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outline

Devices −→ noisy signals −→−→events−→ data
noisy surroundings Dead time

Event time

The violation of Bell inequalities — signal analysis & field theory

Classical mechanics — add noncommutativity & quantum noise and discuss
analyticity

The measurement problem — joint probabilities

Generalized Probability — as a way to discuss intervention & causality

Quantum and QND fields — modulation & measurement

Interacting quantum fields — a signal analysis approach

An evolution of ideas in:

“Classical states, quantum field measurement”, Physica Scripta 2019

“An algebraic approach to Koopman classical mechanics”, Annals of Physics 2020

“The collapse of a quantum state as a joint probability construction”, Journal of Physics A 2022

“A source fragmentation approach to interacting quantum field theory”, arXiv:2109.04412

and, ancient history, “Bell inequalities for random fields”, Journal of Physics A 2006
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Compressed
Digital Data −→journal editor

−→physicists &
engineers

“raw data”is never
completely raw

At first, quite operational,
but, by the end, quite realist

A signal&data approach is
well-suited to machine learning

Let some preconceptions go
and let more abstract algorithms

do the heavy lifting instead

Different theory frameworks:
same experiment−→ same data

but what we can imagine and design
and choose to perform changes

many
devices

Bokulich&Parker 2021 Morgan&Morrison, “Models as Mediators” Borges, “On Exactitude in Science” Mart́ınez-Ordaz 2023
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Bohr 1921: “in a certain respect we are entitled in the quantum theory to see an attempt
of a natural generalisation of the classical theory of electromagnetism.”

Peter&Alisa Bokulich 2005

Bohr 1949: “It is decisive to recognize that, however far the phenomena transcend the scope of
classical physical explanation, the account of all evidence must be expressed in classical terms.”

Zinkernagel 2015

Dirac 1949: “My own opinion is that we ought to search for a way of making fundamental changes
not only in our present Quantum Mechanics, but actually in Classical Mechanics as well.”

Alisa Bokulich 2004

Bell 1975: “‘Observables’ must be made, somehow, out of beables. The theory of local beables
should contain, and give precise physical meaning to, the algebra of local observables.”

Use the Poisson bracket to make new ‘observables’
the opposite of adding hidden variables to quantum mechanics

Bell 1990, “Against ‘measurement’ ”: “experiments have results.”

We collate an Experimental Dataset into multiple Measurement Datasets, operationally,
by device and by analysis, not as “measurements of particle properties”
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taking quantum field theory to be about
a field of measurements

noisy signal analysis

Quantum Field Theory
and Signal Analysis are both grounded in actually recorded measurement results,

which are about the noisy signals on the signal lines out of devices,
which indicate something about the devices’ surroundings, whatever that is

We take quantum field theories to be our best theories
but we still take particle properties to cause events

suggestion(1): hesitate before mentioning particles or systems

suggestion(2): hesitate before mentioning a field that is measured

A quantum field has a ĥat because it is a field of measurement operators

About noise: Quantum noise (cf “shot” noise) is different from Thermal noise(see #16)
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algorithms for signals, events, and particles

devices −→ noisy signals −→−→ events−→ data
noisy surroundings

}
−→ perhaps

particles

If we have data about many millions of events, we have to write
algorithms that decide how to assign each event to a particle

If we add data about more events, the assignment
of events to particles will sometimes be fragile

Events-to-particles algorithms are
global, after-the-events, and fragile

Time

Early

reported

events

Later

reported

events

Signal-to-events algorithms, often implemented in hardware,

are non-Markovian because events must be reported only once Dead time

Event time

but are less fragile and nonlocal than events-to-particles algorithms because
adding data about more events doesn’t change the other events
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For QM, we have measurements M̂1, ..., M̂n, which is uninformative unless
we have a list of metadata Description1, ..., Descriptionn, which should be

enough for another experimenter to reproduce the measurement results
We could write M̂Description1

