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Abstract

Famously, Adrian Moore has argued that absolute representations of reality are
possible: that it is possible to represent reality from no particular point of view.
Moreover, Moore believes that absolute representations are a desideratum of physics.
Recently, however, debates in the philosophy of physics have arisen regarding the
apparent impossibility of absolute representations of certain aspects of nature in
light of our current best theories of physics. Throughout this article, we take grav-
itational energy as a particular case study of an aspect of nature that seemingly
does not admit of an absolute representation. There is, therefore, a prima facie
tension between Moore’s a priori case on the one hand, and the state-of-play in
modern physics on the other. This article overcomes this tension by demonstrat-
ing how, when formulated in the correct way, modern physics admits of an abso-
lute representation of gravitational energy after all. In so doing, the article o�ers
a detailed case study of Moore’s argument for absolute representations, clarifying
its structure and bringing it into contact with the distinction drawn by philoso-
phers of physics between coordinate-freedom and coordinate-independence, as
well as the philosophy of spacetime physics.
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1 Introduction
[I]t is the business of physicists, as it is the business of no other enquir-
ers, to �nd some minimal set of concepts that can be used for the indirect
endorsement of any true representation: evidence that the concepts physi-
cists currently employ are inadequate for these purposes is evidence that
they have further work to do. — Adrian Moore [1997, p. 75]

The search for ‘absolute’ representations of reality has been a staple in the history of phi-
losophy, and it continues to be a central issue in contemporary philosophy of science.1

Brie�y, absolute representations are representations that are not from any point of view.
In physics, absolute representations are often identi�ed as coordinate-independent or
coordinate-free ones—that is, representations that do not depend on a speci�c choice
of reference frame or coordinate system.

In his monumental book Points of View [1997], Adrian Moore has given a very gen-
eral argument in favour of the possibility of absolute representation, which states that
because representations have to ‘answer to reality’ there must always exist an account
of what makes a representation true that is not itself from any point of view. Further-
more, Moore, following Quine [1978], believes that it is up to physics to produce such
absolute representations, as the quotation at the start of this article illustrates. But the
possibility of absolute representations of certain aspects of nature continues to be a
matter of dispute.

One particularly important case that has generated recent discussion is the status of
gravitational stress-energy in general relativity (GR): momentum and energy carried by

1Much of the contemporary discussion goes back to Bernard Williams (Descartes [1978] and Ethics
and the Limits of Philosophy [1985]); see also Thomas Nagel’s The View from Nowhere [1986]. The idea of
a metaphysically perspicuous representation of the world is related; on this, see Sider’s Writing the Book
of the World [2011].
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the gravitational �eld itself, rather than by the matter located within spacetime. On the
one hand, there are good prima facie reasons to believe that gravitational energy exists—
for example, to secure a notion of local energy conservation. On the other hand, there
seems to be no ‘geometric object’ on the spacetime manifold that represents this quan-
tity.2 The best option available is to represent gravitational energy by a so-called ‘pseu-
dotensor’, but such an object is coordinate-dependent in a vicious sense to be made
precise. If Moore is correct that it is the business of physicists to �nd absolute represen-
tations of reality, then this is surely an embarrassment for physics. Put di�erently, the
absence of an absolute representation of gravitational energy is evidence that physicists
(or indeed philosophers of physics!) “have further work to do”.

In this article we propose a way out of the dilemma by way of a di�erent, coordinate-
independent representation of gravitational energy known as the ‘Sparling form’. Al-
though this representation was already proposed by László Szabados in 1991, it has re-
ceived virtually no attention in the philosophical literature on gravitational energy. We
argue that this proposal both o�ers a new solution to an important puzzle in the phi-
losophy of physics, and (in turn) a�ords the resources with which to overcome any
perceived tension here with Moore’s a priori argument for absolute representations.
Since modern physics is rife with other non-geometric objects of substantial impor-
tance (most notably spinors, which we discuss in §8), this article should be taken to
constitute just one case study in a broader investigation into absolute representations
and modern physics—and, therefore, as an invitation to a great deal of “further work”.

The structure of the article is as follows. In §2, we present a detailed analysis of
Moore’s argument in Points of View. This analysis also highlights a lacuna in the argu-
ment, which leads to a slight weakening of its conclusion. In §3, we connect the no-
tion of absolute representations to that of coordinate-independence in physics. First,
we show that a representation need not be coordinate-free to represent nature abso-
lutely, but rather only need be coordinate-independent. Then, we explain that such
coordinate-independence is achieved if the mathematical representations of physical
quantities are so-called ‘geometric objects’. Crucially, the gravitational stress-energy
pseudotensor is not a geometric object, as we discuss in §4. This leads to the central
dilemma of this article. In §5, we present our solution to this dilemma, based on the
work of Szabados. This proposal also helps to solve a distinct but related problem with
the gravitational stress-energy pseudotensor, namely that it is not unique, as we show
in §6. The proposal of this article provides an absolute representation of gravitational
stress-energy, but it has certain counter-intuitive metaphysical implications. These im-
plications are discussed in §7. §8 concludes.

2‘Geometric object’ is a technical term, which we will de�ne precisely later in the article.
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2 Moore’s Argument
Moore [1997] argues that absolute representations of reality—that is, representations
of reality that are from no particular point of view—are invariably possible. Following
Moore, by a ‘representation’ we mean anything which has content and which is true or
false in virtue of the content that it has. Here is a reconstruction of Moore’s argument
for the claim that absolute representations are always possible:3

1. There exists a setC of possible representations that are integrable by simple addi-
tion such that for any pair of true possible representations r1 and r2, there exists
anR ∈ C part of which reveals how r1 and r2 are made true by reality.

2. For any representation r1 from a point of view p1, there exists another represen-
tation r2 that is from an incompatible point of view p2.

3. If r1 and r2 are from incompatible points of view p1 and p2, and part ofR reveals
how r1 and r2 are made true by reality, thenR is neither from p1 nor from p2.

4. Therefore, there exists a set C of representations that are integrable by simple
addition such that no element of C is from any point of view: C is an absolute
representation of reality.

Let us comment on the premises one-by one. The �rst premise states that there
exists a setC of true representations, such that these representations are “integrable by
simple addition”. This means that one can ‘add’ them together to form another true
representation. The typical form of simple addition is conjunction: if r1 and r2 are true
sentences of propositional logic, for instance, then their simple addition yields r1∧r2. It
is clear that not all true representations are integrable by simple addition. For example,
if r1 is an utterance of “It is raining” on Monday, and r2 is an utterance of “It is dry” on
Tuesday, then their conjunction “It is raining and it is dry” is not a true representation
whether uttered on Monday or on Tuesday.

The members of C are supposed to “reveal” how pairs of true representations are
“made true by reality”. Consider �rst the weaker claim that for any pair of true repre-
sentations r1 and r2, there is some true representation R that provides an account of
the way in which r1 and r2 are made true by reality—no claim is yet made as to whether,
for di�erent pairs of representations, such accounts are integrable by simple addition.
For Moore, this weaker claim just follows from the fact that r1 and r2 are made true

3In personal correspondence, Moore has endorsed this reconstruction.
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by reality: “it means nothing to say that each of them is made true by reality unless it is
possible, in principle, to produce a representation that reveals how” (p. 69).

The stronger claim that, for di�erent pairs of true representations, the accounts
that reveal how they are made true by reality are from the same point of view—and
hence integrable by simple addition—follows from the fact that true representations
are made true by “the same reality in every case”. If that is the case, Moore says, then
“not only must it be possible to provide an account of the kind just described for any
possible true representation, but the part of this account that is used for the indirect
endorsement of the representation must be combinable with every other such part into
a single conception of reality—call itC” (p. 69).

So much for the �rst premise. The second premise is straightforward: if there were
a point of view p such that no representation from an incompatible point of view were
possible, then a representation from pwould just amount to a representation from no
point of view.

