$\mathrm{A}_{\text {Signal Analysis }}^{\text {Field } \mathcal{E}}$ Approach to Quantum Measurement

Peter Morgan

Peter Morgan
Yale University
peter.w.morgan@yale.edu
May 17th, 2023
Lisbon Philosophy of Physics Seminar (by Zoom)

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Interacting Quantum Fields

The End

A recording is available on YouTube at https://www.youtube.com/watch?v=5Jx2WIa5eTs

outline

- Devices \longrightarrow noisy signals $\bigotimes_{\text {noisy surroundings }}^{\text {events }} \longrightarrow$ data

Peter Morgan

- The violation of Bell inequalities - signal analysis \& field theory

- The measurement problem - joint probabilities
- Generalized Probability - as a way to discuss intervention \& causality
- Quantum and QND fields - modulation \& measurement
- Interacting quantum fields - a signal analysis approach

Interacting Quantum Fields
"Classical states, quantum field measurement", Physica Scripta 2019
An evolution of ideas in: "An algebraic approach to Koopman classical mechanics", Annals of Physics 2020 "The collapse of a quantum state as a joint probability construction", Journal of Physics A 2022
"A source fragmentation approach to interacting quantum field theory", arXiv:2109.04412 and, ancient history, "Bell inequalities for random fields", Journal of Physics A 2006

signal\&data analysis

field \& signal an

Peter Morgan

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention
\& Causality
Algebraic Quantum and QND Fields

Interacting Quantum
Fields
The End

Bohr 1921: "in a certain respect we are entitled in the quantum theory to see an attempt of a natural generalisation of the classical theory of electromagnetism."

Bohr 1949: "It is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms." Zinkernagel 2015

Dirac 1949: "My own opinion is that we ought to search for a way of making fundamental changes not only in our present Quantum Mechanics, but actually in Classical Mechanics as well."

Alisa Bokulich 2004

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and
Classical Mechanics
The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Interacting Quantum Fields

The End

Bohr 1921: "in a certain respect we are entitled in the quantum theory to see an attempt of a natural generalisation of the classical theory of electromagnetism."

Bohr 1949: "It is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms."

Zinkernagel 2015
Dirac 1949: "My own opinion is that we ought to search for a way of making fundamental changes not only in our present Quantum Mechanics, but actually in Classical Mechanics as well."

Alisa Bokulich 2004

Bell 1975: "'Observables' must be made, somehow, out of beables. The theory of local beables should contain, and give precise physical meaning to, the algebra of local observables."

Use the Poisson bracket to make new 'observables' the opposite of adding hidden variables to quantum mechanics

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Interacting Quantum Fields

The End

Bell 1990, "Against 'measurement'": "experiments have results."
We collate an Experimental Dataset into multiple Measurement Datasets, operationally, by device and by analysis, not as "measurements of particle properties"

taking quantum field theorv to be about ${ }^{\text {a field of measurements }}$

Peter Morgan

Signal\&data analysis
Bell Inequatitie
Algebraic Quantum and Classical Mechanics

The Measurement Probler
Probability, Intervention
\& Causality
Algebraic Quartum and QND Fields

taking quantum field theory to be about ${ }^{\text {a field of measurements }}$

Quantum Field Theory are both grounded in actually recorded measurement results, which are about the noisy signals on the signal lines out of devices, which indicate something about the devices' surroundings, whatever that is

We take quantum field theories to be our best theories but we still take particle properties to cause events
suggestion(1): hesitate before mentioning particles or systems

taking quantum field theory to be about ${ }^{\text {a field of measurements }}$

Quantum Field Theory are both grounded in actually recorded measurement results, which are about the noisy signals on the signal lines out of devices, which indicate something about the devices' surroundings, whatever that is

We take quantum field theories to be our best theories but we still take particle properties to cause events

Peter Morgan

Signal\&data analysis

Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention
\& Causality
Algebraic Quantum and QND Fields

Interacting Quantum

About noise: Quantum noise (cf "shot" noise) is different from Thermal noise(see \#16)

algorithms for signals, events, and particles

$$
\text { devices } \left.\longrightarrow \text { noisy signals } \longrightarrow \begin{array}{l}
\text { events } \longrightarrow \text { noisy surroundings }
\end{array}\right\} \longrightarrow \begin{gathered}
\text { data } \\
\text { particles }
\end{gathered}
$$

If we have data about many millions of events, we have to write algorithms that decide how to assign each event to a particle If we add data about more events, the assignment of events to particles will sometimes be fragile

Events-to-particles algorithms are global, after-the-events, and fragile

algorithms for signals, events, and particles

If we have data about many millions of events, we have to write algorithms that decide how to assign each event to a particle

If we add data about more events, the assignment of events to particles will sometimes be fragile

Events-to-particles algorithms are global, after-the-events, and fragile

Signal-to-events algorithms, often implemented in hardware, are non-Markovian because events must be reported only once

but are less fragile and nonlocal than events-to-particles algorithms because adding data about more events doesn't change the other events

For QM , we have measurements $\hat{M}_{1}, \ldots, \hat{M}_{n}$, which is uninformative unless we have a list of metadata Description $_{1}, \ldots$, Description $_{n}$, which should be enough for another experimenter to reproduce the measurement results We could write $\hat{M}_{\text {Description }_{1}}, \ldots, \hat{M}_{\text {Description }_{n}}$

For QFT, measurement operators are not point-like: we use $\hat{M}_{f}=\int \hat{M}(x) f(x) \mathrm{d}^{4} x$ We have measurements $\hat{M}_{f_{1}}, \hat{M}_{f_{2}}, \ldots, \hat{M}_{f_{n}}$, where $f_{1}, f_{2}, \ldots, f_{n}$ are smearing functions, test functions, window functions, or ..., as descriptions of how a measurement is different from point-like

For QM , we have measurements $\hat{M}_{1}, \ldots, \hat{M}_{n}$, which is uninformative unless we have a list of metadata Description $_{1}, \ldots$, Description $_{n}$, which should be enough for another experimenter to reproduce the measurement results We could write $\hat{M}_{\text {Description }_{1}}, \ldots, \hat{M}_{\text {Description }_{n}}$

For QFT, measurement operators are not point-like: we use $\hat{M}_{f}=\int \hat{M}(x) f(x) \mathrm{d}^{4} x$ We have measurements $\hat{M}_{f_{1}}, \hat{M}_{f_{2}}, \ldots, \hat{M}_{f_{n}}$, where $f_{1}, f_{2}, \ldots, f_{n}$ are smearing functions, test functions, window functions, or ..., as descriptions of how a measurement is different from point-like

