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Abstract

Given synthetic Euclidean geometry, I define length λ(a, b) (of a segment ab), by
taking equivalence classes with respect to the congruence relation, ≡: i.e., λ(a, b) =
λ(c, d) ↔ ab ≡ cd. By geometric constructions and explicit definitions, one may
define the Length structure, L = (L,0,⊕,⪯, •), “instantiated by Euclidean geometry”,
so to speak. One may show that this structure is isomorphic to the set of non-
negative elements of the one-dimensional linearly ordered vector space over R. One
may define the notion of a numerical scale (for length) and a unit (for length). One
may show how numerical scales for length are determined by Cartesian coordinate
systems. One may also obtain a derivation of Maxwell’s quantity formula, Q =
{Q}[Q], for lengths.
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1 Introduction

It’s an over-arching methodological rule in science that quantities introduced be measur-
able:
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It is an important principle of physics that no quantity should be introduced
into the theory which cannot, at least in principle, be measured. Newton’s
Laws involve not only the concepts of velocity and acceleration, which can be
measured by measuring distances and times, but also the new concepts of mass
and force. To give the laws a physical meaning, we have, therefore, to show
that these are measurable quantities. (Kibble & Berkshire (1996): §1.3, p. 8)

The outcome of such measurements (experiments) are then called “measurement re-
ports”, like “the period of Halley’s comet, on average, is 76 years”, or “the tempera-
ture of the cosmic microwave background is 2.7 K” or “the rest mass of an electron is
9.1 × 10−31 kg” and so on. (A list of measurement reports corresponds to a relational
database. For example, the database of planetary distances and planetary period mea-
surements which Kepler took to corroborate his three laws.) Consider Nelson’s Column:

Figure 1: Nelson’s Column

As one can see from the photo, the column looks to be about 20 or 25 times as high as
a person. Assuming people are around 2 m height, Nelson’s Column must be something
like 40 m to 50 m in height. In fact, it’s about 52 m. More accurately, the measurement
reports are:

The length (height) of Nelson’s Column = 5159 cm. (1)
The length (height) of Nelson’s Column = 2031 inch. (2)

What does an expression such as

“1 cm” “1 inch” “52 m” “5159 cm” . . .
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refer to? Not numbers, to be sure. But not physical objects, either. It also seems
clear that the linguistic expression “5159 cm” must refer to the result of “multiplying” the
real number 5159 by whatever the expression “1 cm” refers to:

5159 cm = 5159 • 1 cm (3)
1 cm is a unit length (4)

But:

(Q1) What is this “multiplication”, denoted •, exactly?
(Q2) And what is a “unit length” (e.g., 1 cm), exactly?

I wish to explain what these mean.1 I wish to explain what “the length of line segment
ab” means, by working up from geometry as our background and introducing lengths as
abstract entities, introduced by abstraction: a length is an equivalence class over the
geometrical equivalence relation of congruence between line segments (“having the same
length as”). The approach to analysing length that we develop here is sketched briefly
and informally by Paolo Mancosu as follows:

Consider the notion of equality of segments in Euclid. Starting from the con-
gruence relation between segments, a contemporary mathematician might nat-
urally introduce length using a definition by abstraction such as ‘λ(a) = λ(b)
iff a is congruent to b’ (with the option of explicitly defining length by means of
equivalence classes or other devices or simply accepting lengths as new entities,
as Peano does). But Euclid does not do this and he simply says, in com-
mon notion 4, that two segments are equal if they ‘coincide with one another’
(‘Things which coincide with one another are equal to one another’). Then in
the midst of the proof of proposition I.4 we find the converse being implicitly
used for segments (‘if two segments are equal they coincide with one another’).
Is the notion of equality of segments taken to be primitive or is it introduced
by abstraction (for it is not defined explicitly)? If we exclude the former case
then, if there is a definition by abstraction of equality of segments, it is at best
implicit, for what we are originally given is not a definition introduced by an ‘if
and only if’ (and a fortiori not a definition by abstraction). Moreover, there is
no mention of the class of segments that have in common the property of being
congruent (which in a more contemporary setting could be used to define λ(a),
namely the length of a). (Mancosu (2016): 23)

In this article, we work out the details.
1As it turns out, it is a form of scalar multiplication by a real, just as one has, e.g., 3e1 + 7e2 in a

vector space. This scalar multiplication is defined below, at Definition 5 as applied to the system L of
lengths. As explained at Definition 8, a unit length is any non-zero positive element of L. 1 cm is simply
such a unit length. A change of unit is a change of basis for L.
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2 Euclidean geometry

We shall proceed as follows. We are going to focus on two-dimensional Euclidean geom-
etry, as axiomatized synthetically by Alfred Tarski (Tarski (1948); Tarski (1959); Tarski
& Givant (1999)). This synthetic geometry has two synthetic geometrical primitives, a
3-place predicate B and a 4-place predicate ≡, where:

B(a, b, c) means: “the point b lies on a straight line (inclusively) between the points
a and c”,

ab ≡ cd means: “the segment ab is as long as the segment cd is” (or, equivalently,
“the segments ab and cd are congruent”).