The third premise, however, is more controversial. Moore defends it as follows.
Firstly, to reveal how r1 and r2 are made true by reality is to (indirectly) integrate them.
Secondly, since r1 and r2 are from incompatible points of view, they are not integrable
by simple addition—that is just what it means for their points of view to be incompat-
ible. Therefore, in order for a representation R to integrate them somehow, it has to
endorse one of them—say r1—without adopting the associated point of view p1. But
this does not yet establish that R is from neither p1 nor p2. Moore goes on to claim
that “[R’s] treatment of r1 and r2 will be entirely symmetrical”, but o�ers no further
justi�cation for this claim.4 As it stands, then, the third premise is unjusti�ed.

Here is an example to illustrate the lacuna. Consider again an utterance of “It is
raining” on Monday and an utterance of “It is dry” on Tuesday. These are from in-
compatible points of view, so cannot be integrated by simple addition. Clearly, one
could indirectly integrate them in a tenseless way: “‘It is raining’ is uttered on Monday
and it is raining on Monday, and ‘It is dry’ is uttered on Tuesday and it is raining on
Tuesday.” But is is also possible to indirectly integrate these utterances from, say, the
�rst one’s point of view. For example, one can say: “‘It is raining’ was uttered yesterday,
and yesterday it was raining; but ‘It is dry’ was uttered today, and today it is dry.” This
latter representation reveals how both utterances are made true by reality, but it does so
from a particular temporal perspective.

It is possible to replace the third premise with a weaker version, namely that if r1
4In personal correspondence, Moore has acknowledged that this is a lacuna in the argument as pre-

sented in Points of View [1997]. Moore o�ers a brief response to the issue in [Moore, forthcoming, fn. 8],
which we discuss further below.
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and r2 are from incompatible points of view p1 and p2, and part of R reveals how r1
and r2 are made true by reality, then R is either not from p1 or not from p2—or from
neither. From this premise a weaker conclusion follows:

4’. Therefore, there exists a representation of reality,C , such that all elements ofC
are from the same point of view.

Notice that this conclusion remains far from trivial! For it establishes that one can make
sense of reality—all of reality—from one uni�ed point of view. This perspective need
not be privileged; there may exist uni�ed representations of reality from many di�erent,
incompatible points of view. But (4’) su�ces to overcome any radical form of perspec-
tivalism on which true representations from di�erent points of view are fundamentally
irreconcilable.

Moore has brie�y responded to this objection in recent work [Moore, forthcoming,
fn. 8]. In order to reveal how true representations from incompatible perspectives are
made true by reality, Moore claims, one also has to reveal how their respective perspec-
tives contribute towards their truth. It may seem as though one could show this from a
particular point of view: on Tuesday, I can make sense of the di�erence in perspectives
between “It is raining” uttered on Monday and “It is dry” uttered on Tuesday by appeal
to the fact that these utterances were made one day apart. But, Moore argues, this ac-
count of the di�erence in perspectives itself presumes a certain perspective. If one were
to account for the same di�erence in perspective on the preceding Sunday, that account
would appeal to the fact that the utterances in question will be made one day apart. The
availability of distinct explanations of the di�erence in perspective—that the utterance
were made one day apart or that they will be made one day apart—belies the fact that
it is the same di�erence in perspective in each case. Therefore, Moore concludes, it is
impossible to truly reveal how these representations are made true by reality from any
particular point of view.

We concur with Moore (in conversation) that more needs to be said at this point,
but we will not belabour it further here. In any case, we a�rm the claim that in order
to reveal how representations from incompatible perspectives are made true by reality,
one also has to account for the way in which their respective perspectives contribute
towards their truth. We will see below that in the case of gravitational stress-energy, it
seems as if this is impossible even from a particular point of view. In this case, then, one
cannot even present a complete representation of physical reality from a uni�ed point
of view—let alone from no point of view! This threatens the weakened conclusion (4’)
and a fortiori the possibility of an absolute conception of reality.
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3 AbsoluteRepresentations, Coordinate-Independence,
and Geometric Objects

We now connect these abstract issues to contemporary physics. Firstly, we contrast the
notion of absolute representations with the distinction between coordinate-independence
and coordinate-freedom (§3.1). Secondly, we argue that the possibility of absolute/coordinate-
independent representations requires that physics employs so-called geometric objects
(§3.2). In the next section, we present a challenge to the possibility of an absolute rep-
resentation of reality: the gravitational stress-energy pseudotensor is not a geometric
object, and hence does not admit of an absolute representation.

3.1 Coordinate-Independence
A key way in which perspectives enter physics is via coordinate systems. We understand
a coordinate system to be an assignment of tuples of real numbers to spacetime points
in a way that respects the structure of spacetime (e.g. smoothness). Each coordinate
system codi�es a certain perspective. For instance, the ‘lab frame’ is associated to a co-
ordinate system in which the laboratory is at rest, i.e. in which the spatial coordinates
of the lab remain constant over time. The lab frame thus embodies the perspective of
the lab. Claims that are made with respect to these coordinates—for instance: the ball
moves at 50 km/h—are from the lab’s perspective. They are incompatible with those
from another frame, say that of a car that drives past the lab. From the perspective of the
driver of the car, the ball moves at 20 km/h. Both claims are true from their respective
points of view. But one cannot form another true representation by simple addition:
“the ball moves at 50 km/h and also at 20 km/h” is necessarily false in any frame. The
use of coordinates in physics thus seems to inhibit the desideratum of absolute repre-
sentation.

The most straightforward way to reveal how a pair of coordinate-dependent rep-
resentations is made true by reality is to pro�er a coordinate-free representation that
indirectly endorses the coordinate-dependent ones. Call the lab frame x, and the car
frame x′. Then vl, vc and vb denote the velocity of the lab, car and ball respectively
from the lab’s point of view, and v′l, v′c and v′b denote these same quantities from the
car’s point of view. Moreover, let vlb denote the relative velocity between the lab and
the ball, and likewise for other combinations. The boldface indicates that this quantity
is coordinate-invariant, that is, that it does not depend on a choice of coordinates. In
other words, velocity di�erences v are from no point of view. The quantity vb stands
to vlb as the expression “tomorrow” uttered on Monday stands to the expression “the
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day after Monday” uttered whenever. It is possible to appeal to invariant quantities to
reveal how claims from di�erent perspectives are made true by reality:

“The velocity of the ball is 50 km/h”, uttered from the lab’s point of view,
refers to the velocity di�erence between the ball and the lab (vb ≡ vlb);
and the latter quantity is 50 km/h (vlb = 50). “The velocity of the ball
is 20 km/h”, uttered from the car’s point of view, refers to the velocity
di�erence between the car and the lab (v′b ≡ vcb); and the latter quantity
is 20 km/h (vcb = 20). The di�erence in perspective is accounted for by
the fact that the car moves at 30 km/h with respect to the lab (vlc = 30).

(Here, of course, we are using the standard formula for non-relativistic addition of ve-
locities.) This account does not depend on any choice of coordinates. Indeed, it does
not even presuppose a coordinate system; it is truly coordinate-free. In order to vindi-
cate Moore’s argument for the possibility of absolute representations, it would seem
that physics has to produce a coordinate-free representation of reality.

However, Wallace [2019] has pointed out that coordinate-independence does not
require coordinate-freedom: there are coordinate-independent representations that are
not coordinate-free. For an example, consider the claim that the velocity of the car is 30
km/h more than the velocity of the ball. This claim presumes a coordinate system, since
“the velocity of the car” and “the velocity of the ball” are only well-de�ned with respect
to a speci�c frame of reference. But it is true in any inertial system of coordinates, where
inertial coordinates are those adapted to a reference frame that moves inertially. Insofar
as inertial frames are concerned, then, this claim is coordinate-independent. Again, by
appeal to such representations it is possible to pro�er an account that reveals how claims
from di�erent perspectives are made true by reality:

Let x′′ denote an arbitrary reference frame. “The velocity of the ball is 50
km/h”, uttered from the lab’s point of view, refers to the di�erence be-
tween the velocity of the lab and the velocity of the ball (vb ≡ v′′b − v′′l );
and that quantity is 50 km/h. “The velocity of the ball is 20 km/h”, uttered
from the car’s point of view, refers to the di�erence between the velocity
of the car and the velocity of the ball (v′b ≡ v′′b − v′′l ); and that quan-
tity is 20 km/h. The di�erence in perspective is accounted for by the fact
that the di�erence between the velocity of the car and the lab is 30 km/h
(v′′c − v′′l = 30).

