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Abstract

Much of the philosophical literature on the relations between ther-
modynamics and statistical mechanics has to do with the process of
relaxation to equilibrium. There has been comparatively little discus-
sion of how to obtain what have traditionally been recognized as laws
of thermodynamics, the zeroth, first, and second laws, from statistical
mechanics. This note is about how to obtain analogues of those laws
as theorems of statistical mechanics. The difference between the ze-
roth and second laws of thermodynamics and their statistical mechan-
ical analogues is that the statistical mechanical laws are probabilis-
tically qualified; what the thermodynamical laws say must happen,
their statistical mechanical analogues say will probably happen. For
this reason, it is entirely appropriate—indeed, virtually inevitable—
for quantities that are statistical mechanical analogues of temperature
and entropy to be attributes of probability distributions. I close with
some remarks about the relations between so-called “Gibbsian” and
“Boltzmannian” methods in statistical mechanics.
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1 Introduction

This note is about the relations between statistical mechanics and the laws of
thermodynamics, and how analogues of the laws of the thermodynamics may
be obtained from statistical mechanics. None of the results to be discussed
are new, but it seems that how it is that one obtains analogues of the laws
of thermodynamics, and what these analogues are, are matters that are not
as widely appreciated in philosophical discussions of the relations between
the two theories as they should be. Furthermore, textbooks of statistical
mechanics do not always lay things out as clearly as could be.

I speak of obtaining analogues of the laws of thermodynamics from sta-
tistical mechanics. The reason for this is that (as Maxwell was the first to
clearly articulate), the kinetic theory of heat entails that the laws of thermo-
dynamics, as originally conceived, cannot be strictly true. Thermodynamic
states are characterized by a small number of macroscopically ascertainable
parameters, and, once it is accepted that the systems treated of in thermody-
namics consist of a vast number of molecules, it must be admitted that the
parameters used to characterize a thermodynamic state determine at best
a minuscule fraction of the full degrees of freedom of a system, and that a
specification of these parameters is not even remotely close to being sufficient
for determining, on the basis of the dynamical laws of the system alone, the
subsequent behaviour of the system. Moreover, there is no feasible way to
prepare a system in such a way as to rule out microstates that will lead to
deviations from the behaviour prescribed by the laws of thermodynamics.
The founders of statistical mechanics concluded that macroscopically ob-
servable departures from the laws of thermodynamics are not to be thought
impossible, but, at best, extremely improbable within the regime in which
thermodynamics is empirically successful.

The statistical mechanical analogues of the laws of thermodynamics must,
therefore, be probabilistically qualified statements. This means that we will
have to make sense of probabilistic talk. How to make sense of probabilities
in physics is, of course, the subject of substantial philosophical literature.
We will not delve into this topic here; as long as sense can be made of prob-
abilistically qualified assertions, this will serve our purpose. A caveat is in
order, however. There have been attempts to construe probabilistic asser-
tions about a physical system as involving implicit reference to some actual
or hypothetical ensemble of systems, a view that is known as frequentism,
and which was on the rise at the time that Boltzmann introduced the use of
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ensembles of similarly prepared systems into the literature on statistical me-
chanics. Though a frequentist view of probability continues to be espoused
by many physicists, in the philosophical literature on interpretations of prob-
ability there seems to be, more or less, a consensus that frequentism is not a
viable view of the meaning of probabilistic statements (see La Caze 2016 and
Myrvold 2021a, §3.2 for discussion). Though probabilistic judgments may be
informed by multiple experiments performed on similarly prepared systems,
we should not conflate the evidence for statements of probability with their
meaning.1

For the purposes of this note, it won’t matter whether the mechanics un-
derlying our statistical mechanics is classical or quantum.2 There’s a reason
for this. We’ll be concerned, not with the full set of degrees of freedom of a
physical system, but with a restricted set of macrovariables (and indeed, we’ll
be mostly concerned with one macrovariable, energy, and its transfer between
systems). The restriction of a pure quantum state to a set of commuting ob-
servables is, if it’s not a joint eigenstate of those observables, a mixed state,
and, as far as those observables are concerned, acts like a classical probability
distribution.3

The fact that, on the kinetic theory of heat, the laws of thermodynamics
cannot be strictly true, has consequences for the concepts of thermodynamics
that are not often emphasized. The zeroth law of thermodynamics is a pre-
supposition of the definition of temperature; that the law hold is a necessary
condition for the existence of a function T of the physical states of systems,
equal values of which indicate that there will be no net heat exchange be-
tween systems placed in thermal contact. In a regime in which deviations
from the zeroth law cannot be neglected, there can be no such function. The
second law of thermodynamics is a presupposition of the definition of ther-
modynamic entropy; the law is a necessary condition for the existence of a
function S of the physical state of the system that satisfies the definition of

1For discussion of what sense can be made of probabilistic assertions in the context of
statistical mechanics, see Myrvold (2016) and Ch. 8 of Myrvold (2021a).

2This is not to say that the differences between classical and quantum mechanics don’t
matter at all to thermodynamics. It’s just that the derivations of the laws of thermody-
namics that are the subject of this note are valid in both classical and quantum mechanics.

3Can all probabilities in statistical mechanics, even classical statistical mechanics, be
thought of as quantum probabilities? This is an interesting question. An affirmative
answer has been argued for by David Wallace (2016). For the purposes of this note, we
can remain non-committal on this question.
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thermodynamic entropy. In a regime in which deviations from the second law
cannot be neglected, there can be no such function. One might, nevertheless,
seek to define statistical mechanical analogues of temperature and entropy,
that play roles, in the statistical mechanical analogues of the laws of ther-
modynamics, that parallel the roles played in the laws of thermodynamics
by their thermodynamic counterparts.4

We should expect to obtain from statistical mechanics analogues of the
laws of thermodynamics that, in an appropriate regime, yield assertions
that closely approximate the laws of thermodynamics.5 The fact that the
statistical-mechanical analogues of the laws of thermodynamics are to be
couched in probabilistic terms, whereas the laws of thermodynamics are not,
is a clue as to how this will go. It is a familiar fact that, under suitable
conditions, usually ones that involve some version of the weak law of large
numbers, probability distributions can yield probabilities that are close to
certainty. One way for this to happen is for the probability distribution for
some quantity to be tightly focussed on the expectation value of that quan-
tity, so that non-negligible deviations of the quantity from its expectation
value have negligible probability. When this holds, we may treat the quan-
tity as if it is certain to be equal to its expectation value, and use the actual
value and the expectation value interchangeably in our calculations.

