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Abstract

The formalism of generalized quantum histories allows a symmetrical
treatment of space and time correlations, by taking different traces of the
same history density matrix. We recall how to characterize spatial and tem-
poral entanglement in this framework. An operative protocol is presented, to
map a history state into the ket of a static composite system. We show, by
examples, how the Leggett-Garg and the temporal CHSH inequalities can be
violated in our approach.
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1 Introduction

The evolution of a classical system can be described by a temporal sequence (con-
tinuous or discrete) of physical states. The states can be characterized by definite
values αi of physical quantities at time ti, so that the sequence α1, ...αn represents
the time evolution of the system. We can call this sequence a history of the system.
If the equations of motion for α(t) are of first order in time, the initial state α1

determines all successive states 1. For example a trajectory in phase space rep-
resents the history of a classical system, governed by the Hamilton equations. In
this case the history (q1, p1), ..., (qn, pn) is determined by the values of position and
momentum at a given time. Also nonphysical trajectories, i.e. trajectories that do
not satisfy the classical equations of motion, can be considered, and in fact enter in
the formulation of variational principles.

The evolution of quantum systems, in contradistinction, cannot be modeled
simply by a temporal series of quantum states |ψ(t1)〉, ..., |ψ(tn)〉, if we insist on
characterizing states by definite values αi of observables Ai at each time ti. Indeed
these definite values can only be acquired by a measurement, implying in general
a nondeterministic collapse of the quantum state. As a consequence the evolution
of the system becomes stochastic: an initial state |ψ〉 does not determine a single
sequence of measurement results α1, ...αn (a “history”), but a whole tree of quantum
histories, cf. Fig. 1. Since probabilities of measuring an outcome αi only depend

1In fact, a state at any time determines all the others, past and future.
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on αi−1 (and on the evolution operator between times ti−1 and ti), Fig. 1 describes
a sort of “Markov” tree.

Since the work of Feynman [1, 2] (see also Dirac [3]), this idea has led to various
formulations based on histories, rather than on states at a given time. A very partial
list of references, relevant for the present paper, is given in [4] - [19].

Essentially in all approaches, histories are defined by sequences of measurements
of observables at different times t1, ...tn (observables that can be chosen differently at
each time), generalizing the histories of positions in configuration space considered
in the Feynman path integral.

Fig. 1 The tree of quantum histories

In the present paper we summarize the formalism of history vectors, developed
in ref.s [20, 21, 22], and discuss some new applications of it.

In this formalism, an evolving system with initial state ψ at time t0 is described
by a vector living in a tensor product H1 � · · · � Hn, where Hi is the Hilbert
space of the system at time ti. As is customary in history approaches to quantum
mechanics, we use the symbol � for the “temporal” tensor product, to distinguish it
from the usual ⊗ product between subsystems of a composite system. The history
vector is a superposition of all the basis vectors |α1〉� · · ·� |αn〉, where |αi〉 are the
eigenvectors (with eigenvalues αi) of observables Ai, measured at each time ti. The
dynamical information is contained in the coefficients of the superposition, which
are the history amplitudes A(α1, ...αn), whose square modulus gives the probability
of obtaining the sequence α1, ...αn in measuring A1, ...An at times t1, ...tn. This is
a direct generalization of the expansion of a state |ψ(t1)〉, describing a system at
time t1, having started in the state |ψ〉 at t0:

|ψ(t1)〉 =
∑
α1

A(ψ, α1)|α1〉 (1.1)

where the amplitude is A(ψ, α1) = 〈α1|U(t1, t0)|ψ〉 and U(t1, t0) is the evolution
operator between t0 and t1.
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An operative protocol is proposed, to construct a state of a composite system
that contains the same amplitudes of the history vector, thereby exchanging evolu-
tion with compositeness. On this state one can easily test entanglement, signalling
in fact temporal entanglenent in the original system. The definitions of density ma-
trices, entangled history states, von Neumann entropy, and temporal entanglement
entropy are particularly simple in our approach. Comparing with the consistent
(or decoherent) histories approach of ref.s [4, 5, 6], we show that the Leggett-Grag
inequality can never be violated in that framework, whereas it is very easy to find
examples of its violation using history vectors, containing all histories with nonvan-
ishing amplitudes. Finally, examples of the temporal CHSH violation are discussed.

The paper is organized as follows. In Section 2 we recall how to compute proba-
bilities of outcome sequences, and in Section 3 we introduce history vectors. Section
4 deals with history observables, and Section 5 is a resumé of history density ma-
trices and their space and time reduction, allowing to define space and time entan-
glement entropy in a completely symmetric way. A protocol to construct a (static)
composite system that models time evolution is presented in Section 6. In Section
7 we demonstrate that considering only consistent histories can never lead to viola-
tions of the Leggett-Garg inequalities. Finally in Section 8 we discuss the temporal
CHSH inequality within the history vector framework, and provide examples of its
violation. Section 9 contains some conclusions.