This account, too, does not presume any frame’s particular point of view—even though
it does presume some frame’s point of view.
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There are thus two distinct ways in which one can rid physics of coordinate-dependence
in order to obtain absolute representations. The �rst is to produce coordinate-free rep-
resentations, whilst the second is to produce coordinate-independent representations
whose truth does not depend on the adoption of any particular frame of reference.

We saw in the previous section that there is a weaker version of Moore’s argument
that does not establish the possibility of an absolute representation of reality, but only
of a representation of reality—all of reality—that is from a one uni�ed point of view.
In the language of coordinates, this amounts to a representation from within a particu-
lar reference frame that can yet reveal how claims within di�erent reference frames are
made true by reality. In our example, one can choose to adopt the lab frame and ex-
press all velocities within that frame. It is then possible to account for the claim that
the ball’s velocity is 30 km/h from the car’s perspective as follows: the car’s velocity is
30 km/h (vc = 30), and the ball’s velocity from the perspective of the car is equal to
the di�erence between the ball’s velocity and the car’s velocity (v′b ≡ vb − vc). This is
a coordinate-dependent representation, yet it resolves the incompatibility between the
car’s and the lab’s point of view.

Of course, the lab’s reference frame is in no way special. If it were then the above
account would not really reveal how a pair of coordinate-dependent representations
are made true by reality, since it does not mention the supposedly privileged role of the
lab frame. This is just the upshot of what Bell [1976] calls the ‘Lorentzian pedagogy’:
“the laws of physics in any one reference frame account for all physical phenomena,
including the observations of moving observers.” This piece of pedagogy entails that one
can o�er a complete representation of reality from any point of view within the range
of perspectives represented by di�erent choices of coordinates. For example, one could
instead adopt the car’s frame x′ and account for the velocity measurements within the
lab from that perspective. Crucially, this only works if none of these frames is in some
way privileged.

Because one can supply these coordinate-dependent accounts from the perspective
of any arbitrary frame, it is also possible to construct a coordinate-independent (yet not
coordinate-free) account from them. The idea is to take the full collection of accounts
from any frame of reference (their ‘equivalence class’) and present that as a uni�ed rep-
resentation of reality. Since this account does not privilege any particular frame, it is
coordinate-independent; but since each of the accounts is from some frame, it is not
coordinate-free. This is the essence of what is known as the ‘Kleinian’ approach to ge-
ometry, which identi�es geometrical structures in terms of whatever remains invari-
ant under a group of well-de�ned transformation rules (such as coordinate transforma-
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tions).5 The upshot of this approach is that one can ‘ascend’ from a uni�ed conception
of reality from any arbitrary perspective to a uni�ed conception of reality from no par-
ticular perspective.

Perhaps Moore would criticise this construction on the basis that any such account
does not fully explain the role of the di�erence in perspective between the lab and the
car. Take the story from the lab’s perspective. This account’s explanation of the contri-
bution of perspective appealed to the fact that the velocity di�erence between the lab
and the car is 30 km/h (vc − vl = 30). But this fact itself is represented from the per-
spective of the lab. Yet the di�erence made by their respective perspectives transcends
the lab’s point of view: it is the same di�erence whatever perspective one adopts. This,
of course, is just the lacuna between the weaker conclusion (4’), and Moore’s intended
conclusion (4).

Whether or not one believes that (4) or only (4’) is justi�ed, however, the di�erence
here is moot: for the case in which we are interested, it seems impossible to o�er a consis-
tent account of the di�erence in perspective even from any arbitrary perspective. This
means that it is a fortiori impossible to construct a truly absolute representation by the
Kleinian approach. As we show below, this is the case when a theory is partially formu-
lated in terms of non-geometric objects. When a theory posits non-geometric objects,
and those objects are interpreted as physically real, it seems that the possibility of an ab-
solute representation of physical reality is foreclosed. This is the challenge to Moore’s
argument—whether the argument’s conclusion is taken as (4) or only (4’)—that this
article aims to answer.

3.2 Geometric Objects
We turn now to the de�nition of these geometric objects: a mathematical notion mak-
ing its �rst appearance in the literature in [Nijenhuis, 1952, Schouten, 1954, Trautman,
1962, 1965]. It turns out that there are two de�nitions of a geometric object available in
the literature: a ‘traditional’ and a ‘modern’ one. Since the former is somewhat more
intuitive, we will rely on it in what follows.6

5For further details on this, see Wallace [2019].
6On the modern de�nition, geometric objects are de�ned as sections over natural bundles on a man-

ifold. Let M be a base manifold, P a bundle over this manifold with projection map π, and let d be a
di�eomorphism ofM onto itself. ThenP is a natural bundle i�d induces a unique di�eomorphismφ of
P such that φ ◦ π = π ◦ d. Let σ be a section ofP , i.e. a function σ :M → P such that π(σ(p)) = p.
Then σ is a geometric object i� P is a natural bundle. This means that to any di�eomorphism d of the
base manifold, there is associated a unique transformation σ → φ∗σ, where φ∗ is the pullback map
of φ. Generally, on the modern conception a geometric object is de�ned over a natural bundle with a
well-de�ned pull-back under di�eomorphisms of the base space. [Kolář et al., 1996]
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The kinds of object in which we are generally interested in contemporary theoret-
ical physics are fields. Broadly, a �eld assigns a value to each point on a manifold. The
latter usually represents spacetime. Note that neither the manifold nor the �eld involve
coordinates: both are typically characterised ‘intrinsically’.7 But suppose that one has
de�ned a local coordinate system, x, on the manifold. One can then express the values
of the �eld within these coordinates: call the result the �eld’s components in a coordi-
nate system. The �eld may generally have di�erent components in di�erent coordinate
systems. For a slightly contrived example, consider a ‘velocity �eld’ which assigns a ve-
locity value to each point in spacetime. The components of this �eld would depend
on the velocity of the coordinate system itself (with respect to some arbitrarily chosen
standard).

For some arbitrary point p ∈ M , consider a pair of arbitrary coordinate systems
around p. According to the traditional de�nition, a geometric object consists of

1. a set of components (a set ofN real numbers) for each coordinate system, and

2. a well-de�ned rule relating the components in the one coordinate system to the
components in the other.

The transformation rule in question is ‘well-de�ned’ in the region of overlap only if it
forms a group: (1) there is an ‘identity’ transformation that leaves every set of compo-
nents the same; (2) for each coordinate transformation, there is an ‘inverse’ transforma-
tion that undoes the �rst; (3) coordinate transformations are transitive, so the successive
application of well-de�ned coordinate transformations is itself a well-de�ned coordi-
nate transformation; and (4) coordinate transformations are associative, so it doesn’t
matter whether one evaluates successive coordinate transformations ‘from the left’ or
‘from the right’. For example, let x, x′ and x′′ denote three coordinate systems. O is
a geometric object only if the transformation O → O′′ de�nes the same object as the
transformationO → O′ → O′′. If this is not the case, then the object is non-geometric.
To put this succinctly, let (O′)′ denote the result of �rst applying a transformation to
O from x to x′, and then a transformation from x′ to x′′; and let O′′ denote the re-
sult of applying a transformation to O from x directly to x′′. Then for a geometric
object, (O′)′ = O′′.8 We will show below that it is the failure of this property for
non-geometric objects that precludes their representation from no particular point of
view. This is important because physics does sometimes involve non-geometric objects

7Wallace [2019] has rightly pointed out that coordinates still lurk in the traditional, ‘intrinsic’ char-
acterisation of a manifold. We’ll set this aside here.

8For a clear discussion of this property of geometric objects, see [Duerr, 2019b].
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that prima facie seem to represent physically real quantities—such as the gravitational
stress-energy pseudotensor discussed in the next section.

