the
applicability of the present proposal to a much wider class of physically rele-
vant models. A proposed counterexample against infinitesimal probabilities
is discussed in section 5. Section 6 concludes the paper.
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1.1 McCall’s (1994) branching universe

McCall’s (1994) branching model of the universe1 is intended to repre-
sent ontological possibilities, rather than epistemically conceivable possi-
bilities. McCall (1994, pp. 1–6) proposed to represent the past by one four-
dimensional Minkowski diagram and possible futures by ‘branches’ each of
which constitutes a different Minkowski diagram. Exactly one of the pos-
sible futures becomes actual, but which one this will turn out to be is not
determined beforehand. So, the present is always the first branch point.

Inspired by the model’s potential for representing quantum probabilities
as “branch proportionalities”, McCall (1994, Chapter 5) proposed a way to
endow the model with probabilities connected to the branches. He presented
this ‘branched’ definition of probability as an objective, de re interpretation
of probability—an alternative to other common interpretations. Although
the probabilities are objective, they change as time progresses, because
some branches that were once possible have since been deleted. Moreover,
branch probabilities allow the computation of inverse conditional probabil-
ities, unlike propensities (which face problems like Humphreys’s paradox;
Humphreys, 1985).

On McCall’s (1994) proposal, probability values are assigned to branch
segments by a non-negative and finitely additive function, in such a way that
the sum of the probabilities of all segments immediately above any branch
point equals one. Probabilities of a branch are computed via the product of
the probabilities of the segments that compose the branch. This approach
works well when there are at most finitely many segments in any branch
(associated with finite products of probability values) and when there are at
most finitely many branch segments attached to a choice point (associated
with finite sums of probability values).

McCall (1994, pp. 151–161) discussed how the proposal can be general-
ized to the infinite case: if there are branches that consist of a countable
infinity of segments, infinite products can be introduced, and if there are
countably infinitely many branch segments attached to a choice point, this
is covered by countable additivity (which is indeed assumed in standard
probability theory). McCall (1994) also discussed the possibility of having
an uncountable infinity of branch segments connected to a branch point. In-
formed by the work of Skyrms (1980), McCall (1994, p. 160) suggested that
infinitesimal probabilities can be introduced, which can be represented by
hyperreal numbers in the sense of Robinson (1966). Finally, McCall (1994,
p. 161) suggested that normalization can still be achieved by an uncountable
sum of infinitesimal probabilities.

We will see in section 3.4.2 that his claims can indeed be supported by a
non-Archimedean probability theory. We build on his branching semantics
for historical counterfactuals in section 4.2.

1I am grateful to a referee for pointing me to this reference.
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1.2 Future contingents and historical counterfactuals

The problem of future contingents deals with the question of how to ascribe
truth values to statements about future events, which are neither inevitable
nor impossible (see Øhrstrøm and Hasle, 2011).

In classical times, this question came to the fore in Aristotle’s paradox of
the sea battle. Later scholars have interpreted Aristotle’s position as denying
that future contingents have a truth value before the relevant event has
happened. In his Master Argument, Diodorus Cronus assumed the necessity
of past events to infer the necessity of future events; Diodorus thereby denied
the existence of future contingency and arrived at a deterministic view.

In medieval times, the problem recurred in a theological setting as an
apparent incompatibility of human free will and divine omniscience, which
includes foreknowledge of human actions. William of Ockham and other
medieval scholars such as Richard of Lavenham rejected the view that past
events are necessary, allowing for future contingency (and thus human free
will). In the meantime, they held the view that future contingents do have
a truth value before the relevant event has happened (allowing divine fore-
knowledge).

More recently, Arthur N. Prior reintroduced the problem of tense and
time in the context of modern logic. Prior (1957) presented the first version
of his tense logic, which is closely related to modal logic. In reaction to this
book, Saul Kripke suggested the idea of branching time (BT) in a letter to
Prior (see Ploug and Øhrstrøm, 2012). The BT formalism has since been
developed by Nuel Belnap and others (Belnap et al., 2001). The goal of this
theory is to capture agency in a non-relativistic but indeterminist universe;
we review it in section 2. According to Belnap et al. (2001, p. 179): “The
fundamental idea is that possibility—real possibility, objective possibility—
is in the world, not otherworldly.” So, on this view, invoking other (possible)
worlds should not be needed to establish what is possible in the actual world.
Instead, real possibilities are associated with multiple possible histories, all
compatible with the actual world. Various semantical theories for future
contingents take the BT formalism as their common starting point (see,
e.g., Øhrstrøm and Hasle, 2011).

Another problem that the paper addresses pertains to historical counter-
factuals: in this case, the classical question is how to ascribe truth values to
statements about conditionals in the subjunctive mode with an antecedent
that is false, but which was a historical possibility (see Placek and Müller,
2007). This paper focuses on the notion of possibility expressed by his-
torical counterfactuals, in connection to the probability of the consequent
relative to a (past) historical possibility: a real possibility at an instant prior
to the current one, which is incompatible with the current actual moment.
‘Real possibilities’ are defined in section 2.6; for now it suffices to know that
they are partitions of histories at a particular moment. The paper does not
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analyse other types of conditionals and does not address the assertability of
future contingents or counterfactual conditionals.

1.3 Aiming to combine branching time with probability

Probability seems to presuppose a notion of possibility: it can be considered
as a function that gives weights to various possibilities. These possibilities
or possible events can be represented equivalently by propositions or sets,
because propositional algebras (used in modal logic) and (σ-)algebras of sets
(used in probability theory) are both Boolean algebras.2 Hence, one could
expect a natural connection between probability theory and modal logic
(including tense logic), semi-formally given by:

Probability theory Modal logic

µ(ϕ) > 0 iff ◇ϕ is true

µ(ϕ) = 1 iff ◻ϕ is true,

where µ is a standard probability function, ϕ is an arbitrary possible event,
◇ is the modal possibility operator, and ◻ is the modal necessity operator.
The above implications indeed hold for finite sample spaces, but the right-
to-left implication does not hold in general for the infinite case.3 Well-
known examples where it fails are uniform probability distributions over
uncountably infinite sets of atomic possibilities.

The current paper investigates how BT structures (formally introduced
in section 2) can be combined with probability. I will consider an alternative
to standard probability theory to avoid violating the natural connection
between probability and modal notions in the case of tense logic. In addition,
I hope that the new approach helps to shed new light on old issues related
to future contingents and historical counterfactuals.

BT-based probabilities have also been investigated by Müller (2011), but
the approach is limited to (i) associating probability spaces to ‘real possibil-
ities’ in structures with finite branching and (ii) combining such probability
spaces. This paper starts from a more global perspective by associating a
probability space to the entire set of possibilities (histories) in a BT struc-
ture. Due to problems related to infinite sample spaces, classical probability

2Recall that, relative to a given universe, Ω, the following sentential and set-theoretic
notions are equivalent, respectively: tautology and universe, contradiction and empty set,
conjunction and intersection, disjunction and union, and negation and complement. The
set-theoretic extensions of propositions can also be used to represent semantic entailment
as is done in the algebraic logic tradition of Tarski and others (see, e.g., Beall et al., 2019,
§3.1).

3A complication may arise for finite sample spaces that are obtained by conditioning
or partitioning starting from an infinite sample space. In such cases, it may happen that
µ(ϕ) = 0 while ◇ϕ is true for some ϕ. Although we do not focus on this case here,
resolving it can be achieved along the same lines as the proposal in this paper.
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theory is not suitable for the task at hand. If we use non-Archimedean prob-
ability (NAP) theory instead (see section 3), which allows for the assignment
of infinitesimal probability values, it turns out that (i) the conclusions are
consistent with those of Müller (2011), and that (ii) the current approach
allows us to analyse a more general class of problems of interest.

To preserve the natural link between probability theory and modal or
tense logic, it is necessary to work in a probability theory that obeys the
principle of ‘Regularity’ (see, e.g., Benci et al., 2018): such a theory will
only assign probability zero to logically impossible events (represented by
the empty set).

