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Abstract. The collapse of a quantum state can be understood as a mathematical

way to construct a joint probability density even for operators that do not commute.

We can formalize that construction as a non-commutative, non-associative collapse

product that is nonlinear in its left operand as a model for joint measurements at time-

like separation, in part inspired by the sequential product for positive semi-definite

operators. The familiar collapse picture, in which a quantum state collapses after

each measurement as a way to construct a joint probability density for consecutive

measurements, is equivalent to a no-collapse picture in which Lüders transformers

applied to subsequent measurements construct a Quantum-Mechanics–Free-Subsystem

of Quantum Non-Demolition operators, not as a dynamical process but as an

alternative mathematical model for the same consecutive measurements. The no-

collapse picture is particularly simpler when we apply signal analysis to millions or

billions of consecutive measurements.
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1. Introduction

We can model measurement results in multiple ways because of the near duality between

states and measurement operators. Most simply, the Schrödinger, Interaction, and

Heisenberg “pictures” differ by the actions of unitary operators on the state and on

measurement operators, but give the same expected measurement results. We can take

the idea of different pictures significantly further by taking collapse of the quantum state,

viewed as a Lüders transformer[1, §II.3.1], instead to apply to subsequent measurement

operators, so that the state in such a picture does not have to change. It will be shown

here that there are many different such pictures, corresponding to different orderings of

nonunitary transformers, and that there are several that are relatively natural, not just

one.

It has generally been understood that “collapse of the wave function”, which we will

here call collapse of the state, is particularly a feature of quantum mechanics, however as

a mathematical tool that allows the construction of joint probability densities even when

using noncommutative operators it can be useful in any formalism that uses operators

as models for measurement. The measurement problem can be understood rather

differently if we take collapse to be a mathematical construction of joint probability

densities and joint measurements instead of as a nonunitary physical process or specific

to quantum mechanics (see Fig. 1). As pointed out in “An algebraic approach to

Koopman classical mechanics”[2], algebraic modeling of measurements and their results,

including the use of noncommutativity, can be used in classical mechanics and in signal

analysis in the presence of thermal or other noise as effectively as it is in quantum

mechanics in the presence of a Poincaré invariant quantum noise: for a nontrivial

A B C A B C

BI◦C
(AI◦B)I◦C AI◦(BI◦C)

collapse collapse collapse collapse

AI◦B

Figure 1. The construction of a joint probability can be understood to use

measurements A and B to construct a joint measurement, A-collapse-B (shown in

the figure as the noncommutative and nonassociative collapse product, AI◦ B), instead

of A collapsing an initial quantum state to a new quantum state that is measured

by B. With another measurement C we can use either (A-collapse-B)-collapse-C or

A-collapse-(B-collapse-C), a choice between significantly different alternatives that is

forced on us by nonassociativity and that has to be made repeatedly when we consider

sequences of many measurements. That there is such a choice and that it has to be

made, explicitly or implicitly, because measurements are very often joint measurements

even though they may be modeled by noncommutative operators, has been somewhat

hidden by conventions that are associated with different interpretations of quantum

mechanics. Understanding collapse of a quantum state as a way to construct joint

probabilities and joint measurements gives us a largely mathematical path to rethinking

the measurement problem.
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classical dynamics, for example, a Liouville state is in general not an eigenstate both

of position measurement and of the Liouvillian operator that generates that classical

dynamics. Even before Koopman’s 1931 introduction of a Hilbert space formalism for

classical mechanics[3], Eckart introduced an algebraic approach to classical mechanics

in 1926[4]; classical and quantum measurement theory and Wigner function methods

can be usefully brought together in such operator and Hilbert space approaches[5, 6, 7].

For recent reviews of the measurement problem, see, for example, [8, Ch. 11] and [9,

particularly §2 and §§10-13]. Both these reviews can be taken to emphasize that classical

measurement theory is incomplete, as here, almost lamenting that incompleteness,

“The right approach, then, must be to define measurement as in the Copenhagen

Interpretation, i.e. using a classical description of the apparatus whilst realizing it

is ontologically a quantum system”[8, p. 451]

which is echoed by a more historical comment that implies that a quantum apparatus

is not classical and cannot be classically described,

“In the early days of quantum mechanics, the apparatus was supposed to behave

classically, escaping the realm of quantum theory.”[9, p. 15]

The implication that classical measurement theory is incomplete is pervasive in the

literature, as here,

“As a reaction to the unsolved quantum measurement problem, there is a widespread

view that at least part of the macroscopic aspects of an apparatus must be described

in terms of classical physics.”[10, p. 225]

The idea that classical measurement theory should be completed to make it more like

quantum measurement theory, by introducing what we might call Hidden Observables,

is the opposite of a traditional idea that quantum theory should be completed to make

it more classical, by introducing Hidden Variables, with the problem with the latter

being expressed, for example, by Max Jammer,

“as long as observation and experiment enforce upon us the present formalism

of quantum mechanics, it is logically impossible to complete this formalism to a

deterministic description of physical processes”[11, p. 369] (but see also the extensive

footnote 16 on that page.)

A quantum measurement theory that uses a state and a noncommutative algebra of

operators can model the results of experimental procedures and of the algorithms

applied to them that cannot be modeled by a traditional classical measurement theory,

which uses a state and only a commutative algebra of operators. We can ensure

that classical measurement theory is as complete, however, so we do not have to say

that a system is ontologically or by description classical or quantum, by using the

noncommutative algebra of operators that is provided naturally by the Poisson bracket

within Koopman’s Hilbert space formalism for classical mechanics. We will see that

a classical noncommutative measurement theory does not have quite as much of a
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measurement problem because in principle it uses a commutative algebra of operators as

a model for joint measurements, however it can use noncommutativity when necessary.

We can and should introduce more detailed models of experimental apparatus, for

which we can take decoherence[12] or quantum Darwinism[13] to be examples of general

approaches, however we can take the probability measures that are generated by a

quantum state and measurement operators to give us idealized models for statistics, as

we do for classical probability, without necessarily knowing anything of the more detailed

dynamics, as outlined in Appendix A. We particularly do not need to know the detailed

thermodynamics of a macroscopic measurement instrument precisely, or of a number

of measurement instruments integrated into a whole apparatus, for us to compute

relative frequencies from the recorded times of thermodynamic transition events and

to construct probability models or —when measurements are mutually incompatible—

noncommutative probability models for those relative frequencies.

§2 establishes notation and describes the mathematics of collapse of the quantum

state in a form close to what commonly appears in the literature, then §3 proposes

an algebraic approach using the sequential product [15, 16] to construct what will be

called here a collapse product and §4 exhibits various equivalences of several different

collapse+noncommutativity and no-collapse+commutativity approaches to modeling

the same joint measurements. Adopting a no-collapse+commutativity picture is close

to the idea of a Quantum-Mechanics–Free-Subsystem introduced by Tsang&Caves[17],

is somewhat prefigured by Belavkin[18], and the signal analysis aspect is approached

by Anastopoulos[19], however the use of the sequential product can be understood to

put such ideas in a different light. Adopting a no-collapse+commutativity picture

also suggests an alternative approach to the quantum-classical transition[12, 13,

20, 21], insofar as a system can be completely described within either classical or

quantum mechanics —using whichever is more convenient, as always when we discuss

different pictures— provided we include the use of noncommutativity and measurement

incompatibility in the classical formalism (an extension of the measurement theory

of Classical Mechanics that is termed ‘CM+’ in [2]). The summary idea suggested

here for the various mathematical models is intentionally rather empiricist, taking the

actually recorded data as a first foundation, with data and signal analysis leading to

many representations of an algebra of measurements together with a quantum state,

as described in §5. Although at two extremes we might say that measurements

have underlying hidden causes or that the measurement results are “spooky”, we

can instead commit ourselves to performing new, finer-grained measurements that

investigate the subtleties of the circumstances of our previous measurements. The

discussion in §5.1 points out that in classical mechanics and signal analysis as well

as in quantum mechanics some measurement results are not commeasurable, so that

a joint probability density that has the required marginal probability densities cannot

always be constructed, which was an already known case in the 19th Century, and it is

helpful to use noncommutative operators without using the mathematics of collapse to

model such cases.
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2. Notation and collapse of a quantum state

Linear operators are used in quantum mechanics as models for measurement, with the

set of eigenvalues of a self-adjoint operator Â corresponding to the sample space of

measurement results, together with a state ρ that models the average results of past

measurements or that fixes what we expect the average results of future measurements

will be, which we can write as the expression ρ(Â). For the algebraic conditions satisfied

by a state in a quantum mechanical setting, see Appendix B and [22, §III.2.2][23,

§3.2.1.3]; for accounts of the algebraic approach to quantum mechanics, see [23, Ch.