- QFT: \hat{M}_{f} commutes with \hat{M}_{g} if $f(x)$ and $g(x)$ are $\begin{gathered}\text { causally } \\ \text { space-like }\end{gathered}$ separated
- QNDFT: $\hat{M}_{f}^{\text {ovo }}$ always commutes with $\hat{M}_{g}^{\text {ond }}$

Quantum Non-Demolition Field Theory (what I have called a random field theory)
For quantum optics~QNDFT, see \#27

Gregor Weihs's experiment (Phys. Rev. Lett. 1998)

Alice and Bob both have two Avalanche PhotoDiodes, an Electro-Optic Modulator, a Random Bit Generator, and a clock;

Peter Morgan
a central apparatus modulates the ground state

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention
\& Causality
Algebraic Quantum and QND Fields

Interacting Quantum

The time when an APD's signal rises to a higher level is recorded, and which APD it was, and what the EOM setting was: when and 2 bits This compressed record does not let us analyze any other signal details

the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD

An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)
An APD mostly burbles along while it interacts with its surroundings

the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD
An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)
An APD mostly burbles along while it interacts with its surroundings

An APD sometimes gets cross at the world and takes it to a higher level

That's more interesting than using devices that do nothing An APD knows nothing about particles, but it does get cross

An APD's electronics calms it down so it can burble again An APD sometimes gets cross with itself even when it's dark and quiet An APD gets cross differently if we intervene to change its surroundings

the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD
An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)
An APD mostly burbles along while it interacts with its surroundings An APD sometimes gets cross at the world and takes it to a higher level

That's more interesting than using devices that do nothing An APD knows nothing about particles, but it does get cross
An APD's electronics calms it down so it can burble again
An APD sometimes gets cross with itself even when it's dark and quiet
An APD gets cross differently if we intervene to change its surroundings

the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD

An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)
An APD mostly burbles along while it interacts with its surroundings

An APD's electronics calms it down so it can burble again
An APD sometimes gets cross with itself even when it's dark and quiet

the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD
An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)
An APD mostly burbles along while it interacts with its surroundings
An APD sometimes gets cross at the world and takes it to a higher level

That's more interesting than using devices that do nothing An APD knows nothing about particles, but it does get cross

An APD's electronics calms it down so it can burble again
An APD sometimes gets cross with itself even when it's dark and quiet

The electronics might even know that an APD is very likely to get cross and stop it going there

the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD

An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)
An APD mostly burbles along while it interacts with its surroundings

An APD's electronics calms it down so it can burble again
An APD sometimes gets cross with itself even when it's dark and quiet

The electronics might even know that an APD is very likely to get cross and stop it going there
An APD's frequency scales:
optical $@ P H z$, electronic@GHz, thermodynamic $@ M H z$, human $@ H z$

Gregor gets measurement results (Alice sees amost 400,000 APD events in 10 seconds)

For over 15,000 of Alice's 400,000 events, Bob also records an event within 3 nanoseconds
When Alice and Bob both record an event within 3 nanoseconds, the majority are green or yellow

Gregor gets measurement results (Alice sees amost 400,000 APD events in 10 seconds)

transformations and noncommutativity

If we had transformed the recorded experimental data innocuously we could have used commutative algebras to model the algorithms

In QM, we model Bell-violating statistics using noncommuting operators
Fine 1982 Landau 1987
In CM as usual, we do not have noncommuting operators

transformations and noncommutativity

If we had transformed the recorded experimental data innocuously we could have used commutative algebras to model the algorithms

In QM, we model Bell-violating statistics using noncommuting operators
Fine 1982 Landau 1987
In CM as usual, we do not have noncommuting operators Without noncommutativity, CM is computationally incomplete

How can we add noncommutativity to CM?

transformations and noncommutativity

If we had transformed the recorded experimental data innocuously we could have used commutative algebras to model the algorithms

In QM, we model Bell-violating statistics using noncommuting operators
Fine 1982 Landau 1987

For elementary QM models, the EOM rate makes no difference at all, but a low EOM rate does not probe (non)locality

For quantum fields, locality is closely associated with measurement incompatibility because microcausality only allows noncommutativity at time-like separation

Gregor's experiment in a modulated non-steady-state form

At a fine-grained scale, Gregor's experiment is not at equilibrium At a coarse-grained scale, Gregor's experiment is at equilibrium

About (non)locality: thermodynamic equilibrium depends on boundary conditions

Gregor's experiment in a modulated non-steady-state form

At a fine-grained scale, Gregor's experiment is not at equilibrium
At a coarse-grained scale, Gregor's experiment is at equilibrium
About (non)locality: thermodynamic equilibrium depends on boundary conditions

The event rate increases in each of the four APDs

Collate by absolute timing information after power on

Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention
\& Causality
Algebraic Quantum and QND Fields

Interacting Quantum

These rates are technologically important as well as foundationally significant

Some experiments make more sense as signal analysis than as probes of particle properties

algebraic QM and CM

There are abstract measurements $\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}, \ldots, \hat{M}_{1}+\hat{M}_{2}, \ldots, \hat{M}_{1} \hat{M}_{2}, \ldots$
linear operators \equiv random variables, spectrum \equiv sample space, noncommutative associative, distributive, with unit
With no dynamics, the tradition is: $\mathrm{QM}=$ noncommutative, $\mathrm{CM}=$ commutative

Peter Morgan

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Interacting Quantum Fields

The End

algebraic QM and CM

There are abstract measurements $\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}, \ldots, \hat{M}_{1}+\hat{M}_{2}, \ldots, \hat{M}_{1} \hat{M}_{2}, \ldots$

$$
\begin{aligned}
& \text { linear operators } \equiv \text { random variables, spectrum } \equiv \text { sample space, } \begin{array}{l}
\text { noncommutative } \begin{array}{l}
\text { or commutative, }
\end{array} \begin{array}{l}
\text { associative, } \\
\text { distributive, } \\
\text { with unit }
\end{array} \\
\text { With no dynamics, the tradition is: } \mathrm{QM}=\text { noncommutative, } \mathrm{CM}=\text { commutative }
\end{array}
\end{aligned}
$$

A (statistical) state ρ maps measurement operators to expected measurement results

$$
\rho\left(\hat{M}_{1}\right), \rho\left(\hat{M}_{2}\right), \rho\left(\hat{M}_{3}\right), \ldots, \rho\left(\hat{M}_{1}+\hat{M}_{2}\right), \ldots, \rho\left(\hat{M}_{1} \hat{M}_{2}\right), \ldots, \quad \rho\left(\hat{M}_{1}^{n}\right), \ldots, \underset{\rho\left(\mathrm{e}^{\mathrm{j} \lambda} \hat{M}_{1}\right)}{\rho\left(\hat{M}_{1}-u\right)}
$$ positive: $\rho\left(\hat{A}^{\dagger} \hat{A}\right) \geq 0$; normalized: $\rho(1)=1$;

von Neumann linearity: $\rho(\lambda \hat{A}+\mu \hat{B})=\lambda \rho(\hat{A})+\mu \rho(\hat{B})$
compatible with the adjoint: $\rho\left(\hat{A}^{\dagger}\right)=\rho(\hat{A})^{*} ; \quad$ where $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention
\& Causality
Algebraic Quantum and QND Fields