1.4 Remote possibilities and infinite coin toss sequences

Section 4 proposes a new definition for a modal operator that expresses ‘ap-
preciable possibility’, which is contrasted with an operator for ‘remote pos-
sibility’. The first corresponds to a possibility that has a non-infinitesimal
probability, whereas the second corresponds to a possibility that has a non-
zero, infinitesimal probability. Here, I motivate this distinction and compare
it to related proposals.

David Lewis (1986, p. 176) insisted that “infinitesimal chance is still some
chance”, when he argued for assigning infinitesimal probabilities rather than
zero to possible outcomes. The non-Archimedean probability theory that I
will apply in section 3 achieves just that. In this paper, I similarly insist
that a possibility that carries an infinitesimal probability (or ‘chance’, if
interpreted as representing ontological uncertainty) is still some possibility—
in particular, a remote possibility.

For a contrasting view, let’s start by considering Nover and Hájek’s
(2004) Pasadena game: it involves tossing a fair coin indefinitely until the
first occurrence of heads, which leads to a pay-off of (−1)n−12n/n. The
absolute values of these terms constitute a harmonic series, but the signs
alternate, so the value of the infinite sum for the expected value of the game
depends on the order of the terms (by Riemann’s rearrangement theorem;
see also Peterson, 2023, §7). Nover and Hájek (2004) argued that the tempo-
ral order does not suffice to settle the order of the terms and that therefore
expected utility does not pick out a unique fair price to enter the game. In
this context, Smith (2014, §6)4 argued that “a rational agent is not required
to value the game in one particular way”, because “normative theories of
practical activities” “should not require arbitrary precision”, so “rational-
ity does not require decision makers to factor in outcomes of arbitrarily low
probability”. In particular, Smith’s Rationally Negligible Probabilities prin-
ciple states that rational agents need not consider outcomes of a lottery (with
at most countably infinitely many outcomes) that have a sufficiently small

4I am grateful to a reviewer for bringing this paper to my attention.
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probability. In other words, probabilities below a certain threshold (which
may depend on the agent, the lottery, and the decision problem) may be
treated “as zero for purposes of making the decision at hand” (Smith, 2014,
§7). Instead, these minute probabilities can be truncated, i.e., replaced by
zero. This is similar to the Lockean thesis (Foley, 2009), which also suggests
that when agents assign a (context-dependent) sufficiently small degree of
belief to a proposition, it is rational for them to disbelieve this proposi-
tion simpliciter. Truncation is in line with empirical evidence about human
decision makers, as witnessed by experimental results in the fuzzy-trace lit-
erature (Reyna, 2004).

Observe that Smith, Foley, and Reyna were not considering infinitesimal
probabilities, but some larger threshold. This raises a worry of arbitrari-
ness: why this particular numerical value for the threshold? There may be
contextual factors that determine what’s rational to neglect in a given sit-
uation, but observe that infinitesimal probabilities are by definition smaller
than 1/n for any finite, positive n, so they can be neglected in any situation
in which some non-infinitesimal threshold can be found at all.

At the same time, however, it seems that agents should be allowed to
consider highly unlikely contingencies as possibilities (if they can and want
to) or at least that we should not be forced to deny them as possibilities in
a theoretical analysis. For instance, Levi (1989, pp. 367–368) proposed to
call all propositions that an agent recognizes as such ‘serious possibilities’;5

they depend on the agent’s information, that is the set of propositions of
which the agent is (subjectively) certain. Levi’s motivation for this was that
agents who are not logically omniscient may fail to recognize certain logical
(im)possibilities as such, even on their own assumptions. Serious possibilities
may include propositions that carry zero credence (or infinitesimal credence,
on the non-Archimedean approach). Levi (1989, pp. 368–369) illustrated this
with the following example: an agent who is certain that a fair coin will be
tossed until it lands heads for the first time, should consider the event that
the coin is tossed indefinitely (because it keeps landing tails) as a serious
possibility, even though that event has prior probability zero.

Moreover, Levi (1989, p. 385) connected this to non-Archimedean proba-
bilities: “To assign a proposition h positive infinitesimal probability is equiv-
alent in the nonstandard representation to assigning h standard 0 probabil-
ity but acknowledging it to be a serious possibility.” If we combine Levi’s
observation that serious possibilities can include those that carry only in-
finitesimal probability with the earlier observation the latter do not depend
on an arbitrary or context-dependent non-infinitesimal threshold, this sug-
gests that remote possibility does represent a specific modal notion. So,
I argue that possibilities that carry an infinitesimal probability indeed de-
serve to be distinguished from infinitely more probable ones that represent

5I am grateful to a reviewer for suggesting this connection.
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an appreciable possibility. For on overview of the terminology, see Figure 1.

Figure 1: Overview of the terminology introduced in section 1.4. Here, A
represents an arbitrary set representing a proposition to which probability
can be assigned, P represents a probability function (on a set algebra of
the sample space Ω) that may take infinitesimal values, and st(P ) is that
function with infinitesimals rounded off. Serious possibilities (in the sense of
Levi) exclude the empty set, which represents logical impossibility, but may
also exclude other possibilities not included in the sample space. Serious
possibilities include appreciable as well as remote possibilities, which are
central to this paper.

Throughout the paper, various aspects of BT structures and their combi-
nation with probability theory are illustrated with a toy example: an infinite
sequence of coin tosses. At each toss, the coin may land either heads (↑) or
tails (↓). We assume that the coin is tossed for a countably infinite number
of times, such that the instants at which it is tossed may be indexed with
the elements of N = {1,2,3, . . .}. It is helpful to include the singleton {n = 0}
to indicate the last instant prior to the first toss and the notation N0 is used
to refer to N ∪ {n = 0}.

The paper focuses on N for clarity of presentation. However, it is im-
portant to observe that the approach is fully general and would apply just
as well to a sequence of coin tosses that extends infinitely long into the past
as well as into the future, such that the tosses may be indexed with the
elements of Z = {. . . ,−3,−2,−1,0,1,2,3, . . .} or even with a dense set, such
as Q (if we allow supertasks).

Section 4 will analyse a future contingent concerning the toy example:

• “The coin lands heads on each toss.”

The paper also discusses a corresponding historical counterfactual, where
we assume that the first four tosses were heads, heads, tails, and heads
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(↑↑↓↑):

• “If the third toss had been heads, the coin could have landed heads
on each toss.”

2 Branching time (BT) structures

This section introduces some concepts and notation that are common in
the literature on BT structures. Readers who are familiar with this litera-
ture may skip it. This section is based on Belnap et al. (2001, Chapter 7)
combined with the notation of Müller (2011).

2.1 Possible moments and ‘earlier–possibly later’ relation

The BT formalism represents the universe by a non-empty set of possible
moments (or possible states of affairs that extend across all of space), M ,
endowed with a temporal relation, <. So, a BT structure consists of a pair
M = ⟨M,<⟩, with < a relation on M that is:6

Transitive ∀m1,m2,m3 ∈M ((m1 <m2 ∧m2 <m3)
⇒ (m1 <m3)) ,

Irreflexive ∀m ∈M (¬(m <m)) ,
Backward linear ∀m,m1,m2 ∈M ((m1 <m ∧m2 <m)

⇒ (m1 ≤m2 ∨m2 ≤m1)) ,
Historically connected ∀m1,m2 ∈M∃m ∈M(m ≤m1 ∧m ≤m2),

where ≤ is defined by:

∀m1,m2 ∈M (m1 ≤m2 iff (m1 <m2 ∨m1 =m2)) .

The relation symbol < can be read as ‘earlier–possibly later’. More specif-
ically, m1 < m2 means that moment m1 is in the past of moment m2 or,
equivalently, that m2 is among the future possibilities of m1.