3] and [24, 25, 26, 27, 2]. When it is possible to introduce a trace map and a density

operator, we can write the state as ρ(Â) = Tr[ρ̂Â]. Three types of account may be found

below: using vector states in an elementary textbook approach, in Appendix C; using

an algebraic formalism, in this section; and using Positive Operator-Valued Measures

(POVMs), in §3.1.

In general, sample spaces associated with actually recorded measurement results for

real experiments can always be taken to be discrete sets, because each actual record is

always encoded in a finite number of bits. If we introduce an idealized operator Â that

has a continuous sample space, we can discretize it using the Heaviside function, so that,

as a very coarse-grained example, the operator Âd = Θ(Â− 1) + Θ(Â− 2) + Θ(Â− 3)

has the sample space {0, 1, 2, 3}, corresponding, perhaps, to an actual two bit record.

Much of the literature on the measurement problem restricts itself to the finite sample

space case. §3.1, however, briefly suggests one approach to working with idealized

measurements that have a continuous sample space.

We take a self-adjoint Moment Generating Operator Â†= Â to have a discrete

sample space {αi}, so it can be written in a projection-valued presentation as a weighted

sum of a complete set of mutually orthogonal projection operators Â =
∑

i αiP̂
(A)
i , where

P̂
(A)
i P̂

(A)
j = δi,jP̂

(A)
i and

∑
i P̂

(A)
i = 1̂ [1, Ch. II][26], so that Ân =

∑
i α

n
i P̂

(A)
i . From

this, we can introduce an abstract complex structure j so that we can construct a 1-

parameter group of unitary operators, which we will call here a Characteristic Function

Generating Operator,

e jλÂ =
∑
i

e jλαiP̂i, λ ∈ R, (1)

to which we can apply an inverse Fourier transformation to construct a normalized

projection-valued distribution, which we will call here a Probability Density Generating

Operator,

δ(Â−u) =

∫
e−jλue jλÂdλ

2π
=
∑
i

δ(u− αi)P̂ (A)
i , u ∈ R, (2)

which is a Dirac delta-function form of a Projection-Valued Measure. As pointed out by

Cohen[28], characteristic functions are a natural way to work with probability densities

in a Hilbert space setting. In such a setting, one way to introduce the abstract complex

structure j, as above, pragmatically and following the engineering convention, is as an

effective way to manage the “sine” and “cosine” components of the Fourier transform of a
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probability density. The consistent use of j below is intended as something of a reminder

that the first place in this algebraic approach where it is natural to introduce an abstract

complex structure is specifically associated with characteristic functions, however a

complex structure could be introduced for other reasons in a different presentation.

With these constructions, a state generates moments, a probability density, and a

characteristic function

ρ(Ân) =
∑
i

αni ρ(P̂
(A)
i ), (3)

p(u) = ρ(δ(Â−u)) =
∑
i

δ(u− αi)ρ(P̂
(A)
i ), and (4)

p̃(λ) = ρ(e jλÂ) =
∑
i

ejλαiρ(P̂
(A)
i ), (5)

for which the probability density is nonzero only for values in the sample space of the

measurement.

When two operators commute, which they always do when they are models for

measurements that are space-like separated from each other, we can construct a joint

probability density straightforwardly, using the ordinary multiplication, as

p(u, v) = ρ(δ(Â−u) · δ(B̂−v)) =
∑
i,j

δ(u− αi)δ(v − βj)ρ(P̂
(A)
i P̂

(B)
j ), (6)

where B̂ =
∑

j βjP̂
(B)
j , which extends to any number of commuting operators. For

quantum mechanics, however, operators in general will not commute when they are

models for measurements that are time-like separated from each other, in which case

P̂
(A)
i P̂

(B)
j may not be a positive operator and we have to use a different construction

as a model for the results of sequential measurements, even though they are joint

measurements that we can model using joint probability densities. Following a

measurement result αi, we say that the state ρ “collapses” to the state

ρi(X̂) =
ρ(P̂

(A)
i X̂P̂

(A)
i )

ρ(P̂
(A)
i )

, (7)

giving the expected value for any operator X̂, using the Lüders operation corresponding

to the i’th eigenvalue[1, §II.3.1]. ρi satisfies the four conditions required for it to be

a state (as noted above, see Appendix B). The operation ρ 7→ ρi may also be called

a state reduction or a state preparation. For a measurement modeled by an operator

B̂ the Probability Density Generating Operator δ(B̂−v) in the state ρi then gives a

conditional probability density ρi(δ(B̂−v)). The joint measurement probability density

after the whole process of a first measurement, collapse of the state, and a second

measurement is therefore given by the probability density for the first measurement and

the probability densities for the second measurement conditional on the result of the

first measurement,

pA,collapse,B(u, v) =
∑
i

δ(u− αi)ρ(P̂
(A)
i )

ρ(P̂
(A)
i δ(B̂−v)P̂

(A)
i )

ρ(P̂
(A)
i )

(8)
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=
∑
i,j

δ(u− αi)δ(v − βj)ρ(P̂
(A)
i P̂

(B)
j P̂

(A)
i ). (9)

The sample space {(αi, βj)} of this joint measurement is notably the same as the

sample space associated with two commuting operators with sample spaces {αi}, {βj}.
pA,collapse,B(u, v) is positive semi-definite by construction and is normalized, as it must

be,
∫
pA,collapse,B(u, v)dvdu = 1. See Appendix C for an equivalent derivation that follows

a more textbook approach.

3. A collapse product of probability density and characteristic function

generating operators

Given the construction above, it is quite natural to use the sequential product for positive

semi-definite operators that is described by Gudder&Greechie[15], X̂◦Ŷ =
√
X̂ ·Ŷ ·

√
X̂.

For a number of recent articles about the sequential product by Gudder, see [16]. We

can define for the discrete sample space case a collapse product of two probability density

generating operators or characteristic function generating operators as

δ(Â−u)I◦δ(B̂−v)
.
=
∑
i

δ(u− αi)P̂ (A)
i δ(B̂ − v)P̂

(A)
i

=
∑
i,j

δ(u− αi)δ(v − βi)P̂ (A)
i ◦ P̂ (B)

j , (10)

e jλÂI◦e jµB̂ .
=
∑
i

e jλαiP̂
(A)
i e jµB̂P̂

(A)
i

=
∑
i,j

e j(λαi+µβj)P̂
(A)
i ◦ P̂ (B)

j (11)

(where for projection operators we have
√
P̂ = P̂ ), so we can write

pA,collapse,B(u, v) = ρ(δ(Â−u)I◦δ(B̂−v)), (12)

and we can define the reverse case, δ(Â−u)◦Jδ(B̂−v)
.
= δ(B̂−v)I◦δ(Â−u). We can think

of this construction as applying a collapse or Lüders operation to other measurements

instead of to the state, following Bohr’s preference for measurements affecting other

measurements instead of collapse of the state[29]. We can confirm that δ(Â−u)I◦δ(B̂−v)

is a positive semi-definite operator and that it is normalized appropriately to generate a

joint probability density in any state,
∫
δ(Â−u)I◦δ(B̂−v)dudv = 1̂. If [Â, B̂] = 0, then

[P̂
(A)
i , B̂] = 0, so in that case δ(Â−u)I◦δ(B̂−v) = δ(Â−u) · δ(B̂−v).