Interacting Quantum Fields

algebraic QM and CM

There are abstract measurements $\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}, \ldots, \hat{M}_{1}+\hat{M}_{2}, \ldots, \hat{M}_{1} \hat{M}_{2}, \ldots$

With no dynamics, the tradition is: $\mathrm{QM}=$ noncommutative, $\mathrm{CM}=$ commutative
A (statistical) state ρ maps measurement operators to expected measurement results
Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

$$
\rho\left(\hat{M}_{1}\right), \rho\left(\hat{M}_{2}\right), \rho\left(\hat{M}_{3}\right), \ldots, \rho\left(\hat{M}_{1}+\hat{M}_{2}\right), \ldots, \rho\left(\hat{M}_{1} \hat{M}_{2}\right), \ldots, \quad \rho\left(\hat{M}_{1}^{n}\right), \ldots, \underset{\rho\left(\mathrm{e}^{\mathrm{j} \lambda} \hat{M}_{1}\right)}{\rho\left(\hat{M}_{1}-u\right)}
$$ positive: $\rho\left(\hat{A}^{\dagger} \hat{A}\right) \geq 0$; normalized: $\rho(1)=1$;

von Neumann linearity: $\rho(\lambda \hat{A}+\mu \hat{B})=\lambda \rho(\hat{A})+\mu \rho(\hat{B})$
compatible with the adjoint: $\rho\left(\hat{A}^{\dagger}\right)=\rho(\hat{A})^{*} ; \quad$ where $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$
We can also use measurement operators to modulate the state ρ to give different The Measurement Problem Probability, Intervention \& Causality expected measurement results, $\rho_{A}(\hat{M})=\frac{\rho\left(\hat{A}^{\dagger} \hat{M} \hat{A}\right)}{\rho\left(\hat{A}^{\dagger} \hat{A}\right)}$,
from which the GNS-construction gives us a Hilbert space
The GNS-construction lets us think of $\rho_{v}(\hat{M})$ as $\langle v| \hat{M}|v\rangle$ and of $\rho_{A v}(\hat{M})$ as $\frac{\langle v| \hat{A}^{\dagger} \hat{M} \hat{A}|v\rangle}{\langle v| \hat{A} \dagger \hat{A}|v\rangle}$

classical mechanics

Take classical mechanics to be an algebra of functions on phase space that has three binary operations:
addition, multiplication, and the Poisson bracket

$$
\begin{gathered}
u+v \\
u+v \\
\{u, v\}
\end{gathered}
$$

Take classical mechanics to be an algebra of functions on phase space that has three binary operations:
addition, multiplication, and the Poisson bracket $\begin{gathered}u+v \\ u \cdot v \\ \{u, v\}\end{gathered}$
We can introduce "Multiply by w ", $\hat{Y}_{w}(u)=w \cdot u$,

Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Take classical mechanics to be an algebra of functions on phase space
that has three binary operations:
Peter Morgan
addition, multiplication, and the Poisson bracket $\begin{gathered}u+v \\ u \cdot v \\ \{u, v\}\end{gathered}$
We can introduce "Multiply by w ", $\hat{Y}_{w}(u)=w \cdot u$,
Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention
\& Causality
Algebraic Quantum and QND Fields
We have $\left[\hat{Y}_{v}, \hat{Y}_{w}\right]=0$, but $\left[\hat{Z}_{v}, \hat{Y}_{w}\right]=\hat{Y}_{\{v, w\}} \neq 0$ and $\left[\hat{Z}_{v}, \hat{Z}_{w}\right]=\hat{Z}_{\{v, w\}} \neq 0$, generating a noncommutative algebra with addition and composition

I suggest:
We can use the \hat{Y}^{\prime} s and \hat{Z}^{\prime} 's of a more powerful CM_{+}without restriction
We do not have to follow the way of quantization and the Correspondence Principle if what we want is noncommutativity and measurement incompatibility and an algebraic measurement theory shared with QM

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial \rho} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$
We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly $\{u, v\} \nVdash 力[\hat{u}, \hat{v}]$
$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$
$\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1$
$\hat{Y}_{H}[u]=\frac{1}{2}\left(q^{2}+p^{2}\right) \cdot u, \quad \hat{Z}_{H}[u]=\{H, u\}=\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right) u$

Peter Morgan

Signal\&data analysis
Bell Inequalities

Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial \rho} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$
We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly $\{u, v\} \not / H[[\hat{u}, \hat{v}]$
$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$
$\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1$
$\hat{Y}_{H}[u]=\frac{1}{2}\left(q^{2}+p^{2}\right) \cdot u, \quad \hat{Z}_{H}[u]=\{H, u\}=\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right) u$
The Gibbs thermal state at temperature kT (in a generating function form, introducing. j):

$$
\rho_{\text {Gibs }}\left(\mathrm{e}^{\mathrm{j} \lambda \hat{Y}_{q}+\mathrm{j} \mu \hat{Y}_{p}}\right)=\mathrm{e}^{-\mathrm{K}\left(\lambda^{2}+\mu^{2}\right) / 2}
$$

Peter Morgan

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality
Algebraic Quantum and QND Fields

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial \rho} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$
We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly $\{u, v\} \not / H[[\hat{u}, \hat{v}]$
$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$
$\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1$
$\hat{Y}_{H}[u]=\frac{1}{2}\left(q^{2}+p^{2}\right) \cdot u, \quad \hat{Z}_{H}[u]=\{H, u\}=\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right) u$
The Gibbs thermal state at temperature kT (in a generating function form, introducing j):

$$
\begin{aligned}
& \rho_{\text {Gibbs }}\left(\mathrm{e}^{\mathrm{j} \lambda \hat{Y}_{q}+\mathrm{j} \mu \hat{Y}_{p}}\right)=\mathrm{e}^{-\mathrm{kT}\left(\lambda^{2}+\mu^{2}\right) / 2}, \quad \rho_{\text {Gibbs }}\left(\mathrm{e}^{\alpha \hat{Z}_{p}+\beta \hat{Z}_{q}}\right)=\mathrm{e}^{-\left(\alpha^{2}+\beta^{2}\right) / 8 \mathrm{kT}} \\
& \text { set } \hat{Y}_{q}=\left(a+\mathrm{a}^{\dagger}\right) \sqrt{\mathrm{kT},} \hat{Z}_{p}=\frac{\left(a-\mathrm{a}^{\dagger}\right)}{2 \sqrt{\mathrm{kT}},\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=1, \text { ensuring }\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1, \text { and we set } a|\bar{\pi}\rangle=0} \\
& \text { (and b|ब才>} \left.=0 \text { \&c for } \hat{Y}_{p} \text { and } \hat{Z}_{q}\right)
\end{aligned}
$$