Since < is a partial order, there may be incomparable moments—indeed,
this is the case of interest. The above stipulations rule out backward branch-
ing and postulate that there is a common past, so incomparable moments
can only occur if there is branching towards future possibilities. If this is
the case, M has the shape of a tree.

Further assumptions:

6From transitivity and irreflexivity, it follows that the relation < is also asymmetric:

∀m1,m2 ∈M ((m1 <m2)⇒ ¬(m2 <m1)) .
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• As is usual in the literature, we assume that there is no maximal (final)
moment:

∀m ∈M∃m′ ∈M(m <m′).

• It is often assumed that there is no minimal moment either:

∀m ∈M∃m′ ∈M(m′ <m).

However, in the toy example we do assume a minimal (first) moment,
m0:

∃m0 ∈M∀m ∈M ∖ {m0}(m0 <m).

Remark that if such an m0 exists, it is unique. This simplifying as-
sumption is not essential to the method that is presented here, which
is fully general in this respect.

• For simplicity, we assume finite branching: each moment has a finite
number of branches.

2.2 Possible histories

A history represents a maximal possible course of events—a possible way the
world depicted by ⟨M,<⟩ could develop. So, a history is a maximal subset
of M such that all its moments are mutually comparable.7

The set of all histories ofM is calledHist . Consider a particular moment,
m. Consider the set of possible histories which contain this moment, Hm.
Observe that the set of all possible histories in a BT structure with minimal
element m0 can always be written as Hm0 .

2.3 Instants

It can further be postulated that M can be partitioned into instants: the
instants are subsets such that (i) for each history, there is exactly one mo-
ment in each instant, and (ii) for each pair of instants, the order relation of
the pair of moments belonging to those instants on a given history agrees
with the order relation of the pair of corresponding moments on any other
history (Belnap et al., 2001, pp. 194–195).

7Specifically, h is a ‘history’ if and only if all of the following hold:

• h ⊆M ,

• h is linearly ordered:

∀m,m′ ∈ h(m <m′ ∨m =m′ ∨m >m′),

• h is maximal with respect to the above linear order.

Hence, in a history, any two distinct elements are comparable via <.
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In particular, we may define temporal instants as the equivalence classes
of moments, [m]∼ ⊂M , that are cotemporal and hence incompatible (mutu-
ally inconsistent). We introduce two conditions for these equivalence classes
(see, e.g., Placek, 2012, Appendix):

(1) ∀m ∈M∀h ∈Hist∃!m′ ∈M ([m]∼ ∩ h = {m′}) ;
(2) ∀m1,m2 ∈M∀h1, h2 ∈Hist
([m1]∼ ∩ h1 = [m2]∼ ∩ h1 iff [m1]∼ ∩ h2 = [m2]∼ ∩ h2) .

Call the set of all instants (i.e., the set of all equivalence classes [m]∼) T
and the linear ordering on this set <T . In general, T can be a dense set such
as R. We may now introduce a function, t, that expresses the instant at
which a particular moment occurs: t(m) ∈ T . Following Belnap and Müller
(2010), we call the tuple ⟨M,<, T,<T , t⟩ a ‘branching time with date-times’
(BTDT) structure. Observe that

∀m1,m2 ∈M (m1 <m2 ⇒ t(m1) <T t(m2)) ,

but not vice versa (the moments might be inconsistent and hence incompa-
rable by <).

Since there is no maximal element inM , T is always an infinite set. In the
trivial case, when each moment only has a single branch (i.e., linear time),M
has the same cardinality as T , which is at least countably infinite. In general,
however, M is uncountably infinite. Observe that even for finite branching
and countably infinite T , M can easily become uncountably infinite. We
encounter an example in the next section.

2.4 Example: BT structure of an infinite coin toss sequence

In the toy example, the set of instants is discrete and countably infinite; we
choose T = N0 and <T = <N0 . Each moment has exactly two branches, so the
set of moments is uncountably infinite: M = {mi ∣ i ∈ 2N0}. Each moment,
mi, can be characterized as the outcome of all coin tosses up to a particular
instant: an initial segment of {↑, ↓}N. At an instant n ∈ N0, there are 2n

moments: {mi ∣ i ∈ {2n−1, . . . ,2n+1−2}}. A BT structure can be represented
as a graph. For the toy example, this graph is an infinite complete binary
tree: see Figure 2.

In the toy example, each history can be regarded as an element of {↑, ↓}N.
In Figure 3, two particular histories in this BT structure are indicated: h1 =
{m0,m1,m3,m7, . . .} (=↑↑↑↑ . . .) and h2 = {m0,m2,m5,m12, . . .} (=↓↑↓↑ . . .).

2.5 Prior–Thomason semantics for BT structures

The denotation of indexicals, such as ‘now’, depends on the context in which
they are used. Hence, the semantics of indexical statements does not only
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Figure 2: Graph of a BT structure representing an infinite sequence of
coin tosses. Assuming that there are countably infinitely many instants
(indicated by the horizontal lines), there are uncountably many moments
(indicated by the dots).

Figure 3: Example of two particular histories in the BT structure of an
infinite sequence of coin tosses.

depend on a model (in the sense of Tarski), but also on some further parame-
ters. As explained by Belnap et al. (2001, Chapters 6B and 8), BT semantics
follows Kaplan’s (1989) indexical semantics, which relativizes truth to a mo-
ment of evaluation, m ∈M . This moment of evaluation may be equal to the
moment at which the statement is uttered: the moment of context, mC ∈M .
In general, however, this need not be the case. For instance, tense operators
can shift the moment of evaluation m toward the past or future of mC .

Building on the work of Prior (1967) and Thomason (1970), BT seman-
tics relativizes truth not only to a moment of evaluation, m, but to a pair
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of a moment of evaluation and a history of evaluation that includes this
moment: m/h (Belnap et al., 2001, pp. 224–225).

So, a BT modelM is a BT structure ⟨M,<⟩ together with a valuation V
assigning extensions to atomic propositions at the point of evaluation, m/h
(i.e., a moment m and a history h through it: m ∈ h).

Let us now define two modal operators that quantify over the possible
futures of the moment of evaluation: they keep m fixed, and change h.

POSS: possibility
M,m/h ⊧ POSSϕ iff ∃h′ ∈Hist such that m ∈ h′ andM,m/h′ ⊧ ϕ;

SETT : necessity or ‘settledness’
M,m/h ⊧ SETTϕ iff ∀h′ ∈Hist ifm ∈ h′ thenM,m/h′ ⊧ ϕ. Observe
that: POSS = ¬SETT¬.

The semantics can be understood in terms of sets of possible histories, as
we will see in section 3.2. For now, observe that h is only mentioned at the
left-hand side of these definitions, so only the moment of evaluation needs
to be known, yet moment-history pairs are crucial in the right-hand side.

2.6 Real possibilities and choice points

For there to be real possibilities, as defined in this section, there have to
be at least two incomparable moments in M. Since backward branching is
prohibited by the postulates for BT structures, this means that there are
at least two forward branches. Moreover, for there to be choice points, the
overlap of an arbitrary pair of histories must have a maximal element.

Consider a particular moment, m. Define an equivalence relation on the
set of all possible histories which contain m, Hm, ≡m (‘are undivided at m’):

∀h1, h2 ∈Hm h1 ≡m h2 iff ∃m′ ∈ h1 ∩ h2 (m <m′) .

Real possibilities at m are the members of the partition Πm of Hm induced
by ≡m. So, these possibilities form an exhaustive set of mutually exclusive
alternatives.

Two histories ‘split’ at momentm, �m, ifm is their last common moment:
h1�mh2 if and only if m is maximal in h1 ∩ h2. m is a ‘choice point’ if and
only if Πm has more than one member (i.e., if and only if there are at least
two histories splitting at m). So, at a choice point m, its real possibilities
coarse-grain the set of histories Hm: within a member of the partition, all
histories coincide beyond m; two histories that belong to different members
of the partition differ immediately after m.