2 History probabilities

Each path in the tree of Fig.1 can be assigned a probability p(α), i.e. the probability
obtaining the results α1, ...αn in a sequence of measurements on the system at times
t1, ...tn:

p(α) = |A(ψ, α)|2 (2.1)

where A(ψ, α) is the amplitude of the particular quantum history, given by

A(ψ, α) = 〈αn|U(tn, tn−1)Pαn−1U(tn−1, tn−2)Pαn−2 · · ·Pα1U(t1, t0)|ψ〉 (2.2)

The unitary operator U(ti, ti−1) is the evolution operator from time ti−1 to time ti,
and Pαi

are the projectors on the eigensubspaces corresponding to the eigenvalues
αi, satisfying the ortogonality and completeness relations

Pαi
Pα′i = Pαi

δαi,α′i
,

∑
αi

Pαi
= I (2.3)

The probability (2.1) to obtain the sequence α1, ...αn, is obtained by repeated ap-
plication of the Born rule. For simplicity in the following we suppose that these
eigenvalues completely characterize the state at time ti, i.e. they are eigenvalues of
a complete set of commuting observables that are measured at time ti. Therefore

Pαi
= |αi〉〈αi| (2.4)
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Thus if the system initial state |ψ〉 is known, together with its Hamiltonian, we can
calculate the amplitudes and probabilities of the sequences of measurement results
corresponding to chosen observables at each time ti. This is the starting point of
several “history formulations” of quantum mechanics, including the one we use in
the present paper, first proposed in [21].

Notice that, from unitarity of U and the projector properties (2.3), the ampli-
tudes satisfy: ∑

αi

A(ψ, α1, · · · , αi, · · · , αn) = A(ψ, α1, · · · , αi/ , · · ·αn) (2.5)

History probabilities as computed in (2.1) satisfy∑
α

p(α) = 1 (2.6)

as expected, but satisfy the marginal sum rules only in the form∑
αn

p(α1, · · · , αn) = p(α1, · · · , · · ·αn−1) (2.7)

i.e. only when the sum involves the last eigenvalue αn. This implies also∑
αi+1,...αn

p(α1, · · · , αi, αi+1, · · ·αn) = p(α1, · · ·αi) (2.8)

For this reason many authors speak of history weights rather than probabilities.
But the p(α) as computed in (2.1) give indeed the probabilities of obtaining the
sequences α in successive measurements on the quantum system, even if these prob-
abilities do not satisfy all the classical sum rules.

This discrepancy is the signature of a quantum system: since a measurement
in general modifies its state, while in classical systems the state is unaffected by
an ideal measurement, differences in sum rules on intermediate results are to be
expected.

Note: amplitudes and probabilities can be given in terms of chain operators:

Cψ,α = PαnU(tn, tn−1) Pαn−1 U(tn−1, tn−2) · · ·Pα1 U(t1, t0)Pψ (2.9)

with Pψ = |ψ〉〈ψ|. Indeed:

Cψ,α = |αn〉A(ψ, α)〈ψ| (2.10)

p(ψ, α) = |A(ψ, α)|2 = Tr(Cψ,αC
†
ψ,α) (2.11)

It is not difficult to prove that probabilities satisfy all the classical marginal rules:∑
αi

p(ψ, α1, · · · , αi, · · · , αn) = p(ψ, α1, · · · , αi/ , · · ·αn) (2.12)
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if and only if the so-called decoherence condition is satisfied:

Tr(Cψ,αC
†
ψ,β) + c.c. = 0 when α 6= β (2.13)

If all the histories we consider are such that the decoherence condition holds, they
are said to form a consistent (or decoherent) set, and can be assigned probabilities
satisfying all the standard sum rules.

In general, histories do not form a consistent set: interference effects between
them can be important, as in the case of the double slit experiment. For this reason
we will not limit ourselves to consistent sets. Formula (2.1) for the probability of
successive measurement outcomes holds true in any case.

3 History vectors

Can we generalize the ket description of a quantum system to a description that
encodes its evolution, including measurement and collapse ?

Suppose that the state is |ψ(t0)〉 = |ψ〉 at time t0, that its evolution at time
t1 is |ψ(t1)〉 = U(t1, t0)|ψ(t0)〉, and that we have devices to measure a complete
set of commuting observables at time t1, with eigenvalues α1 and corresponding
eigenvectors |α1〉. Then using I =

∑
α1
|α1〉〈α1|, the state |ψ(t1)〉 can be expanded

as
|ψ(t1)〉 =

∑
α1

|α1〉〈α1|U(t1, t0)|ψ〉 =
∑
α1

A(ψ, α1)|α1〉 (3.1)

We can describe the quantum system and its evolution via a “temporal” tensor
product

|Ψ〉 = |ψ(t0)〉 � |ψ(t1)〉 =
∑
α1

A(ψ, α1)|ψ〉 � |α1〉 (3.2)

where linearity of the tensor product has been used. In other words, we describe the
system as a linear combination of the histories ψ, α1, where ψ refers to the initial
state at t0 and α1 is one of the possible outcomes of a measurement at t1. We have
thereby replaced the ket |ψ〉, describing the state of the system at time t0, with a
“history ket” living in a tensor product space, containing the information on time
evolution t0 → t1 of |ψ〉.