We can construct modulated, non-equilibrium states, $\frac{\left.\left.\left\langle_{K T}\right| \hat{A}^{\dagger} \hat{M} \hat{A}\right|_{k K}\right\rangle}{\left.{ }_{k_{K} \mid}\left|\hat{A}^{\dagger} \hat{A}\right|_{|K\rangle}\right\rangle}$, and hence a Hilbert space

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial p} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$
We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly

Peter Morgan

$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$

Algebraic Quantum and Classical Mechanics

$$
\begin{aligned}
& \rho_{\text {Gibbs }}\left(\mathrm{e}^{\mathrm{j} \lambda \hat{Y}_{q}+\mathrm{j} \mu \hat{Y}_{p}}\right)=\mathrm{e}^{-\mathrm{kT}\left(\lambda^{2}+\mu^{2}\right) / 2}, \quad \rho_{\text {Gibbs }}\left(\mathrm{e}^{\alpha \hat{Z}_{p}+\beta \hat{Z}_{q}}\right)=\mathrm{e}^{-\left(\alpha^{2}+\beta^{2}\right) / 8 \mathrm{kT}} \\
& \text { set } \hat{Y}_{q}=\left(a+\mathrm{a}^{\dagger}\right) \sqrt{\mathrm{kT},} \hat{Z}_{p}=\frac{\left(a-\mathrm{a}^{\dagger}\right)}{2 \sqrt{\mathrm{kT}},\left[a, a^{\dagger}\right]=1, \text { ensuring }\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1, \text { and we set }| ||\tau\rangle=0} \\
& \text { (and b||aो=0 \&c for } \hat{Y}_{p} \text { and } \hat{Z}_{q} \text {) }
\end{aligned}
$$

We can construct modulated, non-equilibrium states, $\frac{\left.\left.\left\langle{ }_{k T}\right| \hat{A}^{\dagger} \hat{M} \hat{A}\right|_{k T}\right\rangle}{\left\langle{ }_{k T}\right| \hat{A}^{\dagger} \hat{A}\left|{ }_{\mid K T}\right\rangle}$, and hence a Hilbert space Instead of trying to map $(q, p) \not / \rightarrow(\hat{q}, \hat{p})$, as quantization tries to (but fails), we can map CM ${ }_{+}$to $\mathrm{QM},\left(q, \mathrm{j} \frac{\partial}{\partial q}\right) \mapsto\left(\hat{q}_{1}, \hat{p}_{1}\right),\left(p, \mathrm{j} \frac{\partial}{\partial p}\right) \mapsto\left(\hat{q}_{2}, \hat{p}_{2}\right)$

Crucially, kT is not \hbar, but it is also about an irreducible noise
he Gibbs thermal state at temperature kT (in a generating function form, introducing j):

Crucially kT is h, but it is about an irrecible noise

quantum and thermal noise

What is the difference between quantum and thermal noise?

- \hbar has units action, whereas kT has units energy
- In QFT, the quantum vacuum is Poincaré invariant, thermal noise is not

This gives a new reason to think that we must work with field theories, Interacting Quantum Fields because we can only define the Lorentz group in $1+n$-dimensions
$\hbar \rightarrow 0$ is a mean-field approximation, not a classical approximation

unboundedness of the Hermitian generators of time-like evolution

For the Gibbs state of the Simple Harmonic Oscillator, \hat{Z}_{H} is anti-Hermitian, so we consider $\mathrm{j} \hat{\mathrm{Z}}_{\mathrm{H}}$, which is Hermitian,

$$
\begin{aligned}
\mathrm{j} \hat{Z}_{H} & =\mathrm{j}\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right)=\mathrm{j}\left(\hat{Y}_{p} \hat{Z}_{p}+\hat{Y}_{q} \hat{Z}_{q}\right) \\
& =\mathrm{j}\left(b a-b^{\dagger} a^{\dagger}\right) \\
& =\frac{1}{2}\left[\left(a-\mathrm{j} b^{\dagger}\right)^{\dagger}\left(a-\mathrm{j} b^{\dagger}\right)-\left(a+\mathrm{j} b^{\dagger}\right)^{\dagger}\left(a+\mathrm{j} b^{\dagger}\right)\right] \nsupseteq 0
\end{aligned}
$$

unboundedness of the Hermitian generators of time-like evolution

For the Gibbs state of the Simple Harmonic Oscillator, \hat{Z}_{H} is anti-Hermitian, so we consider $\mathrm{j} \hat{Z}_{H}$, which is Hermitian,

$$
\begin{array}{rlr}
\mathrm{j} \hat{Z}_{H} & =\mathrm{j}\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right)=\mathrm{j}\left(\hat{Y}_{p} \hat{Z}_{p}+\hat{Y}_{q} \hat{Z}_{q}\right) \\
& =\mathrm{j}\left(b a-b^{\dagger} a^{\dagger}\right) \\
& =\frac{1}{2}\left[\left(a-\mathrm{j} b^{\dagger}\right)^{\dagger}\left(a-\mathrm{j} b^{\dagger}\right)-\left(a+\mathrm{j} b^{\dagger}\right)^{\dagger}\left(a+\mathrm{j} b^{\dagger}\right)\right] \nsupseteq 0
\end{array}
$$

The Hamiltonian operator in QM is bounded below \longrightarrow analytic properties; the corresponding operator in $C M_{+}, \mathrm{j} \hat{Z}_{H}$, is not (though \hat{Y}_{H} is)
$C M_{+}$includes (1) noncommutativity and (2) quantum noise, however
(3) analyticity is mathematically useful but is not included so we can say that QM is an analytic form of CM_{+}

Accepting that analyticity is a difference instead of trying to fix it gives us a relationship that is usefully different from quantization, but (1) and (2) ensure that the measurement theory is the same
"The collapse of a quantum state as a joint probability construction", PM, JPhysA 2022

For a measurement A, with sample space $\mathcal{A}=\left\{\alpha_{m}\right\}, \hat{A}=\sum_{m} \alpha_{m} \hat{P}_{m}$, and a measurement B, with sample space $\mathcal{B}=\left\{\beta_{n}\right\}, \hat{B}=\sum_{n} \beta_{n} \hat{Q}_{n}$,
For solo measurements, with density operator $\hat{\rho}$, we obtain the result α_{m} with probability $\rho\left(\hat{P}_{m}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]$ and we obtain the result β_{n} with probability $\rho\left(\hat{Q}_{n}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{Q}_{n}\right]$.