We shall call this theory EG(2). N.B., we mean the second-order theory, not the
first-order theory, which I call EG0(2). The precise axioms of this theory EG(2) are given
as follows:

Definition 1. L(B,≡) is the first-order language over the signature {B,≡}. L2(B,≡)
is the (monadic) second-order language over the signature {B,≡}. The implicit logical
axioms are Extensionality for point sets and (monadic) Comprehension for point sets.
The non-logical axioms of EG(2) in L2(B,≡) are the following eleven:

E1. B-Identity B(p, q, p) → p = q.
E2. ≡-Identity pq ≡ rr → p = q.
E3. ≡-Transitivity pq ≡ rs ∧ pq ≡ tu → rs ≡ tu.
E4. ≡-Reflexivity pq ≡ qp.
E5. ≡-Extension ∃r (B(p, q, r) ∧ qr ≡ su).
E6. Pasch B(p, q, r) ∧ B(s, u, r) → ∃x (B(q, x, s) ∧ B(u, x, p)).
E7. Euclid B(a, d, t) ∧ B(b, d, c) ∧ a ̸= d → ∃x ∃y (B(a, b, x) ∧ B(a, c, y) ∧ B(x, t, y))
E8. 5-Segment axiom (p ̸= q∧B(p, q, r)∧B(p′, q′, r′)∧pq ≡ p′q′∧qr ≡ q′r′∧ ps ≡ p′s′∧qs ≡ q′s′)

→ rs ≡ r′s′.
E9. Lower dimension There exist three points which are not collinear (i.e., not co2).
E10. Upper dimension Any four points are coplanar (i.e., co3).
E11. Continuity Axiom ∃r (∀p ∈ X) (∀q ∈ Y ) B(r, p, q) → ∃s (∀p ∈ X) (∀q ∈ Y ) B(p, s, q)

Note that E11, the Continuity Axiom, is a single second-order axiom, not an axiom
scheme. The first-order theory EG0(2) is obtained by removing the Continuity Axiom,
and replacing it with all instances of the Continuity Axiom Scheme, with φ(p) and θ(p)
formulas of L(B,≡):

Continuity Axiom Scheme ∃r ∀p∀q (φ(p) ∧ θ(q) → B(r, p, q)) → ∃s∀p ∀q (φ(p) ∧ θ(q) → B(p, s, q))

These theories have quite different meta-mathematical properties. EG0(2) is complete
and hence decidable (Tarski (1948)). However, EG(2) is incomplete and interprets very
powerful mathematical theories (roughly, the second-order theory of real numbers).

But, fortunately, we can avoid working at the ground level based on the austere system
of synthetic axioms stated in Definition 1.2 Instead, for we shall work entirely from the

2A monograph that does do this in a lot of detail is Schwabhäuser et al. (1983).
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Representation Theorem for EG(2) instead. Furthermore, we don’t state this model-
theoretically. Instead, we assume our ordinary ambient mathematical theory, along with
the EG(2) axioms as primitive. In this context, we prove representation directly. We
assume as primitive a unary predicate point(p), with the set P defined as {p | point(p)}.
The EG(2) axioms are assumed to hold on P. We let B be defined as {(p, q, r) ∈ P3 |
B(p, q, r)}. We let ≡ be defined as {(p, q, r, s) ∈ P4 | pq ≡ rs}. (This overloads ≡, of
course.)

So, we are assuming EG(2) is true. Equivalently, we assume:3

(P, B,≡) |= EG(2). (5)

Definition 2. We define, for coordinate points x,y, z,w ∈ R2 (where x = (x1, x2), and
so on):

BR2(x,y, z) := (∃α ∈ [0, 1]) (y − x) = α(z− x)) (6)
∆2(x,y) :=

√
(x1 − y1)2 + (x2 − y2)2 (7)

≡R2 (x,y, z,w) := ∆2(x,y) = ∆2(z,w) (8)

The first relation BR2 is the Cartesian coordinate betweenness relation on R2. The
second (a function) ∆2 is the Cartesian coordinate Euclidean metric on R2. The third
relation ≡R2 is the Cartesian coordinate congruence relation on R2.

Theorem 1 (Line Representation Theorem). Let O, I be points, with O ̸= I. Let ℓ =
ℓ(O, I), the line through O and I. Let +,×,≤ be the geometrical addition, multiplication
and order operations on ℓ.4 Then there is a unique function φ : ℓ → R such that:

(1) φ(O) = 0.
(2) φ(I) = 1.
(3) φ is a bijection.
(4) for all p, q ∈ ℓ: φ(p) + φ(q) = φ(p+ q).
(5) for all p, q ∈ ℓ: φ(p)× φ(q) = φ(p× q).
(6) for all p, q ∈ ℓ: φ(p) ≤ φ(q) ↔ p ≤ q.

Consequently, φ is an isomorphism, and we denote this isomorphism φO,I , to register
its dependence on O, I. It might be called “the local coordinate system” on the line
ℓ(O, I). Following Burgess (Burgess & Rosen (1997): 107), we may call the two points
O, I “benchmarks”.

3EG(2), having 11 axioms, can be considered a single sentence. Then, the provable equivalence of the
geometrical sentence EG(2) with the semantical sentence (P, B,≡) |= EG(2) is an example of a Tarski
T-sentence, analogous to the equivalence of “snow is white” and “ ‘snow is white’ is true”.

4See Bennett (1995) for the definitions of geometrical additional + and multiplication × on a line
given by two parameters. Here, we overload the symbols. Context will always disambiguate. These
definitions go back to Hilbert (1899). See the proof of Theorem 1 in Tarski (1959) for the definition of
the geometrical order ≤ on a line (in terms of betweenness). A similar definition is explained in Szmielew
(1983).
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We may indicate this isomorphism φO,I from the line ℓ(O, I) to the real numbers like
this:

Figure 2: Line representation: φO,I

• • •

• • •
0 1 φO,I(p)

O I p
ℓ(O, I)

R

φO,I

Definition 3. Let O, I1, I2 be three points in P. Then we say that the triple (O, I1, I2)
is a Euclidean 2-frame in P if O ̸= I1, O ̸= I2, I1 ̸= I2, and OI1 ≡ OI2 and OI1 ⊥ OI2
(note: perpendicularity ⊥ is definable using ≡). Again, following Burgess, we can call
these three points “benchmarks”.