We use the sequential product, in particular, so that we can straightforwardly

generalize the collapse product (though we should note that the square root of a positive

semi-definite operator is only unique if we insist it is positive semi-definite), for example

to three or more characteristic function generating operators, as

(ejλ1Â1I◦e jλ2Â2)I◦e jλ3Â3 .
=
∑
i,j,k

e j(λ1α
(1)
i +λ2α

(2)
j +λ3α

(3)
k )(P̂

(A1)
i ◦P̂ (A2)

j )◦P̂ (A3)
k , (13)
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where we have to include brackets because the collapse product and the sequential

product are nonassociative as well as noncommutative. Furthermore, the collapse

product is nonlinear in its left-hand argument and the construction

(X̂ ◦ Ŷ ) ◦ Ẑ =

√√
X̂·Ŷ ·

√
X̂ · Ẑ ·

√√
X̂·Ŷ ·

√
X̂ (14)

is significantly more complicated than

X̂ ◦ (Ŷ ◦ Ẑ) =
√
X̂·Ŷ ·Ẑ·

√
Ŷ ·X̂. (15)

We can call the collapse product power associative insofar as e jλÂI◦e jµÂ = e jλÂe jµÂ =

e j(λ+µ)Â and

e jλ1ÂI◦(e jλ2ÂI◦e jµB̂) = e jλ2ÂI◦(e jλ1ÂI◦e jµB̂) = e j(λ1+λ2)ÂI◦e jµB̂

= (e jλ1ÂI◦e jλ2Â)I◦e jµB̂. (16)

For probability density generating functions, both
(
δ(Â1−u1)I◦δ(Â2−u2)

)
I◦δ(Â3−u3)

and δ(Â1−u1)I◦
(
δ(Â2−u2)I◦δ(Â3−u3)

)
are positive semi-definite operators and are

normalized appropriately to generate a probability density in any state. Note that√
P̂

(A)
i P̂

(B)
j P̂

(A)
i is well-defined because P̂

(A)
i P̂

(B)
j P̂

(A)
i is a positive semi-definite operator,

but neither operator is a projection unless it happens that [P̂
(A)
i , P̂

(B)
j ] = 0 for the

particular eigenspaces.

Most commonly, the time ordering of measurements is taken to determine the

ordering of collapse products, however, as a mathematical construction, the ordering

of collapse products is independent of the time ordering of measurement operators, so

that we could perfectly well use the collapse product out of time order if we were to find

it useful to do so. Furthermore, time ordering is only a partial ordering for measurements

that are associated with overlapping time intervals, in which case time ordering cannot

by itself determine the ordering of collapse products, so that the collapse product may

introduce some difficult decisions. Whereas time reversal is straightforward for no-

collapse+commutativity models, time reversal for collapse+noncommutativity models

in which time-order determines collapse order introduces significant complications.

We can loosely consider the collapse product to be a regularized form of the positive

semi-definite but unnormalized construction

δ(Â− u)δ(B̂ − v)δ(Â− u) =
∑
i,j,k

δ(u− αi)δ(v − βj)δ(u− αk)P̂ (A)
i P̂

(B)
j P̂

(A)
k

N
=
∑
i,j,k

δ(u− αi)δ(v − βj)δi,kP̂ (A)
i P̂

(B)
j P̂

(A)
k

=
∑
i,j

δ(u− αi)δ(v − βj)P̂ (A)
i P̂

(B)
j P̂

(A)
i

= δ(Â−u)I◦δ(B̂−v), (17)

where the regularization (the equality up to an infinite normalization that is indicated

by
N
=) replaces the improper expression δ(u − αi)δ(u − αk) by δ(u − αi)δi,k. We

can understand both δ(Â−u)I◦ and e jλÂI◦ acting on operators on their right to be

a parameterized set of operations in their Kraus representation[10, §7.4].



The collapse of a quantum state as a joint probability construction 9

3.1. POVMs and continuous sample spaces

For a σ-algebra F , a collection of subsets of a nonempty set Ω that is closed under the

set complement X 7→ Ω\X and under countable unions and countable intersections, a

Normalized Positive Operator-Valued Measure[1, §II.1.2] is an indexed set of operators

Ê(X), with X ∈ F , for which Ê(X) is:

(i) Positive semi-definite: Ê(X) ≥ 0 for all X ∈ F ;

(ii) Normalized: Ê(Ω) = 1̂;

(iii) a Measure: Ê(∪Xi) =
∑
Ê(Xi) for all disjoint sequences (Xi) ⊂ F .

Ê(X) is defined so that the action of a state gives a probability measure ρ(Ê(X)),

for which (i) ρ(Ê(X)) ≥ 0 for all X ∈ F ; (ii) ρ(Ê(Ω)) = 1; and (iii) ρ(Ê(∪Xi)) =∑
ρ(Ê(Xi)) for all disjoint sequences (Xi) ⊂ F .

We can use a Moment Generating Operator Â and its associated Probability Density

Generating Operator δ(Â−u) to construct a special case of a POVM, a Projection-Valued

Measure (PVM), for which all the positive operators used are projection operators,

in two straightforward ways, either using the sample space Ω = R, Ê(A)(X) =∫
X
δ(Â−u)du, or using the sample space Ω = {αi}, Ê(A)(X) =

∑
i:αi∈X P̂

(A)
i . Using

the latter, we can construct a collapse product as

Ê(A,collapse,B)(X × Y ) =
∑
i:αi∈X

∑
j:βj∈Y

P̂
(A)
i ◦ P̂ (B)

j . (18)

The use of more general POVMs allows the use of smaller Hilbert spaces by differently

encoding measurements, which can be practically and conceptually helpful, however

Neumark’s theorem[1, §II.2.4] ensures that the abstract algebraic structure of a system

of POVMs can always be encoded equally well by PVMs.

As a positive semi-definite operator, Ê(X) can be written as a sum or integral of

positive operators, of the form Q̂ = Â†Â, so for a sufficiently complete set of positive

operators {Q̂λ} we can write, nonuniquely,

Ê(X) =
∑
λ

κλ(X)Q̂λ, (19)

where κλ(X) must be positive semi-definite and all the κλ(X) and Q̂λ are nonlinearly

constrained by Ê(X) being normalized and being a measure. If κλ(X) = pλ(X) is a

normalized measure for each λ, then the constraint
∑

λ Q̂λ = 1̂ is easily shown to be

sufficient, and in that case p(X) = ρ(Ê(X)) =
∑

λ pλ(X)ρ(Q̂λ) is a convex sum of the

probability measures pλ(X), whether the sample space is continuous or discrete.