Similarly, take now as initial state |α1〉, the state in which the system collapses
after α1 has been obtained in a measurement. Applying the same procedure, this
state can be replaced by the history state∑

α2

A(α1, α2)|α1〉 � |α2〉 (3.3)

where A(α1, α2) = 〈α2|U(t2, t1)|α1〉, and α2 are possible measurement results at
time t2. Inserting (3.3) in place of |α1〉 in expression (3.2) produces

|Ψ〉 =
∑
α1,α2

A(ψ, α1)A(α1, α2) |ψ〉 � |α1〉 � |α2〉 =
∑
α1,α2

A(ψ, α1, α2) |ψ〉 � |α1〉 � |α2〉

(3.4)
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where we have used again linearity of the tensor product and the multiplication
rule of amplitudes:

A(ψ, α1, ...αi)A(αi, ...αn) = A(ψ, α1, ...αn) (3.5)

Generalizing the above considerations, we are led to describe quantum systems by
means a history vector |Ψ〉, living in a temporal tensor space, and defined by a
linear combination of all possible histories, each multiplied by its amplitude:

|Ψ〉 =
∑

α1,...αn

A(ψ, α1, ..., αn) |ψ〉 � |α1〉 � · · · � |αn〉 (3.6)

In the following we will often omit the initial state |ψ〉 in the temporal tensor prod-
ucts for notational simplicity, and occasionally indicate with α the whole sequence
α1, ...αn.

Introducing the usual scalar product between tensor states, these eigenvectors
are automatically orthonormal and provide a basis in history space. The history
vector is normalized since

〈Ψ|Ψ〉 =
∑
α

|A(ψ, α)|2 = 1 (3.7)

The history content of the system is defined to be the set of histories α = α1, ...αn
contained in |Ψ〉, i.e. all histories having nonvanishing amplitudes.

Probabilities of measuring sequences α = α1, ...αn are given by the familiar Born
rule

p(ψ, α) = 〈Ψ|Pα|Ψ〉 = |A(ψ, α)|2. (3.8)

with
Pα = |α1〉〈α1| � ...� |αn〉〈αn| (3.9)

Note that formula (3.8) holds for sequences of measurements occurring at all times
t1, ...tn. This formula can be generalized to the case of partial measurements (i.e.
measurements occurring at times ti1 , ...tim , where i1, ...im is a subset of 1, ...n) using
an appropriate projection, see ref.[21].

The description of an evolving quantum system, proposed in this Section, de-
pends crucially on what are the observables measured at each time ti. In fact the
history vectors of two quantum systems, differing only by the observables measured
at times ti, are in general different. For example if the initial state is the superposed
qubit state |ψ〉 = 1√

2
(|0〉 + |1〉) and the evolution operator is the identity (trivial

evolution), then the history vector for measurements at t1 and t2 of the observable
X (defined by X|0〉 = |1〉, X|1〉 = |0〉) is simply

|X = 1〉 � |X = 1〉 =
1

2
(|0〉 � |0〉+ |0〉 � |1〉+ |1〉 � |0〉+ |1〉 � |1〉) (3.10)
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where |X = 1〉 = |ψ〉 is the eigenvector of X corresponding to its eigenvalue +1.
If, on the other hand, the observable Z (defined by Z|0〉 = |0〉, Z|1〉 = −|1〉) is
measured at times t1 and t2, the corresponding history vector becomes:

1√
2

(|0〉 � |0〉+ |1〉 � |1〉) (3.11)

differing from (3.10) by the absence of cross-terms.
The formalism therefore recognizes that observers (i.e. measuring devices) are

unavoidably part of the description of an evolving quantum system. In this sense
this description could be considered relational, i.e. related to the particular mea-
surements considered at various times. It helps to resolve so-called paradoxes, as for
example the three box game proposed in ref. [23], by clearly distinguishing systems
subjected to different measuring apparati throughout their evolution.

4 History observables

As discussed in the previous Section, the history description includes measuring
apparati, activated at all times t1, ...tn, corresponding to “time local” observables
A1, ...An. These can be extended to history observables, acting on the whole history
vector space, given by:

A1 = A1 � I · · · � I, ... An = I � · · · � I � An (4.1)

The history vectors |ψ〉�|α1〉�· · ·�|αn〉 are eigenvectors of these observables, with
eigenvalues respectively given by α1, ...αn. With the usual scalar product between
tensor states, these eigenvectors are automatically orthonormal and provide a basis
in history space.