Figure 3: Euclidean 2-frame

•

•

•
O I1

I2

ℓ(O, I1)

ℓ(O, I2)

Alfred Tarski’s Theorem 1 in Tarski (1959) states the core Representation Theorem
for EG0(2)—i.e., the first-order version of EG(2). Its proof is sketched there. And in
much more detail in Schwabhäuser et al. (1983). Tarski’s Theorem 1 in Tarski (1959) is
for the first-order (or “elementary”) synthetic theory, EG0(2). But we are interested in
second-order theory, EG(2). For the second-order theory, the Representation Theorem is
the following:

Theorem 2 (Representation Theorem for D=2 Synthetic Euclidean Geometry). Let
(O, I1, I2) be a Euclidean 2-frame. Then there is a unique function Φ : P → R2 such that

(1) Φ(O) = (0, 0).
(2) Φ(I1) = (1, 0).
(3) Φ(I2) = (0, 1).
(4) Φ is a bijection.
(5) for all p, q, r ∈ P: B(p, q, r) iff BR2(Φ(p),Φ(q),Φ(r)).
(6) for all p, q, r, s ∈ P: pq ≡ rs iff ∆2(Φ(p),Φ(q)) = ∆2(Φ(r),Φ(s)).
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This Φ is called the Cartesian coordinate system determined by the Euclidean 2-frame
O, I1, I2. Any function Φ satisfying (4), (5), (6) is an isomorphism:

(P, B,≡)
Φ∼= (R2, BR2 ,≡R2). (9)

Given a Cartesian coordinate system Φ : P → R2, one may define the coordinate
length ∆Φ(a, b) of the line segment ab.

Definition 4. ∆Φ(a, b) := ∆2(Φ(a),Φ(b)).

Below we shall need two small lemmas about coordinate distances:

Lemma 1. B(p, q, r) ↔ ∆Φ(p, q) + ∆Φ(q, r) = ∆Φ(p, r).

Thus, q lies (inclusively) between p and r if and only if the sum of the coordinate
distance from p to q with the coordinate system from q to r is equal to the coordinate
distance from p to r:

Figure 4: Lemma 1

B(p, q, r)

•
p

•
q

•r∆Φ(p, q) ∆Φ(q, r)

= ∆Φ(p, r)

The formula [∆Φ(p, q) + ∆Φ(q, r) = ∆Φ(p, r)] is rather interesting. This is because,
for any Cartesian coordinate systems Φ,Ψ, we have:

covariant formula︷ ︸︸ ︷
[∆Φ(p, q) + ∆Φ(q, r) = ∆Φ(p, r)] ↔

covariant formula︷ ︸︸ ︷
[∆Ψ(p, q) + ∆Ψ(q, r) = ∆Ψ(p, r)] (10)

This is an example of covariance.

Lemma 2. If p ̸= q and either B(p, r, q) or B(p, q, r), then: φp,q(r) =
∆Φ(p,r)
∆Φ(p,q)

.

Thus, under the stated side conditions, the quantity φp,q(r) is equal to the ratio of
the coordinate distance p to r and the coordinate distance p to q:
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Figure 5: Lemma 2

•
p

•
q

•
r

•0 •1 •
φp,q(r)

R

∆Φ(p, q)

∆Φ(p, r)

The ratio ∆Φ(p,r)
∆Φ(p,q)

is coordinate invariant. That is, if p ̸= q and p, q, r are collinear,
then, for any coordinate systems Φ,Ψ, we have:

∆Φ(p, r)

∆Φ(p, q)
=

∆Ψ(p, r)

∆Ψ(p, q)
(11)

3 Definitions

We next wish to define length. Not coordinate length: that’s easy (Definition 4). But
genuine coordinate-free, unit-independent length. Any length will be the value of a binary
function λ:

λ : P2 → L (12)

Figure 6: Lengths of Line Segments

L: the set of lengths

•
0L

• p

• q

• r

• s

•a
• b

•c

•

•

λ(p, q) = λ(r, s)

λ(a, b)

λ(c, c)

pq ≡ rs

ab ≺ pq

λ

λ

λ

λ

Euclidean two-dimensional space: (P, B,≡)

Each segment (which can be identified with the ordered pair of its endpoints) is
mapped by λ to a length in L. To be clear, we do not assume that a length is a number.
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Rather, a length λ(a, b) is an coordinate-independent abstract object associated with a
segment ab between two points a and b.

We next define, using geometrical methods in Euclidean geometry, a zero length
(0), a length addition operation (⊕), a linear order (⪯), and a scalar multiplication by
non-negative reals (•). Assembled together, we obtain a certain structure, the Length
Quantity :5

L := (L,0,⊕,⪯, •). (13)

(Here, I follow the usual mathematical practice of conflating the name of a structure
with the name of its underlying carrier set.)

From the definition of lengths, we shall immediately obtain the required abstraction
principle for length:6

λ(a, b) = λ(c, d) ↔ ab ≡ cd (14)

Above, we defined the coordinate length ∆Φ(a, b) of a segment ab, given a coordinate
system Φ. But what is the relationship between the coordinate length ∆Φ(a, b) of a
segment ab, and its length λ(a, b)?