If we decide to work in an idealized formalism of continuous sample spaces,

therefore, instead of using the available instrumental discretization, one way to proceed

is to choose a finite set of positive functions κ
(A)
λ (X) —where X may be an element in a

σ-algebra of subsets of a continuous sample space Ω— to replace the densities δ(u−αi),
with each κ

(A)
λ (X) associated with a positive operator Q̂λ that replaces the projection
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operators P̂
(A)
i . With a sufficiently enlarged set of positive operators {Q̂λ}, we can

nonuniquely extend this construction to any number of POVMs,

Ê(A)(X) =
∑
λ

κ
(A)
λ (X)Q̂λ, Ê(B)(X) =

∑
µ

κ(B)
µ (X)Q̂µ, ..., (20)

provided we ensure that E(•)(X) is normalized and is a measure, with which we can

construct probability measures

p(A)(X) = ρ(Ê(A)(X)) =
∑
λ

κ
(A)
λ (X)ρ(Q̂λ),

p(B)(X) = ρ(Ê(B)(X)) =
∑
λ

κ
(B)
λ (X)ρ(Q̂λ), ..., (21)

then we can define a collapse product, relative to the particular choice {Q̂λ}, as

Ê(A,collapse,B)(X × Y )
.
= Ê(A)(X)

Q

I◦ Ê(B)(Y )
.
=
∑
λ

κ
(A)
λ (X)

[
Q̂λ ◦ Ê(B)(Y )

]
=
∑
λ,µ

κ
(A)
λ (X)κ(B)

µ (Y )
[
Q̂λ ◦ Q̂µ

]
=
∑
λ,µ

κ
(A)
λ (X)κ(B)

µ (Y )

√
Q̂λQ̂µ

√
Q̂λ. (22)

We can understand the construction Ê(A)(X)
Q

I◦ to be a Completely Positive Operation-

Valued Measure in its Kraus representation[10, §7.4]. We can also think of Ê(A)(X)
Q

I◦
as a conditional state preparation, because, for example for Ê(A)(X), for any state

ρ(M̂), ρ(Ê(A)(X)
Q

I◦M̂)/ρ(Ê(A)(X)) is also a state, so we could also call
Q

I◦ a preparation

product.

The dependence on a particular choice for {Q̂λ} makes the collapse product less

natural for POVMs than it is for the presentation of each PVM in terms of orthogonal

projection operators, unless there is additional information about the physics that makes

the choice of {Q̂λ} natural as a generating set for a ∗-algebra, with the POVMs as a

secondary construction.

4. Equivalent noncommutative and commutative models

Because pA,collapse,B(u, v) is a joint probability density, with sample space {(αi, βj)}, we

can certainly introduce operators Â′ and B̂′ that have the same sample spaces {αi} and

{βj} as Â and B̂ but which commute, [Â′, B̂′] = 0, and a different state ρAB, for which

ρAB(δ(Â′−u)·δ(B̂′−v))
.
= pA,collapse,B(u, v), (23)

because the joint probability pA,collapse,B(u, v) defines a state over the commutative

algebra generated by the self-adjoint operators Â′ and B̂′. For a general element

X̂ =
∑

m,n λm,nÂ
′mB̂′n, λm,n ∈ C,

ρAB(X̂†X̂) =

∫ ∑
m,n

∑
m′,n′

λ∗m,nλm′,n′u
m+m′vn+n′ρAB(δ(Â′−u)·δ(B̂′−v))dudv
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=

∫ ∑
m,n

∑
m′,n′

λ∗m,nλm′,n′u
m+m′vn+n′

×
∑
i,j

δ(u− αi)δ(v − βj)ρ(P̂
(A)
i P̂

(B)
j P̂

(A)
i )dudv

=
∑
i,j

(
∑
m,n

λm,nα
m
i β

n
j )∗(

∑
m′,n′

λm′,n′α
m′

i β
n′

j )ρ(P̂
(A)
i P̂

(B)
j P̂

(A)
i )

=
∑
i,j

|Λi,j|2ρ(P̂
(A)
i P̂

(B)
j P̂

(A)
i ) ≥ 0,

where Λi,j =
∑
m,n

λm,nα
m
i β

n
j . (24)

Although we have arrived at this mathematics by a somewhat different motivation,

as a way to remodel collapse of the state within the quantum formalism so that it is

classically somewhat more natural, the operators Â′ and B̂′ are then Quantum Non-

Demolition (QND) measurements relative to each other[17, 18], for which there is a

long history and experience in their use. The account here is algebraically unconcerned

about Hilbert space representation, however Appendix D presents commutative models

of joint measurements in a Hilbert space formalism in a way that is similar to the

presentation of collapse of the quantum state in Appendix C.

Fig. 2 gives a schematic presentation and discussion of the collapse and no-collapse

pictures of a preparation apparatus P, with the environment of the whole experiment

measured by X, to which two measurement instruments are added, first A and then B.

The construction in Fig. 2(b) is effectively of a quantum state ρXAB in what we might

call a super-Heisenberg picture, in which the state does not evolve over time and both

the collapse and Hamiltonian evolutions are absorbed into the mutually commutative

measurement operators that are used as models for the joint measurements X, A, and

B.

Particularly when we model a stream of millions or billions of jointly recorded

measurement events over time, presented graphically in Fig. 3, as we do when we

record signal levels on a signal line at regular intervals, it can be equally or more

effective simply to use a commutative algebra of measurement operators to model a

joint probability density instead of working with a mathematical formalism in which

collapse of the state occurs millions or billions of times. Equally, however, where we

have been accustomed to modeling joint probability densities in classical physics only

using commutative algebras of measurement operators, it can be justifiable for a classical

physicist or in signal analysis to use the collapse product to achieve a useful reduction

of Hilbert space dimension or to achieve other goals.

We can also use a single long sequence of noncommutative operators and collapse

products in different ways:

(···((δ(Â1−u1)I◦δ(Â2−u2))I◦δ(Â3−u3))I◦ · · ·)I◦δ(Ân−un), (25)

for example, collapses the state after every measurement, which gives a very different

type of model for an experiment than is given by

δ(Â1−u1)I◦(δ(Â2−u2)I◦(· · ·I◦(δ(Ân−1−un−1)I◦δ(Ân−un))···)), (26)



The collapse of a quantum state as a joint probability construction 12
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(b)
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ρi

B
ρij
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P

X
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A
αi

B
βj

x

x

x

x

x

x(i)

(i)

(ii)

(ii)

(iii)

(iii)

Figure 2. (a) Collapse: introducing measurement instruments A and then B does not change the
state ρ prepared by the preparation apparatus P whatsoever, but the state presented to X changes
from ρ to ρi and then to ρij , depending on which measurement results occur for A and B. Exactly
when and how collapse happens to give a joint probability model for the relative frequencies produced
in the three cases has been a hard-fought discussion for almost a century.
(b) No-collapse: the state ρX is determined by both the preparation apparatus P and the
measurement instrument X, which we might attribute to a principle that for every measurement
there is a measurement reaction; introducing measurement instruments A and then B changes the
boundary conditions of the experimental apparatus, by however much, causing additional reactions,
so that the state of the system enclosed by the apparatus changes, ρX → ρXA → ρXAB , by a
corresponding amount, to give a joint probability model for the relative frequencies produced in the
three cases. The operators X̂′, Â′, and B̂′ that we use as models for the measurements X, A, and B
in a no-collapse picture must all mutually commute, so they are different than are used in the collapse
picture.

If we think of the apparatus as containing a small number of particles, then it seems unnatural
that small changes of the boundary conditions should change the state, but if we also think of the
apparatus as containing a system of thermodynamically nontrivial waves that is irreducibly noisy at all
scales, then it seems natural from a quantum mechanical perspective that every detail of the boundary
conditions should contribute to determining the state, just as it would for a thermodynamic state.
The collapse picture’s idea that introducing new apparatus does not change the state whatsoever is
mathematically practical enough, however, to override any principled qualms about using it.