, ..., M̂Descriptionn

For QFT, measurement operators are not point-like: we use M̂f =
∫
M̂(x)f (x)d4x

We have measurements M̂f1 , M̂f2 , ..., M̂fn , where f1, f2, ..., fn
are smearing functions, test functions, window functions, or ...,

as descriptions of how a measurement is different from point-like

QFT: M̂f commutes with M̂g if f (x) and g(x) are causally
space-like

separated

QNDFT: M̂
QND

f always commutes with M̂
QND

g

Quantum Non-Demolition Field Theory (what I have called a random field theory)
For quantum optics∼QNDFT, see #27
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Gregor Weihs’s experiment (Phys. Rev. Lett. 1998)

Alice and Bob both have two Avalanche PhotoDiodes,
an Electro-Optic Modulator, a Random Bit Generator, and a clock;

a central apparatus modulates the ground state

page 60 from
Gregor Weihs’s

thesis

The time when an APD’s signal rises to a higher level is recorded, and
which APD it was, and what the EOM setting was: when and 2 bits

This compressed record does not let us analyze any other signal details
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the signal analysis of Avalanche PhotoDiodes

An engineer worked hard to create an APD

An APD is not made from ordinary clay (An APD is not conscious, but it is complicated)

An APD mostly burbles along while it interacts with its surroundings

An APD sometimes gets cross at the world and takes it to a higher level

Dead time

Event time

That’s more interesting than using devices that do nothing

An APD knows nothing about particles, but it does get cross

An APD’s electronics calms it down so it can burble again

An APD sometimes gets cross with itself even when it’s dark and quiet

An APD gets cross differently if we intervene to change its surroundings

An APD tells a story even when it’s not cross (which Zlatko listened to, Nature 2019)
The electronics might even know that an APD is very likely to get cross and stop it going there

An APD’s frequency scales:
optical@PHz, electronic@GHz, thermodynamic@MHz, human@Hz
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Gregor gets measurement results (Alice sees almost 400,000 APD events in 10 seconds)

16 colors represent the 4 APD and EOM bits:
�
�
+
×

(brightness represents Alice’s two bits, shapes represent Bob’s two bits, red is the diagonal, ...)

-3.0ns

3.0ns

0.0s 5.0s 10.0s

longdist35-Alice+-3ns-0-10s

M

M

M

M

15203 events displayed of 388455 that occurred in 10.0 seconds
4 displayed events tagged M as a multiple coincidence

For over 15,000 of Alice’s 400,000 events, Bob also records an event within 3 nanoseconds

When Alice and Bob both record an event within 3 nanoseconds, the majority are green or yellow

Alice 0 APD#0, EOM:0, 0 Alice 1 APD#0, EOM:1, 45 Alice 2 APD#1, EOM:0, 90 Alice 3 APD#1, EOM:1, 135

Bob 3
APD#1
EOM:1
157.5

Bob 2 
APD#1
EOM:0
112.5

Bob 1
APD#0
EOM:1
67.5

Bob 0
APD#0
EOM:0
22.5

Histogram for longdist35-Alice+-3ns-0-10s
Total in all Histograms = 15199 paired events

Histogram entry width is 60ps. Highest entry is 142 events.

320

439

2006

1658

1675

293

300

1463

1780

1741

364

374

193

1200

1212

181

E00 =  -0.694
[320+364,-2006-1780]

E01 =  -0.614
[439+374,-1658-1741]

E10 =   0.708
[1675+1212,-300-193]

E11 =  -0.698
[293+181,-1463-1200]

|E00-E10|+|E01+E11|
=  2.714

|E00-E01|+|E10+E11|
=  0.090

after coincident
events have

been identified,

collate events by
relative timing

information and by
APD# and EOM setting,
to give 16 histograms

and collate by
APD# and EOM setting

to give a 4×4 table
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transformations and noncommutativity

If we had transformed the recorded experimental data innocuously
we could have used commutative algebras to model the algorithms

In QM, we model Bell-violating statistics using noncommuting operators
Fine 1982 Landau 1987

In CM as usual, we do not have noncommuting operators

Without noncommutativity, CM is computationally incomplete

How can we add noncommutativity to CM?