Definition 5. Lengths are equivalence classes (of ordered pairs):

[(a, b)]≡ := {(c, d) ∈ P2 | cd ≡ ab} (15)
λ(a, b) := [(a, b)]≡ (16)

L := {λ(a, b) | a, b ∈ P} (17)

Next, we define the zero length:

0L := λ(a, a) (18)

Next, we define addition of lengths:
5There is a minor terminological conflation, in measurement theory literature, between the notion of

Length—as a Quantity or quantitative property—and the notion of specific or individual lengths, like 3
cm and 25 m. I shall simply acquiesce in this, but sometimes capitalize and italicize, using “Length” to
mean the quantitative property as a whole, and “length” to mean a specific element of Length. Some
authors, and this is standard in physics, instead say that Length is a “quantitative property” (e.g., Eddon
(2013)) or say that Length is a “physical attribute”. On our view, Length is a certain kind of abstract
structure, related to a linearly ordered vector space, and specific lengths are “vectors” in that space, and
units are basis vectors.

6Instead of defining length by equivalence classes, as done here, one could take the abstraction axiom
(14) as a primitive (along with a surjectivity axiom: each length has a witness), then develop the same
theory as we give—though it is far more work, as we don’t have an ambient mathematical theory to
exploit. The methods required for this are explained in Burgess (1984).
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λ(a, b)⊕L λ(c, d) = λ(e, g) := (∃f ∈ P) (B(e, f, g) ∧ ef ≡ ab ∧ fg ≡ cd) (19)

Figure 7: Definition of length addition

•
a

•
b

•c

•
d

•
e

•f

•
g

ef ≡ ab

fg ≡ cd

Order ⪯L is then defined straightforwardly in terms of addition:

λ(a, b) ⪯L λ(c, d) := (∃e, f ∈ P) (λ(a, b)⊕L λ(e, f) = λ(c, d)) (20)

Finally, we define scalar multiplication of lengths by a non-negative real x. This
requires two cases: a = b and a ̸= b. First, if a = b:

x • L λ(a, b) := 0L (21)

Second, if a ̸= b:

λ(c, d) = x • L λ(a, b) := (∃e ∈ P) ((B(a, b, e) ∨ B(a, e, b)) ∧ cd ≡ ae ∧ φa,b(e) = x) (22)

We depict this as follows:

Figure 8: Definition of scalar multiplication by a real x ∈ R+
0

•
a

•
b

•
e

•0 •1 •
x = φa,b(e)

•
c

•
d

cd ≡ ae
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We now drop the subscripts, and assemble these operations into a package:

Definition 6. L := (L,0,⊕,⪯, •). This the Length structure.

We shall prove below (Theorem 3) that the Length structure L is (isomorphic to)
exactly the pointed positive cone of the one-dimensional vector space over R.

Definition 7. A length l is an element of L.

For us, lengths are not “properties”, or “attributes”. Rather, they are simply elements
of the structure L (i.e. equivalence classes of segments). For example, 5 cm is a length:
an equivalence class of segments.

Definition 8. A unit length is a positive (hence, non-zero) element of L.

For example, 1.616255 × 10−35 m is a unit length (which physicists call the Planck
length). Physicists usually denote it lP .

4 Theorems

Equipped with the above definitions, we can prove a series of theorems about the Length
structure (L,0,⊕,⪯, •). For example:

Lemma 3. The following hold for (L,0,⊕,⪯, •), for any l, l1, l2, l3 ∈ L, and x, y ∈ R+
0 :

(1) 0 ⪯ l.
(2) l1 ⪯ l2 ∧ l2 ⪯ l1 → l1 = l2.
(3) l1 ⪯ l2 ∧ l2 ⪯ l3 → l1 ⪯ l3.
(4) l1 ⪯ l2 ∨ l2 ⪯ l1.
(5) ∃l2 (l1 ≺ l2).
(6) l1 ≺ l2 → ∃l3 (l1 ≺ l3 ≺ l2).
(7) If X is a non-empty bounded set of lengths, then supX exists.
(8) l ⊕ 0 = 0⊕ l = l.
(9) l1 ⊕ l2 = l2 ⊕ l1.
(10) l1 ⊕ (l2 ⊕ l3) = (l1 ⊕ l2)⊕ l3.
(11) l1 ⪯ l2 → (l1 ⊕ l3 ⪯ l2 ⊕ l3).
(12) x • (y • l) = xy • l.
(13) 1 • l = l.
(14) x • (l1 ⊕ l2) = x • l1 ⊕ x • l2.
(15) (x+ y) • l = x • l ⊕ y • l.
(16) 0 • l = 0.

The results (1)–(6) imply that the reduct (L,0,⪯) is an unbounded linear order with
a least element. Result (7) states that ⪯ is “Dedekind order complete”. So, (L,0,⪯) is
an unbounded Dedekind order-complete, linear order with a least element. Results (8)–
(10) state that the reduct (L,0,⊕) is a commutative monoid. Result (11) states the
compatibility of ⊕ and ⪯. Consequently, results (1)–(11) state that (L,0,⊕,⪯) is an
ordered commutative monoid which is Dedekind order complete. The results (11)–(15)
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are “vector space” axioms, but we here do not have a vector space over R, as there are
no negative lengths.

In principle, we could use these conditions (1)–(16) to prove Theorem 3 below. Al-
though these axioms are slightly different from Hölder’s, this would reproduce Hölder’s
Theorem (Hölder (1901)). However, it is far easier to prove Theorem 3 directly, as we
shall do. Then results (1)–(16) are mostly easy consequences of Theorem 3.

Lemma 4. Immediate from the definitions we have an abstraction principle, (A1), and
a surjectivity principle, (A2):

(A1) λ(a, b) = λ(c, d) ↔ ab ≡ cd. (23)
(A2) (∀l ∈ L) (∃a, b ∈ P) (l = λ(a, b)). (24)

Lemma 5. Let Φ : P → R2 be a standard Cartesian coordinate system. Let ∆Φ : P2 →
R+
0 be the coordinate distance function relative to Φ. Then:

λ(a, b) = λ(c, d) ↔ ∆Φ(a, b) = ∆Φ(c, d) (25)

Proof. The Representation Theorem implies that ab ≡ cd ↔ ∆Φ(a, b) = ∆Φ(c, d), and,
using (A1), we obtain the claim.