Call the regime in which assertions can be made, on the basis of statistical
mechanics, about the value of some quantity, with a degree of probability
that departs only negligibly from complete certainty, the quasi-deterministic
regime. It is in the quasi-deterministic regime that we will recover the laws
of thermodynamics.

As the zeroth law and second law are presuppositions of the definitions
of temperature and thermodynamic entropy, respectively, these quantities
will be undefined outside the quasi-deterministic regime. Given probabilistic
analogues of the laws of thermodynamics, there may be quantities, well-
defined even outside the quasi-deterministic regime, that play roles in the
probabilistic analogues of the laws of thermodynamics that are analogous to
the roles of temperature and entropy in the original versions of those laws,

4We are thus in agreement with the emphasis placed by Robertson (2022) on seeking
a quantity that fulfils a given functional role in a theory.

5It is common to express the relations between theories in terms of limiting relations.
I have expressed the relation, not in terms of limits, but in terms of approximation within
a certain regime, because it is not essential that one be able to obtain one theory from the
other by taking a limit as some parameter or parameters approach limiting values.
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and which, in the quasi-deterministic regime, have values that with near
certainty are near to the values of their thermodynamic counterparts. In
section 3, below, probabilistic analogues of the laws of thermodynamics will
be presented, which are obtained from the original versions of the laws of
thermodynamics by replacing talk of energy exchanges, unqualified by prob-
abilistic considerations, with talk of expectation values of energy exchanges,
and which invoke quantities that bear the relations to expectation values of
energy exchanges that thermodynamic temperature and entropy bear to ac-
tual energy exchanges.6 Inevitably, since expectation values are attributes of
probability distributions, the statistical mechanical analogues of temperature
and entropy invoked will also be attributes of probability distributions.

The fact that statistical mechanical analogues of temperature and entropy
are introduced that, unlike their thermodynamic counterparts, are attributes
of probability distributions rather than of the physical states of systems, has
given rise to some confusion. It might appear that we have changed the sub-
ject, and are no longer talking about individual physical systems but about
ensembles of them, or that we are somehow reifying the probability distri-
butions and taking them to represent the physical states of systems.7 The
reader will, I hope, be relieved to be assured that none of this is true. The

6Expectation values, not expected values. The phrase “expected value” is a solecism
that seems to have arisen only in the 20th century; the Oxford English Dictionary gives
1915 as its earliest attestation. It has the unfortunate consequence of suggesting that the
expectation value is the value you should expect to obtain in a measurement. But, of
course, the expectation value of some random variable need not be a probable or even
possible value of that variable. Take, for example, a variable X that can take on the two
values ±1, with equal probability. The expectation value of X is zero, even though that
is not a possible value.

An expectation value, in its original meaning, is the value of an expectation. If you have
a ticket that entitles you to a reward tomorrow if some event E happens in the meantime,
you have an expectation: an expectation of receiving the reward if the condition is met. If
E is not certain to occur, the value of the expectation of receiving a reward if E happens
is less than the value of receiving the same reward unconditionally, and diminishes as the
probability of E decreases. This sort of terminology has its origin in Huygens’ treatise,
Van Rekeningh in Spelen van Geluck (pub. 1660), which is all about calculating the values
of various expectations.

My guess is that the use of “expected value” stems from over-emphasis on probability
distributions that are strongly peaked near their expectation values. For those special
cases, with high probability, the actual value will be close to the expectation value.

7This appearance is exacerbated somewhat by the fact that sometimes terminology is
employed that has the potential to mislead, in that one talks of probability distributions
representing physical systems.
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subject matter is still individual physical systems and their physical prop-
erties. The shift that has been made is that, instead of making unqualified
statements about the physical states of individual systems, we are making
probabilistically qualified statements about them. If one says that it’s going
to rain tomorrow, one is talking about tomorrow’s weather. If one says that
it’s probably going to rain tomorrow, one is still talking about tomorrow’s
weather; the topic has not shifted to a fictitious ensemble of copies of the
local weather system.

Nonetheless, the fact that statistical mechanical analogues of temperature
and entropy are attributes, not of mechanical states of physical systems,
but of probability distributions over mechanical states, is one that might
seem surprising. One might antecedently have expected to find mechanical
analogues of temperature and entropy, that is, quantities defined in terms of
the physical properties of a system. An objection to this move that is often
made is that, unlike the attributes of probability distributions that are the
statistical mechanical analogues of temperature and entropy, thermodynamic
temperature and entropy are measurable properties of a system. And this is
true—in the quasi-deterministic regime! Outside of this regime, repetitions
of a procedure we think of as a measurement of temperature (or entropy)
will not yield a consistent value, but, rather, a distribution of values, and it
makes no sense to talk of the value yielded by the procedure.

A quantity that has been regarded as a statistical mechanical analogue
of entropy is the Boltzmann entropy, a generalization of the quantity H used
by Boltzmann in his studies of the relaxation of a gas to equilibrium. In the
quasi-deterministic regime, the difference between the Boltzmann entropies of
two equilibrium states will generally approximate the difference between their
thermodynamic entropies. Outside the quasi-deterministic regime, Boltz-
mann entropy does not enter into any useful analogue of the second law of
thermodynamics. This is, of course, not to say that it isn’t suited to the pur-
pose for which it was introduced—as a quantity useful for tracking relaxation
to equilibrium of an isolated system.8

8There is a tendency to conflate the second law of thermodynamics with the statement
that systems, left to themselves, tend to relax to a state of equilibrium, a statement that
Brown and Uffink (2001) have called the minus first law. This conflation should be resisted.