Most �elds used in contemporary physics are geometric objects: any vector or ten-
sor �eld is geometric (this includes the metric tensor that determines the geometry
of spacetime in relativity theory); in addition, however, certain non-tensorial objects,
such as the Christo�el symbols, are also geometric. We would further like to point
out that certain bona fide physical quantities are represented by non-geometric objects.
The Yang-Mills �eld in �bre bundle formulations of electromagnetism, for example, is
a non-geometric object, because (brie�y) the U(1) bundle is not soldered to the base
space [Dewar, 2020]. Another example, relevant to particle physics, is that of spinor
�elds (on which see [Pitts, 2012]). We therefore believe that many recent commentators
are too quick to presume without much justi�cation that geometric objects are the sine
qua non of modern physics.

Nevertheless, in many cases the presence of non-geometric objects is problematic.
In particular, we claim that when physics involves non-geometric objects, and those
non-geometric objects are taken to represent a physically real quantity, it becomes im-
possible to o�er a uni�ed account of physical reality—inclusive of the di�erence made
by the perspective of di�erent observers—from a single frame of reference à la the
Lorentzian pedagogy. But physics does seem to involve non-geometric objects, for in-
stance the gravitational stress-energy pseudotensor we discuss in detail below. This
poses a two-fold challenge to Moore’s claim that physics is in the business of �nding ab-
solute representations. Firstly, it seems to present a counterexample to the weaker con-
clusion (4’) from the previous section. If it is not even possible to o�er a uni�ed account
of reality from any one point of view, then radical perspectivalism looms. Secondly, we
saw in the prevous subsection that one can construct a coordinate-independent account
of reality from an equivalence class of coordinate-dependent ones that are from an ar-
bitrary point of view. But if such an account of reality is impossible, then this construc-
tion likewise fails. Therefore, the presence of non-geometric objects also stands in the
way of a certain recipe for the construction of a coordinate-independent representation
of reality.

Let us explain the latter in more detail. Suppose that one has representations ofO in
x and x′. In order to o�er an account that reveals how both representations are made
true by reality, one could adopt a third point of view, x′′. Part of that account must
‘translate’ the representation of O from x and x′ respectively to x′′. This results in a
pair of representations which we will denote (O′)′ and O′′. The �rst challenge occurs
here: becauseO is a non-geometric object, generally (O′)′ 6= O′′. Therefore, even from
the perspective of an arbitrary coordinate system x′′, the representation of O in x and
the representation of the same object O in x′ seem to present reality di�erently—they
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make di�erent claims about the value of O. To make this concrete: it is possible that,
considered from x′′,O as represented from x vanishes in a certain region whereasO as
represented from x′ does not vanish in that region. It seems that there is no way to rec-
oncile such representations, and so one cannot reveal how both are made true by reality
from an arbitrary point of view. It is therefore also impossible to take an equivalence
class of coordinate-dependent accounts of reality in order to construct a coordinate-
independent representation. This recipe fails because the transformation rules between
coordinate representations of a non-geometric object are not well-behaved: they are not
mutually coherent; they are not made true “by the same reality in every case”. This is
the second challenge.

Compare this to the case of velocities discussed before. The key fact here is that
velocity transformations are additive: if the car frame x′moves at 30 km/h with respect
to the lab frame x, and if an arbitrary third frame x′′ moves with (say) 10 km/h with
respect to the car frame, then the latter frame moves with 30 + 10 = 40 km/h with
respect to the lab frame. So, if vb is 50 km/h, then v′′b is 10 km/h; but equally, if v′b is
20 km/h, then (v′b)

′—the velocity of the ball with respect to the car with respect to an
arbitrary third frame—is also 10 km/h. The result is the same in each case. Therefore,
the transformation rules for velocities are coherent: one can freely switch from one
perspective to another without contradiction. The representations from these di�erent
perspectives are made true by the same reality in each case.

To sum up the story so far, before we present our main case study: we started
with Moore’s argument for the possibility of an absolute representation of reality—
that is, a representation of reality that is from no point of view. We noted that the
argument as presented in Moore’s book Points of View [1997] contains a lacuna, but
that it is at least possible to establish the weaker conclusion that there is a representa-
tion of reality, which includes an account of the di�erence made by a representation’s
perspective, from one uni�ed point of view. In physical terms, an absolute representa-
tion is coordinate-independent, and one (but not the only) way to obtain coordinate-
independence is coordinate-freedom. But even a coordinate-dependent representation
may still o�er a uni�ed representation of reality in the weaker sense that it can account
for any perspective—this is the Lorentzian pedagogy. Moreover, because such an ac-
count is possible from any arbitrary perspective, it is in fact possible to construct a
coordinate-independent account from their equivalence class. But this is only true if
physics employs geometric objects. It is impossible to o�er a uni�ed representation of
a non-geometric object from any particular perspective, because no such representa-
tion can account coherently for the way in which that same non-geometric object is
represented from other perspectives. Consequently, it is also impossible to construct a
coordinate-independent (hence absolute) representation from an equivalence class of
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coordinate-dependent ones. This poses a dilemma: either non-geometric objects are
not physically real, or absolute representations from physics are not possible. In the
case of the gravitational stress-energy, to be discussed in the next section, the former
horn is objectionable on physical grounds. But since Moore’s argument is a priori, the
second horn must be false too. The aim of the remainder of this article is to o�er a way
out of this dilemma.

4 The Gravitational Stress-Energy Pseudotensor
This section presents the gravitational stress-energy pseudotensor. This is a non-geometric
object that nevertheless seems to represent a physically real quantity in the framework
of general relativity (GR). If this is indeed the case, then modern physics would seem
to deal with irreducibly non-absolute representations. This would clearly con�ict with
Moore’s view of physics as being in the business of the discovery of absolute represen-
tations of reality. Ultimately, we will argue that one can represent gravitational stress-
energy absolutely, although this requires a revision of both its mathematical and meta-
physical nature. But in this section we �rst discuss why the standard approach invoking
the pseudotensor is not up to the job.9

The idea that both energy and momentum are conserved quantities is familiar al-
ready from classical mechanics, and carries over straightforwardly to the special theory
of relativity (SR). In SR, the density and �ux of the energy and momentum of mat-
ter (which here includes non-gravitational �elds such as the electromagnetic �eld) is
represented by the so-called ‘stress-energy tensor’, T µν , which is a bona fide geometric
object. The conservation of energy and momentum is expressed in terms of this tensor
as follows

∂µT
µν = 0. (1)

This equation states that the total �ux of stress-energy through a point vanishes—i.e., that
stress-energy is conserved at any point in spacetime.10

9The (non-)existence of gravitational stress-energy in general relativity has received much attention
in the recent philosophical literature (see e.g. [Lam, 2011, Hoefer, 2000, Curiel, 2019, Read, 2018, Duerr,
2019a, Pitts, 2010]). Here, we will present only the details of the debates regarding gravitational stress-
energy which are important for our purposes.

10There are three points to make here. (1) As is standard, in the above Greek indices are used to denote
the components of an object in some coordinate system. (2) Strictly, (1) holds only in the frames of
references adapted to the structure of Minkowski spacetime of SR—see e.g. [Read, 2018] for discussion.
(3) Equation (1) can be converted into a conservation law through a region by integrating and applying
Stokes’ theorem.
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In GR, on the other hand, it seems at �rst as if it is not the case that energy is con-
served. In particular, the lack of global symmetries of a (curved, dynamical) spacetime
in GR means that

∂µT
µν 6= 0, (2)

which would seem to imply that material stress-energy is not a conserved quantity in
GR. But perhaps this should not surprise us! For it is often—though not universally—
claimed that, in GR, the gravitational degrees of freedom also carry energy, for example
in gravitational waves.11 It might still be the case, then, that the total energy of a system—
material and gravitational—is conserved.