The projectors on eigensubspaces of Ai are

Pαi
= I � · · · � |αi〉〈αi| � · · · � I (4.2)

The probability of obtaining the eigenvalue αi in a measurement of Ai at time ti is
again given by the Born formula

p(αi) = 〈Ψ|Pαi
|Ψ〉 =

∑
α1,...,αi/ ,...,αn

p(α1, ..., αi, ..., αn) (4.3)

This is indeed the probability of measuring αi at time ti, the system being measured
also at all other times. It is given by the sum on all sequence probabilities, keeping
αi fixed.

We can also consider multitime observables Ai,j, with definitions similar to (4.1),
with Ai and Aj appearing at times ti and tj, and more generally Ai1,...im where
(i1, ..., im) is a subset of (1, 2, ...n). These observables correspond to measurements
performed at the corresponding times ti1 , ...tim . The probability of obtaining the
sequence αi1 , ...αim is

p(αi1 , ...αim) = 〈Ψ|Pαi1
,...αim

|Ψ〉 (4.4)

7



where Pαi1
,...αim

is the projector on eigensubspaces of the multitime observable
Ai1,...im :

Pαi1
,...αim

= I � ...� |αi1〉〈αi1| � I � ...� |αim〉〈αim | � I � ... (4.5)

Again the probability (4.4) is a sum on all sequence probabilities, keeping αi1 , ...αim
fixed.

We can also compute the average values of multitime observables, i.e. the aver-
age values of the products αi1 · · ·αim , using the familiar formula

〈Ψ|Ai1,...im |Ψ〉 =
∑
α

p(α1, ..., αn) αi1 · · ·αim (4.6)

We have so far considered observables made out of the “time local” observables
Ai, that define the history Hilbert space. On this space we can consider also general
observables, i.e. hermitean operators, sum of temporal tensor products of local
operators Bi, not necessarily commuting with the Ai.

We first define the “time local” observable

Bi = I � · · · � I �Bi � · · · � I (4.7)

with associated projectors on eigensubspaces:

Pβi = I � · · · � |βi〉〈βi| � · · · � I (4.8)

Now it is tempting to define the probability of obtaining a particular eigenvalue βi
of Bi in a measurement at time ti on the system described by the history vector
(3.6), via the Born rule

p(βi) = 〈Ψ|Pβi|Ψ〉 =
∑
α

A∗(α1, ..., α
′
i, ..., αn)A(α1, ..., αi, ..., αn)〈α′i|β〉〈β|αi〉 (4.9)

Using the identity∑
αi+1,...,αn

A∗(α1, ..., α
′
i, ..., αn)A(α1, ..., αi, ..., αn) = A∗(α1, ..., α

′
i)A(α1, ..., αi)δαiα′i

(4.10)
we finally find

p(βi) =
∑
α

A∗(α1, ..., αi)A(α1, ..., αi)|〈βi|αi〉|2 =
∑
α

p(α1, ..., αi)|〈βi|αi〉|2 =

=
∑
α

p(α1, ..., αi−1, β) (4.11)

This is indeed the probability of obtaining β at time ti, after having measured the
observables Ai at times t1, ...ti−1 and then measuring Bi at time ti. This probability
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can be verified experimentally by a statistical analysis of the measurement outcomes
at successive times t1, ..., ti.

We can also consider multitime observables Bi1...im , in analogy with Ai1...im , and
similarly compute 〈Ψ|Pβi1...im |Ψ〉. Here a problem arises: a measurement of Bi1

produces a collapse of the system into an eigenvector of Bi1 , and since Bi1 does not
commute in general with Ai1 , this disrupts the history scheme based on the A1, ...An
eigenstates. No disturbance occurs in the previous case of a single local Bi, since
only Aj measurements antecedent to the measurement of Bi are relevant in the
expression of the probability (4.11). In the Appendix A we treat the case of a two-
time observable, and give an operative interpretation of the Born rule in terms of
an “intermediate” vector related to the two-vector formalism of ref. [24, 25, 26, 27].

In Section 6 we address this question in full generality, and propose a way to
interpret statistically the scalar product 〈Ψ|Pβi1...im |Ψ〉 by means of an operative
protocol that transforms time evolution into compositeness.

5 Spatial and temporal entanglement entropy

The history vector formalism allows for a simple definition of a history density
matrix, and of mixed history states.

We first introduce a tensor product in history space, i.e. in the vector space
spanned by the basis vectors |α1〉 � ...� |αn〉. It is defined by

(|α1〉 � ...� |αn〉)(|β1〉 � ...� |βn〉) ≡ |α1〉|β1〉 � ...� |αn〉|βn〉 (5.1)

where |α1〉 � ... � |αn〉 span the history space of a system A, and |β1〉 � ... � |βn〉
do the same for a system B. The product is then extended by bilinearity on all
linear combinations of these vectors. No symbol is used for this tensor product,
to distinguish it from the tensor product � involving different times tk. Product
history states are then defined to be expressible in the form:

(
∑
α

A(φ, α)|α1〉 � ...� |αn〉)(
∑
β

A(χ, β)|β1〉 � ...� |βn〉) (5.2)

or, using bilinearity: ∑
α,β

A(φ, α)A(χ, β)|α1β1〉 � ...� |αnβn〉 (5.3)

with |αiβi〉 ≡ |αi〉|βi〉 for short. A product history state is then characterized by
factorized amplitudes A(ψ, α, β) = A(φ, α)A(χ, β). If the history state cannot be
expressed as a product, we define it to be history entangled. In this case, results of
measurements on system A are correlated with those on system B and viceversa.