The tendency to conflate the two is encouraged by a tendency to treat the second law as
a statement about the behaviour of isolated systems, to the effect that the entropy of an
isolated system cannot decrease. This is a consequence of the second law, but it cannot be
a statement of it, as the second law is a presupposition of the definition of thermodynamic
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I have been talking about the relation between thermodynamics and sta-
tistical mechanics, without commitment to whether that relation is one of
reduction. Once one gets clear about the relation between thermodynamics
and statistical mechanics, and how analogues of the laws of thermodynam-
ics are obtained from statistical mechanics, the answer to the question of
whether the relation is one of reduction depends, of course, on what is to
count as a reduction. I will not, in this note, go into the matter of whether
the relation between thermodynamics and statistical mechanics fits any of
the models of reduction extant in the literature. It is almost a truism that the
relation of thermodynamics to statistical mechanics is a relation of reduction
if anything is. If one accepts that conditional—and it is by no means obvious
that one should—and if one finds that the relation between thermodynamics
and statistical mechanics doesn’t satisfy one’s favoured model of reduction,
there are, of course, two possible responses to this situation. One would be
to modify one’s model of reduction, to accommodate the relation between
thermodynamics and statistical mechanics. The other would be to draw an
anti-reductionist moral.

2 The laws of thermodynamics

The laws of thermodynamics with which we will be concerned are three: the
zeroth law, the first law, and the second law. There is also a third law of
thermodynamics, but it will not concern us today.

There is also another proposition that has been called a law of thermo-
dynamics. This is what Brown and Uffink (2001) have called the minus first
law, or equilibrium principle. It states that an isolated system in a confined
space will eventually relax to an equilibrium state that is a function only of its
internal energy, the external constraints (such as confinement to a container)
imposed on it, and any external fields applied to it (such as gravitational or
magnetic fields). Explanation of the tendency of systems to equilibrate has,
understandably, been a major focus of the philosophical literature on the
relations between statistical mechanics and thermodynamics, and our under-
standing of those relations is not complete until we have an explanation of
that tendency. However, there are principled reasons for not counting the
equilibrium principle as a law of thermodynamics.9 The equilibrium princi-

entropy.
9And, as a matter of historical fact, though something of the sort was long explicitly
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ple, unlike the zeroth, first, and second laws, can be formulated without the
distinction that is at the core of thermodynamics, between energy transfer
as work and as heat. Thermodynamics presumes that systems do tend to
equilibrate when left to themselves, but this can profitably be regarded as
a presupposition of thermodynamics, rather than part of its subject matter.
Statistical mechanics should, of course, take as part of its task to explain why
we might be justified in supposing this, but this can be regarded as a task
distinct from that of obtaining analogues of the laws of thermodynamics.10

For simplicity, we will focus attention on simple systems, that is, systems
with no insulating barriers between parts of the system. For such a system,
heat can flow between the parts, and hence, in an equilibrium state of a simple
system, the parts of the system can be taken to be in thermal equilibrium
with each other.

2.0 The zeroth law

The zeroth law has to do with relations between systems that are in thermal
equilibrium and have been placed in thermal contact with each other. It thus
presupposes that we understand what it means for a system to be in thermal
equilibrium, and what it means for two systems to be in thermal contact—
that is, to be in a situation that permits heat flow between the systems.
When two systems are placed in thermal contact, there may be heat flow
from one to the other, or there may be none. The matter of whether or
not there will be heat flow, and, if there is, in which direction, is a relation
between the thermodynamic states of the systems. We’re interested in the
case in which there is no heat flow when the bodies are placed in thermal
contact. As we are restricting our attention to simple systems, this relation
is reflexive. It is also symmetric. The zeroth law says that it is transitive,
from which it follows that it is an equivalence relation.

The zeroth law of thermodynamics, version I. If a and
b are two thermodynamic states such that, if systems in these

recognized as an important principle, it was not counted by anyone as a law of ther-
modynamics until the 1960s, more than a century after Kelvin initiated talk of laws, or
fundamental principles, of thermodynamics. (Brown and Uffink cite Uhlenbeck and Ford
1963 as precursors in identifying what they call the equilibrium principle as a law of
thermodynamics.)

10See Myrvold (2020a) for further discussion of this point.
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states are brought into thermal contact, there is no net heat flow
between them, and if b and c are two thermodynamic states for
which this is also true, then the same holds for a and c.

If the zeroth law holds, then we can partition thermodynamic states into
equivalence classes, which we will regard as classes of states that all have the
same temperature. Therefore, another way of putting the zeroth law, which
we will take as our preferred expression of it, is the following.

The zeroth law of thermodynamics, version II. There is
a function T of thermodynamic states, such that, if systems in
state a and b are brought into thermal contact, there will be no
net heat flow between them if and only if T (a) = T (b).

As far as the zeroth law is concerned, the values of T are merely arbitrary
labels for the equivalence classes. It is not assumed that the direction of
spontaneous heat flow defines a linear order, giving meaning to relations
of higher and lower temperature. This is something that follows from the
second law.

2.1 The first law

Thermodynamics is based on the realization that there is a mechanical equiv-
alent of heat. That is, when work is expended to create heat, the same
amount of work is required to produce a given quantity of heat, regardless of
how this is done, and, when heat transfer is exploited to produce mechanical
work, the amount of heat that produces a given quantity of work is always
the same. It is this that permits us to speak of the total internal energy of a
system, which can be changed either by flow of heat in or out of the system,
or by mechanical means, by doing work on the system or having it do work
on some external system.