Example In the toy example, each moment has two branches. Hence, each
moment is a choice point and the set of real possibilities has two members at
any moment; one corresponds to possible histories in which the coin lands

13



heads (↑) at the very next instant, and one corresponds to possible histories
in which the coin lands tails (↓) at the very next instant.

3 Introducing probability in BT structures

The question we are concerned with in this paper is how we can combine BT
structures with probability theory. We will consider two different forms of
probability theory—namely, Kolmogorov’s standard probability theory and
non-Archimedean probability (NAP) theory (Benci et al., 2013, 2018). NAP
theory uses a field of hyperreal numbers, ∗R, rather than the standard real
numbers, R, to play the role of probabilities. (See Wenmackers, 2019, for an
introduction to hyperreal numbers.) This allows us to assign infinitesimal
probabilities to highly unlikely events. Since one of the axioms of NAP the-
ory is Regularity, which guarantees that only the impossible event receives
probability zero, the theory seems well suited to connect the modal notion
of possibility with that of having non-zero probability.

Both types of probability theory require us to fix a ‘sample space’ or
‘universe’, Ω: a non-empty, possibly infinite set of atomic possible outcomes.
A probability function, denoted by µ for the standard function and by P for
the NAP function, will assign probability values to members of the ‘event
space’: a non-empty collection of subsets of Ω. In the case of NAP theory,
the event space is always equal to the full power set of Ω, P(Ω). In the
case of Kolmogorov’s theory, the event space is written as A and may be a
σ-algebra strictly smaller than P(Ω) (in the case of infinite Ω).

3.1 Various options to choose Ω

Looking at a BT structure from the perspective of a probabilist, one can
make the following initial observation. Instants are equivalence classes of
mutually incompatible but cotemporal moments, [m]∼: these look similar
to different partitions of one and the same sample space. See Figure 4 for a
schematic drawing: each partition Ωn corresponds to an instant tn, which is
the equivalence class of cotemporal moments [m2n−1]∼. This suggests that
(1) the probabilities assigned to the moments that belong to the same in-
stant should sum to unity and that (2) we should assign the same probability
to a moment as to the set of moments that branch from it at the very next
instant (if there is such an instant). Branching diagrams indeed occur in the
literature on probability to represent various possibilities even though they
do not (necessarily) represent any temporal evolution. For instance, Kelly
(1996) introduced the Baire space using ‘fans’ (equivalence classes of infinite
data streams/possible histories) veering off (branching off) a common han-
dle (observed data/past history). However, each instant contains different
elements (moments), so the suggestion that they are ‘partitions of the same
set’ cannot be taken literally.
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It is fruitful to rephrase the initial observation in terms of partitions of
histories that contain the cotemporal moments: in this case, we are indeed
dealing with various partitions of the same set, Hist , and it is the case that
the probabilities of subsets in each partition (all Hm′ with m′ in [m]∼ for
some m ∈ M) sum to unity (for partitions that contain at most countably
many members).

Figure 4: The probabilities of moments that belong to the same instant
(cotemporal set of moments, indicated by Ω0,Ω1,Ω2, . . .) sum to unity.

Let us now approach the problem in a more systematic way to ensure
that the solution covers all aspects of interest. First, we make a list of
probabilistic questions concerning BT structures one might be interested in.
This will enable us to select the most appropriate sample space and event
space.

Q1.a What is the probability of a particular moment (state of affairs at
that instant)?
P (m) =? with m ∈M

Q1.b What is the probability of an arbitrary set of moments?
P (X) =? with X ⊆M

Q1.c What is the conditional probability of a particular moment, given a
prior moment?
P (m ∣m′) =? with m,m′ ∈M such that m′ <m

Q2.a What is the probability of a particular history?
P (h) =? with h ∈Hist

Q2.b What is the probability of an arbitrary set of histories?
P (Y ) =? with Y ∈ P(Hist)
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Q3 What is the probability of a real possibility at a moment (i.e., a partic-
ular subset of histories)?
P (Z) =? with Z ∈ Πm

Q4 Can we introduce probability in a way that harmonizes with the modal
operators? I.e., such that, relative to a moment of evaluation, m:

• at m, the probability of ϕ > 0 iff POSSϕ is true;

• at m, the probability of ϕ = 1 iff SETTϕ is true.

Q1 suggests usingM as the sample space. Since there is no maximal mo-
ment,M is always infinite and so will Ω be; the event space of Kolmogorov’s
theory, A, may be smaller than P(Ω), thereby not necessarily containing all
arbitrary sets of moments. Hence, Q1.b requires the use of NAP theory,
where the event space is guaranteed to be equal to P(Ω).

Q2 suggests using Hist as the sample space. If there are uncountably
many moments in M with at least two branches (which may happen even
when the set of instants is countable), Hist is an uncountably infinite set.
For similar reasons as before, Q2.b requires the use of NAP theory, thereby
guaranteeing the event space to be equal to P(Ω).

Q3 is dealt with by Müller (2011), where Πm is used as the sample space.
Observe that, under the assumption of finite branching: Πm is a finite set
for any m ∈M .

Q4 is obviously the tense logical version of the general connection sought
between modal logic and probability theory (cf. section 1.3). Q4 suggests
that we need an event space that is a propositional (or sentential) algebra,
ranging over propositions such as ϕ.

As we have seen, on the Prior–Thomason semantics, truth values depend
on a moment of evaluation as well as a history of evaluation. What about
probabilities? On the one hand, it seems natural to expect that probabili-
ties depend on the moment of evaluation as well. After all, as we already
discussed in relation to McCall’s (1994) approach, in an indeterministic,
branching model even objective probabilities may change with the passage
of time. On the other hand, if probabilities measure subsets of histories
(for instance sets that contain a given set of moments), then they need not
depend on a history of evaluation.

3.2 Uniform choice of sample space: Ω = Hist

It may now appear as though there is no uniform choice of Ω that will
allow us to answer questions Q1–4 simultaneously. However, starting from
Ω = Hist (the obvious choice in light of Q2), it does turn out that we can
also deal with questions Q1, Q3, and Q4.

Regarding Q1 (which relates to the discussion at the beginning of sec-
tion 3.1), observe that “the probability of a moment, m” can be interpreted
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as “the probability of all histories leading to that moment m” (i.e., all his-
tories in Hm = {h ∈Hist ∣m ∈ h}).

• Q1.a can be rephrased as:

P (m) def= P (Hm) =? with m ∈M ;

• Q1.b can be rephrased as:

P (X) def= P (∪m∈XHm) =? with X ∈ P(M);

• Q1.c can be rephrased as:

P (m ∣m′) def= P (Hm ∣H ′
m) =? with m,m′ ∈M such that m′ <m.

The conditional probability in Q1.c can be computed from the ratio formula
using the absolute probabilities in Q1.a, provided that P (H ′

m) > 0. Q1.c
only deals with the case where m′ <m. However, observe that:

• P (m ∣m′) is 1 if m ≤m′ (for then Hm ⊇H ′
m);

• P (m ∣m′) is 0 if m and m′ are incomparable (for then Hm ∩H ′
m = ∅).

Regarding Q3, Müller (2011) investigated the combination of standard
probability spaces of the form PRm = ⟨Ωm = Πm,Am = P(Ωm), µm⟩ for
different moments, m. However, it seems like one could avoid this compli-
cation, by choosing Ω large enough from the start. Indeed, all the Ωm’s are
contained in Ω = Hist and all the Am’s are contained in P(Hist). How-
ever, unlike the Ωm’s and Am’s, Ω = Hist and P(Hist) are infinite sets,
which becomes problematic in the context of standard probability theory
(see next subsection). Probably, this is the very reason why Müller (2011)
focused on the finite Πm’s instead. Moreover, taken in isolation, Q.3 does
not require the assignment of probabilities to all of P(Hist). In the next
section, we will see that to answer Q3 for the toy example with an infinite
coin toss sequence, it suffices to have probability assignments to A = C(Ω):
the collection of cylindrical events of Ω =Hist .