A system in the history state |Ψ〉 can be described by the history density matrix:

ρ = |Ψ〉〈Ψ| (5.4)
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a positive operator satisfying Tr(ρ) = 1 (due to 〈Ψ|Ψ〉 = 1). A mixed history state
has density matrix

ρ =
∑
i

pi|Ψi〉〈Ψi| (5.5)

with
∑

i pi = 1, and {|Ψi〉} an ensemble of history states. Probabilities of measuring
sequences α = α1, ...αn in history state ρ are given by the standard formula:

p(α1, ...αn) = Tr(ρ Pα) (5.6)

cf. equation (3.8) for pure states.

Consider now a system AB composed by two subsystems A and B, and devices
measuring observables Ai = Ai ⊗ I and Bi = I ⊗Bi at each ti. Its history state is

|ΨAB〉 =
∑
α,β

A(ψ, α, β)|α1β1〉 � ...� |αnβn〉 (5.7)

where αi, βi are the possible outcomes of a joint measurement at time ti of Ai and
Bi. The amplitudes A(ψ, α, β) are computed using the general formula (2.2), with
projectors

Pαi,βi = |αi, βi〉〈αi, βi| = |αi〉〈αi| ⊗ |βi〉〈βi| (5.8)

corresponding to the eigenvalues αi, βi. The density matrix of AB is

ρAB = |ΨAB〉〈ΨAB| =
=

∑
α,β,α′,β′

A(ψ, α, β)A(ψ, α′, β′)∗(|α1β1〉 � ...� |αnβn〉)(〈α′1β′1| � ...� 〈α′nβ′n|)

(5.9)

We define space-reduced density matrices by partially tracing on the subsystems:

ρA ≡ TrB(ρAB), ρB ≡ TrA(ρAB) (5.10)

In general ρA and ρB will not describe pure history states anymore. These reduced
density matrices can be used to compute statistics for measurement sequences on
the subsystems. Taking for example the partial trace on B of (5.9) yields:

ρA =
∑
α,α′,β

A(ψ, α, β)A∗(ψ, α′, β)(|α1〉 � ...� |αn〉)(〈α′1| � ...� 〈α′n|), (5.11)

a positive operator with unit trace. The standard expression in terms of ρA for
Alice’s probability to obtain the sequence α is

p(α) = Tr(ρAPα) (5.12)

with
Pα = Pα1 � · · · � Pαn , Pαi

= |αi〉〈αi| (5.13)
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The prescription (5.12) yields

p(α) =
∑
β

|A(ψ, α, β)|2 =
∑
β

p(α, β) (5.14)

i.e. the probability for Alice to obtain the sequence α in measuring the observables
Ai, in presence of measurements by Bob at all times ti. As observed in [21], if
Bob does not measure the B observables at all times, the probability for Alice is in
general different from (5.14). It remains the same when the evolution operator of
the AB system factorizes (UAB = UA ⊗ UB) so that A and B do not interact. In
this case Bob cannot communicate with Alice by activating (or not activating) his
measuring devices.

Given the � tensor structure, we can easily define temporal entanglement, see
ref. [22]. Partial traces of the history density matrix can be taken also on the
Hilbert spaces Hi corresponding to different times t{k} = tk1 , ...tkp , p < n. We
call the resulting density matrices, involving only the complementary times t{j} =
tj1 , ...tjm (i.e. with j1, ...jm and k1, ...kp having no intersection, and union coinciding
with 1, ...n), time-reduced density matrices. They are used to compute sequence
probabilities corresponding to measurements at times t{j}, given that measurements
are performed also at times t{k} without registering their result. Thus they describe
statistics for an experimenter that has access only to the measuring apparati at
times t{j}, while the system gets measured at all times ti = t1, ...tn. For details and
examples see ref. [22].

Finally from the von Neumann entropy S = −Tr(ρ log ρ) can be used to charac-
terize entanglement between subsystems of a composite system (using the “space”
reduced ρ), or between Hilbert spaces of a same system considered at different
times and with different measuring devices (using the “time” reduced” ρ), cf. ref.s
[21, 22].

6 Modeling evolution with compositeness

In this Section we describe a protocol that replaces the temporal tensor product
� with the usual tensor product ⊗. In other words, we simulate with a composite
system the time evolution of a single system. As we have recalled in the Introduc-
tion, this is easily done in the case of a classical system, but not so obviously done
with a quantum system. Some references on this issue can be found in [28, 29].