The first law of thermodynamics. There is a function U of
thermodynamic states, the internal energy of the system, such
that, in any process, the change in U is equal to the sum of the
net heat that passes in or out of the system, and the net work
done on or by the system.
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2.2 The second law

The second law has been stated in a variety of forms. One is the Clausius
version, which states that spontaneous flow of heat is from warmer to colder
bodies, and that, furthermore, there is no process that has no net effect other
than moving heat from a cooler to a warmer body. It follows from this that
there is an upper bound on the efficiency of any heat engine operating in a cy-
cle between two reservoirs (that is, work developed per unit of heat obtained
from the warmer reservoir). This permits the definition of an absolute tem-
perature scale. If η12 is the upper bound on efficiency of an engine operating
between two reservoirs, we can define the ratio of the absolute temperature
of the warmer, T1, to that of the cooler, T2 by,

T2
T1

= 1− η12. (1)

This permits us to formulate what we will take to be our preferred state-
ment of the second law of thermodynamics.

The second law of thermodynamics It is possible to choose
a temperature function (that is, a state function that takes equal
values on states of equal temperature) in such a way that there is a
function S of thermodynamic states of a system with the property
that, in any process that takes a system from a state a to state
b, exchanging heats Qi with heat reservoirs at temperatures Ti,∑

i

Qi

Ti
≤ S(b)− S(a).

If the states a and b can be connected reversibly—that is, if there is a process
that takes a to b, and another process that takes b to a with the signs of
the heat exchanges reversed—then the function S of which the second law
speaks is fixed up to an additive constant, and we can define differences in
thermodynamic entropy Sθ, by

Sθ(b)− Sθ(a) =

∫ b

a

d̄ Q

T
, (2)

where the integral can be taken over any reversible process.
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This also works if reversibility is unachievable but can be approached
arbitrarily closely; that is, if, for any ε > 0, there are processes that take a
to b and then b to a such that

∫
d̄ Q/T , taken over the full process, is less

than ε. We can then define Sθ(b)−Sθ(a) as the least upper bound of the set
of values of the integral of d̄ Q/T , taken over all processes that connect a to
b.

It is the second law, together with the condition that any two thermo-
dynamic states can be connected reversibly or arbitrarily close to reversibly,
that permits the assignment of a unique entropy difference to any pair of
thermodynamic states. If the second law fails, there is no state-function that
bounds heat exchanges in the way demanded in our statement of the second
law. If reversibility fails, and if there are limits on how closely reversibil-
ity can be approximated, there is a multitude of state-functions that fit the
bill. This will be important, later, for our discussion of statistical mechanical
analogues of thermodynamic entropy (see §3.3).

3 Statistical mechanical analogues of the laws

of thermodynamics

What has to change, once we acknowledge that the variables that we use to
characterize the thermal state of a system fall radically short of the full set
of variables potentially relevant to prediction of its behaviour?

First, and foremost, we must acknowledge that what the zeroth and sec-
ond laws say must happen, may be liable to exceptions, albeit ones that on
the macroscopic scale are almost sure to be insignificant. In this vein, we
find Maxwell, in a letter to John Strutt, Baron Rayleigh, of Dec. 6, 1870,
drawing the

Moral. The 2nd law of thermodynamics has the same degree of
truth as the statement that if you throw a tumblerful of water
into the sea, you cannot get the same tumblerful of water out
again. (Garber et al. 1995, p. 205; Harman 1995, p. 583).

Gibbs drew a similar conclusion, several years later.

when such gases have been mixed, there is no more impossibil-
ity of the separation of the two kinds of molecules in virtue of
their ordinary motions in the gaseous mass without any external
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influence, than there is of the separation of a homogeneous gas
into the same two parts into which it has once been divided, after
these have once been mixed. In other words, the impossibility of
an uncompensated decrease of entropy seems to be reduced to
improbability (Gibbs 1875, p. 229, in Gibbs 1906, p. 167).

Maxwell elaborated on this point, in his review of Tait’s Sketch of Thermo-
dynamics.

If we restrict our attention to any one molecule of the system,
we shall find its motion changing at every encounter in a most
irregular manner.

If we go on to consider a finite number of molecules, even if the
system to which they belong contains an infinite number, the
average properties of this group, though subject to smaller vari-
ations than those of a single molecule, are still every now and
then deviating very considerably from the theoretical mean of
the whole system, because the molecules which form the group
do not submit their procedure as individuals to the laws which
prescribe the behaviour of the average or mean molecule.

Hence the second law of thermodynamics is continually being
violated, and that to a considerable extent, in any sufficiently
small group of molecules belonging to a real body. As the number
of molecules in the group is increased, the deviations from the
mean of the whole become smaller and less frequent; and when
the number is increased till the group includes a sensible portion
of the body, the probability of a measurable variation from the
mean occurring in a finite number of years becomes so small that
it may be regarded as practically an impossibility.

This calculation belongs of course to molecular theory and not
to pure thermodynamics, but it shows that we have reason for
believing the truth of the second law to be of the nature of a
strong probability, which, though it falls short of certainty by
less than any assignable quantity, is not an absolute certainty
(Maxwell 1878, p. 280; Niven 1890, pp. 670–71).

Boltzmann also acknowledged the point, in his response to Loschmidt, who
had drawn his attention to the fact that, because of the invariance of the
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laws of mechanics under the operation of velocity reversal, no temporally
asymmetric conclusion can be drawn from mechanical considerations alone.11

Nevertheless Loschmidt’s theorem seems to me to be of the great-
est importance, since it shows how intimately connected are the
second law and probability theory, whereas the first law is inde-
pendent of it. In all cases where

∫
dQ/T can be negative, indi-

vidual very unlikely initial conditions are also possible for which
it is positive; and the proof that it is almost always negative can
only be carried out by means of probability theory (adapted from
Boltzmann 1966, p. 193, from Boltzmann 1877, in Boltzmann
1909, p. 121).