In order to formalise this claim, one can introduce a gravitational stress-energy pseu-
dotensor, tµν . (The reason this is called a pseudotensor becomes clear below). The claim
then is that the total stress-energy Tµν := T µν + tµν is conserved, i.e. that

∂µT
µν := ∂µ(T µν + tµν) = 0. (3)

This is indeed the case: in GR, there always exists a tµν such that (3) is satis�ed. There-
fore, it seems that one �nds continuity between classical mechanics, special relativity
and general relativity: in each theory, the total energy of the universe is locally con-
served. The only di�erence is that in GR, unlike in its predecessors, the gravitational
�eld itself carries energy.

There are weighty physical reasons to believe that the gravitational �eld really does
carry stress-energy, which is represented by tµν . Firstly, there is the above-mentioned
continuity with classical and special-relativistic mechanics: in both theories, total en-
ergy is conserved. Moreover, such conservation principles are certainly not ‘idle posits’
of those theories. The scienti�c realist would therefore do well to preserve the principle
of conservation of energy by positing the conservation of Tµν . Secondly, quite apart
from past physics the conservation of energy and momentum are generally regarded as
fundamental principles in contemporary physics. For example, Lange [2007] thinks of
such principles as ‘meta-laws’ that modally constrain the laws of nature. In this way,
conservation principles have explanatory import. The availability of such explanations
is another reason to posit tµν . Finally, GR simply does seem to describe a universe in
which entities associated with gravitation carry energy. This is most clearly exempli-
�ed by the phenomenon of gravitational waves: �uctuations in the gravitational �eld
that can have very real e�ects, as recently detected in the Nobel Prize-winning LIGO
experiment.12

11For an article questioning this orthodoxy, see [Duerr, 2019c].
12For a recent defence of this view, see [Gomes and Rovelli, 2023]). Note, though, that these authors

embrace the mainstream position that gravitational energy is non-localisable in GR.
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However, the fact that tµν is a pseudotensor—which indicates inter alia that it is a
non-geometric object!—has led several philosophers to object to the claim that it repre-
sents a physically real quantity. In fact, there are at least three distinct problems related
to tµν that are discussed in the literature:

1. In GR, there are in fact infinitely many distinct pseudotensorial quantities that
are candidates to represent gravitational stress-energy: from Noether’s �rst the-
orem, one for each rigid symmetry of the Lagrangian density [Pitts, 2010];

2. Conservation laws such as (3) are closely associated to (trivial?) mathematical
identities ([Brading, 2005]);

3. Pseudotensors are not geometric objects: they don’t have associated well-de�ned
transformation laws (Duerr [2019b]).

The �rst problem refers to the fact that (3) does not de�ne tµν uniquely. Rather, (3) is
satis�ed for any object such that

tµν = ∂λU
µλν − 1

8π
Gµν , (4)

whereGµν is the Einstein tensor (appearing on the left-hand side of the Einstein equa-
tions) and Uµλν = Uµ[λν] is a so-called ‘superpotential’: di�erent superpotentials lead
to di�erent pseudotensors.13 This raises the question: which of the in�nitely many
pseudotensors (associated to one of in�nitely many superpotentials) is the ‘real’ one
that represents the gravitational �eld’s ‘true’ stress-energy? Relatedly, the second prob-
lem is based upon the thought that each of these in�nitely many conservation laws is in
fact a mathematical identity, which it would seem cannot have any non-trivial physical
content. We will return to these �rst two problems—and especially the non-uniqueness
problem—in §6.

For our present purposes, however, it is clearly the third problem that is most rel-
evant. The fact that the pseudotensor is not a geometric object means, as explained in
§3, that it is viciously coordinate-dependent.14 This in turn means that one cannot con-
struct a coordinate-independent representation of it, either in a entirely coordinate-free
fashion or by way of the Kleinian approach discussed above. There is therefore a direct
con�ict between the fact that gravitational energy is represented by a non-geometric

13See [Trautman, 1962] for a classic discussion of this ambiguity, and [de Haro, 2022] for a more recent
source.

14This terminology is also used by Duerr [2019b].
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object on the one hand, and Moore’s claim that physics must provide absolute repre-
sentations of physical reality on the other. It is this con�ict that leads to the dilemma
raised above: either gravitational stress-energy is not a physically real quantity after all,
or it is but one cannot represent it absolutely. Although many philosophers have taken
the �rst horn in response to this dilemma,15 we believe that it is undesirable for physical
reasons as set out above. But this leaves us with the latter horn, which seems to con-
�ict with the (a priori) case for the possibility of an absolute representation of reality
by physics.

5 AnAbsoluteRepresentation ofGravitational Stress-
Energy

Fortunately, there is a way out of this dilemma. It is in fact possible to construct a
bona fide geometric—indeed, tensorial!—object that can represent gravitational stress-
energy. By taking this object to represent gravitational stress-energy in GR, the vi-
cious coordinate-dependence associated with non-geometric objects is thereby avoided.
The aim of this section is to put forward this alternative representation of gravitational
energy—�rst proposed in the physics literature by Szabados [1991, 1992]—by means of
which one can overcome the dilemma between the real existence of gravitational energy
and the possibility of an absolute representations of reality.

We will see that our solution does require a signi�cant revision to the concept of
gravitational stress-energy. In particular, the geometric object that represents such stress-
energy is not de�ned over the spacetime manifold itself, but rather over the so-called
bundle of linear frames: a mathematical structure that consists of all possible ‘choices
of basis’ for vector spaces at each point of spacetime. If taken seriously, this picture im-
plies that gravitational energy is not a �eld that ‘lives’ on spacetime, but rather within
this bundle of frames. We will comment on the metaphysical implications of this pic-
ture in §7, but overall we believe that taking an object on the bundle of linear frames
to represent gravitational stress-energy is a price worth paying in order to reconcile its
existence with the possibility of its absolute representations.

Szabados [1992] frames the problem of the vicious coordinate-dependence of pseu-
15See e.g. [Duerr, 2019b]. Sometimes, the non-geometric nature of pseudotensors is con�ated with the

fact that their components can be made to vanish in some coordinate system—see e.g. [Lam, 2011]. These
are distinct features of an object: for example, Christo�el symbols are geometric, but have components
which can be made to vanish at a point in some coordinate system. And conversely: some pseudotensors,
e.g. that of Møller, are not geometric objects, but cannot be made to vanish at a point—our thanks to
Brian Pitts for pointing this out this latter example to us.
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dotensors as a contradiction with the principle of ‘general covariance’, which (in his
words) states that nature is most appropriately described in terms of geometric objects.16

We have seen that this does not seem to be the case for the gravitational stress-energy
pseudotensor. Szabados proposes a solution as follows:

However, if the geometric objects [...] were not required to be geometric
objects on the spacetime manifold, but they were allowed to be geometric
objects on the manifold of frames of the spacetime; i.e. on the bundle of
linear frames L(M) overM , and if the previous coordinate and/or gauge
dependent quantities and formulae could be reformulated in terms e.g. of
di�erential forms on L(M), then the contradiction with the principle of
general covariance would be resolved. [Szabados, 1992, p. 2522]

In brief, then, Szabados’ idea is that one could reformulate the o�ensive pseudoten-
sor as a geometric object de�ned over the bundle of linear frames. Since this is object is
geometric, it allows for an absolute representation of gravitational stress-energy. The re-
mainder of this section is devoted to a more detailed explication of Szabados’ proposed
solution. The reader already familiar with the concept of a bundle of linear frames may
skip ahead to §5.2.

5.1 Mathematical Preliminaries
Let us start with the bundle of linear frames, denoted L(M) by Szabados. In order
to understand this concept, we �rst require the notion of a vector space. Generally, a
vector space consists of a set V —the set of vectors—and a pair of binary operations:
vector addition and scalar multiplication. The �rst operation allows one to add vectors
to form another vector; the second to multiply a vector by a real number to obtain an-
other vector. These operations must satisfy certain conditions, such as associativity and
commutativity. If the vectors are two-dimensional, one can represent them as arrows
on a �xed plane. Then vector addition is carried out by the familiar parallelogram rule,
whereas scalar multiplication a�ects the length of a vector.