Also regarding Q4, Ω = Hist can still be used. First, the proposition
ϕ evaluated at m corresponds to its extension on the domain of the set of

histories (cf. footnote 2): Hϕ,m
def= {h ∣m ∈ h∧m/h ⊧ ϕ}, which is a subset of

Hm. So, we interpret the probability of ϕ evaluated at m as P (Hϕ,m ∣Hm).
Second, the semantics of POSSϕ evaluated at m is equivalent to saying
that Hϕ,m is non-empty. Third, the semantics of SETTϕ evaluated at m is
equivalent to saying that Hϕ,m equals Hm.

Taking this together, we can rewrite Q4 as the requirement that, relative
to a moment of evaluation m:

• P (Hϕ,m ∣Hm) > 0 iff Hϕ,m ≠ ∅;

• P (Hϕ,m ∣Hm) = 1 iff Hϕ,m =Hm.
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If there is a minimal moment m0 and we set m = m0, then Hm = Hist .
Then, in order to have Hϕ,m0 =Hm0 =Hist , ϕ must be a tautology. In other
words, Q4 is a requirement of ‘Regularity’: the probability function should
only assign measure zero to the empty set (corresponding to a contradiction)
and only measure one to the full sample space.

Example In the toy example, the uniform choice of Ω =Hist amounts to
Ω =Hm0 = {↑, ↓}N.

3.3 Choice of probability theory

Except for cases in which only a countable number of moments have more
than one branch, Ω = Hist is an uncountably infinite set. With standard
probability theory, the choice of Ω = Hist will force us to set µ({h}) = 0
for all h ∈ Hist , which is problematic for Q1.c and Q4. Moreover, the
standard probability measure µ cannot be defined on all of P(Ω),8 which is
problematic for Q1.b and Q2.b. Therefore, I suggest applying the framework
of NAP theory, rather than standard probability theory.

As we have seen, Q4 can be regarded as a demand for ‘Regularity’ of the
probability function, which is an axiom of NAP theory. Regularity will also
ensure that the ratio formula for conditional probabilities is always defined,
except when conditionalizing on the empty set (inconsistency), thereby en-
abling the handling of Q1.c.

3.4 Application to an infinite sequence of coin tosses

Now, we can combine a BT structure of an infinite sequence of coin tosses
with its corresponding NAP function, which is described in Benci et al.
(2013, section 5.5).

3.4.1 Standard probability space

Using standard probability theory, we are looking for a probability space
⟨Ω,A, µ⟩ to describe an infinite sequence of tosses with a fair coin. A generic
infinite sequence of coin tosses is written as ω = (ω1, . . . , ωn, . . .) with ∀i ∈
N, ωi ∈ {↑, ↓}. Hence, the sample space is the Cantor space Ω = {↑, ↓}N.

The measure on this infinite product space is generated by a pre-measure
on a special type of events: events in which exactly n positions of the infinite
sequence are known to be heads (↑) or tails (↓) (for details, see, e.g., Benci

8The existence of non-measurable subsets of any uncountable set is a consequence of the
Axiom of Choice. An early example of subsets of the real numbers that are not Lebesegue-
measurable was given by Vitali (1905). For this reason, Kolmogorov (1933) phrased his
axiomatization of probability theory in terms of σ-algebras of measurable subsets, called
events.
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et al., 2013, §5.5). Such events are represented by ‘cylindrical sets’. We
define a cylindrical set of co-dimension n as follows:

C
(t1,...,tn)
(i1,...,in)

= {ω ∈ Ω ∣ ωik = tk},

with ∀k ∈ {1, . . . , n} (ik ∈ N ∧ tk ∈ {↑, ↓}). Assuming an equal probability of
heads and tails for a single toss (fair coin), the probability of an event is
halved for each known position in the sequence. Hence, the probability
measure on a generic cylindrical set is:

µ (C(t1,...,tn)
(i1,...,in)

) = 1

2n
. (1)

Using Carathéodory’s theorem (see, e.g., Gruber, 2007, Chapter 3), this
probability measure µ can be extended uniquely to A, the σ-algebra gener-
ated by these cylindrical sets. This completes the description of the three
components of a standard probability space ⟨Ω,A, µ⟩ for an infinite sequence
of tosses with a fair coin.

Some consequences Using the notation of BT structures, we have that:

• a generic infinite sequence of coin tosses represents a generic history:
ω = h;

• Ω = {↑, ↓}N =Hm0 =Hist ;

• the Hm’s correspond to cylindrical events.

This approach has the following immediate consequences:

• eachHm has a non-zero probability that can be computed using eq. (1);

• each individual history {h} has probability zero;

• likewise, each finite set of histories F has probability zero;

• hence, the conditional probability µ({h} ∣ F ) is undefined, for any
finite set of histories F ;

• so, even upon learning that h is the actual history, one cannot update
to µ({h} ∣ {h}) = 1;9

• nevertheless, the union of all histories has probability unity;

• also the union of all but a finite number of histories has probability
unity;

• moreover, there are sets of histories with an undefined probability
(non-measurable sets).

9Although in realistic cases one cannot expect to learn which history is actual, the
point here is that even an ideal observer with infinite memory in a toy scenario cannot
achieve this update using standard probability theory.
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3.4.2 Non-Archimedean probability (NAP) space

We now look into an alternative description of the probabilities pertaining
to an infinite sequence of tosses with a fair coin using NAP theory. For
details, see Benci et al. (2013, 2018), and for historical context and a more
introductory approach: Wenmackers (2019). The purpose of this section is
not to introduce the general scope of the theory, but rather to show what it
takes to apply it to an example, and then to apply it to the case of infinite
coin toss sequences. This amounts to choosing an appropriate NAP space
⟨Ω,Imax, P ⟩.

In standard probability theory, the limit operation and the range of the
probability function are fixed in advance; they are the standard limit of clas-
sical calculus and the unit interval of the standard reals, [0,1]R, respectively.
In a non-Archimedean setting, however, one has to adjust the properties of
the non-standard limit operation and the range depending on the details
of the application—most notably on the cardinality of the sample space of
interest. Because this approach is not well-known, the following sections
explain it in detail. Readers who just want to know the gist of it, can skip
to section 4, which starts with a brief summary of the main result.

3.4.2.1 General recipe Along the way towards defining the NAP space
⟨Ω,Imax, P ⟩, we have to fix eleven ingredients:10

(1) sample space, Ω: a non-empty set of atomic events;

(2) weight function, w: a strictly positive, real-valued, 1-place function
on the elements of Ω; the specific value of w for a single atom is
of no consequence, only the relative weight of pairs of atomic events
matters (for example, to generate a uniform probability measure, w
should assign the same weight to all singletons, but it does not matter
which value is chosen);

(3) additive measure, m: a positive, real-valued, 1-place function on the
finite subsets of Ω, which determines the relative measure of any two
finite events;

(4) directed set on Ω, Λ: 11 the generic choice is Λ = Pfin (Ω) ∖ ∅, but
by choosing a smaller Λ, additional properties can be obtained for P ;
this step is crucial (see below for an example);

10Although the details are usually not spelled out in this way, also in applications of
standard probability theory one has to define ingredients (1–3) and (5), after which the
properties of classical calculus together with Carathéodory’s theorem lead straight to the
absolute probability function, µ, in the final ingredient (11).