If we are to take these considerations seriously, we must incorporate prob-
abilistic considerations into our reasoning, and seek probabilistic counter-
parts to the zeroth and second laws, according to which what the original,
thermodynamic versions of these laws declare to be impossible, is at most
improbable.

Another change is a reconceptualization of equilibrium. Thermodynamic
equilibrium is, to the unaided eye, a state of tranquility. At the molecular
level it is, of course, seething with activity, and at a mesoscopic scale some
measurable variables fail to settle into a steady state. The best-known ex-
ample of this is, of course, Brownian motion, invisible to unaided eyes, but
visible with a microscope of modest power.

One could choose to say that a system of that sort, for which observable
parameters refuse to settle down to steady values, fails to equilibrate. But we
should not ignore the fact that a system like that, if disturbed, settles down
to a condition in which the observable parameters exhibit a regular pattern
of fluctuations, to which we can attach a well-defined probability distribu-
tion. For this reason, it makes sense to talk about an equilibrium distribution,
which is approached as a system equilibrates. Only in the quasi-deterministic
regime will the equilibrium distribution be such that the observable param-
eters take precise values (within the limits of observation), from which they
will with extremely high probability not depart appreciably on the time scales
of observation, and we can talk about an equilibrium state.12

11I have corrected two errors in Brush’s translation. Brush has “there is also an individ-
ual very improbable initial condition for which it may be positive,” and “the proof that it
is almost always positive.”

12Thus, speaking of equilibrium distributions, as is done in “Gibbsian” statistical me-
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3.0 Statistical mechanical analogue of the zeroth law

Consider, first, the zeroth law. When two systems at the same temperature
are placed in thermal contact, we expect that, on a sufficiently fine-grained
level, the energies of the two systems will not be strictly constant, but will
fluctuate. The zeroth law is, therefore, not quite right. But, on a macroscopic
scale, it will be close to being right. For two macroscopic bodies of the
same temperature in thermal contact with each other we expect the energy
fluctuations of each body to be minuscule compared to the total energy of
the body, and, furthermore, that the energy flow will go either way, with no
net tendency in either direction, and that the average energy exchange, over
any sufficiently long time period, will almost certainly be close to zero.

This suggests, of course, that the zeroth law be replaced with a probabilis-
tic version, and that, rather than attempting to make unqualified statements
about what will happen when two systems are brought into thermal con-
tact, we make probabilistically qualified statements. The version that we
will adopt will, in fact, refer to expectation values of energy exchanges.

The zeroth law has to do with systems that have relaxed to thermal
equilibrium. Given macroscopically available information, we will not be
able to make unqualified, categorical assertions about physical parameters
such as its energy, but we may be in a position to assign more or less definite
probabilities to ranges of values of those parameters. A family of probability
distributions that play a key role are the canonical distributions. These are
indexed by a parameter β. In the classical context, a canonical distribution
with index β is a probability distribution on the phase space of system that
has a density function with respect to Liouville measure,

τβ(x) = Zβ
−1 e−βH(x), (3)

where H is the Hamiltonian of the system, Zβ is the normalization constant
required to make the integral of this function over the accessible region of
phase space equal to unity. In the quantum context, a canonical state is a
state represented by a density operator,

τ̂β = Zβ
−1 e−βĤ , (4)

chanics, and speaking of equilibrium states, as one does in “Boltzmannian” statistical
mechanics, does not reflect rival, incompatible conceptions of equilibrium; the latter is a
special case of the former. This point has been made by Wallace (2015, 2020); in the latter
Wallace refers to systems whose phase space is dominated by an equilibrium macrostate
as “Boltzmann-apt.”
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where Zβ is the normalization constant required to make the trace of this
operator equal to unity.

A widely accepted postulate of statistical mechanics is the following.

The Canonical Postulate. For a system that has relaxed to
thermal equilibrium, a canonical distribution, uncorrelated with
the system’s environment, is appropriate for the purposes of mak-
ing probabilistic assertions about the values of macrovariables or
the system’s responses to manipulations of macrovariables.

It will usually not be expressed quite like this, but if one pays attention to
the uses made of canonical distributions, one will see that this, or something
much like it, is the assumption being made.

The Canonical Postulate is the key to obtaining statistical mechanical
analogues of the laws of thermodynamics. Once we have it, the statistical
mechanical analogues of thermodynamical laws are relatively simple theo-
rems. The postulate is not, of course, the sort of thing that should simply be
accepted without good reason. Support for the Canonical Postulate comes
from a combination of empirical and theoretical considerations, some of which
involve investigation of the process of equilibration. In this note we will not
go into the reasons for accepting the Canonical Postulate, but will confine
ourselves to exploring its consequences.13

We will actually be needing only a weaker version; the only macrovariables
whose distributions we will need is the exchange of energy of the system with
bodies placed in thermal contact with it.

Thermal contact between two systems will be represented by a coupling
of the systems such that the contribution to the total internal energy of the
pair of systems due to the coupling is small compared to the internal energy
of each system, so that the total internal energy of the pair of systems is ap-
proximately equal to the sum of the internal energies of the two systems. We
also assume that a pair of systems can be thermally coupled and decoupled
without doing any work on the joint system, that is, without changing the
total energy of the pair of systems.

Canonical distributions have the following useful property, which is part
of the reason why they are thought to be appropriate for thermal states.
When two initially uncoupled systems with which are associated canonical

13See Maroney (2007) for an illuminating discussion of the rationale for the Canonical
Postulate.
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distributions with parameters βa and βb are allowed to interact in any way
whatsoever, with the proviso that in the process of coupling and decoupling
them no work is done on the joint system and the total energy is unchanged,
the direction of the expectation value of energy flow between the two systems
is determined solely by which of the parameters is larger, and is independent
of the details of the coupling. It can also be shown that, under the same
conditions (which involve no work done on the joint system during the process
of coupling and decoupling), if the initial parameter values are the same, the
expectation value of energy exchange is zero.