About (non)locality:

Alice&Bob’s Electro-Optic Modulation could be ≪∼1MHz,
nonetheless giving approximately the same 4×4 table of numbers

For elementary QM models, the EOM rate makes no difference at all,
but a low EOM rate does not probe (non)locality

For quantum fields, locality is closely associated with measurement incompatibility
because microcausality only allows noncommutativity at time-like separation
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Gregor’s experiment in a modulated non-steady-state form

At a fine-grained scale, Gregor’s experiment is not at equilibrium

At a coarse-grained scale, Gregor’s experiment is at equilibrium
About (non)locality: thermodynamic equilibrium depends on boundary conditions

What happens when we first turn on the power?
Power on

1 2 3

Power off Power on

1 2 3

Power off

Time-slice #1, ...

The event rate increases in each of the four APDs

The coincident event rate increases

The violation of Bell inequalities increases at some rate

Collate by
absolute timing

information
after power on

Are these rates the same, or how are they different,
and how do these rates change at different distances?

These rates are technologically important as well as foundationally significant

Some experiments make more sense
as signal analysis than

as probes of particle properties
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algebraic QM and CM

There are abstract measurements M̂1,M̂2,M̂3,...,M̂1+M̂2,...,M̂1M̂2,...

linear operators≡random variables, spectrum≡sample space, noncommutative
or commutative ,

associative,
distributive,

with unit

With no dynamics, the tradition is: QM=noncommutative, CM=commutative

A (statistical) state ρ maps measurement operators to expected measurement results

ρ(M̂1), ρ(M̂2), ρ(M̂3), ..., ρ(M̂1+M̂2), ..., ρ(M̂1M̂2), ..., ρ(M̂n
1 ), ..., ρ(δ(M̂1−u))

ρ(ejλM̂1)

positive: ρ(Â†Â)≥ 0; normalized: ρ(1) = 1;

von Neumann linearity: ρ(λÂ+µB̂) =λρ(Â)+µρ(B̂)

compatible with the adjoint: ρ(Â†) = ρ(Â)∗; where (ÂB̂)†= B̂†Â†

We can also use measurement operators to modulate the state ρ to give different

expected measurement results, ρA(M̂) = ρ(Â† M̂ Â)

ρ(Â†Â)
,

from which the GNS-construction gives us a Hilbert space

The GNS-construction lets us think of ρv (M̂) as 〈v |M̂ |v〉 and of ρ
Av

(M̂) as 〈v |Â
† M̂ Â|v〉

〈v |Â†Â|v〉
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classical mechanics (Eckart 1926; Koopman 1931; von Neumann
Birkhoff (ergodic theorem); Sudarshan 1976)

“An algebraic approach to Koopman classical mechanics”, PM, AnnPhys 2020

Take classical mechanics to be an algebra of functions on phase space
that has three binary operations:

addition, multiplication, and the Poisson bracket
u + v
u · v
{u, v}

We can introduce “Multiply by w”, Ŷw (u) =w ·u,
and “Poisson by w”, Ẑw (u) = {w ,u}

A familiar example: “Poisson by the Hamiltonian function” gives
a generator of time evolution, ẐH(u) = {H,u}, the Liouvillian operator

We have [Ŷv ,Ŷw ] = 0, but [Ẑv ,Ŷw ] = Ŷ{v ,w} 6= 0 and [Ẑv , Ẑw ] = Ẑ{v ,w} 6= 0,
generating a noncommutative algebra with addition and composition

I suggest:

We can use the Ŷ ’s and Ẑ ’s of a more powerful CM+ without restriction
We do not have to follow the way of quantization and the Correspondence Principle

if what we want is noncommutativity and measurement incompatibility

and an algebraic measurement theory shared with QM
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the classical simple harmonic oscillator

The Poisson bracket: {u, v} = ∂u
∂p

∂v
∂q −

∂u
∂q

∂v
∂p

We work with the transformations
generated by the Poisson bracket,

not with the Poisson bracket directly
{u, v} 6 67→ [û, v̂ ]

Ŷq[u] = q · u, Ẑp[u] = {p, u} = ∂
∂qu, [Ŷq, Ẑp] = −1

Ŷp[u] = p · u, Ẑq[u] = {q, u} = − ∂
∂pu, [Ŷp, Ẑq] = 1

ŶH [u] = 1
2

(q2 + p2) · u, ẐH [u] = {H, u} =
(
p · ∂∂q − q · ∂∂p

)
u

The Gibbs thermal state at temperature kT (in a generating function form, introducing j):