Although it is customary to think of vectors as tuples of real numbers, the elements
of a vector space are distinct from those tuples; the latter are said to represent the former.
The ordered pair (2, 3), for example, can be taken to represent a vector v that points in
the direction ‘two steps east and three steps north’. But that is not the only way to rep-
resent this vector. The coordinates (2, 3) only represent a vector in the ‘two-east, three-
north’ direction conditional on the choice of the ‘east’-vector and the ‘north’-vector as

16In this article, we avoid couching the issue in terms of ‘general covariance’, for that term itself is
notoriously fraught in GR: see [Norton, 1993] for background.
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basis vectors. Given this basis, it is possible to express any other vector in terms of them:
this many steps east, and that many steps north. But one could equally well have cho-
sen a basis that consists, say, of a vector

√
2 units in the ‘north-east’ direction and a unit

vector in the east direction. In terms of this basis, the same vector v is now represented
as (2, 1): two steps of

√
2 in the north-east direction equals two steps to the north and

two steps to the east; add another step to the east and one arrives at the same point as
before. The crucial point here is that (2, 3) and (2, 1) are di�erent representations of
the same vector, v, in di�erent bases. Thus, the numerical representation of a vector
depends on an antecedent choice of basis vectors.

Generally, for ann-dimensional vector space, a basis consists of a choice ofn linearly
independent vectors (that is, vectors that are not sums of multiples of one another).
Indeed, one can as well de�ne the dimensionality of a vector space as the number of
bases vectors required to ‘span’ it. The choice of basis in e�ect consists of a conventional
choice for which direction to call thex, y, z, etc. axes, and for the unit in each direction.
Once one has chosen a basis, each further vector can be expressed as a sum of multiples
of these basis vectors. Moreover, it is also possible to consider the set of all possible
bases for a certain vector space. This set itself has a non-trivial structure, since di�erent
bases are related by elements of the so-called general linear group (which is represented
by the set of n×nmatrices). The elements of this group act on any element within the
set of bases to obtain another basis. We will return to the set of bases of a vector space
below.

First, however, we will discuss the idea of a tangent vector space. Given a point p on
a manifold M , one can always de�ne the vector space tangent to that point. Think of
a point on a curve: one can construct a tangent line parallel to the curve at that point;
likewise, one can construct a tangent plane parallel to a point on a curved surface. If one
further endows such a line or plane (or higher-dimensional generalisation thereof) with
the structure required for a vector space, then one obtains the tangent vector space of
that point. For example, the tangent vector space at a point on a surface consists of the
arrows within the plane parallel to the surface at that point, together with the operations
of vector addition and scalar multiplication. We will let Tp denote the tangent vector
space of a spacetime point p.

If spacetime is �at, then there is a unique (or ‘canonical’) map between the tangent
spaces at di�erent points. Intuitively, the planes that are parallel to di�erent points of a
�at surface fully overlap, so one can identify them as the same plane. The more technical
sense in which this is the case is that for any pair of points p, q on a �at space, one can
transport a vector from Tp to Tq along any arbitrary path between p and q, and obtain
the same result every time. There is therefore a sense in which one can speak of a sole
vector space that is the same for every point. But GR tells us that spacetime is not �at,
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but curved. And in a curved spacetime, the transportation of a vector from Tp to Tq
along di�erent paths betweenp and q need not always yield the same result. If spacetime
is curved, then, each point has a unique tangent vector space. Consequently, there is no
path-independent way to transport a vector from one point to another.

To illustrate this latter case, consider the surface of the earth. Suppose John points
in some direction on the North Pole, and Jane points in some direction on the equator.
Do they point in the same direction along the surface of the Earth? The question is
ill-posed insofar as the plane parallel to the earth’s surface at the North Pole is di�erent
from the plane parallel to the earth’s surface at the equator. Of course, Jane could move
to the North Pole, all the while keeping to point in the same direction: if she points in the
same direction as John once she has arrived at the North Pole, then they were pointing
in the same direction all along. But the outcome of this ‘experiment’ crucially depends
on the path Jane takes. It is possible that if Jane were to move from the equator to the
North Pole along the shortest path, she would end up pointing in a di�erent direction
than John; yet if she were to move some distance along the equator �rst and then travel
northwards, she would end up pointing in the same direction as John. Thus, there
is no determinate answer to the question whether John and Jane pointed in the same
direction or not: it depends on an arbitrarily chosen path between them. This illustrates
the sense in which, on a curved spacetime, there is no ‘global’ vector space within which
one can compare directions. Each point of spacetime has its own tangent vector space,
and there is no canonical map between them.

We now have all the ingredients in place to de�ne the bundle of linear framesL(M)
over a manifold M . Firstly, each point p ∈ M has its own associated vector space Tp.
Secondly, each such vector space has a set of bases. For any point p, letFp denote the set
of bases for Tp (or, more accurately, a structured ‘�bre’ of bases). Just like there is no
canonical map between the vector spaces themselves, there is no canonical map between
their respective bases. Put di�erently, one simply cannot say whether a basis inFp is the
same as a basis in Fq for p 6= q. Finally, the bundle of frames is the disjoint union of all
Fp, for any p ∈M : L(M) :=

⋃
p∈M Fp. The elements ofL(M) are therefore ordered

pairs (p, f) such that f ∈ Fp. For a given p, the set of elements (p, f) ∈ F are just the
di�erent vector bases for Tp. In other words, the ‘points’ of the bundle of linear frames
are local vector bases. The bundle of linear frames, L(M) thus contains the possible
bases for all tangent vector spaces of a manifold.17

The �nal concept that is helpful in what follows is that of a section ofL(M): this is
a continuous function fromM toL(M) such that each point p inM is mapped onto

17In technical terms,L(M) is a principle �bre bundle overM with structure groupGL(n,R), where
n is the dimension ofM .
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a point (p, f) of L(M), i.e. a unique basis for Tp. A section thus speci�es a choice of
basis (not necessarily orthonormal) at each point ofM in such a way that this choice of
basis varies continuously as one moves acrossM . This is also known as a vielbein. This
notion of a section does not play a direct role in this section, but it will help us to solve
the non-uniqueness problem in §6.

5.2 The Sparling Form
With this set-up in place, Szabados [1991, 1992] de�nes two important objects: the ‘Nester-
Witten form’, ui and the ‘Sparling form’, ti.18 Both of these are de�ned onL(M). Just
as a �eld over a manifold M assigns a �eld-value to each point of M , a �eld over the
bundle of frames L(M) assigns a �eld-value to each point of L(M), that is, to each
choice of basis for each tangent vector space. Although such a �eld is mathematically
well-de�ned, it may seem odd physically: we can make easily sense of a �eld on space-
time, but what does a �eld de�ned over a manifold of vector bases represent? What
does it mean to assign a value to a choice of basis? We will comment on the metaphys-
ical interpretation of such �elds in the next section; here we restrict ourselves to their
mathematical de�nition.

Although the precise de�nitions of ui and ti are not crucially important for what
follows, we provide it here for completeness. Those not interested in mathematical de-
tails may skip ahead to the theorem below.