We want to find an operative way to construct the composite state

|Ψ〉 =
∑

α1,...αn

A(ψ, α1, ..., αn) |α1〉 ⊗ · · · ⊗ |αn〉 (6.1)

without necessarily knowing the initial state |ψ〉, but having at our disposal the
eigenstates |αi〉 of the Ai observables. Moreover the evolution operator is supposed
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to be known, and implementable with appropriate unitary gates. Finally we will
also need a gate that generalizes the CNOT 2-qubit gate. With these resources, the
protocol runs as follows:

1) Evolve the initial state |ψ〉 to time t1. The state of the system becomes

|ψ(t1)〉 =
∑
α1

A(ψ, α1)|α1〉 (6.2)

2) Adjoin to the system another twin system in one of the eigenstates |α1〉, say |α′1〉:∑
α1

A(ψ, α1)|α1〉 ⊗ |α′1〉 (6.3)

3) By means of a unitary gate V , transform the state (6.3) into the “diagonal state”∑
α1

A(ψ, α1)|α1〉 ⊗ |α1〉 (6.4)

The unitary gate acts on H1 ⊗ H1 and is defined to transform |α1〉 ⊗ |α′1〉 into
|α1〉⊗ |α1〉 for any |α1〉 (and for a fixed |α′1〉) , i.e. to clone the orthogonal states of
the basis {|α1〉}. If H1 is the Hilbert space of a qubit, the unitary gate is just the
CNOT gate. In general, labeling by |αi〉 the i-th basis vector of H1, and choosing
|α1〉 as the special ket |α′1〉 in (6.3), the gate V can be defined on the basis vectors
of H1 ⊗H1 as follows:

V (|αi〉 ⊗ |α1〉) = |αi〉 ⊗ |αi〉 (6.5)

V (|αi〉 ⊗ |αj〉) = |αi〉 ⊗ |αj〉 for j 6= 1 and i 6= j (6.6)

V (|αi〉 ⊗ |αi〉) = |αi〉 ⊗ |α1〉 for i 6= 1 (6.7)

and can easily be checked to be unitary.

4) Finally, evolve the second system to time t2, leaving the first system as it is. The
state of the bipartite system becomes∑

α1

A(ψ, α1)|α1〉 ⊗
∑
α2

A(α1, α2)|α2〉 =
∑
α1,α2

A(ψ, α1, α2)|α1〉 ⊗ |α2〉 (6.8)

after using bilinearity of the tensor product and the merging property of amplitudes
A(ψ, α1)A(α1, α2) = A(ψ, α1, α2).

5) Adjoin a vector |α′2〉. Repeat the procedures 3) and 4) for the states |α2〉 ⊗ |α′2〉.
Cycle until the state (6.1) is reached.

This protocol permits to investigate the temporal characteristics of a quantum
system, as for example temporal entanglement between states of the system at
different times, via measurements on a static composite system, which are usually
more easily performed.
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7 LG inequality is never violated in consistent

histories

The Leggett-Garg (LG) inequality, proposed in ref. [30], is derived within the
context of macrorealism, based on two fundamental assumptions:

1) a physical system with two or more distinct states available to it will at all times
be in one or the other of these states.
2) it is possible, in principle, to determine the state of the system with arbitrarily
small perturbation on its subsequent dynamics.

A third assumption may be added:
3) the result of a measurement remains unaffected by any future choices regarding
what will or will not be measured.

The latter assumption, together with the second, form the general assumption
of locality in time, with the first taking the role of realism. In a probabilistic theory
(i.e. a theory that assigns probabilities to measurement outcomes), the three above
assumptions imply the classical marginal rules (2.7).

Consider now a system with a dichotomic variable Q, which can take q = ±1 as
values. Its two-time correlation function is defined by

Cij =
∑

qi,qj=±1

qiqj p(qi, qj) (7.1)

where p(qi, qj) is the joint probability of obtaining qi and qj as results of measure-
ments at times ti and tj respectively. Under the assumptions of macrorealism (i.e.
using the classical marginal rules for probabilities), and considering three times
t1, t2, t3, we have:

C12 =
∑
q=±1

[p(q, q, ∗)− p(q,−q, ∗)]

C13 =
∑
q=±1

[p(q, ∗, q)− p(q, ∗,−q)]

C23 =
∑
q=±1

[p(∗, q, q)− p(∗, q,−q)] (7.2)

where p(q, q, ∗) ≡ p(q, q,+1) + p(q, q,−1) is the joint probability of measuring q at
time t1 and the same q at time t2, etc. Then the following equality is easily derived:

C12 + C13 − C23 = 1− 4 [p(+1,−1,+1) + p(−1,+1,−1)] (7.3)

This quantity has +1 as upper bound and −3 as lower bound, and we have therefore
the Leggett-Garg inequality [30]:

−3 ≤ C12 + C13 − C23 ≤ 1 (7.4)
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This inequality is violated in various quantum systems, signalling that at least one
of the assumptions used to derive it does not hold in the quantum world.