ρGibbs

(
ejλŶq+jµŶp

)
= e−kT(λ2+µ2)/2, ρGibbs

(
eαẐp+βẐq

)
= e−(α2+β2)/8kT

set Ŷq = (a + a†)
√

kT, Ẑp =
(a− a†)

2
√

kT
, [a, a†] = 1, ensuring [Ŷq, Ẑp] = −1, and we set a|kT〉 = 0

(and b|kT〉 = 0 &c for Ŷp and Ẑq)

We can construct modulated, non-equilibrium states,
〈kT|Â† M̂ Â|kT〉
〈kT|Â†Â|kT〉

, and hence a Hilbert space

Instead of trying to map (q, p) 6 67→ (q̂, p̂), as quantization tries to (but fails),

we can map CM+ to QM, (q, j ∂∂q ) 7→ (q̂1, p̂1), (p, j ∂∂p ) 7→ (q̂2, p̂2)

Crucially, kT is not ~, but it is also about an irreducible noise
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Ŷq[u] = q · u, Ẑp[u] = {p, u} = ∂
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set Ŷq = (a + a†)
√

kT, Ẑp =
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〈kT|Â†Â|kT〉

, and hence a Hilbert space

Instead of trying to map (q, p) 6 67→ (q̂, p̂), as quantization tries to (but fails),

we can map CM+ to QM, (q, j ∂∂q ) 7→ (q̂1, p̂1), (p, j ∂∂p ) 7→ (q̂2, p̂2)

Crucially, kT is not ~, but it is also about an irreducible noise

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 15 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

quantum and thermal noise

What is the difference between quantum and thermal noise?

~ has units action, whereas kT has units energy

In QFT, the quantum vacuum is Poincaré invariant, thermal noise is not
This difference of symmetry properties can be used in CM+

Adopting this for CM+, ~ is an amplitude of Poincaré invariant noise
kT is an amplitude of thermal noise

This gives a new reason to think that we must work with field theories,
because we can only define the Lorentz group in 1+n-dimensions

~→ 0 is a mean-field approximation, not a classical approximation
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unboundedness of the Hermitian generators of time-like evolution

For the Gibbs state of the Simple Harmonic Oscillator,
ẐH is anti-Hermitian, so we consider jẐH , which is Hermitian,

jẐH = j

(
p · ∂
∂q
− q · ∂

∂p

)
= j
(
ŶpẐp + ŶqẐq

)
= j (ba− b†a†) so 〈kT|jẐH |kT〉= 0

= 1
2

[
(a− jb†)†(a− jb†)− (a + jb†)†(a + jb†)

]
6≥ 0

The Hamiltonian operator in QM is bounded below−→ analytic properties;
the corresponding operator in CM+, jẐH , is not (though ŶH is)

CM+ includes (1) noncommutativity and (2) quantum noise, however
(3) analyticity is mathematically useful but is not included

so we can say that QM is an analytic form of CM+

Accepting that analyticity is a difference instead of trying to fix it
gives us a relationship that is usefully different from quantization,

but (1) and (2) ensure that the measurement theory is the same
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“The collapse of a quantum state as a joint probability construction”, PM, JPhysA 2022

For a measurement A, with sample space A = {αm}, Â =
∑

m αmP̂m, and
a measurement B, with sample space B = {βn}, B̂ =

∑
n βnQ̂n,

For solo measurements, with density operator ρ̂,
we obtain the result αm with probability ρ(P̂m) = Tr[ρ̂P̂m] and
we obtain the result βn with probability ρ(Q̂n) = Tr[ρ̂Q̂n].