We can think of X as any environment monitoring or other questions we might ask about P, from
nonsense to routine to details at all scales —“Is there a cat on the optical table?” “Is the power
on?” “Is there dust or any other contaminant on any of the components?” “What mechanical and
electromagnetic noise spectrum is there in the laboratory?”— all of which correlate more or less with
the results of what we take to be the significant measurements, A and B. We can take X to be part
of the state preparation, but that is, so to speak, a different picture.

which can be thought of as applying a single, combined collapse only after the last-

but-one measurement. We can consider the latter to be the mathematics behind a

form of Many Worlds Interpretation, in the sense that there is no collapse except

when the experiment is finally completed (which we could say happens when we begin

analysis of the actually recorded experimental data, or, more extravagantly, we could

say that the final collapse will not happen until after the last human being dies or at

some other cosmologically defined endtime.) Both constructions allow us to generate

joint probability densities, because they are both positive semi-definite operators as

functions of u1, ..., un and they are both normalized appropriately, but for the same

statistics of experimental results we would have to use different states and operators

to achieve empirically equivalent models. A relatively mathematical discussion of the

order in which the necessary brackets are or should be applied can equivalently but more

implicitly be accommodated by more physically motivated discussions about whether

or not collapse happens after every measurement or only after a long sequence of

measurements. Discussions of which parts of the experimental apparatus are considered
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M̂1

M̂2

M̂3

M̂n
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ρ

ρ1

ρ2

ρn−1

Collapse

Collapse

u2

u3
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ρ1..n

No-Collapse
Quantum

Non-Demolition
Picture

Collapse
Picture

for some bracket order

both give the same
joint probability,

p(u1, u2, u3, ..., un)

[M̂i, M̂j ] 6=0 [M̂ ′i , M̂
′
j ]=0

[M̂1, M̂
′
j ]=0

Hamiltonian
evolution
Ĥ ≥ 0

Figure 3. When millions or billions of measurements follow one after another, collapse becomes a
complicated choice.

part of state preparation and which are considered measurement instruments, which can

be understood as placing those parts to one side or another of the Heisenberg “cut”,

thereby changing our understanding of what the state describes, can be thought of as a

subset of all possible ways in which brackets determine the application of the collapse

product.

If we only allow unitary evolution, with no use whatsoever of operations such

as collapse of the quantum state, as in the Relative State, Many Worlds, and other

interpretations of quantum mechanics, we can only model joint probabilities using

commuting operators, giving an essentially classical perspective of QND measurements.

The absolutist idea that only commuting operators should be used for joint probabilities

was advocated in §7.1 of [2], with the realization that this is not adequate as a way

to understand incompatible measurements and the use of noncommuting operators in

quantum mechanics leading to the idea here of the collapse product. With a no-collapse

approach, we are free to adopt any interpretation of classical probability —Dutch Book,

Propensity, Frequency, Many Worlds, or any other— but there must be a connection

to actually recorded experimental data, to the choice of subsets of the data, and to

whatever algorithms are applied to construct summary statistics.

Yet another fairly natural construction can be thought of as applying a single,

combined collapse in time-reverse order, immediately after the first measurement (taking

Â
i

to be before Â
i+1

),

(···((δ(Â1−u1)◦Jδ(Â2−u2))◦Jδ(Â3−u3))◦J · · ·)◦Jδ(Ân−un), (27)

again requiring a different state and operators to generate the same statistics, but, as
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already noted, there are many other possibilities. Indeed, for a given ordering of n

distinct operators, there are (2n−2)!
(n−1)!n!

distinct ways to introduce the required brackets,

giving the sequence 1, 1, 2, 5, 14, 42, 132, ..., with some choices of brackets being more

mathematically natural than others but with none absolutely preferred.

For a given experiment, we can use whichever picture seems most helpful, but

for each the state will be different and so will our understanding of its relationship

to actually recorded experimental data. The profusion of different states in different

pictures, depending on what approach we take to constructing joint probabilities, is

straightforward on an epistemological or structural realist understanding of quantum

states, however it is arguably incompatible with a näıve ontological understanding of

physical states.

5. Data Analysis and Signal Analysis

A signal analysis approach to classical or quantum mechanics takes as its starting

point the actually recorded data about the jointly measured signal levels on the many

signal lines out of our experimental apparatuses. For the purposes of such a pragmatic

approach, perhaps embedded in a wider philosophy, Megabytes and Terabytes of data

is the practical reality, not the signal levels, a vector in a Hilbert space, or anything

else, even though such abstractions may be very useful and intuitively helpful. For

such a pragmatic approach, we are relatively little concerned with the wider world that

only little affects the recorded data we obtain in a carefully constructed laboratory or

observatory. The process of creating such recorded data is decades or longer in the

making: measurement instruments evolve as different materials, materials processing,

electronics, and triggers and other algorithms are invented and discarded or adopted.

Some inventions are mostly refinements but others are essentially sidesteps, so that

recorded data is never the last word. Data always has a very long provenance and there

is arguably no such thing as raw data[30, 31]. In the recent physics literature, see also

[32].

In very broad theoretical terms, we take there to be a number of repeatable

measurements M1,M2,M3, ..., with the actually recorded data giving us, for each Mi,

in a näıve approach, a sample space Si = {si1, si2, ...} and their associated relative

frequencies pij. We can then model those measurements using operators M̂1, M̂2, M̂3, ...,

for which the spectrum of each operator is the same as the sample space of the

corresponding measurement, M̂i =
∑

j sijP̂ij, for appropriately orthogonal projection

operators P̂ij, and we can model the measurement results using a state ρ that gives

those relative frequencies, ρ(P̂ij) = pij. This approach emphasizes how we describe

our measurements and relationships between them, not how we describe what our

measurements are of.

In some cases measurements are clearly joint measurements, in which case either

we can take the measurement operators to commute, or else we can take them not

to commute but we use measurement collapse to construct joint probabilities. When
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measurements are not joint measurements —because they correspond, as discussed in

§5.1, to measurement settings or geometries that cannot be selected in the same time and

place— we should generally not model such measurements using commutative operators,

neither classically nor quantum mechanically, even if the corresponding probability

densities happen to admit a joint probability, because there may be states that can

be prepared for which joint probabilities are not possible.

Less näıvely, the analysis of actually recorded data, whether in real-time in hardware

or software, or in post-analysis by arbitrary algorithms, will take into account all our

background knowledge of symmetries and other aspects of our experiments as part of

decisions about what operators are more appropriate than others as models for particular

measurements. The first level of our knowledge about our experiments can be encoded

by imposing additional structure on the index set for measurements: instead of operator

models for measurements being indexed by the natural numbers, {M̂i, i ∈ N}, we

can adopt a more structured index set. For quantum field theory as laid out by the

Wightman axioms, in particular, the index set is typically taken to be a Schwartz space

S of test functions on Minkowski space[22, Ch. II], all of which are smooth and have

a smooth Fourier transform, so that we adopt {M̂f , f ∈ S} as an idealized indexed set

of measurements. In signal analysis, the idea of window functions in convolution with

measurements of the signal level is directly comparable to the idea of test functions.

With symmetries taken as guidelines, the actually recorded data less underdetermines

the construction of operators and of a state that models those measurement results.

Where there is space-like separation between measurements, for example, we take

it as a well-established empirical principle that operator models for such measurements

must commute, to ensure that faster-than-light messaging is not possible, and when

measurements are the same except for space-like or time-like translations, rotations,

and boosts, we take it as a well-established empirical principle that operator models for

such measurements will be related by a unitary representation of the Poincaré group.

For the Wightman axioms, these empirical principles have the algebraic consequences

that

(i) the commutator of operators M̂f and M̂g must be zero, [M̂f , M̂g] = 0, whenever the

test functions f and g have space-like separated support;

(ii) where the commutator [M̂f , M̂g] is non-zero, it must be an operator-valued

manifestly Poincaré-invariant functional of the test functions f and g.