11A family of finite, non-empty subsets of Ω, Λ, is called a directed set if the following
two conditions are satisfied: (1) if λ1, λ2 ∈ Λ, then ∃λ3 ∈ Λ such that λ1 ∪ λ2 ⊂ λ3 and (2)
the union of all the elements of Λ is equal to Ω.
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(5) elementary relative probability, p: a positive, real-valued, 2-place
function, which determines the probability of any event conditional on
any event in Λ: p(A,λ) =m(A ∩ λ)/m(λ);

(6) ideal on the partially ordered ring F(Λ,R), I0:12 informally, an ideal
is a set of elements that are negligible in some sense; this informal char-
acterization is made precise as the set of functions that are eventually
zero (where ‘eventually’ has to be interpreted according to the partial
order given by set inclusion, ⊇, on Λ):

I0 = {ϕ ∈ F(Λ,R) ∣ ∃A0 ∈ Λ∀A ⊇ A0 ∶ ϕ(A) = 0};

(7) maximal ideal, Imax ⊃ I0: using Krull’s theorem, which is based on
Zorn’s lemma (see, e.g., Burton, 1970, p. 74), the ideal I0 is extended
to a maximal ideal;

(8) equivalence relation on the ring F(Λ,R), ∼Imax: two functions are
defined to be equivalent if they differ by at most a negligible amount
(where ‘negligible’ is to be understood as an element of the maximal
ideal); formally,

∀ϕ,ψ ∈ F(Λ,R) ∶ ϕ ∼Imax ψ iff ∃ε ∈ Imax ∶ ϕ + ε = ψ;

this equivalence relation leads to the following equivalence classes:

∀ϕ ∈F(Λ,R) ∶
[ϕ]Imax

= {ψ ∈ F(Λ,R) ∣ ∃ε ∈ Imax ∶ ϕ + ε = ψ}
= {ψ ∈ F(Λ,R) ∣ ϕ ∼Imax ψ};

(9) set of all equivalence classes, RΩ,Imax: the set F(Λ,R)modulo Imax

forms an ordered, non-Archimedean field;

(10) a non-Archimedean limit on F(Λ,R), limλ↑Ω: using the directed set,
a type of limit is defined as the following algebra homomorphism:

∀ϕ ∈ F(Λ,R), lim
λ↑Ω

ϕ
def= [ϕ]Imax ∈RΩ;

(11) absolute probability, P: ∀A ∈ P (Ω) , P (A) = limλ↑Ω p(A ∣ ⋅).

3.4.2.2 Applying the recipe to the toy model Let’s now specify the
appropriate choices to be made in the general recipe above to apply it to an
infinite sequence of coin tosses.

(1) As in section 3.4.1, a generic infinite sequence of coin tosses is written
as ω = (ω1, . . . , ωn, . . .) with ωi ∈ {↑, ↓} for all i ∈ N. Again, we have the
sample space Ω = {↑, ↓}N.
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(2–3) The fairness assumption implies that we have to assign the same
probability to each individual history (or atomic event). Hence, w ≡ 1.
There is no further freedom in the construction of m: m counts the finite
number of elements in finite sets of histories.

(4) We do have some freedom in the choice of a directed set on Ω, Λ.
Because of the fairness assumption, we expect the probability function to
obey Laplace’s classical definition: as a fraction of the number of favourable
cases over the number all cases. In other words, we want to construct the
NAP space in a way such that:

∀F ∈ Pfin(Ω) ∖ ∅∀A ∈ P(Ω), P (A ∣ F ) =
#(A ∩ F )
#(F )

.

To achieve this, we will have to choose Λ smaller than Pfin(Ω) ∖ ∅. In
particular, we start by focusing on cylindrical events that specify the initial

n tosses: i1 = 1, . . . , in = n. Such an event takes the form: C
(α1,...,αn)

(1,...,n)
= α⊛β,

with α ∈ {↑, ↓}n, β ∈ {↑, ↓}N, and ⊛ stands for the concatenation operation
on sequences. Now, we define families of finite sets of such events, λn,F ,
which are special subsets of Ω:

∀n ∈ N∀F ∈ Pfin(Ω) ∖ ∅, λn,F = {α⊛ β ∣ α ∈ {↑, ↓}n ∧ β ∈ F}.

We define the collection of all these sets, ΛCT :

ΛCT
def= {λn,F ∣ n ∈ N ∧ F ∈ Pfin(Ω) ∖ ∅}.

Observe that:

∀n1, n2 ∈ N∀F1, F2 ∈ Pfin(Ω) ∖ ∅∃F3 ∈ Pfin(Ω) ∖ ∅
(λn1,F1 ∪ λn2,F2 ⊂ λmax{n1,n2},F3

) ,

which establishes that ΛCT forms a directed set.
(5) p is fully determined by m and Λ.
(6–7) Now we define an ideal on ΛCT , which we extend to a maximal

ideal, Imax. Since this step relies on Zorn’s lemma, the maximal ideal is not
unique.

(8–11) The ordered, non-Archimedean field RΩ,Imax is now determined
and so is the algebra homomorphism on F(Λ,R) which defines the limit,
limλ↑Ω. This determines the absolute probability function, P and completes
the construction of a NAP space ⟨{↑, ↓}N,Imax, P ⟩ for an infinite sequence
of fair coin tosses.

3.4.2.3 Some consequences In cases of uniform probability distribu-
tions, it is helpful to state the results in terms of a ‘numerosity’ function,
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num. num can be regarded as a way of ‘counting’ infinite sets, which is dif-
ferent from cardinality. It is based on the part–whole principle (a strict sub-
set has strictly smaller numerosity, but not necessarily smaller cardinality,
than its superset) rather than one-to-one correspondence (equal numerosity
implies the existence of a one-to-one mapping, but the reverse implication
does not hold in general as it does for cardinality). Although num can be
introduced axiomatically (Benci and Di Nasso, 2003, 2019), it can also be
obtained by the non-Archimedean limit of a finite counting function (Benci
et al., 2013).

Using the NAP space constructed above and num, we get:

• ∀h ∈ Ω, P ({h}) = 1
num(2N)

, which implies ∀m ∈M (P (Hm) = µ(Hm));

• ∀H ∈ P(Ω), P (H) = num(H)
num(2N)

;

• ∀H1 ∈ P(Ω)∀H2 ∈ P(Ω) ∖ ∅, P (H1 ∣H2) = num(H1∩H2)

num(H2)
.

Moreover, the above choice of Imax ensures that (for the proof, see Benci
et al., 2013, section 5.5):

• P (C(t1,...,tn)
(i1,...,in)

) = 1
2n ;

• as a result, for each µ-measurable event E, µ(E) and P (E) differ at
most by an infinitesimal.

Two other approaches As we reviewed in section 1.1, McCall (1994)
equipped a branching model with probabilities by assigning probabilities to
branches (akin to transition probabilities in physics). Although the current
construction starts from probabilities assigned to sets of histories, a proba-
bility of branch between moments m1 < m2 can be found as P (Hm2 ∣ Hm1)
(cf. our discussion of question Q1.c). As such, the current NAP model vin-
dicates McCall’s (1994) suggestion that hyperreal probabilities can be used
on infinitary branching models.

A different way to introduce infinitesimal probabilities is to replace the
standard infinite set M by a hyperfinite set and to apply Nelson’s (1987)
probability theory to it. This would require the development of hyperfinite
versions of BT structures, which are currently not available. To model in-
finite coin toss sequences, for instance, a hyperfinite set {1, . . . ,N} can be
used to represent infinitely many instants, where N is an infinite hypernat-
ural number (in a non-standard model of Peano arithmetic). The possible
moments can be represented by another hyperfinite set, {m1, . . . ,mL}, where
L = 2N+1 − 1 is a larger infinite hypernatural number. In the case of a fair
coin, each possible history has a probability of 1/2N , which is a hyperreal in-
finitesimal. This illustrates the main advantage of the hyperfinite approach:
hyperfinite sets are as simple to handle as standard finite sets. At the same
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time, it also shows a possible drawback: the approach is not compatible with
using standard infinite sets, such as N to index the instants. It is left to the
BT research community to decide whether exploring this option would be
worthwhile.

4 Appreciable versus remote possibility

The main result of the construction in the previous section is that the same
probability value P ({h}) = 1

num(2N)
can be assigned to any possible history,

h. The denominator, num(2N), is an infinite hyperreal number, so this
probability is a non-zero infinitesimal. All sets of histories are measurable
and for each µ-measurable event E, µ(E) and P (E) differ at most by an
infinitesimal.