For two measurements, of A first, followed by B, we say that
the result αm “collapses” the state from ρ̂ to the collapsed state ρ̂m,

ρ̂m =
P̂mρ̂P̂m

Tr[P̂mρ̂P̂m]
=

P̂mρ̂P̂m

Tr[ρ̂P̂m]
,

then we measure B in that state, so we obtain the result αm followed by βn
with conditional probability

p(βn|αm) = Tr[ρ̂mQ̂n] =
Tr[P̂mρ̂P̂mQ̂n]

Tr[ρ̂P̂m]
,

so the joint probability is

p(αm and βn) = Tr[
ŷ
Pmρ̂P̂m · Q̂n ] = Tr[ρ̂ · P̂mQ̂nP̂m].
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We have p(αm and βn) = Tr[P̂mρ̂P̂m · Q̂n] = Tr[ρ̂ · P̂mQ̂nP̂m],

so the positive operators Ĵmn = P̂mQ̂nP̂m generate

the joint probabilities Tr[ρ̂Ĵmn].

Instead of collapse affecting a state,
we can take collapse to affect the next measurement

If [Â, B̂] = 0, then P̂mQ̂nP̂m = P̂mQ̂n = Q̂nP̂mQ̂n ∼ no action

We can use the positive operators Ĵmn to construct a “collapse product”,
a measurement AI◦B, with sample space A×B, even if [Â, B̂] 6= 0

The existence of a joint probability is traditionally “classical”, so we can instead

use commuting operators Â′ and B̂ ′ and a different state ρ̂′ that give

the same joint probability, Tr[ρ̂′ · P̂ ′mQ̂ ′n] = Tr[ρ̂ · P̂mQ̂nP̂m]

For the mathematically inclined, we can use the Neumark Dilation Theorem
to construct a joint PVM ÂB ∼AI◦B (for a larger Hilbert space)
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We can think of what we have just constructed as a “super-Heisenberg picture”,
for which both unitary evolution

and collapse are applied to measurements

The Schrödinger picture applies both unitary evolution
and collapse to the state

The Heisenberg picture applies unitary evolution to measurements,
but applies collapse to the state

or as the “Bohr picture”, because it’s rather classical and, for Bohr, measurements affect other measurements†

or as the “QND picture” or as the “Consistent Histories picture”, because it’s commutative

or as the “Everett picture”, because it’s no–collapse

or as the “Einstein picture”, because it’s rather classical (but with a Poincaré invariant noise)

†Howard 2004
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we can (and somehow must) extend this to many measurements

For a sequence of three or more measurements (many more for signal analysis),

we can use the sequential product, X̂ ◦ Ŷ =
√
X̂ · Ŷ ·

√
X̂ ,

or more elaborate systematic constructions of sums of positive operators

Collapse of the quantum state after measurement is ambiguous

ρ
(√

P̂
(A)
i P̂

(B)
j P̂

(A)
i P̂

(C)
k

√
P̂

(A)
i P̂

(B)
j P̂

(A)
i

)
or ρ

(
P̂

(A)
i P̂

(B)
j P̂

(C)
k P̂

(B)
j P̂

(A)
i

)
?

(AI◦B)I◦C 6= AI◦(BI◦C)

We can use any ordering, but each makes a different assertion about dependencies

I◦ is nonassociative, so, more complicated than the Heisenberg cut,
we have a Heisenberg bracketing ambiguity

We may not like the square root in (AI◦B)I◦C, but AB-preparation may be
a more natural pairing in the apparatus context than BC-measurement
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For signal analysis, when we have many measurements

at time-like separation, we can use M̂1, ..., M̂100...000,

with many ambiguous collapses,

or we can use M̂ ′
1, ..., M̂

′
100...000, which all commute,

unambiguously, with no collapses

We can think of this as Bohr’s ideal of
a classical model for compatible measurements

measurements at timelike separation can give joint probabilities

Time reversal is easy for the QND construction,

but with collapse (for just 3 measurements) we have

ρ
(
P̂

(A)
i P̂

(B)
j P̂

(C)
k P̂

(B)
j P̂

(A)
i

)
or ρ

R

(
P̂

(C)
k P̂

(B)
j P̂

(A)
i P̂

(B)
j P̂

(C)
k

)
,

with the collapses running in reverse M̂1

M̂2

M̂3

M̂n

M̂ ′1

M̂ ′2

M̂ ′3

M̂ ′n

Collapse
u1

ρ

ρ1

ρ2

ρn−1

Collapse

Collapse

u2

u3

un

ρ1..n

No-Collapse
Quantum

Non-Demolition
Picture

Collapse
Picture

for some bracket order

both give the same
joint probability,

p(u1, u2, u3, ..., un)