For a measurement A , with sample space $\mathcal{A}=\left\{\alpha_{m}\right\}, \hat{A}=\sum_{m} \alpha_{m} \hat{P}_{m}$, and a measurement B, with sample space $\mathcal{B}=\left\{\beta_{n}\right\}, \hat{B}=\sum_{n} \beta_{n} \hat{Q}_{n}$,
For solo measurements, with density operator $\hat{\rho}$,
we obtain the result α_{m} with probability $\rho\left(\hat{P}_{m}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]$ and we obtain the result β_{n} with probability $\rho\left(\hat{Q}_{n}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{Q}_{n}\right]$.

For two measurements, of A first, followed by B, we say that the result α_{m} "collapses" the state from $\hat{\rho}$ to the collapsed state $\hat{\rho}_{m}$,

$$
\hat{\rho}_{m}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m}\right]}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]},
$$

For a measurement A , with sample space $\mathcal{A}=\left\{\alpha_{m}\right\}, \hat{A}=\sum_{m} \alpha_{m} \hat{P}_{m}$, and a measurement B, with sample space $\mathcal{B}=\left\{\beta_{n}\right\}, \hat{B}=\sum_{n} \beta_{n} \hat{Q}_{n}$,
For solo measurements, with density operator $\hat{\rho}$, we obtain the result α_{m} with probability $\rho\left(\hat{P}_{m}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]$ and we obtain the result β_{n} with probability $\rho\left(\hat{Q}_{n}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{Q}_{n}\right]$.

For two measurements, of A first, followed by B, we say that the result α_{m} "collapses" the state from $\hat{\rho}$ to the collapsed state $\hat{\rho}_{m}$,

$$
\hat{\rho}_{m}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m}\right]}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]},
$$

then we measure \mathbf{B} in that state, so we obtain the result α_{m} followed by β_{n} with conditional probability

$$
\begin{gathered}
\text { al probability } \\
p\left(\beta_{n} \mid \alpha_{m}\right)=\operatorname{Tr}\left[\hat{\rho}_{m} \hat{Q}_{n}\right]=\frac{\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \hat{Q}_{n}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]}, ~
\end{gathered}
$$

so the joint probability is

$$
p\left(\alpha_{m} \text { and } \beta_{n}\right)=\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \cdot \hat{Q}_{n}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right] .
$$

We have $p\left(\alpha_{m}\right.$ and $\left.\beta_{n}\right)=\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \cdot \hat{Q}_{n}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right]$,
so the positive operators $\hat{J}_{m n}=\hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}$ generate the joint probabilities $\operatorname{Tr}\left[\hat{\rho} \hat{J}_{m n}\right]$.

Instead of collapse affecting a state,

```
Signal&data analysis
Bell Inequalities
Algebraic Quantum and
``` Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

We have \(p\left(\alpha_{m}\right.\) and \(\left.\beta_{n}\right)=\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \cdot \hat{Q}_{n}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right]\),
so the positive operators \(\hat{J}_{m n}=\hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\) generate
the joint probabilities \(\operatorname{Tr}\left[\hat{\rho} \hat{J}_{m n}\right]\).

Instead of collapse affecting a state,

The existence of a joint probability is traditionally "classical", so we can instead use commuting operators \(\hat{A}^{\prime}\) and \(\hat{B}^{\prime}\) and a different state \(\hat{\rho}^{\prime}\) that give the same joint probability, \(\operatorname{Tr}\left[\hat{\rho}^{\prime} \cdot \hat{P}_{m}^{\prime} \hat{Q}_{n}^{\prime}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right]\)

For the mathematically inclined, we can use the Neumark Dilation Theorem to construct a joint PVM \(\widehat{A B} \sim \mathrm{~A} \bowtie \mathrm{~B}\) (for a larger Hilbert space)

We can think of what we have just constructed as a "super-Heisenberg picture", for which both unitary evolution and collapse are applied to measurements

The Schrödinger picture applies both unitary evolution and collapse to the state

The Heisenberg picture applies unitary evolution to measurements, but applies collapse to the state

\section*{Peter Morgan}

Signal\&data analysis Bell Inequalities

Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

\title{
We can think of what we have just constructed as a "super-Heisenberg picture", for which both unitary evolution \\ \\ and collapse are applied to measurements
} \\ \\ and collapse are applied to measurements
}

> The Schrödinger picture applies both unitary evolution and collapse to the state

> The Heisenberg picture applies unitary evolution to measurements, but applies collapse to the state

or as the "Bohr picture", because it's rather classical and, for Bohr, measurements affect other measurements \({ }^{\dagger}\) or as the "QND picture" or as the "Consistent Histories picture", because it's commutative or as the "Everett picture", because it's no-collapse

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields
or as the "Einstein picture", because it's rather classical (but with a Poincaré invariant noise)
\(\dagger\) Howard 2004

For a sequence of three or more measurements (many more for signal analysis), we can use the sequential product, \(\hat{X} \circ \hat{Y}=\sqrt{\hat{X}} \cdot \hat{Y} \cdot \sqrt{\hat{X}}\),
or more elaborate systematic constructions of sums of positive operators

Collapse of the quantum state after measurement is ambiguous
\[
\begin{array}{cc}
\rho\left(\sqrt{\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}} \hat{P}_{k}^{(C)} \sqrt{\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}}\right) & \text { or } \rho\left(\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{k}^{(C)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}\right) ? \\
(\mathrm{~A} \mathrm{~A}) \propto \mathrm{C} & \neq
\end{array}
\]

Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality
We can use any ordering, but each makes a different assertion about dependencies

ゅ is nonassociative, so, more complicated than the Heisenberg cut, we have a Heisenberg bracketing ambiguity

We may not like the square root in \((A \bowtie B) \rightsquigarrow C\), but \(A B\)-preparation may be a more natural pairing in the apparatus context than BC -measurement

For signal analysis, when we have many measurements at time-like separation, we can use \(\hat{M}_{1}, \ldots, \hat{M}_{100} \ldots 000\), with many ambiguous collapses, or we can use \(\hat{M}_{1}^{\prime}, \ldots, \hat{M}_{100}^{\prime} \ldots 000\), which all commute, unambiguously, with no collapses

We can think of this as Bohr's ideal of
a classical model for compatible measurements
measurements at timelike separation can give joint probabilities