In addition, a Wightman field requires three a priori conventions,

(iii) the vacuum state is a Poincaré-invariant starting point for the construction of other

states, a convention strongly suggested by (i) and (ii);

(iv) generators of time-like translations —Hamiltonian operators— are required to have

a positive spectrum;

(v) the operator M̂f is a linear functional of f , M̂λf+µg =λM̂f + µM̂g, so that

M̂f can be constructed in terms of an operator-valued distribution M̂(x),

M̂f =
∫
M̂(x)f(x)d4x.
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If these and other empirical principles and a priori conventions are either incorrect or

too constrained, however, then there will be some experiments for which it will not be

possible to construct adequate models for the actually recorded data and we will have to

discover new empirical principles and adopt less restrictive conventions. The Wightman

axioms are well-known to be overconstrained, so that there are no known interacting

models in 3+1-dimensions. Gravity clearly may require modifications to (i), (ii), and

(iii); the positive spectrum condition, (iv), is not satisfied for a dynamics associated with

QND measurements[17] and is not required for the Liouvillian operator that generates

time-like translations in classical physics[2]; and the linearity of (v) is not an obviously

necessary choice for a classical nonlinear theory, because one rôle of M̂f is to construct

modulated states, which casts doubt on its necessity for quantum field theory.

It may seem remarkable that the Wightman axioms have unceremoniously landed

here, however it is axiomatically characteristic of quantum noise that the quantum

vacuum state is Poincaré invariant, whereas thermal noise is defined in quantum theory

relative to a particular Hamiltonian operator. Signal analysis, in its simplest aspect

of analysis of a single signal level, is a 0+1-dimensional field theory, so no such

axiomatic distinction can be made: it is only in a 1+1-dimensional field theory that

the mathematical structure of Poincaré invariance can be introduced so that we can, in

an idealized model for physics, distinguish quantum noise, with an amplitude determined

by Planck’s constant, from thermal noise, with an amplitude determined by Boltzmann’s

constant and the temperature. A distinction commonly made in signal analysis, between

the frequency spectra of red, white, and blue noise, requires extension to 1+1-dimensions

for a distinction to be made between the wave-number spectra of quantum and thermal

noise. From a classical perspective, the mathematical structure of a measurement

theory is rather more that of a generalized classical thermodynamics than of a

generalized classical mechanics, partly because the introduction of probability introduces

subtleties that are often counterintuitive: the abstract measurements M1,M2,M3, ...

could be thought, for example, to be a mathematical model of temperature and density

measurements at different places and times. To my knowledge, there are just three

principled generalizations that make a generalized thermodynamics a quantum field

theory: (1) measurement incompatibility [see §5.1, immediately below]; (2) Poincaré

invariant quantum noise as well as thermal noise; and (3) the introduction of analyticity

by the positive spectrum condition [(iv) above, but this is universally asserted in

axiomatic constructions of quantum mechanics]. A mathematician will be reluctant to

give up the superpowers that analyticity affords, however it is notable that the positive

spectrum condition is an unnecessary a priori convention that significantly modifies

discussions of locality. This brief discussion has introduced a wider mathematical and

physical context, which has subtle consequences that cannot be ignored, but the collapse

of the quantum state can be largely understood in its narrow mathematical guise of

giving one way to construct joint probabilities.

Although we can continue the tradition of taking notable features such as sudden

transitions of the signal level on a signal line that are recorded as the times of
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“events” as caused by a “particle” or a “wave” or a “quantum particle” or a “quantum

state” or a “quantum field state”, and for the quantum state to “collapse” as needed

to construct joint probabilities, because we have become skilled in the use of our

existing quantum mechanics toolbox, we can also —because of the equivalence of

collapse+noncommutativity models and no-collapse+commutativity models constructed

above— take the finite collection of actually recorded data about those events to be a

consequence of the way the whole experimental apparatus has been engineered. For

future experiments, we can ask a continuum of questions about how statistics of the

actually recorded data would differ if small or large changes were made to the apparatus,

with arbitrarily many additional measurement instruments and signal lines interpolated

among those already there or with the signal levels recorded arbitrarily more accurately

or more often. Loosely, we can think of the recorded past as discrete and finite; we can

think of the imagined future, in contrast, as continuous.

5.1. Measurement Incompatibility

Joint measurements do not exhaust the use of noncommuting operators in quantum

mechanics, because not all ways in which measurements can be combined are

joint measurements. For measurements that are not joint measurements —because,

impossibly, an apparatus setting would have to be different values at the same

time or different measurement instruments would have to be in the same place

at the same time— we may have to use noncommuting operators to represent

the relationship between different analyses of actually recorded experimental data.

Algebraic formalisms for classical mechanics and signal analysis also can reasonably

include the use of noncommuting operators[2], because the Poisson bracket allows us to

generate a noncommutative algebra of transformations that can as reasonably be used

as measurement operators in classical mechanics as they are in quantum mechanics. For

experiments in which Bell-CHSH-type inequalities are violated, for example, we must

include noncommutative operators for an algebraic model to give us an effective model

for the results[14][2, §7.2], because the use of arbitrary post-selection algorithms to create

new datasets effectively creates distinct experimental contexts. To require classical or

other operator formalisms not to use noncommutative operators is effectively to make

them a straw man. As Pitowsky puts it[33, p. 112] (saying “commeasurable” for “jointly

measurable”), quoted by Abramsky[34, p. 7],

For certain families of events the theory stipulates that they are

commeasurable. This means that, in every state, the relative frequencies of all

these events can be measured on one single sample. For such families of events,

the rules of classical probability —Boole’s conditions in particular— are valid.

Other families of events are not commeasurable, so their frequencies must be

measured in more than one sample. The events in such families nevertheless

exhibit logical relations (given, usually, in terms of algebraic relations among

observables). But for some states, the probabilities assigned to the events
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Figure 4. (a) Collapse: introducing either measurement instrument A or B does not change the
state ρ prepared by the preparation apparatus P whatsoever, but the state presented to X changes

either from ρ to ρ
[A]
i or to ρ

[B]
i , depending on which of A or B is introduced.

(b) No-collapse: introducing either measurement instrument A or B changes the boundary
conditions of the experimental apparatus, differently, so that the state of the system enclosed by
the apparatus changes, ρX → ρXA or ρX → ρXB .

violate one or more of Boole’s conditions associated with those logical relations.

Note that there are other ways of discussing commeasurability: Generalized Probability

Theory and other literature often uses the word “incompatibility” when two probability

densities do not admit a joint probability density[35], and there is a substantial literature

on “contextuality”[36, 37, 38].

Fig. 4 presents quantum mechanical models for an experimental apparatus that

includes a preparation apparatus P and measurement instruments X and either A or B,

in a collapse picture and in a no-collapse picture. In general, two probability densities,

pXA(x, u) = ρXA(δ(X̂−x)·δ(Â−u)) and

pXB(x, v) = ρXB(δ(X̂−x)·δ(B̂−v)), (28)

cannot be expected to allow the construction of a joint probability density pXAB(x, u, v)

for which

pXA(x, u) =

∫
pXAB(x, u, v)dv and

pXB(x, v) =

∫
pXAB(x, u, v)du. (29)

We can, however, construct a single state ρX(A|B) over a non-commutative algebra

generated by operators X̂, Â, and B̂ for which

pXA(x, u) = ρX(A|B)(δ(X̂−x)·δ(Â−u)) and

pXB(x, v) = ρX(A|B)(δ(X̂−x)·δ(B̂−v)), (30)

exactly as we are familiar with in quantum mechanics, in both Hilbert space and

Wigner function formalisms, but this is a mathematical tool that can equally be used

when the noise spectrum is different from a quantum noise that has an amplitude

that is determined by Planck’s constant. As noted above, a thermal state defines a

different from quantum noise spectrum that has an amplitude that is determined by the

Boltzmann constant and the temperature.
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6. Discussion

For joint measurements at space-like separation, we do not need to introduce collapse of

the state to model them, because operators at space-like separation commute. Collapse

of the state has no effect if measurement operators commute. For joint measurements

at time-like separation, however, the collapse of the state after a measurement makes it

possible to model those joint measurements using noncommutative operators: without

collapse of the state or a similar construction it would not be possible to use

noncommutative operators to model joint measurements for all prepared states, already

because of the elementary observation that in general ρ(ÂB̂)∗ 6= ρ(ÂB̂) unless [Â, B̂] =

0. Any model that uses collapse to make it possible to use noncommutative operators

to model joint measurements can be replaced by a model that uses only mutually

commuting operators, but, conversely, it also may be useful to replace a commuting

operator model for joint probabilities by a model that freely uses a noncommutative

algebra of operators.