[M̂i, M̂j ] 6=0 [M̂ ′i , M̂
′
j ]=0

Hamiltonian
evolution
Ĥ ≥ 0

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 22 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

“Collapse” is not
(only or necessarily)

a dynamical process
We can (also) take it to be a

JOINT PROBABILITY

ALGORITHM
Belavkin 1994 Quantum Non-Demolition (QND) Measurements

Anastopoulos 2006 Sequential Measurements

Tsang&Caves 2012 Quantum-Mechanics–Free-Subsystems

A necessary tradeoff:
QM is effective for incompatible measurements, but less so for joint measurements

Collapse is QM’s way of constructing joint measurement probabilities

CM is effective for joint measurements, but less so for incompatible measurements
The Poisson bracket is CM+’s way of constructing incompatible measurements
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probability, intervention & causality

It’s a running joke that Correlation 6= Causality, so, for example,
causal modeling adds Interventions, with p(Y =y | do(X =x))

as a way to discuss counterfactuals, with that and other
graphical and logical tools on top of classical modeling

The Poisson bracket gives us a transformation algebra that can model
interventions in an intrinsic and classically natural way,

p(Y =y | do(X =x)) =
Tr[P̂Y=y · P̂X=x ρ̂P̂X=x ]

Tr[P̂X=x ρ̂]
=

Tr[P̂X=x P̂Y=y P̂X=x · ρ̂]

Tr[P̂X=x ρ̂]

Interventions are what people do, which is on the edge of classical modeling
Suggestion: “intervention” is a usefully different way

to think about “contextuality” or “measurement incompatibility”
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quantum and QND fields — modulation & measurement

We can say the vacuum state of a quantum or QND field is a broadband,
noisy carrier “signal” for probabilistic modulations of measurement results

Coherent
modulation
−→

Once-raised
modulation

Normal
distribution ← →

for a
free field

ρv(δ(M̂f − u)) =
e−u

2/2(f ,f )√
2π(f , f )

e−(u− ((g,f )−(f,g))/j )2/2(f ,f )√
2π(f , f )

(omitted) probability
distributions

ρv(ejλM̂f ) = e−λ
2(f,f )/2 ρv

(
e−jM̂gejλM̂f ejM̂g

) ρv
(
M̂†g e

jλM̂f M̂g

)
ρv
(
M̂†g M̂g

) characteristic
functions

(f , g) determines the geometric structure of a free quantum or QND field

We can also modulate joint measurements: ρv(ejλ1M̂f1 ejλ2M̂f2 ···)
Call this a “super-characteristic function”

Analysis of global properties of a model needs global tools,
which may have a discrete spectrum

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 25 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

quantum and QND fields — modulation & measurement

We can say the vacuum state of a quantum or QND field is a broadband,
noisy carrier “signal” for probabilistic modulations of measurement results

Coherent
modulation
−→

Once-raised
modulation

Normal
distribution ← →

for a
free field

ρv(δ(M̂f − u)) =
e−u

2/2(f ,f )√
2π(f , f )

e−(u− ((g,f )−(f,g))/j )2/2(f ,f )√
2π(f , f )

(omitted) probability
distributions

ρv(ejλM̂f ) = e−λ
2(f,f )/2 ρv

(
e−jM̂gejλM̂f ejM̂g

) ρv
(
M̂†g e

jλM̂f M̂g

)
ρv
(
M̂†g M̂g

) characteristic
functions

(f , g) determines the geometric structure of a free quantum or QND field

We can also modulate joint measurements: ρv(ejλ1M̂f1 ejλ2M̂f2 ···)
Call this a “super-characteristic function”

Analysis of global properties of a model needs global tools,
which may have a discrete spectrum

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 25 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

states for quantum and QND fields

For a Gaussian state, we can completely fix the algebraic structure with one equation:

ρv(e
jλ1M̂f1 ejλ2M̂f2 ···) = exp

[
−
∑
i,j

λiλj(f
∗
i ,fj)/2−

∑
i<j

λiλj [(f
∗
i ,fj)− (f ∗j ,fi )]/2

]
Gaussian noise term noncommutativity term

ρv is a state if (fi , fj) is a positive semi-definite matrix

We can fix the geometric structure in multiple ways:

Klein-Gordon: (f ,g) = ~
∫
f̃ ∗(k)g̃(k)2πδ(k ·k−m2)θ(k0) d4k

(2π)4

Quantum optics: (f ,g) = −~
∫
f̃ ∗αµ(k)kµ︸ ︷︷ ︸ kν g̃αν(k)︸ ︷︷ ︸ 2πδ(k ·k)θ(k0) d4k

(2π)4

two space-like 4-vectors

which are manifestly Poincaré invariant

remove the “θ(k0)” for an everywhere commutative Gaussian QND field with a Planck-scale noise
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remove the “θ(k0)” for an everywhere commutative Gaussian QND field with a Planck-scale noise

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 26 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

↑↓-operators and the relationship between QFT and QNDFT

An alternative way to construct the same Gaussian state,

M̂f = af ∗ + a†f , [af , a
†
g ] = (f,g), af |v〉 = 0, using the same (f , g)

so that [M̂f , M̂g ] = (f ∗,g)−(g∗,f )

For the complex Klein-Gordon field and for quantum optics,
we can find involutions f 7→ f •, f ••= f,

for which (f ∗•,g•)− (g∗•,f •) = 0, for all test functions f and g

For M̂
QND

f = af ∗• + a†f • 6= M̂f • , [M̂
QND

f , M̂
QND

g ] = 0

The M̂
QND

f generate a QND field: a commutative algebra of
quantum non-demolition measurements, and an isomorphic Hilbert space

The algebra generated by the M̂
QND

f is not isomorphic to that generated by the M̂f

For quantum optics: f̃ •(k) = 1
2

(1+j?)f̃ (k) + 1
2

(1−j?)f̃ (−k)
f 7→ f • is Lorentz invariant but not translation invariant or local, but

both the Quantum and QND Field Theories are Poincaré invariant
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If we allow the use of the vacuum projection operator V̂ = |v〉〈v |,
then the algebra generated by V̂ ,M̂f is isomorphic to

the algebra generated by V̂ ,M̂
QND

f

Anything we can model with quantum optics+V̂ ,
we can also model with QND optics+V̂ (classical, but with Poincaré invariant noise)

V̂ is nonlocal insofar as [V̂ , M̂f ] 6= 0 for any f , but
we implicitly use V̂ whenever we use a state transition probability

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 28 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

the Wightman axioms (adapted from Haag’s Local Quantum Physics)

for which, despite how simple they look, there are no known
well-defined interacting models in 3+1-dimensions, after 70 years

Thinking about QNDFT and signal analysis suggests at least
three ways in which the Wightman axioms are too strong

A Hilbert space H supports a unitary representation of the Poincaré group;
there is a unique lowest energy Poincaré invariant vacuum vector |v〉

QNDFT: Allow the vacuum to be not a lowest frequency state

Quantum fields are operator–valued distributions, linear maps M̂ : f 7→ M̂f

from a space of modulation functions into a ∗–algebra A

Allow quantum fields to be nonlinear maps into A

Quantum fields can be a Lorentz scalar, vector, ...

Microcausality: commutativity at space-like separation

QNDFT: Allow commutativity at all separations, [M̂f , M̂g ] = 0

Completeness: the action of the quantum field on |v〉 generates H

[Omitting spinors/fermions, which matter, but not today.]
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QNDFT: Allow the vacuum to be not a lowest frequency state

Quantum fields are operator–valued distributions, linear maps M̂ : f 7→ M̂f

from a space of modulation functions into a ∗–algebra A
Allow quantum fields to be nonlinear maps into A

Quantum fields can be a Lorentz scalar, vector, ...