Lemma 6. λ(a, b) = 0 if and only if a = b.

Proof. By Lemma 5, λ(a, b) = λ(c, c) ↔ ∆Φ(a, b) = ∆Φ(c, c). But λ(c, c) = 0 and
∆Φ(c, c) = 0. So, λ(a, b) = 0 ↔ ∆Φ(a, b) = 0. But ∆Φ(a, b) = 0 if and only if a = b. So,
λ(a, b) = 0 ↔ a = b.

Definition 9. Let Φ be a Cartesian coordinate system based on Euclidean 2-frame
(O, I1, I2). Let uΦ := λ(O, I1). I.e., the length of OI1.

Lemma 7. Let Φ be a Cartesian coordinate system based on Euclidean 2-frame (O, I1, I2).
Then uΦ is a unit length.

Proof. Since O ̸= I1, we have λ(O, I1) ̸= 0, by Lemma 6. Hence, uΦ is a unit length.

Thus, any Cartesian coordinate system determines a unique unit length. It is es-
sentially the length of the segment from the origin O to the point labelled 1 on the
x-axis:
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Figure 9: Unit length uΦ of a Cartesian coordinate system

•

•

•
O I1

I2

ℓ(O, I1)

ℓ(O, I2)

uΦ

uΦ

The next definition is the key to all the following theorems.7

Definition 10. Fix a standard Cartesian chart Φ : P → R2 with coordinate distance
function ∆Φ : P2 → R+

0 . We define a function,

hΦ : L → R+
0 (26)

as follows. For any l ∈ L, if l = λ(a, b), we define:8

hΦ(l) := ∆Φ(a, b) (27)

In particular, for any points a, b ∈ P:

hΦ(λ(a, b)) = ∆Φ(a, b) (28)

Lemma 8. hΦ(uΦ) = 1.

Thus, the coordinate length, relative to the coordinate system Φ, of the unit length
uΦ is 1, as expected.

Definition 11. Let (R, 0,+,≤, •) be the one-dimensional linearly ordered vector space
over R. Let Q be its restriction to the set {r ∈ R | 0 ≤ r} of non-negative elements (this
is a pointed convex cone).

The fact that base quantities in physics—Mass, Length, Time—are one-dimensional
vector spaces, or something like the non-negative fragment of a vector space, has always
seemed intuitively obvious to me. And then composite or derived quantities (Velocity,

7It took me an agonizingly long time to figure how to get this to work. I knew that the relationship
expressed by (28) must be true, and so I attempted to prove it, fruitlessly. Eventually, I realised that
(28) is really just a definition. When that became clear, the theorems below all fall out immediately.

8This is independent of the representative ab. For if l = λ(a, b) and l = λ(c, d), then ab ≡ cd; whence,
∆Φ(a, b) = ∆Φ(c, d).
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Frequency, and so on) are tensor products and duals. I have never seen this stated in any
of the philosophy of science literature, or in the Representational Theory of Measurement
literature, or the metaphysics of quantities literature. On my side, though, Terence Tao:9

For instance, to continue the example of the {M,L, T} system of dimen-
sions from the previous section, we can postulate the existence of three one-
dimensional real vector spaces {V M , V L, V T } (which are supposed to represent
the vector space of possible masses, lengths, and times, where we permit for
now the possibility of negative values for these units). As it is physically natu-
ral to distinguish between positive and negative masses, lengths, or times, we
endow these one-dimensional spaces with a total ordering (obeying the obvious
compatibility conditions with the vector space structure), so that these spaces
are ordered one-dimensional real vector spaces. However, we do not designate
a preferred unit in these spaces (which would identify each of them with R).
(Tao (2012): paragraph 69)

Tao says that “we can postulate the existence of three one-dimensional real vector
spaces {V M , V L, V T }”. In general, this postulation is definitely right for the foundations
of physics. But here we actually prove that the length structure, built into Euclidean
geometry so to speak, is the positive cone of a linearly ordered one-dimensional real
vector space. That is, we prove that the Length structure is isomorphic to Q (this is the
main theorem of this paper):

Theorem 3. Let Φ be a Cartesian coordinate system. Let hΦ be the function defined
above. (We drop the Φ subscript for clarity.) Then:

L
h∼= Q. (29)

Proof. We must verify six claims, as follows:
Claim 1: h is injective.
Pick two lengths, say l1 = λ(a, b) and l2 = λ(c, d). Let h(l1) = h(l2). Hence,

∆Φ(a, b) = ∆Φ(c, d). Hence, λ(a, b) = λ(c, d), and so l1 = l2.
Claim 2: h is surjective.
Let x ∈ R+

0 . Now ∆Φ : P2 → R+
0 is surjective. Hence, there exists a, b ∈ P such that

x = ∆Φ(a, b). Hence, x = h(λ(a, b)). Hence, we have l ∈ L, with x = h(l).
Claim 3: h(0) = 0.
0 = λ(a, a). So, h(0) = h(λ(a, a)) = ∆Φ(a, a) = 0
Claim 4: h(λ(a, b)⊕ λ(c, d)) = h(λ(a, b)) + h(λ(c, d)).
Let λ(e, g) = λ(a, b)⊕ λ(c, d). We claim that h(λ(e, g)) = h(λ(a, b)) + h(λ(c, d)). By

the definition of ⊕, there exists f ∈ P such that B(e, f, g), and ef ≡ ab, and fg ≡ cd. So,
∆Φ(e, f) = ∆Φ(a, b), and ∆Φ(f, g) = ∆Φ(c, d), and ∆Φ(e, g) = ∆Φ(e, f)+∆Φ(f, g). (We

9Also, after writing up this material, I found the articles Whitney (1968a) and Whitney (1968b). I
found these two articles a bit hard to understand. But I believe Whitney’s formulation of these notions
(he calls Quantities rays) to be more or less the same as what I sketched above, and what Tao sketches
in his remarks.
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use Lemma 1.) So, ∆Φ(e, g) = ∆Φ(a, b)+∆Φ(c, d). So, h(λ(e, g)) = h(λ(a, b))+h(λ(c, d)),
as claimed.