Time reversal is easy for the QND construction, but with collapse (for just 3 measurements) we have
\[
\begin{aligned}
& \rho\left(\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{k}^{(C)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}\right) \\
& \text { or } \rho_{R}\left(\hat{P}_{k}^{(C)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{k}^{(C)}\right) \text {, }
\end{aligned}
\]
with the collapses running in reverse

\section*{Peter Morgan}

\section*{Signal\&data analysis}

Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Interacting Quantum Fields

The End

\section*{"Collapse" is not}
(only or necessarily)

\section*{a dynamical process}

We can (also) take it to be a
JOINT PROBABILITY ALGORITHM

Belavkin 1994 Quantum Non-Demolition (QND) Measurements
Anastopoulos 2006 Sequential Measurements
Tsang\&Caves 2012 Quantum-Mechanics-Free-Subsystems

\section*{"Collapse" is not}

\section*{(only or necessarily) \\ a dynamical process}

We can (also) take it to be a
JOINT PROBABILITY ALGORITHM
```

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and
Classical Mechanics
The Measurement Problem
Probability, Intervention
\& Causality
Algebraic Quantum and
QND Fields

A necessary tradeoff:
QM is effective for incompatible measurements, but less so for joint measurements
Anastopoulos 2006 Sequential Measurements
Tsang\&Caves 2012 Quantum-Mechanics-Free-Subsystems

Collapse is QM's way of constructing joint measurement probabilities
CM is effective for joint measurements, but less so for incompatible measurements
The Poisson bracket is $\mathrm{CM}_{+}$'s way of constructing incompatible measurements

## probability, intervention \& causality

It's a running joke that Correlation $\neq$ Causality, so, for example, causal modeling adds Interventions, with $p(Y=y \mid \operatorname{do}(X=x))$
as a way to discuss counterfactuals, with that and other graphical and logical tools on top of classical modeling

Interventions are what people do, which is on the edge of classical modeling
Suggestion: "intervention" is a usefully different way
to think about "contextuality" or "measurement incompatibility"

## quantum and QND fields - modulation \& measurement

We can say the vacuum state of a quantum or QND field is a broadband, noisy carrier "signal" for probabilistic modulations of measurement results



$$
\begin{aligned}
\rho_{v}\left(\delta\left(\hat{M}_{f}-u\right)\right) & =\frac{\mathrm{e}^{-u^{2} / 2(f, f)}}{\sqrt{2 \pi(f, f)}}
\end{aligned} \frac{\mathrm{e}^{-(u-((g, f)-(f, g)) / \mathrm{j})^{2} / 2(f, f)}}{\sqrt{2 \pi(f, f)}}
$$


(omitted)

$$
\frac{\rho\left(\hat{M}_{g}^{\dagger} \mathrm{e}^{\mathrm{j} \lambda \hat{M}_{f}} \hat{M}_{g}\right)}{\rho\left(\hat{M}_{g}^{\dagger} \hat{M}_{g}\right)}
$$

probability distributions characteristic functions

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

We can also modulate joint measurements: $\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda_{1}} \hat{M}_{f_{1}} \mathrm{e}^{\mathrm{j} \lambda_{2}} \hat{M}_{f_{2}} \ldots\right)$
Call this a "super-characteristic function"

## quantum and QND fields - modulation \& measurement

We can say the vacuum state of a quantum or QND field is a broadband, noisy carrier "signal" for probabilistic modulations of measurement results


$\rho_{v}\left(\delta\left(\hat{M}_{f}-u\right)\right)=\frac{\mathrm{e}^{-u^{2} / 2(f, f)}}{\sqrt{2 \pi(f, f)}}$
$\frac{\mathrm{e}^{-(u-((g, f)-(f, g)) / \mathrm{j})^{2} / 2(f, f)}}{\sqrt{2 \pi(f, f)}}$

$$
\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda \hat{M}_{f}}\right)=\mathrm{e}^{-\lambda^{2}(f, f) / 2}
$$

$\rho_{v}\left(\mathrm{e}^{-\mathrm{j} \hat{M}_{g}} \mathrm{e}^{\mathrm{j} \lambda \hat{M}_{f}} \mathrm{e}^{\mathrm{j}} \hat{M}_{g}\right)$

(omitted)

$$
\frac{\rho\left(\hat{M}_{g}^{\dagger} \mathrm{e}^{\mathrm{j} \lambda \hat{M}_{f}} \hat{M}_{g}\right)}{\rho\left(\hat{M}_{g}^{\dagger} \hat{M}_{g}\right)}
$$

probability distributions characteristic functions

Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem
Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

We can also modulate joint measurements: $\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda_{1}} \hat{M}_{f_{1}} \mathrm{e}^{\mathrm{j} \lambda_{2}} \hat{M}_{f_{2}} \ldots\right)$
Call this a "super-characteristic function"
Analysis of global properties of a model needs global tools, which may have a discrete spectrum

## states for quantum and QND fields

For a Gaussian state, we can completely fix the algebraic structure with one equation:

> Peter Morgan

$$
\begin{aligned}
\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda_{1} \hat{M}_{f_{1}}} \mathrm{e}^{\mathrm{j} \lambda_{2} \hat{M}_{f_{2}} \ldots}\right)=\exp [ & \left.-\sum_{i, j} \lambda_{i} \lambda_{j}\left(f_{i}^{*}, f_{j}\right) / 2-\sum_{i<j} \lambda_{i} \lambda_{j}\left[\left(f_{i}^{*}, f_{j}\right)-\left(f_{j}^{*}, f_{i}\right)\right] / 2\right] \\
& \rho_{v} \text { is a sssian noise term if }\left(f_{i}, f_{j}\right) \text { is a positive semi-definite matrix }
\end{aligned}
$$