We now demostrate that the inequality is never violated when considering only
consistent histories, i.e. histories satisfying condition (2.13). Consider a quantum
system starting in the initial state |ψ〉, with devices measuring the same dichotomic
observable Q at times t1, t2, t3. There are eight different histories (q1, q2, q3) with
qi = ±1, with probabilities:

p(q1, q2, q3) = Tr(Cψ,q1,q2,q3C
†
ψ,q1,q2,q3

) (7.5)

where
Cψ,q1,q2,q3 ≡ Pq3U23Pq2U12Pq1U01|ψ〉〈ψ| (7.6)

is the chain operator and Uij is the evolution operator between ti and tj. Now the
classical marginal rules do not hold in general: for example the joint probability of
obtaining q2 at t2 and q3 at t3, which we still denote by p(∗, q2, q3), is given by

p(∗, q2, q3) = p(+1, q2, q3) + p(−1, q2, q3) + I(∗, q2, q3) (7.7)

where
I(∗, q2, q3) = 2 Re Tr[Cψ,+1,q2,q3C

†
ψ,−1,q2,q3

] (7.8)

The LG inequality takes the form:

−3 ≤ 1−
∑
q

[4p(q,−q.q)−I(∗, q, q)+I(∗, q,−q)+I(q, ∗, q)−I(q, ∗,−q)] ≤ 1 (7.9)

where the two interference terms I(q, q, ∗), I(q,−q, ∗) are absent because they van-
ish, since in this case the classical sum rule (2.7) holds. We see that for the violation
of LG, at least one of the four interference terms must be nonvanishing, implying
at least a pair of inconsistent histories.

Thus a formalism that considers only consistent histories will never reveal any
violation of the LG inequality. This agrees with an analogous conclusion in ref.
[31].

8 Temporal CHSH inequality

Consider an observer, Alice, and allow her to perform a measurement at time t1
choosing between two dichotomic variables A1, B1, and then, at t2, to measure
choosing between two dichotomic variables A2, B2. In analogy with the spatial
CHSH inequality [32], we define the quantity

A1(A2 +B2) +B1(A2 −B2) = ±2 (8.1)

By averaging this expression over multiple runs of the measurement sequence, we
can derive the following temporal CHSH inequality

〈A1A2〉+ 〈A1B2〉+ 〈B1A2〉 − 〈B1B2〉 ≤ 2 (8.2)
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As it is the case for the spatial CHSH inequality, also its temporal analogue can
be violated in quantum systems [33]. In the history vector formalism we could just
repeat the algebra leading to the spatial CHSH inequality violation, since the tensor
structures are identical (replacing ⊗ with � tensor products). For example using
the two-time entangled history state

|Ψ〉 =
1√
2

(|1〉 � |0〉 − |0〉 � |1〉) (8.3)

and choosing A1 = X,B1 = Z,A2 = −Z+X√
2
, B2 = Z−X√

2
, we find the expectation

values:

〈A1 � A2〉Ψ = 〈Ψ|X �
(
−Z +X√

2

)
|Ψ〉 =

1√
2

(8.4)

〈B1 � A2〉Ψ = 〈Ψ|Z �
(
−Z +X√

2

)
|Ψ〉 =

1√
2

(8.5)

〈A1 �B2〉Ψ = 〈Ψ|X �
(
Z −X√

2

)
|Ψ〉 =

1√
2

(8.6)

〈B1 �B2〉Ψ = 〈Ψ|Z �
(
Z −X√

2

)
|Ψ〉 = − 1√

2
(8.7)

explicitly violating (8.2).
However, in order to check experimentally this violation one has to use the

procedure of Appendix A for a measurement of a two-time observable, or to use
the general protocol of Section 5 that simulates the evolution in time of a quantum
system with a composite system at a fixed time. Note that in computing the
above averages we have used in all four cases the same history vector (8.3). This
procedure gives averages related to measurements in the computational basis (for
example measurements of the Z observable), followed by measurements of the A,B
observables. They are really “watermarked” by the choice of the computational
basis. To find the averages of A,B measurements at t1 and t2, without reference
to the computational basis (i.e. with only A,B devices activated), we have to
choose the correct history vector for each of the four cases, corresponding to the
observables A,B involved. This we do in the next paragraph. We do not expect the
same averages as obtained above, but the differences in this case will just amount to
signs, and by redefining A1 → −A1 we recover the violation of the temporal CHSH
inequality.

The history vector (8.3) can be obtained from the initial state at t0:

|ψ〉 =
1√
2

(|1〉 − |0〉) (8.8)

where |0〉 and |1〉 are eigenvectors of Z with eigenvalues +1 and −1 respectively,
and with evolution operators given by U(t1, t0) = I, U(t2, t1) = X. The history
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state of the system, if we choose Z as the measured observable at t1 and t2, is the
temporal analogue of a two-qubit Bell state given in (8.3).