Claim 5: λ(a, b) ⪯ λ(c, d) ↔ h(λ(a, b)) ≤ h(λ(c, d)).
DIY.
Claim 6: h(x • λ(a, b)) = x · h(λ(a, b)).
The case a = b is trivial, so we assume a ̸= b. Let λ(c, d) = x • λ(a, b). We claim that

h(λ(c, d)) = x · h(λ(a, b)). By the definition of •, there exists e ∈ P such that B(a, b, e),
and cd ≡ ae, and φa,b(e) = x. We have: ∆Φ(c, d) = ∆Φ(a, e), and by Lemma 2, we have:
x∆Φ(a, b) = ∆Φ(a, e). So: x∆Φ(a, b) = ∆Φ(c, d), and hence h(λ(c, d)) = x ·h(λ(a, b)), as
claimed.

Definition 12. A numerical scale for L is an isomorphism h : L → Q.

Theorem 3 implies:

Theorem 4. Let Φ be a Cartesian coordinate system. Then hΦ is a numerical scale for
L.

We can now graphically depict the relation between

• the Length function, λ,

• the coordinate length function, ∆Φ,

• the corresponding numerical scale, hΦ,

as follows:

Figure 10: The relation between λ, ∆Φ and hΦ

•
p

•
q

•0 •0

•λ(p, q) • ∆Φ(p, q)

∆Φ

hΦ

λ

L R+
0

hΦ(λ(p, q)) = ∆Φ(p, q)

Euclidean two-dimensional plane
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Lemma 9. Let l ∈ L be a length. Let u ∈ L be a unit length. There exists a unique
x ∈ R+

0 such that:

l = x • u (30)

Proof. Let L
h∼= Q be a numerical scale. Let w = h(u) and let y = h(l). Since u is a

unit, 0 ≺ u, and hence, by the isomorphism, 0 < h(u). So, 0 < w and we can divide by
w. Let x := y

w = h(l)
h(u) . So, xh(u) = h(l). Since h is an isomorphism, it preserves scalar

multiplication •. So, h(x •u) = h(l). And therefore, by injectivity of h, we have: x •u = l,
as claimed.

Definition 13. Let l ∈ L be a length. Let u ∈ L be a unit length. Then we define:

∥l∥u := the unique x such that l = x • u. (31)

The number ∥l∥u is the magnitude of the length l relative to the unit u.

Theorem 5 (Maxwell’s magnitude formula). Let l be a length. Let u be a unit. Then:

l = ∥l∥u • u. (32)

This provides us with the precise relationship between a length l and the numerical
magnitude ∥l∥u of that length relative to any unit u. Theorem 5 may remind the reader
of James Clerk Maxwell’s analysis of a Quantity:

EVERY expression of a Quantity consists of two factors or components. One of
these is the name of a certain known quantity of the same kind as the quantity
to be expressed, which is taken as a standard of reference. The other component
is the number of times the standard is to be taken in order to make up the
required quantity. The standard quantity is technically called the Unit, and
the number is called the Numerical Value of the quantity. (Maxwell (1873): 1)

The BIPM (Bureau International des Poids et Mesures) summarizes Maxwell’s anal-
ysis as follows:

Defining the unit of a quantity
The value of a quantity is generally expressed as the product of a number and
a unit. The unit is a particular example of the quantity concerned which is
used as a reference, and the number is the ratio of the value of the quantity to
the unit. (BIPM (2022): 127)

A standard formulation goes as follows:
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In the scientific literature, especially in the context of metrology, a statement
such as physical quantity = pure number × unit is frequently used, sometimes
also expressed by the equation

Q = {Q}[Q],

where Q denotes a quantity, {Q} a numerical value, and [Q] a unit, both related
to the quantity Q. (Krystek (2021): 1)

I refer to

Q = {Q}[Q],

as Maxwell’s magnitude formula.
Theorem 5 implies:

Theorem 6. Let u ∈ L be a unit length. Then, for any points a, b ∈ P:

λ(a, b) = ∥λ(a, b)∥u • u (33)

Theorem 7. Let Φ be a Cartesian coordinate system. Let uΦ ∈ L be its unit length.
Then, for any points a, b ∈ P:

∆Φ(a, b) = ∥λ(a, b)∥uΦ (34)

Proof. We begin with Definition 10, and proceed by an equation stream:

∆Φ(a, b) = hΦ(λ(a, b)) (Definition 10) (35)
= hΦ(∥λ(a, b)∥uΦ

• uΦ) (Theorem 6) (36)
= ∥λ(a, b)∥uΦhΦ(uΦ) (Theorem 3(6)) (37)
= ∥λ(a, b)∥uΦ (Lemma 8) (38)

Theorem 8. Let Φ be a Cartesian coordinate system. Let uΦ ∈ L be its unit length.
Then, for any points a, b ∈ P:

length︷ ︸︸ ︷
λ(a, b) =

numerical magnitude︷ ︸︸ ︷
∆Φ(a, b) •

unit︷︸︸︷
uΦ (39)

Proof. Immediate from Theorem 6 and Theorem 7.
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This provides us with, for any Cartesian coordinate system Φ, the precise relationship
between a segment’s length, λ(a, b), the numerical magnitude ∆Φ(a, b) of that length in
the system Φ, and the unit length uΦ of that system Φ.