```
Signal\&data analysis Bell Inequalities
Algebraic Quantum and Classical Mechanics
The Measurement Problem
Probability, Intervention
``` \& Causality

Algebraic Quantum and QND Fields

\section*{states for quantum and QND fields}

For a Gaussian state, we can completely fix the algebraic structure with one equation:
\[
\begin{aligned}
\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda_{1} \hat{M}_{f_{1}}} \mathrm{e}^{\mathrm{j} \lambda_{2} \hat{M}_{f_{2}} \ldots}\right)=\exp [ & \left.-\sum_{i, j} \lambda_{i} \lambda_{j}\left(f_{i}^{*}, f_{j}\right) / 2-\sum_{i<j} \lambda_{i} \lambda_{j}\left[\left(f_{i}^{*}, f_{j}\right)-\left(f_{j}^{*}, f_{i}\right)\right] / 2\right] \\
& \rho_{v} \text { is issian noise state if }\left(f_{i}, f_{j}\right) \text { is a positive semi-definite matrix }
\end{aligned}
\]

We can fix the geometric structure in multiple ways:
Klein-Gordon: \((f, g)=\hbar \int \tilde{f}^{*}(k) \tilde{g}(k) 2 \pi \delta\left(k \cdot k-m^{2}\right) \theta\left(k_{0}\right) \frac{d^{4} k}{(2 \pi)^{4}}\)
Quantum optics: \((f, g)=-\hbar \underbrace{\tilde{f}_{\alpha}^{*}(k) k^{\mu}}_{\text {two space-like 4-vectors }} \underbrace{k^{\nu} \tilde{g}^{\alpha}(k)} 2 \pi \delta(k \cdot k) \theta\left(k_{0}\right) \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}\)
which are manifestly Poincaré invariant

\section*{states for quantum and QND fields}

For a Gaussian state, we can completely fix the algebraic structure with one equation:

> Peter Morgan
\[
\begin{aligned}
\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda_{1} \hat{M}_{f_{1}}} \mathrm{e}^{\mathrm{j} \lambda_{2} \hat{M}_{f_{2}} \ldots}\right)=\exp [ & \left.-\sum_{i, j} \lambda_{i} \lambda_{j}\left(f_{i}^{*}, f_{j}\right) / 2-\sum_{i<j} \lambda_{i} \lambda_{j}\left[\left(f_{i}^{*}, f_{j}\right)-\left(f_{j}^{*}, f_{i}\right)\right] / 2\right] \\
& \rho_{v} \text { is is a statian noise term if }\left(f_{i}, f_{j}\right) \text { is a positive semi-definite matrix }
\end{aligned}
\]

We can fix the geometric structure in multiple ways:
Klein-Gordon: \((f, g)=\hbar \int \tilde{f}^{*}(k) \tilde{g}(k) 2 \pi \delta\left(k \cdot k-m^{2}\right) \theta\left(k_{0}\right) \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}\)
Quantum optics: \((f, g)=-\hbar \underbrace{\tilde{f}_{\alpha \mu}^{*}(k) k^{\mu}}_{\text {two space-ike 4vectors }} \underbrace{k^{\nu} \tilde{g}^{\alpha}(k)} 2 \pi \delta(k \cdot k) \theta\left(k_{0}\right) \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}\)
which are manifestly Poincaré invariant
remove the " \(\theta\left(k_{0}\right)\) " for an everywhere commutative Gaussian QND field with a Planck-scale noise

\section*{TV-operators and the relationship between QFT and QNDFT}

An alternative way to construct the same Gaussian state,
\[
\hat{M}_{f}=a_{f^{*}}+a_{f}^{\dagger}, \quad\left[a_{f}, a_{g}^{\dagger}\right]=(f, g), \quad a_{f}|v\rangle=0, \quad \text { using the same }(f, g)
\]

\section*{Peter Morgan}
\[
\text { so that }\left[\hat{M}_{f}, \hat{M}_{g}\right]=\left(f^{*}, g\right)-\left(g^{*}, f\right)
\]

\section*{\(\uparrow \downarrow\)-operators and the relationship between QFT and QNDFT}

An alternative way to construct the same Gaussian state,
\[
\hat{M}_{f}=a_{f^{*}}+a_{f}^{\dagger}, \quad\left[a_{f}, a_{g}^{\dagger}\right]=(f, g), \quad a_{f}|v\rangle=0, \quad \text { using the same }(f, g)
\]
so that \(\left[\hat{M}_{f}, \hat{M}_{g}\right]=\left(f^{*}, g\right)-\left(g^{*}, f\right)\)
For the complex Klein-Gordon field and for quantum optics,
we can find involutions \(f \mapsto f^{\circ}, f^{\circ \circ}=f\),
for which \(\left(f^{* *}, g^{\bullet}\right)-\left(g^{* *}, f^{*}\right)=0\),
For \(\hat{M}_{f}^{\text {ano }}=a_{f * \circ}+a_{f}^{\dagger} \neq \hat{M}_{f \circ}, \quad\left[\hat{M}_{f}^{\text {MoD }}, \hat{M}_{g}^{\text {owo }}\right]=0\)
The \(\hat{M}_{f}^{\text {ovo }}\) generate a QND field: a commutative algebra of quantum non-demolition measurements, and an isomorphic Hilbert space

\section*{\(\uparrow \downarrow\)-operators and the relationship between QFT and QNDFT}

An alternative way to construct the same Gaussian state,
\[
\hat{M}_{f}=a_{f^{*}}+a_{f}^{\dagger}, \quad\left[a_{f}, a_{g}^{\dagger}\right]=(f, g), \quad a_{f}|v\rangle=0, \quad \text { using the same }(f, g)
\]
so that \(\left[\hat{M}_{f}, \hat{M}_{g}\right]=\left(f^{*}, g\right)-\left(g^{*}, f\right)\)
For the complex Klein-Gordon field and for quantum optics,
we can find involutions \(f \mapsto f^{\circ}, f^{\circ \circ}=f\), for which \(\left(f^{* \bullet}, g^{\bullet}\right)-\left(g^{* \bullet}, f^{\bullet}\right)=0, \quad\) for all test functions \(f\) and \(g\)
\[
\text { For } \hat{M}_{f}^{\text {ono }}=a_{f * *}+a_{f \circ}^{\dagger} \neq \hat{M}_{f^{\circ}}, \quad\left[\hat{M}_{f}^{\text {ovo }}, \hat{M}_{g}^{\text {avo }}\right]=0
\]

The \(\hat{M}_{f}^{\text {owo }}\) generate a QND field: a commutative algebra of

Algebraic Quantum and QND Fields

The algebra generated by the \(\hat{M}_{f}^{\text {evo }}\) is not isomorphic to that generated by the \(\hat{M}_{f}\)
For quantum optics: \(\tilde{f^{\circ}}(k)=\frac{1}{2}(1+j \star) \tilde{f}(k)+\frac{1}{2}(1-j \star) \tilde{f}(-k)\)
\(f \mapsto f^{\circ}\) is Lorentz invariant but not translation invariant or local, but both the Quantum and QND Field Theories are Poincaré invariant

If we allow the use of the vacuum projection operator \(\hat{V}=|v\rangle\langle v|\),
then the algebra generated by \(\hat{V}, \hat{M}_{f}\) is isomorphic to

Anything we can model with quantum optics \(+\hat{V}\), we can also model with QND optics \(+\hat{V}\)
(classical, but with Poincaré invariant noise)

Algebraic Quantum and Classical Mechanics The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

Interacting Quantum Fields

\section*{the Wightman axioms (adapted from Haag's Local Quantum Physics)}
for which, despite how simple they look, there are no known well-defined interacting models in \(3+1\)-dimensions, after 70 years
- A Hilbert space \(\mathcal{H}\) supports a unitary representation of the Poincaré group; there is a unique lowest energy Poincaré invariant vacuum vector \(|v\rangle\)