Proposition 1. Suppose that, at time t0 two systems A and B have indepen-
dent canonical distributions τβa and τβb. Between time t0 and t1 they interact
with each other in such a way that the total energy of the pair of systems is
conserved. At t1 they are again no longer interacting. Let 〈∆HA〉 be the
expectation value of the energy change of system A (which is, of course, the
negative of 〈∆HB〉, the expectation value of the energy change of system B).
Then,

� If βa = βb, 〈∆HA〉 = 0,

� if βa > βb, 〈∆HA〉 ≥ 0, and

� if βa < βb, 〈∆HA〉 ≤ 0.

It will sometimes be convenient to work with a parameter T , related to
β via

β =
1

kT
, (5)

where k is a constant, called Boltzmann’s constant, which, as we will see in
section 4, is related to the constant R that appears in the ideal gas law via
Avogadro’s number. Then we can restate Proposition 1 as,

Proposition 2. Under the same conditions as in Proposition 1,

� If Ta = Tb, 〈∆HA〉 = 0,

� if Ta < Tb, 〈∆HA〉 ≥ 0, and

� if Ta > Tb, 〈∆HA〉 ≤ 0.

The Canonical Postulate and Proposition 2 yield our statistical mechan-
ical analogue of the zeroth law of thermodynamics.
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The zeroth law of thermodynamics, statistical mechani-
cal analogue. The class of probability distributions appropriate
to making probabilistic statements about macroscopic behaviour
of systems that have relaxed to thermal equilibrium is indexed
by a parameter T , such that, if two such systems, with which are
associated probability distributions for index-values Ta and Tb,
are brought into thermal contact with each other, the expectation
value of energy flow between the systems is zero if and only if
Ta = Tb.

Compare this with the original, thermodynamic version of the second
law. The statistical mechanical version is obtained from the thermodynamic
version via the substitution of equilibrium probability distributions for ther-
modynamic states, and expectation values of energy flow for actual energy
flows. In the quasi-deterministic regime, in which expectation values of en-
ergy exchanges may be taken for the actual values, we recover the original
version. But the statistical mechanical version holds even when energy fluc-
tuations are large, so that the actual value of energy flow need not be even
probably close to its expectation value.

3.1 Statistical mechanics and the first law

Once we have settled on how to distinguish between energy transfer as work
and energy transfer as heat, the first law of thermodynamics is just a state-
ment of the conservation of energy. The concept of energy, unlike the con-
cepts of temperature and entropy, is a concept that belongs to the underlying
mechanics, and its conservation a consequence of the microphysical laws.

Though energy is a concept of the underlying mechanics, the distinction
between work and heat is not. This raises the question of how to distinguish
between work and heat, in the context of statistical mechanics.

The standard answer goes as follows. Some of the variables that define the
state of a system are treated as exogenous, manipulable variables.14 Energy
changes to the system via manipulation of these variables are to be counted
as work; energy changes via interactions with a heat reservoir, as heat.15

14See Myrvold (2020b) for discussion of what this entails.
15The astute reader will have noticed that this need not be an exhaustive partition. This

is correct. For the purposes of this note, however, we will confine ourselves to situations
in which there are no other sorts of interaction between the system and its environment.
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To get a feeling for how this works, consider a system in contact with
a heat reservoir. The total Hamiltonian of the joint system, consisting of
the system under consideration and the heat reservoir, is a function of the
phase-space point of the combined system, and the exogenous parameters.

Suppose that at some time t0, the system is in thermal equilibrium with
a heat reservoir with parameter β, and is subject to external parameters λ =
{λ1, . . . , λn}. At t1 it is subject to parameters {λ1 + dλ1, . . . , λn + dλn} that
differ, if at all, by small amounts from their original values, and is in thermal
equilibrium with a heat bath with parameter β = β+dβ. In accordance with
the Canonical Postulate, we use canonical distributions with the respective
parameters to calculate probabilities for properties of the system at each of
these times. It is not difficult to show that the expectation value of the
change in total energy of the system, between times t0 and t1, is,

〈dU〉 = −kTd 〈log fρ〉ρ +
n∑
i=1

〈
dH

dλi

〉
dλi, (6)

where H is the Hamiltonian (total energy) function of the system, and fρ is
a probability density with respect to the Liouville measure for a probability
distribution ρ on phase space. The second term on the right-hand-side of (6)
is the expectation value of work done in changing the external parameters;
the first term is, therefore, the expectation value of heat exchanged with the
reservoir. Thus, we have, up to first order in parameter differences,

〈d̄ Q〉 = −kT d〈log fρ〉. (7)

Compare this to the thermodynamic relation,

d̄ Q = TdS. (8)

If we now define, for the classical context, the quantity (often called the Gibbs
entropy),

SG[ρ] = −k 〈log fρ〉ρ, (9)

then (7) becomes
〈d̄ Q〉 = TdSG. (10)

In the quantum context, the derivation of (7) goes through, with density
operators in place of density functions. We define the quantity (often called
the von Neumann entropy),

SvN [ρ̂] = −kTr(ρ̂ log ρ̂), (11)
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and we have,
〈d̄ Q〉 = TdSvN . (12)

Thus, when applied to a pair of canonical distributions, differences in SG (in
the classical context) or SvN (in the quantum context) bear the same relation
to expectation values of heat exchanges that differences in thermodynamic
entropy bear to actual heat exchanges. As we shall see in the next section,
these quantities have application also to states that are not canonical states,
and can play a role analogous to that played by thermodynamical entropy.