The final theorem characterizes the symmetry group of the Length structure L:

Theorem 9. Aut(L) ∼= (R+, 1,×).

Proof. The length structure L is isomorphic to Q, and the automorphism group of Q is
well-known to be the multiplicative group (R+, 1,×) of positive reals.

5 Rods

We have so far only defined length λ(a, b) for a spatial line segment ab. But not for
material objects. Material objects lie in space, and occupy some region. This occupation
relationship is given by a position function, we’ll call pos. A material object which is
to a good approximation thin, and also reasonably straight, has two endpoints (i.e., two
material points). It always lies along some line segment (in space), so that the material
endpoints of this object match the geometric endpoints of that segment. This sort of
material object is traditionally called a rod. Usually it is also required that the rod be
rigid : it maintains its length over time. Here, though, we ignore time and motion.

To illustrate, let a material rod R have material endpoints e1(R) and e2(R). Let
pos(e1(R)) = p and let pos(e2(R)) = q. So, R “occupies” the spatial segment pq:

Figure 11: Rod R occupies line segment pq

•
p

•
q

• •
R

e1(R) e2(R)

pos pos

Euclidean two-dimensional plane

Let’s now apply the theory of length. Imagine benchmarks O, I1, I2, with associated
coordinate system Φ. We use these benchmarks to define a unit length:

uΦ := λ(O, I1) (= λ(O, I2)). (40)

Imagine a small thin metal rod R, with endpoints e1(R) and e2(R). Suppose R
happens to lie along the ℓ(O, I1)-axis as depicted below, with the position of one endpoint
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e1(R) at the origin O, with coordinates (0,0), and the position of the other endpoint e2(R)
at some point q on ℓ(O, I1), with coordinates (0,2.5). Then the length of the rod is defined
to the length of the line segment whose endpoints are occupied by the material endpoints
of the rod :

the length of R = λ(O, q) = 2.5 • uΦ (41)

We depict this:

Figure 12: Length of rod R

•

•

•
O I1

I2

q ℓ(O, I1)

ℓ(O, I2)

• •

uΦ

uΦ
2.5 • uΦ

We can, in general, for any rod R, define “the length of rod R” as follows:

Definition 14. Let R be a rod with endpoints e1(R) and e2(R). Then, the length of R,
written len(R), is defined:

len(R) := λ(pos(e1(R)), pos(e2(R))) (42)

Notice that this does not involve units at all.

6 Nelson’s Column

We can now resolve the problem we started with in §1, “Introduction”. We highlighted
the following quantitative data statement (“measurement report”):

The length (height) of Nelson’s Column = 5159 cm. (43)

We asked: what does (43) mean?
First, we implicitly switch from two dimensions, to three dimensions, and assume

Euclidean geometry holds for three-dimensional space. The geometrical theory of length
abstraction proceeds quite analogously. We are working at a fixed time instant, of course.
Second, we are going to approximate Nelson’s Column as a rod. I do know that Nelson’s
Column is not a rod, thank you very much. That said, one can approximate it as one.
Suppose e1(NC) is bottom material point of Nelson’s Column, and suppose e2(NC) is
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the top material point of Nelson’s Column. These are approximate idealizations, to be
sure; but I see no difficulty with such modelling assumptions. Suppose that the position
of e1(NC) is the point O and the position of e2(NC) is the point t. We are interested
in λ(O, t). That is, using Definition 14,

The length of Nelson’s Column = λ(pos(e1(NC)), pos(e2(NC))) = λ(O, t). (44)

And λ(O, t) is certainly a length, as per Definition 7.
Now consider a 10 cm ruler (also a rod). Let the point marked “0” be a, and the

point marked “1” be b. We define:

1 cm := λ(a, b) (45)

Since a ̸= b, it follows that 1 cm is a unit length, as per Definition 8.
I claim that (43) means:

λ(O, t) = 5159 • 1 cm (46)

where • is the multiplication operation defined in Definition 5.

7 Concluding Remarks

The geometrical theory of length explained in this paper generalizes to curves, as opposed
to straight lines: by the usual approximation, taking short straight line segments and
summing. The methods of this paper also generalize very easily to synthetic Euclidean
geometry of any dimension D (the Upper and Lower Dimension axioms of Definition 1
are modified as appropriate). The methods generalize also to spacetime too, and yield
an analogous account of time. More exactly, instead of Euclidean geometry, we study
axiomatic synthetic Galilean spacetime (Field (1980), Ketland (2023)). With suitable
definitions, we can define an analogous Time structure, T (of finite durations); this is
analogous to—and indeed isomorphic to—the length structure L:

L ∼= T (47)

The abstraction is now based on chronological congruence, ≡tim. Though trickier,
this generalizes too to synthetic Minkowski spacetime (Robb (1911), Robb (1936), Mundy
(1986), Goldblatt (1987), Cocco & Babic (2021)). I believe it generalizes also to Rieman-
nian geometries, and relativistic spacetimes, (M, g).10

10Here there is no synthetic axiomatization or representation theorem, of course. However, we modify
the theory of length as follows: the numerical magnitude Lg(γ) of the length of a finite curve γ : [0, 1] →

20



8 Acknowledgements

This work was supported by a research grant from The Polish National Science Cen-
ter (Narodowe Centrum Nauki w Krakowie (NCN), Kraków, Poland), grant number
2020/39/B/HS1/02020.