To compute average values of the observables A1 � A2 etc., i .e. the average of
the products a1a2 where a1 is the result of a measurement of A1 at time t1 (and
similar for a2), we need the history vectors |Ψ〉 corresponding to the particular
choice of observables A1, A2, differing from the history vector corresponding to Z
measurements. Using these history vectors, the average of A1�A2 can be computed
as

〈Ψ|A1 � A2|Ψ〉 =
∑

a1=±1,a2=±1

p(a1, a2)a1a2 (8.9)

cf. equation (4.6). The probabilities p(a1, a2) are given by the square modulus of
the amplitudes

A(ψ, a1, a2) = 〈a2|XPa1|ψ〉 (8.10)

according to formula (2.2). We can list the probabilities for all the histories in each
of the four cases (A1, A2), (B1, A2), (A1, B2), (B1, B2):

(A1, A2) : p(+1,±1) = 0, p(−1,±1) =
1

4∓
√

2
(8.11)

(B1, A2) : p(+1,±1) =
1

2(4∓
√

2)
, p(−1,±1) =

3∓ 2
√

2

2(4∓
√

2)
(8.12)

(A1, B2) : p(+1,±1) = 0, p(−1,±1) =
3± 2

√
2

4±
√

2
(8.13)

(B1, B2) : p(+1,±1) =
1

2(4±
√

2)
, p(−1,±1) =

3± 2
√

2

2(4±
√

2)
(8.14)

(8.15)

The averages are then given by:

〈A1 � A2〉 = p(−1,+1) (−1)(+1) + p(−1,−1) (−1)(−1) = − 1

4−
√

2
+

1

4 +
√

2
= − 1√

2

〈B1 � A2〉 =
1

2(4−
√

2)
− 1

2(4 +
√

2)
− 3− 2

√
2

2(4−
√

2)
+

3 + 2
√

2

2(4 +
√

2)
= +

1√
2

〈A1 �B2〉 = −3 + 2
√

2

4 +
√

2
+

3− 2
√

2

4−
√

2
= − 1√

2

〈B1 �B2〉 =
1

2(4 +
√

2)
− 1

2(4−
√

2)
− 3 + 2

√
2

2(4 +
√

2)
+

3− 2
√

2

2(4−
√

2)
= − 1√

2

(8.16)

Taking now A1 = −X instead of A1 = X, the averages above become respectively
+ 1√

2
,+ 1√

2
,+ 1√

2
,− 1√

2
and violate the temporal CHSH inequality (8.2).
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9 Conclusions

We have explored some selected applications of the history vector formalism. Ad-
vantages of this approach are:

• it is a natural generalization of the state vector expansion on a basis of observable
eigenvectors;
• the formalism incorporates measuring devices in the description of the state evo-
lution. Different devices imply different history states, even if initial state and
evolution operator coincide.
• space and time correlations can be computed with similar algebraic operations;
• the similarity of time and space tensor products permits to map an evolving
system into a static composite system;
• there is no need to consider only consistent histories.
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A Appendix: two-time observable

Consider the (two-time) history vector

|Ψ〉 =
∑
α

A(ψ, α1, α2)|α1〉 � |α2〉 (A.1)

and the two-time observable
B = B1 �B2 (A.2)

with associated projectors on eigensubspaces

Pβ1,β2 = |β1〉〈β1| � |β2〉〈β2| (A.3)

Computing the expectation value of the projector (A.3) yields:

p(β1, β2) = 〈Ψ|Pβ1,β2 |Ψ〉 =
∑
α,α′

A∗(ψ, α′1, α
′
2)A(ψ, α1, α2)〈α′1|β1〉〈β1|α1〉〈α′2|β2〉〈β2|α2〉

=
∑
α,α′

A∗(ψ, α′1, β2)A(ψ, α1, β2)〈α′1|β1〉〈β1|α1〉 (A.4)

We can rewrite this joint probability as a one-time expectation value of the projector
Pβ1

p(β1, β2) = 〈ψ1|Pβ1|ψ1〉 (A.5)
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where the “intermediate state” |ψ1〉 is defined as the (normalized) superposition at
time t1

|ψ1〉 =
1√
N

∑
α1

A(ψ, α1, β2)|α1〉, N =
∑
α1

|A(ψ, α1, β2)|2 =
∑
α1

p(ψ, α1, β2)

(A.6)
This intermediate state is the state at t1, depending on the preselected initial state
|ψ〉 and on the postselected final state |β2〉, for which a measurement of A1 has
a probability |A(ψ, α1, β2)|2/N to yield α1. It is related to the two-state vector
formalism of Aharonov, Bergmann and Lebowitz (ABL): indeed its squared ampli-
tudes reproduce the ABL rule for intermediate probabilities of obtaining α1, given
that the state at t0 is |ψ〉 and at t2 is |β2〉.
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