Let us now return to the future contingents and historical counterfactu-
als concerning an infinite sequence of coin tosses as introduced in section 1.4.
We evaluate whether the application of NAP theory to the corresponding
BT structure can teach us anything about the type of modality expressed by
future contingents or about the truth value of historical counterfactuals. I
use this example to motivate the introduction of a new definition of a modal
operator that expresses ‘appreciable possibility’, which is contrasted with an
operator for ‘remote possibility’. The first is intended to correspond with
a possibility that has a non-infinitesimal probability, whereas the second
is intended to correspond with a possibility that has a non-zero, infinitesi-
mal probability. The definitions do indeed establish this natural connection
between modality and probability in cases like an infinite sequence of coin
tosses.

4.1 Future contingents concerning an infinite sequence of
coin tosses

Let us look at the future contingent: “The coin lands heads on each toss.”
From the analysis with NAP theory, we have established that P ({h}) =

1
num(2N)

for any possible history, h. So, in particular: P (h↑↑↑↑...) = 1
num(2N)

.

In other words, we assign a non-zero, infinitesimal probability to the coin
landing heads on each toss. To assess whether this expresses a contingency,
we have to determine the strength of ‘possible’. In particular, we can in-
troduce two levels of possibility: ‘appreciable possibility’ (◇a ) and ‘remote
possibility’ (◇r ), which we relate to non-Archimedean probability. To this
end, the BT model has to be extended accordingly: from this point on, the
model M is defined as a BT structure ⟨M,<⟩ together with a NAP space
⟨Hist ,Imax, P ⟩ and a valuation V assigning extensions to atomic proposi-
tions at the point of evaluation, m/h. The semantics of the two new opera-
tors is defined in the following way:
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POSS possibility
M,m/h ⊧ POSSϕ iff P (Hϕ,m ∣Hm) > 0;

◇a appreciable possibility
M,m/h ⊧◇aϕ iff st (P (Hϕ,m ∣Hm)) > 0;

◇r remote possibility
M,m/h ⊧◇r ϕ iff P (Hϕ,m ∣Hm) is a non-zero infinitesimal;

where Hϕ,m represents {h ∣ m ∈ h ∧m/h ⊧ ϕ} (as before) and where st is
the standard part function, which maps a hyperreal number to the unique
closest real number (cf. Wenmackers, 2019). Any standard probability—
where it is defined—is equal to the standard part of the non-Archimedean
probability.

With standard, real-valued probability values alone, we cannot distin-
guish some (remote) possibilities from impossibility. We could use standard
probability together with a check that Hϕ,m is non-empty (cf. Easwaran,
2014). For measurable sets, this would be equivalent to using NAP theory.
This also means that, at least for sets that are measurable on the standard
approach, remote and appreciable possibility can be defined based on stan-
dard methods alone: these remote possibilities correspond exactly to Levi’s
(1989, p. 385) serious possibilities with zero (standard) probability.

Observe that ◇r ϕ is true if and only if (POSSϕ ∧ ¬◇aϕ) is true. So, on
this proposal, future possibility encompasses appreciable and remote possi-
bility, where the latter can be thought of as remote contingencies (hence the
name) that are logically possible but carry only infinitesimal probability.

For the example of a future contingent, ϕ: “The coin lands heads on
each toss.”, there are two options. First, if it is evaluated at an m such that
the coin has already landed tails at least once, then P (Hϕ,m ∣Hm) = 0,13 so
POSSϕ is false. Second, if it is evaluated at an m such that the coin has not
yet landed tails (for instance, at m0), then P (Hϕ,m ∣Hm) is infinitesimal.14

So, P (Hϕ,m ∣ Hm) > 0 but st (P (Hϕ,m ∣Hm)) = 0: POSSϕ and ◇r ϕ come
out as true, while ◇aϕ is false.

Of course, the outcome of the analysis depends on the future contingent
under consideration. Consider, for instance, ¬ϕ: “The coin does not land
heads on each toss.” Its probability at any m is P (H¬ϕ,m ∣ Hm) = P (Hm ∖
Hϕ,m ∣Hm). If it is evaluated at an m such that the coin has already landed
tails at least once, then Hϕ,m = ∅, so P (H¬ϕ,m ∣Hm) = P (Hm ∣Hm) = 1 and
SETT¬ϕ is true. If it is evaluated at m0 or any m prior to a tails outcome,
P (H¬ϕ,m ∣ Hm) equals one minus an infinitesimal, so it is not yet settled
that ¬ϕ (corresponding to the remote possibility of ϕ).

13Observe that in this case P (Hϕ,m) = P (∅) = 0, while P (Hm) > 0.
14Observe that, in this case, P (Hϕ,m) is the infinitesimal probability of a single history,

while P (Hm) is larger than an infinitesimal for all m.
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This paper does not offer a definite position on whether ‘possible’ in
natural language corresponds more closely to the operator POSS, ◇a , or◇r ,
but it seems that we do need all three operators to represent distinctions
that are made in discourse, at least in technical contexts. ◇r stresses the
existence of a possibility, no matter how improbable (cf. Lewis, 1986, p. 176:
“some chance”), whereas ◇a preselects possibilities that are infinitely more
substantive in probability. One might even wonder whether the dominance
of Kolmogorov’s approach to probability theory has made us less sensitive
to the notion of possibility in the sense of ◇r .

In the case at hand,M,m/h ⊧◇aϕ if ϕ is true in an uncountable subset of
Hm andM,m/h ⊧◇r ϕ if ϕ is true in at most a countable non-empty subset
ofHm. This is due to the assumed fairness of the coin: all individual histories
carry the same infinitesimal probability, and we can focus on the cardinalities
(or numerosities) of the sets. So, at any m, Hm is an uncountable set, so
P (Hϕ,m ∣Hm) is infinitesimal as long asHϕ,m is a countable subset ofHm. In
general, however, the semantics for ◇a and ◇r cannot be expressed without
explicit consideration of the probability assignment.

4.2 Historical counterfactuals concerning an infinite sequence
of coin tosses

The goal of this section is to analyse the relation between possibility and
(regular) probability of historical counterfactuals. To focus the discussion,
we consider an example that applies to the toy model of a BT structure.
Assume that the first four tosses are heads, heads, tails, and heads (i.e.,
all possible histories that contain mC = m17 are elements of H↑↑↓↑) and we
consider this historical counterfactual: “If the third toss had been heads,
the coin could have landed heads on each toss.”

As our starting point, we consider the semantics for counterfactuals on
a branching model due to McCall (1994, Chapter 6), who presented it as a
special case of the semantics of conditionals. First, he distinguished condi-
tionals that are invariant under a change of the tense from those that are
not. He observed that the former type of conditionals also tend to be in-
variant under an insertion of ‘it is (im)probable that’ (or other probabilistic
expressions) before the consequent. According to McCall (1994, Chapter 6),
only the first type of conditionals can be given a probability semantics.15

Let us check this for our example historical counterfactual: from a per-
spective prior to the third toss, a conditional in the future tense expresses
the same idea: “If the third toss will be heads, the coin may land heads
on each toss.” From a (counterfactual) perspective on which the third toss

15Crucially, McCall’s (1994) distinction does not align with Adams’s (1970) distinction
between indicative and subjunctive conditionals. In fact, an example of McCall’s second
type is Adams’s indicative example: “If Oswald didn’t kill Kennedy, somebody else did.”
We will not consider this case further.
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was indeed heads, an antecedent in the past tense works as well: “Since
the third toss landed heads, the coin may land heads on each toss.”16 This
shows that our example is invariant under changes of tense. It is also robust
under to insertion of an expression of probability before the consequent: “If
the third toss had been heads, it would have been improbable that the coin
could have landed heads on each toss.”