Let L(M) denote the linear frame bundle over M , {δi} (i = 1, . . . ,m) the stan-
dard basis for Rm, i.e. δi = (0, . . . , 1i, . . . 0), and θ = θiδi the canonical Rm-valued
1-form on L(M). For any r = 0, 1, . . . ,m, let

Σa1...ar :=
1

(m− r)!
εa1...arer+1...emθ

er+1 ∧ . . . ∧ θem , (5)

where ε denotes the Levi-Civita symbol and ∧ denotes the wedge product on di�er-
ential forms.19 Letting ωab be a spin connection on L(M), the Cartan equations for
torsion Ξa and curvature Ωa

b are as usual given by

Ξa = dθa + ωab ∧ θb, (6)
Ωa

b = dωab + ωac ∧ ωcb. (7)

18Following Szabados [1992], Latin indices denote objects onL(M).
19For background on di�erential forms, see e.g. [Burke, 1985]. To reassure those unfamiliar with dif-

ferential forms: the details of these objects and their constructions will not matter for our purposes!
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The Nester-Witten form is then de�ned as:

ui := −1

2
ωab ∧ Σiab. (8)

The exterior derivative of the Nester-Witten form is

dui = −1

2
Ωab ∧ Σiab +

1

2
Ξc ∧ ωab ∧ Σiabc + ti, (9)

where
ti := −1

2

(
ωci ∧ ωab ∧ Σcab + ωac ∧ ωcb ∧ Σiab

)
(10)

is the Sparling (m− 1)-form.
So much for the mathematical construction of these objects. The signi�cance of

the Nester-Witten form and the Sparling form lies in the following theorem:20

Theorem 1 (Sparling–Dubois-Violette–Madore). For anyRm∗-valued horizontal (m−
1) form Ti satisfyingDTi := dTi − ωci ∧ Tc = 0 and κ ∈ R, the following statements
are equivalent:

1. ωab is torsion free, Ξa = 0, and 1
2
Ωab ∧ Σiab + κTi = 0;

2. κTi + ti = dui;

3. d (κTi + ti) = 0.

The �rst condition expresses the fact that a metric connection is torsion-free and sat-
is�es Einstein’s equations, so (1) is satis�ed whenever the theory’s equations of motion
are satis�ed.21 The theorem states that this is the case if and only if the Nester-Witten
form and the Sparling form jointly satisfy condition (2), if and only if the latter form
satis�es condition (3). Szabados [1992] notes that “in Einstein’s theory (3) looks like as
[sic] a conservation equation, while (2) gives us the ‘superpotential’ for the conserved
quantity κTi + ti: it is just the Nester-Witten form.” In particular, (3) states that the
sum κTi + ti is a conserved quantity, where Ti is the matter stress-energy tensor. If ti

20The following is the theorem as stated by Szabados [1992]; for original sources, see [Sparling, 1982,
Dubois-Violette and Madore, 1987].

21The pullback ofTi along a local section is independent of the choice of section, and yields a geomet-
ric object apt to represent material stress-energy—see [Szabados, 1991, p. 24]. Note, though, that as-yet
no energy conditions are imposed on said object: for the locus classicus on energy conditions, see [Curiel,
2017].
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is interpreted as a representation of gravitational stress-energy, then (3) states that the
sum of matter and gravitational stress-energy is conserved—as desired. Therefore, on
this interpretation Theorem 1 tells us that the total sum of stress-energy is conserved
whenever the torsion-free metric connection satis�es the Einstein equations.

The second condition further deepens the parallel between the Sparling form and
the gravitational stress-energy pseudotensor, since it shows that the Nester-Witten form
acts as a ‘superpotential’ to ti. This provides further legitimacy to the suggestion that
the latter quantity represents gravitational stress-energy.

Of course, however, the crucial di�erence is that ui and ti are geometric objects!
Insofar as geometric objects are required for the possibility of absolute representations,
then, Theorem 1 proves that it is possible to provide an absolute representation of gravi-
tational stress-energy. This means that it is possible to escape the dilemma raised before.
Recall that the dilemma seemed to force a choice between the reality of gravitational
energy and the possibility of an absolute representation of physical reality. The con-
servation of energy provides a physical reason to choose the �rst horn, but Moore’s a
priori case for absolute representations necessitates the second. We have shown, how-
ever, that it is possible to represent gravitational energy in a way that does not lead to a
vicious form of coordinate-dependence. Therefore, it does not spoil the possibility of
an absolute representation of it.

6 The Non-Uniqueness Problem
It turns out that recourse to di�erential forms onL(M) also allows us to solve another
problem associated with pseudotensors: their non-uniqueness (recall that this was the
�rst problem with pseudotensors presented in §4). To see how such a solution pro-
ceeds, �rst recall that we can write a pseudotensor tµν on M in terms of a superpoten-
tialUµλν as per (4). But the pseudotensor satis�es this equation for any superpotential
that is antisymmetric in its second and third indices. Thus, di�erent choices for the
superpotential lead to di�erent—but, it would seem, equally valid—pseudotensors.

The situation here is somewhat analogous to the freedom to add a constant to the
total energy in classical mechanics. But the freedom here is worse, in the sense that
each pseudotensor is associated with a distinct charge via Noether’s theorem [de Haro,
2022]. Put in terms of the distinction between determinables and determinates, adding
a constant to the potential in classical mechanics simply changes the determinate value
of the same determinable quantity, but adding a superpotential to the pseudotensor
seems to result in a di�erent determinable quantity altogether.

However, it seems that we can use features of the coordinate-independent frame-
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work developed in the previous sections in order to at least alleviate—if not totally
dissolve—the non-uniqueness problem. We will make use of three facts:

1. We can write any superpotential in terms of a particular superpotential called the
von Freud superpotential [Trautman, 1962];

2. The von Freud superpotential is just the pullback of the Nester-Witten form
along a particular coordinate section [Szabados, 1992];

3. Di�erent superpotentials can be obtained from di�erent pull-backs of the Nester-
Witten form.

Combining these facts, we get that any superpotential is related to the von Freud su-
perpotential, which has a coordinate-independent formulation in terms of the Nester-
Witten form onL(M). Moreover, di�erent superpotentials also correspond to the pull-
back of the Nester-Witten form along di�erent sections. This provides a sense in which
the distinct superpotentials—and hence their associated pseudotensors—are simply dif-
ferent re�ections on spacetime of the same geometric object on the bundle of linear
frames. Put di�erently, the Nester-Witten form unifies the myriad choices of super-
potential: “This reformulation may yield a uni�cation of the di�erent pseudotensorial
and rigid-basis-dependent approaches into a single manifest gauge invariant formalism”
[Szabados, 1992, p. 2522].

Clearly, these results require some further shoring up. Firstly, although Szabados
shows that all extant pseudotensors are derivable from the Sparling form, he doesn’t
quite give a proof that this is possible for all pseudotensors. Secondly, we have not
proven that the Sparling form itself is unique, so one might worry that the same issue
reappears at the level ofL(M). Addressing these issues will have to remain mathemati-
cal tasks for another day: our philosophical point here is simply that appeal to geometric
objects onL(M) has the potential to address not only the third problem for pseudoten-
sors as presented in §4 (non-geometric status), but also the �rst (non-uniqueness).

Moreover, even these limited results already o�er us a way to understand in more
detail the relation between the coordinate-dependent representation of gravitational
stress-energy in terms of the pseudotensor and our coordinate-independent represen-
tation of the same quantity by the Sparling form. For they suggest that these quantities
are indeed representations of the same quantity; or, more precisely, it suggests that a
pseudotensor is no more than a particular way to pull back the Sparling form onto the
spacetime manifold. The di�erent pseudotensors are, as it were, the spatiotemporal
‘shadows’ of the same object on the bundle of linear frames, seen from di�erent ‘per-
spectives’ (i.e. sections/vielbeins). This result is particularly important for the realist,
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since it is typically seen as a desideratum to be able to explain the way in which suc-
cessor theories relate to their predecessors. Think, for example, of the way in which
classical mechanics reduces to special relativity in the limit c → ∞.22 In our case, the
Sparling form is not a successor theory, but rather a successor quantity. But the same
point applies: it is a desideratum for the realist to show that the Sparling form in some
sense reduces to the stress-energy pseudotensors. The fact that the latter is the pull-
back of the former shows that this is indeed the case. The close connection between the
Sparling form and the equivalence class of pseudotensors therefore shows that the for-
mer is indeed a candidate to represent gravitational stress-energy, and at the same time
explains the success (albeit limited) of the latter in accounting for the conservation of
total stress-energy in GR.

7 The Metaphysics of Frame Bundles
Mathematically, it all works out: the Sparling form is a bona fide geometric object, and
it has the credentials to represent gravitational energy in GR. Metaphysically, however,
our proposal lands us in strange waters. The gravitational stress-energy is no longer
a �eld on spacetime, but rather on the bundle of linear frames. The pseudotensors
de�ned over the spacetime manifold are at best one-sided re�ections of the Sparling
form, which is the real deal.