3.2 Statistical mechanical analogue of the second law

The original version of the second law places limits on the efficiency with
which a heat engine operating in a cycle between two reservoirs, at temper-
atures T1 and T2, can operate. If Q1 is the heat obtained from the hotter
reservoir, at temperature T1, and W is the work obtained in a cycle, it follows
from the second law that

W ≤
(

1− T2
T1

)
Q1. (13)

This is the Carnot bound on the efficiency of heat engines.
Because of fluctuations in the energy transferred, (13) might not hold, on

a given run of the engine. We might get more work than the Carnot bound
allows. Over the years various schemes have been proposed that are meant to
exploit molecular-scale fluctuations to create a perpetual motion machine of
the second kind, which could operate in a cycle between two heat reservoirs
to consistently and reliably exceed the Carnot bound on efficiency. These all
fall afoul of the unpredictability of fluctuations. Though, on one occasion,
we might get more work in a cycle than allowed by the Carnot bound, we
also might get less. The question is whether we can expect to get more, on
average, work than permitted by the Carnot bound.

One thing we might expect from a statistical mechanical version of the
second law would be a probabilistic statement to the effect that no engine
can consistently and reliably violate the Carnot bound. Szilard compared
this to no-go theorems for gambling schemes that seek to consistently and
reliably beat the odds at a casino.

Consider somebody playing a thermodynamical gamble with the
help of cyclic processes and with the intention of decreasing the
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entropy of the heat reservoirs. Nature will deal with him like a
well established casino, in which it is possible to make an occa-
sional win but for which no system exists ensuring the gambler a
profit (Szilard 1972b, p. 73, from Szilard 1925, p. 757).

if we want to use the fluctuation phenomena in order to gain
energy at the expense of heat, we are in the same position as
playing a game of chance, in which we may win certain amounts
now and then, although the expectation value of the winnings is
zero or negative (Szilard 1964, p. 302; Leff and Rex 2003, p. 111,
from Szilard 1929, p. 841).

This suggests that we might be able to obtain a probabilistic version of the
second law that yields a Carnot bound on expectation value of work obtained.
That is, something of the form,

〈W 〉 ≤
(

1− T2
T1

)
〈Q1〉. (14)

And, indeed, if one accepts the Canonical Postulate, which tells us what
probability distributions are appropriate for heat reservoirs, we get just that.

Statistical second law of thermodynamics
a. Classical. There is a functional S of probability distributions,
such that: If a system A that, at time t0, has associated with it a
probability distribution ρA(t0), interacts in the interval between
t0 and t1 with heat reservoirs Bi that, at t0, have canonical dis-
tributions τβi , uncorrelated with A, then the expectation value of
heat exchanges Qi between A and the reservoirs are bounded by,∑

i

〈Qi〉
Ti
≤ S[ρA(t1)]− S[ρA(t0)].

b. Quantum. The same, with quantum states replacing probabil-
ity distributions.

The reader should take a moment to verify that this does, indeed, entail the
probabilistic version of the Carnot bound, inequality (14).

If ρA(t1) and ρA(t0) can be connected reversibly—that is, if there is some
process that takes ρA(t1) back to ρA(t0), in the course of which there are heat
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exchanges with the heat reservoirs whose expectation values are those of the
process that takes ρA(t0) to ρA(t1), with signs reversed—then the functional
S of which the statistical second law speaks is uniquely determined, up to
an additive constant. If there are bounds on how closely reversibility can be
approached, there will be a plethora of such functionals, whose differences
are not constant.

The statistical second law is a theorem of statistical mechanics. It depends
on associating canonical distributions with the heat reservoirs, but there is
no assumption about the initial probability distribution for A, ρA(t0), other
than that the state of A is uncorrelated with that of the heat reservoirs.
The statistical second law follows from what I have elsewhere called the
Fundamental Theorem of Statistical Thermodynamics (see Myrvold 2020b,
2021b).16

Proposition 3. a. Classical. Consider a system A that, at time t0, has
associated with it a probability distribution ρA(t0) that has a density fρ with
respect to Liouville measure. In the interval between t0 and t1 it interacts with
heat reservoirs Bi that, at t0, have canonical distributions τβi, uncorrelated
with A. Then the expectation values of heat exchanges Qi between A and the
reservoirs are bounded by,∑

i

〈Qi〉
Ti
≤ S[ρA(t1)]− S[ρA(t0)],

where SG is the “Gibbs entropy,”

SG[ρ] = −k〈log fρ〉ρ.

b. Quantum. The same, with a quantum state represented by a density
operator ρ̂ replacing the probability distribution, and with the functional being
the von Neumann entropy,

SvN [ρ̂] = −k〈log ρ̂〉ρ.

Proof is found in the Appendix.

16This is not a new theorem. The classical version of it is found in Gibbs (1902, pp.
160–164), and the quantum version, in Tolman (1938, §128–130). Nonetheless, it is not as
well-known in the philosophical literature on statistical mechanics and thermodynamics
as it should be. Maroney (2009) refers to it as a generalized Landauer principle.
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3.3 Thermodynamically equivalent distributions, and
coarse-grained entropies

Consider the familiar example of free expansion of a gas composed of macro-
scopically many molecules. At time t0, the gas is confined to one side of a
container by a partition. The partition is removed, and the gas is allowed to
diffuse throughout the container. Let t1 be some time after the removal of
the partition, long enough that the gas has had ample time to equilibrate.
For illustrative purposes, we consider a wholly fictitious situation in which
the gas undergoes isolated evolution during this time, free from any external
influences.

We expect that the gas, at t1, will be fairly evenly distributed throughout
the box. That is, if we partition the box into subvolumes, which may be
small compared to the total volume of the box but must be large enough
to contain a great many molecules, we will expect the amount of gas in
each subvolume to be approximately proportional to its volume. Because
the gas undergoes isolated evolution, its energy at the end of the process is
the same as it is at the beginning. If the gas is sufficiently rarified that its
behaviour approximates that of an ideal gas, to which Joule’s law applies,
the temperature is a function only of its internal energy, and is the same at
the beginning and end of the process. For simplicity, we will assume that
this is the case in the discussion that follows.