Microcausality: commutativity at space-like separation

QNDFT: Allow commutativity at all separations, [M̂f , M̂g ] = 0

Completeness: the action of the quantum field on |v〉 generates H

[Omitting spinors/fermions, which matter, but not today.]

Peter Morgan (Yale) field & signal analysis ! QM May 17th, 2023 29 / 34



field & signal analysis
! QM

Peter Morgan

Signal&data analysis

Bell Inequalities

Algebraic Quantum and
Classical Mechanics

The Measurement Problem

Probability, Intervention
& Causality

Algebraic Quantum and
QND Fields

Interacting Quantum
Fields

The End

nonlinearity from a signal analysis perspective

There are two linearities implicit in the Wightman axioms:

von Neumann linearity of the state, ρv(λÂ+µB̂)=λρv(Â)+µρv(B̂),

and linearity of the field, M̂λf +µg=λM̂f +µM̂g

If we double the amplitude of a modulation, we do not expect
that will double the effects of that modulation

[with the certainty required for linearity to be axiomatic]

M̂λf +µg 6= λM̂f +µM̂g

We can also argue that renormalization can be formalized as
a nonlinear dependence on window and modulation functions

Loosely: renormalization scale←−experimental details←−test functions

For real-space renormalization, nontrivial blocking algorithms are nonlinear

“A source fragmentation approach to interacting quantum field theory”, arXiv:2109.04412
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the Reeh-Schlieder theorem as a path to reinventing QFT

The Reeh-Schlieder theorem for a Wightman field:
local operators acting on the vacuum vector |v〉 can approximate any vector

⇒ what path integrals can approximate
can be approximated by local operators M̂Fi [fj ]

Feynman many fragment resonance

f1

f2

f3

f4

f1

f2

f3

f4

F1[f1]
F2[f1]

F1[f2]

F2[f2]

F2[f4]

F1[f4]

F1[f3]

F2[f3]

x1

x2

x3

x4

y9 y10
y8y7

y4

y1
y2

y3

y5

y6

This is an inverse problem: find local, nonlinear fragment functionals Fi [·]
and free field QFTs that give the same results as our best path integrals

NOT the last word! I hope we can find something better

I suppose that tables and chairs can be modeled as something like a caustic
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A concise list of the difficulties of QFT

1 Divergences (non-dynamical nonlinear resonance)

2 No precise ontological picture (signal analysis & incompatibility!intervention)

3 No particles (nonlinearity & dispersion−→ caustics over time?)

4 Haag’s theorem (subalgebra of an algebra generated by many free fields)

5 The measurement problem (collapse of a quantum state as a joint probability construction)

from Oldofredi&Öttinger 2022
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A final generalization

Given measurements M̂Description1
, ..., M̂Descriptionn

, all we need so we can
construct a Gaussian state over that collection of measurements

is a positive semi-definite matrix
(
Descriptioni ,Descriptionj

)
The matrix does not have to be linear in Descriptioni and Descriptionj

The domain and the manifest symmetries of the matrix fix the theory

For interacting fields, introduce and combine many such matrices, while ensuring

the properties required for ρv(ejλ1M̂f1 ejλ2M̂f2 ···) to be a state are satisfied

For gravity, we have to describe how we measure the geometry of space-time
If ~ appears nontrivially in the construction of matrices, then it’s quantum
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Quantum and Classical+/QND are types of description, not types of system

Instead of collapse of the state, we can use the QND picture,
but noncommutativity is useful for modeling intervention&causality

Signal analysis suggests the introduction of nonlinearity into the Wightman axioms

Quantum and Classical have been
converging, in numerous ways, for decades

Generalized Probability Theories, phase space methods, contextuality, non-demolition measurement,
Koopman CM, time-frequency analysis, stochastic methods, semi-classical methods, superdeterminism,

causal modeling, Cohen 1988 on characteristic functions, Abramsky 2020 on Boole’s “Conditions of Possible Experience”

“Classical states, quantum field measurement”, Physica Scripta 2019

“An algebraic approach to Koopman classical mechanics”, Annals of Physics 2020

“The collapse of a quantum state as a joint probability construction”, Journal of Physics A 2022

“A source fragmentation approach to interacting quantum field theory”, arXiv:2109.04412
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