Adapting McCall’s (1994, Chapter 6) proposal to our notation, he sug-
gested that the probability of the conditional A → C (with A the an-
tecedent and C the consequent) evaluated a m should be represented by
P (HC,m ∣ HA,m).17 In the case of an indicative conditional, we can assume
that the moment of evaluation is the moment of context, m =mC . Then, ap-
plying a regular probability function, we can conclude SETT (A→ C) atmC

iff P (HC,mC
∣HA,mC

) = 1 and SETT¬(A→ C) iff P (HC,mC
∣HA,mC

) = 0.
In the case of a historical counterfactual, the antecedent is a contingent

proposition that is false at the moment of context, so HA,mC
= ∅, but there

exists a prior moment m such that HA,m ≠ ∅. Indeed, the subjunctive
mode of the counterfactual indicates that evaluating its probability requires
moving the moment of evaluation to some non-actual moment, m < mC .
The idea here is akin to ‘rewinding the tape’ of actual history to a moment
prior to A.18 The question is how to determine m and whether the moment
of evaluation is all that should be changed.

As a first attempt, we may consider the latest moment, mL, for which
the actual history, represented by the set HmC

, overlapped with that of the
antecedent, HA. In the terminology of section 2.6, HmC

and HA split at
choice point mL: HmC

�mL
HA. This proposal is simple and yields a unique

outcome if the topology on M indeed guarantees such a choice point exists,
which is the case in our example. Moreover, it is congenial to the idea of
closeness or similarity of possible worlds in the Stalnaker–Lewis semantics of
counterfactuals (see, e.g., Starr, 2022). This proposal amounts to rewinding
the tape of actual history to mL and then evaluating the probability of C
by conditionally positing A. If P (HC,mL

∣ HA,mL
) > 0, the counterfactual

is possible, and we can again distinguish between remote and appreciable
possibility by considering the standard part. If the probability equals one,

16The goal here is not to analyse this ‘since’-conditional, but merely to show that the
historical counterfactual under consideration (with ‘if’) is of the kind that admits a prob-
abilistic analysis: cf. McCall (1994, p. 183).

17The link between the assertability of conditionals and their corresponding conditional
probability has been widely discussed in the context of Adams’s thesis (due to Adams,
1965); see, e.g., Egré and Rott (2021, §5.1). The assertability of counterfactuals falls
outside the scope of the current paper, but remark that this issue has been discussed in a
branching context by Wawer and Wroński (2015).

18The metaphor is a nod to the thought experiment of “replaying life’s tape”, introduced
by Gould (1989, p. 48) and discussed by Beatty (2006) and other philosophers of biology to
address matters of contingency in biological evolution. McCall (1994, Chapter 6) speaks
of “resurrecting” a past branched snapshot of the universe.
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the counterfactual is settled. If P (HC,mL
∣HA,mL

) = 0, the counterfactual is
not possible and its negation is settled.

Applying this proposal to our toy example, the moment of evaluation
is mL = m3, i.e., the moment at which only the first two tosses have hap-
pened and both are heads. The antecedent A corresponds to the cylindrical
event HA = C↑3, which indicates that the third toss results in heads, and
the consequent C corresponds to the singleton event HC = {h↑↑↑↑...}. So,
HA,m3 = Hm7 = C

↑,↑,↑
1,2,3 with probability 1

23
and HC,m3 = HC with probability

1
num(2N)

. Hence, the probability of “If the third toss had been heads, the coin

could have landed heads on each toss.” is P (HC,m3 ∣ HA,m3) = 23

num(2N)
, a

non-zero infinitesimal. So, for our example, POSS(A→ C) and ◇r (A→ C)
come out as true, while ◇a (A→ C) is false.

Although this proposal may seem convincing in the toy example, it faces
a problem in more realistic cases. As an example, McCall (1994, Chapter 6)
considered a counterfactual of the form “If I had turned left, I would not
be in this traffic jam.” In this example, the counterfactual history that
maximizes the overlap with the actual history corresponds to turning left at
the last possible moment (which might be very dangerous), rather than at
an earlier intersection (obeying the traffic rules). So, mL does not seem to
select the most similar possible world after all and McCall (1994, Chapter 6)
considered this ‘last-minute deviation objection’ to be fatal. To overcome
the last-minute deviation objection, one may consider a past moment of
evaluation prior to mL, but there seems to be no principled way of selecting
this m.

Moreover, even in our toy example, there may be a more similar sets of
histories after all, which agree with the actual world regarding the outcome
of tosses that occurred after and independently of the counterfactual out-
come. In general, this modified proposal (which is closer to the traditional
Lewisian reading) amounts to evaluating the probability of a counterfactual
A→ C in terms of P (HC,mL

∩HX ∣HA,mL
∩HX), where HX selects histories

that agree with Hm in terms of events that happened after mL and that
were independent of C.19 For our example, HX is the cylindrical event C↑4
and P (HC,m3 ∩HX ∣ HA,m3 ∩HX) = 24

num(2N)
. Since this is again a non-zero

infinitesimal, this modification does not make a crucial difference in the sub-
sequent possibility. For other examples, however, the verdicts on whether a
conditional is (remotely) possible may differ.

19In the example, independence may be understood as statistical independence, but in
other cases causal independence might be the relevant notion. In their analysis of truth
values of historical counterfactuals in the context of branching space-times, Placek and
Müller (2007, §6.1) indeed considered taking into account causally independent (construed
as space-like separated) events.
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5 A counterargument against infinitesimal proba-
bilities?

Williamson (2007) has offered an argument against infinitesimal probabili-
ties assigned to an infinite sequence of coin tosses. Consider a fair coin that
is tossed at some point in time and forever again at equal time intervals.
Williamson argues that the probability that all tosses starting from the first
toss, result in heads equals half the probability that they do so starting
from the second toss (by the assumption of a fair coin). He also argues that
the former probability should equal half the latter probability since they
represent isomorphic sequences. Even if we allow infinitesimal values, the
two equalities can only hold simultaneous if the probabilities are zero. We
can now reconsider this argument in the context of BT structures. Let’s
index the individual tosses in the infinite sequence by T = N0. This fixes the
present instant (or at least the beginning of observations) at index t = 0. If
we conditionalize on the initial segment of a history, say up to an instant
t > 0, the conditional probability of any history that contains this initial
segment is a factor 2t+1 larger than the corresponding absolute probability.
So, we retain Williamson’s first equality but not the second, which is indeed
incompatible with infinitesimal probabilities.

Of course, the choice of 0 as the present moment is completely arbitrary.
We are free to choose a later index t > 0 as the present moment; doing so
will yield a different (larger) infinitesimal probability to any history starting
from the present moment. In any case, this shows the model-dependence of
absolute probabilities. It is a counterargument against infinitesimal proba-
bilities only if one presupposes that such model-dependence does not exist.
Indeed, classical probability theory does not violate translation symmetry in
this case, but it does assign probability 0 to individual histories, which has
its own drawbacks. (For instance, it makes the theory unsuitable to express
any learning from conditionalizing on finite, initial segments.)

Recall that NAP theory also allows us to model an infinite sequence, in
which the individual tosses are indexed by T = Z. In this case it may still
be suggestive to consider the moment indexed by t = 0 as the present. (For-
mally, in this case there are infinitely many, mutually inconsistent moments
in the instant t = 0.) If the outcome of all past tosses are known, one may
conditionalize on this information, after which the probabilities come out
exactly the same as in the model where time starts at t = 0.

6 Conclusion

This paper showed how branching time structures can be combined fruit-
fully with non-Archimedean probability theory. This approach vindicates
McCall’s (1994, p. 161) suggestion that normalization at each instant can
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be achieved by an uncountable sum of hyperreal probabilities. As illustrated
by the toy example of an infinite sequence of coin tosses, doing so allows us
to assign an infinitesimal prior probability to each individual history. Based
on this, I defined two new modal operators, called ‘appreciable possibility’
and ‘remote possibility’. The approach allows us to analyse future contin-
gents and historical counterfactuals in a subtle way, and opens the path to
further applications in the philosophy of time, modality and probability, and
the foundations of physics.
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