In response to our claim that the Sparling form represents gravitational stress-energy,
one might raise the following worry: by considering objects de�ned onL(M) when ad-
dressing issues regarding gravitational energy in GR, we have dodged the question by
moving to a new space, thereby implicating us in an enriched set of ontological com-
mitments over and above ‘standard’ GR. In fact, there are two closely related objections
here: (1) that the introduction of a novel space, the bundle of frames, makes GR less par-
simonious; and (2) that it is di�cult to even make sense of a physically real �eld de�ned
over this bundle.

In response to the �rst objection, we would say this: there is a straightforward sense
in which we are already committed to L(M) when we posit a manifold M , since the
bundle of linear frames is definable from the standard manifold structure. Weatherall
[2015] forcefully makes this point: “[When formulated in terms of a frame bundle] no
additional structure has been added to the theory. Any manifold gives rise, in a canoni-
cal way, to an associated frame bundle. Thus there is a straightforward sense in which a
relativistic spacetime (M, gab) always comes equipped with a principal [frame] bundle
over it; we just have little occasion to mention it in ordinary applications of relativ-

22Or v/c→ 0, or whichever limit one prefers.
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ity theory.” A similar point about de�nability and ontological commitment (which, of
course, we endorse) is made by Barrett [2017]; it is also part of the lesson of the function-
alism of (for instance) Lewis [1970], �rst expounded in the context of the philosophy of
mind, but more recently taken up by Butter�eld and Gomes [2020] and others in the
philosophy of space and time. The basic idea here is that if one has explicitly posited a
certain fundamental structure, then any further structure that one can de�ne from the
former ‘comes for free’. Therefore, it does not add to a theory’s ontology to take this
further structure as seriously as the initially posited fundamental structure.

To apply this line of thought to the case at hand: when one takes di�erent sections
of the Sparling and Nester-Witten forms de�ned on L(M), one can derive di�erent
pseudotensors and superpotentials (respectively) onM via the ‘pull-back’ construction
[Szabados, 1992]. Now, we claim (but do not here rigorously prove!) that ti and ui can
be de�ned from just the structure of standard GR (i.e. the usual geometric objects of the
metric and material �elds on M , together with the Einstein equation). For the union
of all pseudotensorial conservation laws is equivalent to the Einstein equation [Pitts,
2010], but if one has all such conservation laws, then one has the associated conserva-
tion law—((3) in Theorem 1)—for the associated objects on L(M). So, the structure
of standard GR seem to allow one to de�ne a suitable conservation law for suitable ob-
jects onL(M), without the need to posit additional structure. If this is correct, then it
makes sense to say that it is only if one chooses a particular section of L(M) that one
is introducing additional structure to GR—tantamount to taking the perspective of a
preferred frame. But the point of our proposal is exactly that one does not have to take
any such perspective; one can take the view from nowhere on the bundle of frames.

So much for the �rst objection. It is harder to see how to respond to the second
objection—that it is di�cult to conceive of a physical �eld de�ned on L(M), and for
that object to play the role of gravitational stress-energy. True, this is an unintuitive
metaphysical picture. But so, of course, is much else in GR: that spacetime is curved
and that it expands; the possibility of singularities and black holes; and indeed the very
notion that the gravitational �eld can carry energy. We have, to some extent, become
accustomed to these ideas. We believe that the notion of gravitational stress-energy on
the bundle of frames is simply another novel implication of GR.23

The objection might be sharpened: it is not simply that a �eld onL(M) is beyond
the pale, but rather that it seems odd to identify this �eld with gravitational stress-
energy. After all, gravity concerns the curvature of spacetime itself, and does not seem

23Conversely, in Yang-Mills theories it is absolutely standard to represent physical �elds, such as the
electromagnetic �eld, on a principal bundle de�ned over the spacetime manifold. This provides further
reason to believe that a physical �eld on the bundle of frames is not unacceptable either.
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conceptually close to a local choice of basis. We admit that our proposal does not con-
form to these intuitions—but it is not unjusti�ed! In particular, Theorem 1 tells us that
the Sparling form certainly plays the functional role of gravitational energy, insofar as it
satis�es the conservation equation d (κTi + ti) = 0 [Read, 2018]. Moreover, the The-
orem also relates this conservation equation to the Einstein equation in a natural way,
so the Sparling form is not just an idle posit but an integral part of the theory. Finally, as
explained in the previous section, there is a natural way to understand the gravitational
stress-energy pseudotensor as the ‘pull-back’ of the Sparling form onto the spacetime
manifold. Insofar as the pseudotensor was a natural candidate for gravitational stress-
energy, then, and bar any worries about the fact that it is a pseudotensor, the Sparling
form is just as natural—if not more so, due to the fact that it can unify di�erent pseu-
dotensors as explained in the next section.

Therefore, it is our view that the Sparling form does represent gravitational stress-
energy. It just turns out that gravitational stress-energy lives on L(M), not M . This
is, perhaps, a metaphysically radical conclusion. But since it is justi�ed on the basis of
Theorem 1, we believe that this is simply where GR leads. In the physicist’s pursuit of
absolute representations of nature, pre-theoretical metaphysical intuitions just don’t
carry much weight.

8 Conclusion
Let’s sum up. Moore [1997] has given an abstract and a priori argument to the e�ect
that an absolute representations of reality is possible: that is, that it is possible to rep-
resent the world ‘from no point of view’. He has also stated that it is the business of
physics to �nd absolute representations. But this seems to stand in con�ict with mod-
ern physics, in which various non-geometric objects—such as the gravitational stress-
energy pseudotensor—at least prima facie seem to have physical content. One way to
resolve the tension is in fact to denude all such objects of representational signi�cance.
In this article, however, we have sought to explore how one may instead secure an ab-
solute representation of whatever it is that said objects purport to represent: again, our
case study has been gravitational energy, in which case we have appealed to geometric
objects de�ned on the bundle of linear frames. Since such objects are geometric, they
do admit of absolute representations—thereby, any tension between Moore’s argument
and modern physics (at least in this particular case!) is resolved.

Clearly, what we have presented here is but one example of a potentially much
broader methodology, which it would be worth exploring in the context of other non-
geometric objects in modern physics which one would like to invest with representa-
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tional import. The most signi�cant such case is that of spinors, which are taken to
represent all fermionic matter in the universe. Since spinors are non-geometric objects,
it again appears that they stand in tension with Moore’s argument: insofar as one seeks
a representation of physics ‘from no point of view’, it becomes a pressing task to inves-
tigate how this might be secured in this case also. Although Pitts [2012] has undertaken
some admirable and beautiful work in this direction, as of yet he has shown only that
such objects are ‘almost geometric’ (in a technical sense); given this, in our view, there
remains more work to be done when exploring how well (or otherwise) spinors and
other non-geometric objects sit with Moore’s argument.

This, in turn, invites a range of broader mathematical questions: can all non-geometric
objects be understood as pullbacks along local sections of geometric objects de�ned on
�bre bundles? And: are all such bundles implicitly de�nable as in the case of the frame
bundle, or not? And there are also further philosophical questions here: to what extent
can Lewisian functionalism be assimilated to implicit de�nability, as we have done in
this article? Is Moore’s conception of an absolute representation the same as that of
Williams [1978, 1985] (who indeed inspired Moore’s work, at least in part), and if not
does any tension with modern physics in that latter case manifest itself in the same way?
And so forth.

The general point—which was also raised in [Read, 2022]—is this: contemporary
physics presents a broad zoology of ‘fantastic beasts’ [Duerr, 2019a]; it is incumbent
upon the metaphysician to investigate the metaphysical signi�cance of such objects, as
well as how such objects sit with any a priori arguments regarding the world which
they might elect to muster. Our investigations in this article into how well Moore’s
argument sits with non-geometric objects from physics can, in this sense, be taken as a
call-to-arms to all naturalistically-inclined metaphysicians and philosophers to engage
in a substantially broader research programme.
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