- Quantum fields are operator-valued distributions, linear maps \(\hat{M}: f \mapsto \hat{M}_{f}\) from a space of modulation functions into a \(*\)-algebra \(\mathcal{A}\)
- Quantum fields can be a Lorentz scalar, vector, ...
- Microcausality: commutativity at space-like separation
- Completeness: the action of the quantum field on \(|v\rangle\) generates \(\mathcal{H}\)
the Wightman axioms (adapted from Haag's Local Quantum Physics)

Thinking about QNDFT and signal analysis suggests at least three ways in which the Wightman axioms are too strong
- A Hilbert space \(\mathcal{H}\) supports a unitary representation of the Poincaré group; there is a unique lowest energy Poincaré invariant vacuum vector \(|v\rangle\)

QNDFT: Allow the vacuum to be not a lowest frequency state
- Quantum fields are operator-valued distributions, linear maps \(\hat{M}: f \mapsto \hat{M}_{f}\) from a space of modulation functions into a \(*\)-algebra \(\mathcal{A}\)
Allow quantum fields to be nonlinear maps into \(\mathcal{A}\)
- Quantum fields can be a Lorentz scalar, vector, ...
- Microcausality: commutativity at space-like separation

QNDFT: Allow commutativity at all separations, \(\left[\hat{M}_{f}, \hat{M}_{g}\right]=0\)
- Completeness: the action of the quantum field on \(|v\rangle\) generates \(\mathcal{H}\)

\section*{nonlinearity from a signal analysis perspective}

There are two linearities implicit in the Wightman axioms: von Neumann linearity of the state, \(\rho_{v}(\lambda \hat{A}+\mu \hat{B})=\lambda \rho_{v}(\hat{A})+\mu \rho_{v}(\hat{B})\), and linearity of the field, \(\hat{M}_{\lambda f+\mu g}=\lambda \hat{M}_{f}+\mu \hat{M}_{g}\)

\section*{nonlinearity from a signal analysis perspective}

There are two linearities implicit in the Wightman axioms:
von Neumann linearity of the state, \(\rho_{v}(\lambda \hat{A}+\mu \hat{B})=\lambda \rho_{v}(\hat{A})+\mu \rho_{v}(\hat{B})\),
and linearity of the field, \(\hat{M}_{\lambda f+\mu g}=\lambda \hat{M}_{f}+\mu \hat{M}_{g}\)
If we double the amplitude of a modulation, we do not expect that will double the effects of that modulation
[with the certainty required for linearity to be axiomatic]
\[
\hat{M}_{\lambda f+\mu g} \neq \lambda \hat{M}_{f}+\mu \hat{M}_{g}
\]

We can also argue that renormalization can be formalized as

For real-space renormalization, nontrivial blocking algorithms are nonlinear
"A source fragmentation approach to interacting quantum field theory", arXiv:2109.04412

\section*{the Reeh-Schlieder theorem as a path to reinventing QFT}

The Reeh-Schlieder theorem for a Wightman field:
local operators acting on the vacuum vector \(|v\rangle\) can approximate any vector
\(\Rightarrow\) what path integrals can approximate
can be approximated by local operators \(\hat{M}_{F_{i}\left[f_{j}\right]}\)


This is an inverse problem: find local, nonlinear fragment functionals \(F_{i}[\cdot]\) and free field QFTs that give the same results as our best path integrals NOT the last word! I hope we can find something better

I suppose that tables and chairs can be modeled as something like a caustic

\section*{A concise list of the difficulties of QFT}
© Divergences
(non-dynamical nonlinear resonance)

\section*{Bell Inequalities}

Algebraic Quantum and Classical Mechanics
(signal analysis \& incompatibility
(nonlinearity \& dispersion \(\longrightarrow\) caustics over time?)
(subalgebra of an algebra generated by many free fields)
(collapse of a quantum state as a joint probability construction)

\section*{A final generalization}

Given measurements \(\hat{M}_{\text {Description }_{1}}, \ldots, \hat{M}_{\text {Description }_{n}}\), all we need so we can construct a Gaussian state over that collection of measurements
is a positive semi-definite matrix \(\left(\right.\) Description \(_{i}\), Description \(\left._{j}\right)\)

The matrix does not have to be linear in Description \({ }_{i}\) and Description \(_{j}\)
The domain and the manifest symmetries of the matrix fix the theory
Signal\&data analysis
Bell Inequalities
Algebraic Quantum and Classical Mechanics

The Measurement Problem Probability, Intervention \& Causality

Algebraic Quantum and QND Fields

\section*{A final generalization}

Given measurements \(\hat{M}_{\text {Description }_{1}, \ldots,}, \hat{M}_{\text {Descripition }_{n}}\) all we need so we can construct a Gaussian state over that collection of measurements
is a positive semi-definite matrix \(\left(\right.\) Description \(_{i}\), Description \(\left._{j}\right)\)
The matrix does not have to be linear in Description \(_{i}\) and Description \(_{j}\)
The domain and the manifest symmetries of the matrix fix the theory

For interacting fields, introduce and combine many such matrices, while ensuring the properties required for \(\rho_{v}\left(\mathrm{e}^{\mathrm{j} \lambda_{1}} \hat{M}_{f_{1}} \mathrm{e}^{\mathrm{j} \lambda_{2}} \hat{M}_{f_{2}} \ldots\right)\) to be a state are satisfied

Interacting Quantum Fields

For gravity, we have to describe how we measure the geometry of space-time If \(\hbar\) appears nontrivially in the construction of matrices, then it's quantum

\section*{Quantum and Classical \({ }_{+}\)QND are types of description, not types of system}

Signal analysis suggests the introduction of nonlinearity into the Wightman axioms

\section*{Peter Morgan}

\section*{Instead of collapse of the state, we can use the QND picture, but noncommutativity is useful for modeling intervention\&causality}

\author{
\section*{Quantum and Classical have been} \\ \section*{converging, in numerous ways, for decades} \\ Generalized Probability Theories, phase space methods, contextuality, non-demolition measurement, \\ Koopman CM, time-frequency analysis, stochastic methods, semi-classical methods, superdeterminism, causal modeling, Cohen 1988 on characteristic functions, Abramsky 2020 on Boole's "Conditions of Possible Experience"
}
"Classical states, quantum field measurement", Physica Scripta 2019
"An algebraic approach to Koopman classical mechanics", Annals of Physics 2020 "The collapse of a quantum state as a joint probability construction", Journal of Physics A 2022
"A source fragmentation approach to interacting quantum field theory", arXiv:2109.04412```