In the Schrödinger picture of phase space quantum mechanics, measurements are

associated with regions of space and with a state that only models the statistics of

measurement results at one time, evolving unitarily from time to time. In this picture,

it is in a sense straightforward to introduce a nonunitary collapse of the quantum

state immediately after a measurement result, even though it introduces well-known

interpretational concerns. In contrast, when modeling physical systems in a quantum

field theoretic way or in the Heisenberg picture, measurements are associated with

regions of space-time and with a state that models the statistics of measurement results

at all times, so we cannot as straightforwardly introduce collapse of the quantum state

at a particular time, but we can nonetheless use the collapse product acting on other

measurements as an algebraic way to construct joint probabilities.

Although it has been stressed here that we can think about collapse of the quantum

state in terms of the construction of joint probability densities straightforwardly

and effectively, the much more elaborate mathematics of detailed models of the

thermodynamic behavior and statistical mechanics of real experimental apparatus, of

measurement as interaction, of decoherence, and even of the observer’s brain or mind,

is not thereby made unnecessary. The many discussions of such mathematics in the

literature are of course just as valid and necessary as they ever were, but at the

level of abstraction at which we here consider probabilities and relative frequencies

of actually recorded experimental results, we can reasonably shut up and calculate joint

probabilities using collapse of the state, knowing that we could also shut up and calculate

using QND measurements with no collapse if we wished to do so.

The mathematics above allows us to model joint measurements by a commuting

algebra of QND measurement operators in any Hilbert space formalism, instead of using

collapse of the state or the Lüders transformer applied to noncommuting operators,

but we can use collapse of the state if that gives us interpretative or computational

advantages. As presented in §5.1, however, we can and may have to use noncommuting
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operators, in a unification of classical and quantum mechanics, to model measurements

that are not joint measurements.
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Appendix A. Idealized logical events

An “event” in, for example, an Avalanche PhotoDiode (an APD) can be transformed

into idealized logical terms that are very similar indeed to the throw of a coin. We

throw a coin, we see it land, and we record ‘0’ or ‘1’. For the APD, we “throw” it, a

billion times per second, say, then we almost always record a signal level of ‘0’ but very

occasionally we record a signal level of ‘1’: this is one aspect of a signal analysis approach

that is also elaborated upon in §5. As for the coin, we have engineered the APD so there

is a more-or-less clear coarse-grained distinction between ‘0’ and ‘1’, although there is

still, as for the coin, a very small possibility of the ‘edge’ case. As for the coin, we do

not have to solve the problem of how every definite outcome happens to be a ‘0’ instead

of a ‘1’, or vice versa, in complete detail, for an idealized formalism of probabilities and

relative frequencies to be a worthwhile and enlightening mathematical model. That we

obtain either ‘0’ or ‘1’ as a definite outcome is not something that needs an explanation

that “the state collapsed”, insofar as we engineered the device so that the results would

be either ‘0’ or ‘1’, just as, for a coin, we do not use a very thick coin that would be

more likely to land on its edge, although we can and should, as for the coin, measure in

meticulously fine detail how the APD could be constructed or “thrown” differently or

its surroundings changed to obtain slightly different results.

A more general device will have a less constrained output signal level, however when

we record a ‘1’ from the APD there will typically be a few hundred or thousand other

‘1’s either side of it, surrounded by millions of ‘0’s: the data is so sparse that in practice

we actually record only the times at which a ‘1’ is first noticed, each as the time of an

“event”. That compressed, permanently-recorded-on-a-computer classical form of that

classical data of ‘0’s and ‘1’, as the times of “events”, is most of what we have to show

to others from an experiment.

The possibility of compression of the results of APD “throws”, however, as times

of “events”, mathematically differentiates the results of those throws from the results
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of coin throws. It introduces the possibility, which can with care be actually realized in

experiments, that results of throws in multiple APDs can be jointly compressed as the

times of “simultaneous events”.

Further algorithms can be introduced to produce relative frequencies that can be

modeled by noncommutative probability theory, which can be as easily accommodated

by Koopman’s Hilbert space formalism for classical mechanics as it can be by quantum

theory’s use of Hilbert spaces and operators, so that we do not have to distinguish

between classical and quantum systems. We know very well, however, that the relative

frequencies of suitably selected simultaneous events cannot be modeled if we straw-

man classical mathematics so that the use of noncommutative probability theory is not

allowed[14][2, §7.2].

Appendix B. Conditions satisfied by a state

We take a complex-valued state ρ acting on a ∗-algebra A, ρ : A → C; Â 7→ ρ(Â), to

satisfy four conditions[22, §III.2.2][23, §3.2.1.3][26, Ch. 1]:

• von Neumann complex-linearity: ρ(λÂ + µB̂) = λρ(Â) + µρ(B̂), satisfied even if

[Â, B̂] 6= 0;

• positive semi-definiteness: ρ(Â†Â) ≥ 0;

• compatibility with the adjoint: ρ(Â†) = ρ(Â)∗; the adjoint is an antiautomorphism,

(ÂB̂)† = B̂†Â†;

• normalization: ρ(1̂) = 1.

These conditions allow us to use a state to construct a Hilbert space H and a

representation of A that acts upon it[2, §3]. Suitable different conditions, which we

do not consider here, would allow the construction of Generalized Probability Theories

(GPTs) that are not generated by a Hilbert space[40, Ch. 1][41, 42]. In an algebraic

approach, a state should be distinguished from a “vector state”, a normalized vector

|ψ〉 ∈ H, 〈ψ|ψ〉= 1, which can be used to construct a pure state, ρ|ψ〉(Â) = 〈ψ|Â|ψ〉.
The Born rule expression for a probability density such as

|ψ(x)|2 = |〈x|ψ〉|2 = 〈ψ|x〉〈x|ψ〉= ρ|ψ〉(X̂)

can be loosely understood as the expected measurement result for an operator X̂ = |x〉〈x|
in the pure state ρ|ψ〉.

Appendix C. Joint measurement instruments

We give here a joint measurement instrument account that parallels the more abstract

discussion in §1. Following the account and notation given by Ballentine[43, §3.3] and

in [2, Appendix B], so that three different levels of discussion are explicitly included
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here, we consider measurements Â and B̂ that have discrete degenerate eigenvalues ai
and bj,

Â|aiλ〉 = ai|aiλ〉, B̂|bjµ〉 = bj|bjµ〉 (C.1)

(we will omit the degenerate eigenvector indices λ and µ except where necessary.) To

implement these measurements, we introduce measurement instruments A and B that

are initially in vector states |A0〉 and |B0〉 and unitary evolutions

Û
A
|ai〉 ⊗ |A0〉 = |ai〉 ⊗ |Ai〉, (C.2)

Û
B
|bj〉 ⊗ |B0〉 = |bj〉 ⊗ |Bj〉. (C.3)