References

Bennett, M., 1995: Affine and Projective Geometry. New York: Wiley.
BIPM, 2022: “The International System of Units (SI)”. Bureau International des Poids

et Mesures, Ninth edition (2019). This is version V2.01 of December 2022.
Burgess, J. P., 1984: “Synthetic Mechanics”. Journal of Philosophical Logic 13: 379–95.
Burgess, J. P. & Rosen, G., 1997: A Subject with No Object. Oxford: Clarendon Press.
Cocco, L. & Babic, J., 2021: “A System of Axioms for Minkowski Spacetime”. Journal

of Philosophical Logic 50: 149–185.
Eddon, M., 2013: “Quantitative Properties”. Philosophy Compass 8(7): 633–645.
Field, H., 1980: Science Without Numbers. Princeton: Princeton University Press. Sec-

ond edition, Oxford University Press (2016).
Goldblatt, R., 1987: Orthogonality and Spacetime Geometry. Springer.
Hilbert, D., 1899: Grundlagen der Geometrie. Leibzig: Verlag Von B.G. Teubner. Trans-

lated (by E.J.Townsend) as The Foundations of Geometry. Chicago: Open Court
(1950).

Hintikka, J., ed., 1968: Philosophy of Mathematics. Oxford: Oxford University Press.
Hölder, O., 1901: “Die Axiome der Quantität und die Lehre vom Mass” ”. Berichten

der mathematisch-physischen Classe der Königlisch Sächsischen Gesellschaft der Wis-
senschaften zu Leipzig, Mathematisch-Physikaliche Classe 53: 1–63. Translations of
this work by Joel Michell and Catherine Ernst appear in Hölder (1996), Hölder (1997).

Hölder, O., 1996: “The Axioms of Quantity and the Theory of Measurement”. Journal of
Mathematical Psychology 40(3): 235–252. Part I of Hölder (1901), translated by Joel
Michell and Catherine Ernst.

Hölder, O., 1997: “The Axioms of Quantity and the Theory of Measurement”. Journal
of Mathematical Psychology 41(4): 345–356. Part II of Hölder (1901), translated by
Joel Michell and Catherine Ernst.

Ketland, J., 2023: “Axiomatization of Galilean Spacetime”. Dialectica XXXX: XXXX.
Kibble, T. W. B. & Berkshire, F. H., 1996: Classical Mechanics. Addison-Wesley.

M wrt metric g is defined, as usual, as
∫ 1

0
dλ

√
g(γ̇, γ̇). This is a number, not a length. How do we

get lengths? First, we simulate congruence in Riemannian geometry as follows: congruence of curves
γ, γ′, relative to the metric tensor g, is written γ ≡g γ′, and is defined by: γ ≡g γ′ ↔ Lg(γ) = Lg(γ

′).
And then length is defined by taking equivalence classes under congruence, just as we did above. I.e.,
λg(γ) = {γ′ | Lg(γ) = Lg(γ

′)}. This depends on the metric g, of course. Interestingly, it is easy to show
that, if we consider (M, g), then λαg(γ) = λg(γ), for any fixed non-negative real α, and curve γ in M .

21



Krystek, M. P., 2021: “James Clerk Maxwell on quantities and units”. arxiv https:
//arxiv.org/pdf/2108.06125.pdf.

Mancosu, P., 2016: Abstraction and Infinity. Oxford University Press.
Maxwell, J. C., 1873: A Treatise on Electricity and Magnetism. Vol I. Oxford: Clarendon

Press.
Mundy, B., 1986: “Optical Axiomatization of Minkowski Space-Time Geometry”. Phi-

losophy of Science 53(1): 1–30.
Robb, A., 1911: Optical Geometry of Motion, a New View of the Theory of Relativity.

Cambridge: Heffer & Sons.
Robb, A., 1936: The Geometry of Time and Space. Cambridge University Press.
Schwabhäuser, W., Szmielew, W., & Tarski, A., 1983: Metamathematische Methoden in

der Geometrie. Berlin: Springer-Verlag (Hochschultext).
Szmielew, W., 1983: From Affine to Euclidean Geometry: An Axiomatic Approach. D.

Reidel Publishing Co with PWN-Polish Scientific Publishers.
Tao, T., 2012: “A Mathematical Formalisation of Dimensional Anal-

ysis”. Blogpost. https://terrytao.wordpress.com/2012/12/29/
a-mathematical-formalisation-of-dimensional-analysis/.

Tarski, A., 1948: “A Decision Method for Elementary Algebra and Geometry”. Technical
Report R-109, RAND Corporation.

Tarski, A., 1959: “What is Elementary Geometry?” In L Henkin, P Suppes, & A Tarski,
eds., The Axiomatic Method. Amsterdam: North Holland. Reprinted in Hintikka
(1968).

Tarski, A. & Givant, S., 1999: “Tarski’s System of Geometry”. Bull Symbolic Logic 5:
175–214.

Whitney, H., 1968a: “The Mathematics of Physical Quantities Part I: Mathematical
Models for Measurement”. The American Mathematical Monthly 75(2): 115–138.

Whitney, H., 1968b: “The Mathematics of Physical Quantities Part II: Quantity Struc-
tures and Dimensional Analysis”. The American Mathematical Monthly 75(3): 227–
256.

22

https://arxiv.org/pdf/2108.06125.pdf
https://arxiv.org/pdf/2108.06125.pdf
https://terrytao.wordpress.com/2012/12/29/a-mathematical-formalisation-of-dimensional-analysis/
https://terrytao.wordpress.com/2012/12/29/a-mathematical-formalisation-of-dimensional-analysis/

	Introduction
	Euclidean geometry
	Definitions 
	Theorems
	Rods
	Nelson's Column
	Concluding Remarks
	Acknowledgements