By linearity, for a general vector |ψ〉,

Û
A
|ψ〉 ⊗ |A0〉 =

∑
i

〈ai|ψ〉 · |ai〉 ⊗ |Ai〉, (C.4)

and similarly for Û
B

. We apply first Û
A

and then Û
B

,

Û
B
Û

A
|ψ〉⊗ |A0〉⊗ |B0〉=

∑
j

∑
i

〈bj|ai〉〈ai|ψ〉 · |bj〉⊗ |Ai〉⊗ |Bj〉, (C.5)

from which, using the Born rule and taking it that |ψ〉 and the eigenstates are

normalized, we extract probabilities

P (A = ai |ψ) = |〈ai|ψ〉|2 (C.6)

P (A = ai & B = bj |ψ) = |〈bj|ai〉 〈ai|ψ〉|2. (C.7)

The probability of a measurement result B = bj given that a measurement A has been

made, but averaging over its measurement results, is

P (B = bj |ψ and A measured) =
∑
i

|〈bj|ai〉 〈ai|ψ〉|2, (C.8)

which differs from the probability of a measurement result B = bj given that a

measurement A was never made,

P (B = bj |ψ) =
∣∣∣∑

i

〈bj|ai〉 〈ai|ψ〉
∣∣∣2 = |〈bj|ψ〉|2, (C.9)

by the omission of “interference” terms, unless Â and B̂ commute. We can rewrite

Eq. (C.8), using a projection operator associated with each eigenvalue ai, P̂
(A)
i =∑

λ |aiλ〉〈aiλ|, as

P (B = bj |ψ and A measured) =
∑
i

〈bj|P̂ (A)
i |ψ〉 〈ψ|P̂

(A)
i |bj〉, (C.10)

which corresponds to either

• a Lüders transformed measurement
∑

i P̂
(A)
i |bj〉〈bj|P̂

(A)
i in the state with density

matrix ρ̂ = |ψ〉〈ψ|, or

• a measurement |bj〉〈bj| in the Lüders transformed state
∑

i P̂
(A)
i |ψ〉〈ψ|P̂

(A)
i ,
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so, following the algebra, either we can say that a measurement of B after a measurement

of A is not in general the same as a measurement of B alone, or we can say that the

measurement of A changed the state. Also introducing P̂
(B)
j = |bj〉〈bj|, with an implicit

sum over degenerate eigenvector indices, we can make an explicit connection to Eq. (9),

P (A = ai & B = bj |ψ) = |〈bj|ai〉 〈ai|ψ〉|2

= 〈ψ|P̂ (A)
i P̂

(B)
j P̂

(A)
i |ψ〉, (C.11)

which we can express as a distribution in the state ρ|ψ〉(M̂) = 〈ψ|M̂ |ψ〉,

pA,collapse,B|ψ(u, v) =
∑
i,j

δ(u− ai)δ(v − bj)P (A = ai & B = bj |ψ)

=
∑
i,j

δ(u− ai)δ(v − bj)ρ|ψ〉(P̂ (A)
i P̂

(B)
j P̂

(A)
i ). (C.12)

Appendix D. Joint interacting measurement instruments

If we introduce two measurement instruments A and B, with measurement results {ai}
and {bj}, we can also say that we have introduced a single measurement instrument AB,

with measurement results {abij} = {(ai, bj)}, whether or not there is any additional

consequence whatsoever of the two measurement instruments both being present. If

there is any consequence of A and B both being present, we should at least consider

the idea of a measurement instrument AB as something distinct. Suppose, therefore, in

contrast to Appendix C, that there are three unitary time-like evolutions, Û
A

, Û
B

, and

Û
AB

, with no simple relationship between them, instead of writing Û
AB

= Û
B
Û

A
. When

both A and B are off (or not present), neither instrument changes state, but when one of

A or B is on then there is a set of eigenstates of the prepared system that corresponds to

each measurement result for the instrument that is on, |aiλ〉 ∈ H, |bjµ〉 ∈ H; when both

A and B are on then we can in the same way take it that there is a set of eigenstates

|abijν〉 ∈ HAB
6= H that corresponds to each joint measurement result and commuting

operators Â′ and B̂′, for which

Â|aiλ〉 = ai|aiλ〉, B̂|bjµ〉 = bj|bjµ〉, (C.1)

Â′|abijν〉 = ai|abijν〉, B̂′|abijν〉 = bj|abijν〉,
Â′B̂′|abijν〉 = aibj|abijν〉, (D.1)

where the sample space associated with each instrument does not change when both

A and B are on, but the Hilbert space H
AB

is in general of higher dimension than

the dimension of H (the degenerate eigenvector indices λ, µ, and ν aside, which we will

hereafter omit.) Given that the measurement instruments A, B, and AB that implement

these measurements are initially in vector states |A0〉, |B0〉, and |A0〉 ⊗ |B0〉, and given

unitary evolutions

Û
A
|ai〉 ⊗ |A0〉 ⊗ |B0〉 = |ai〉 ⊗ |Ai〉 ⊗ |B0〉, (C.2)

Û
B
|bj〉 ⊗ |A0〉 ⊗ |B0〉 = |bj〉 ⊗ |A0〉 ⊗ |Bj〉, (C.3)

Û
AB
|abij〉 ⊗ |A0〉 ⊗ |B0〉 = |abij〉 ⊗ |Ai〉 ⊗ |Bj〉, (D.2)
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then for a general vector |ψAB〉 ∈ HAB
we have

Û
AB
|ψAB〉⊗ |A0〉⊗ |B0〉=

∑
j

∑
i

〈abij|ψAB〉 · |abij〉⊗ |Ai〉⊗ |Bj〉. (D.3)

In contrast, for Û
B
Û

A
and |ψ〉 ∈ H, we have

Û
B
Û

A
|ψ〉⊗ |A0〉⊗ |B0〉 =

∑
j

∑
i

〈bj|ai〉〈ai|ψ〉 · |bj〉⊗ |Ai〉⊗ |Bj〉. (C.5)

Therefore, using the Born rule as in Appendix C, we have the probabilities

P (A= ai|ψ,A is on and B is off) = |〈ai|ψ〉|2, (C.6)

P (B= bj|ψ,A is off and B is on) = |〈bj|ψ〉|2, (C.9)

P (A= ai &B= bj|ψAB
,A is on and B is on) = |〈abij|ψAB

〉|2, (D.4)

P (A= ai &B= bj |ψ,A is on, collapse, and B is on) = |〈bj|ai〉 〈ai|ψ〉|2. (C.7)

The eigenstates |abij〉 are mutually orthonormal, so we can certainly find vectors |ψ
AB
〉

such that |〈abij|ψAB
〉|2 = |〈bj|ai〉 〈ai|ψ〉|2, for any vector |ψ〉, effectively as a Hilbert space

presentation of the abstract algebraic proof given by Eq. (24). This is only a minimal

constraint on |ψ
AB
〉, which can be more constrained by performing measurements that

are incompatible with the measurement instrument AB.

As emphasized in §5.1, in general there may not exist a joint probability

conditionalized on “only one of A and B is on” for which the marginals are

P (A= ai|ψ,A is on and B is off) =
∑
j

P (A= ai &B= bj|only one of A and B is on),

P (B= bj|ψ,A is off and B is on) =
∑
i

P (A= ai &B= bj|only one of A and B is on),

if the conditionalizations on (ψ, “A is on and B is off”), on (ψ, “A is off and B is on”),

and on “only one of A and B is on” are sufficiently independent.

The joint evolution Û
AB

models the relationship between the state preparation

and the joint measurement instrument AB as a joint process, instead of taking the

measurement instrument A to be prior to the measurement instrument B. Even if a

particle-inspired idea about what happens inside the experimental apparatus thinks

of a particle being registered first by the measurement instrument A and being

registered second by the measurement instrument B, we can nonetheless also consider

an alternative model that is less causal, less particle-inspired, and more algebraic, in

which there is a joint registration of measurement results in the joint measurement

instrument AB. This and other models may be helpful to have available for those times

when particle-inspired ideas about what happens inside an experimental apparatus lead

to confusion.
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