Let us ask: is the entropy at the end of the process higher, lower, or
the same as at the beginning? To answer this question, thermodynamics
requires us to answer the question of whether the process of free expansion,
during which the gas exchanges no energy with the external world, is to be
counted as a reversible process or not. If there were a magic device that
could instantaneously reverse the velocities of all the molecules in the gas,
with no other effect on the gas, and without expenditure of work, then the
process would be reversible, and we would have to count the initial and final
states as having the same thermodynamic entropy.17

There is no such device, of course, and free expansion of a gas is not even
close to being reversible. A process that is close to reversible is a process
of gradual expansion of the gas against a piston that at each moment exerts
a force on the gas that is approximately equal to the force exerted by the

17If this remark is surprising to you, then review the definition of thermodynamic en-
tropy, as this is an immediate consequence of that definition.

23



pressure of the gas on the piston, during the course of which the gas is kept
at constant temperature by thermal contact with a heat bath. As the gas
does work on the piston, imparting energy to it, it absorbs compensating
quantities of heat from the heat bath. There is in the course of this process
a positive net influx of heat into the gas, and, therefore, a positive change of
entropy, and the final entropy is higher than the initial entropy.

This leads to the conclusion that the final state of a gas that undergoes
a gradual expansion of this sort is a state of higher entropy than the initial
state. But what implications does this have for the final state of a gas
undergoing free expansion, while isolated from its environment?

The answer is, of course, that we count the final states of these two very
different processes as instances of the same thermodynamic state, and ipso
facto assign the same entropy to the end state, regardless of which process
leads up to it. The rationale for this lies in the expectation that the pro-
cess of equilibration that the gas undergoes during free expansion effectively
effaces all traces of its recent past, and that, as far as measurements of
macroscopically accessible quantities, and the responses of the gas to feasi-
ble manipulations, are concerned, there is no difference between a gas that
has recently relaxed, via an irreversible process, from a far-from equilibrium
state, and a gas with the same volume and temperature that has been in
thermal contact with a heat bath for a protracted period of time. It is as if
the gas has drunk from the river Lethe and has forgotten its past (or rather,
has suppressed the memory, because, in the fictitious situation we are imag-
ining, of completely isolated evolution, the traces of the past remain, but are
embedded in details of the microstate that are macroscopically inaccessible).

This is a common assumption of thermodynamics, more often implicitly
invoked than made explicit. But let’s make the assumption explicit.

The Lethean postulate. As far as results of measurements
of macroscopically accessible quantities are concerned, and re-
sponses to feasible manipulations, a system that has recently
relaxed to equilibrium in isolation from its environment is in-
distinguishable from a system with the same values of external
constraints (such as volume), and same temperature, that has
been in protracted thermal contact with a heat bath at that tem-
perature.

In what follows, we assume that the Lethean postulate is correct, and
explore its consequences for the question of statistical mechanical analogues
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of thermodynamic entropy.
Let τβ,V0 be a canonical distribution for some temperature T = 1/(kβ)

over the portion of the container available to the gas at time t0, and let ρ(t1)
be the result of evolving this distribution, via the dynamics of the gas, from
t0 to t1. Let τβ,V1 be a canonical distribution, with the same temperature,
over the volume of the container available to the gas at t1.

These two probability distributions ρ(t1) and τβ,V1 will be similar in some
respects, and very different in others. Because the evolution from t0 to t1
conserves energy, they will agree on the distribution of energy; that is, they
will agree not only on the mean value of energy, but also on the extent of
the spread in energy. They will also agree closely on probabilities regarding
the amount of gas to be found in any subregion of the box; both will accord
high probability to the gas being spread fairly evenly throughout the box,
with the amount of gas in any not-too-small subvolume proportional to its
volume. In fact, they will agree very nearly on the probability distribution
of any macroscopically measurable parameter.

They will disagree on other matters. ρ(t1) has support on the set of states
that can be reached, in the course of isolated evolution, from the set of states
accessible at t0. This is a set that is accorded probability 1 by ρ(t1) and very
small probability, of the order (V0/V1)

N , where N is the number of molecules
in the gas, by τβ,V1 . This set is very finely distributed throughout the region
of phase space available at t1. Thus, ρ(t1), unlike τβ,V1 , sharply distinguishes
between some subsets of phase space that differ in ways that are invisible to
macroscopic scrutiny.

Suppose that, after time t1, we want to restore the system that has been
allowed to relax to equilibrium while isolated from its surroundings to a state
in which it is at its original temperature, is confined to its original volume
and is in contact with a heat bath at that temperature. We have available
to us various heat reservoirs, at temperatures Ti, and we want to invoke
the statistical-mechanical analogue of the second law to place bounds on
expectation values 〈Qi〉 of heat exchange with these reservoirs in the course
of the transition. The statistical second law tells that, no matter how we
achieve the transition,∑

i

〈Qi〉
Ti
≤ SG[τβ,V0 ]− SG[ρ(t1)]. (15)

There’s a wrinkle, however. Because ρ(t1) is obtained from τβ,V0 via isolated
evolution, the two distributions have the same Gibbs entropy, and so (15)
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tells us ∑
i

〈Qi〉
Ti
≤ 0. (16)

This is correct, but is consistent with the quantity on the left-hand side being
zero, or arbitrarily close to zero. But we know that this is not achievable!

If, as we believe, the Lethean Postulate is correct, we can do better, and
achieve a tighter bound than that found in (16). If the Lethean postulate is
correct, the fine-grained details of ρ(t1) are irrelevant to expectation values
of heat exchanges over the course of any process due to manipulations of
macroscopic variables, and these expectation values are the same whether
calculated with respect to ρ(t1) or τβ,V1 , and so we can conclude that, over
the course of any process involving macroscopic manipulations that take the
system back to its original state,∑

i

〈Qi〉
Ti
≤ SG[τβ,V0 ]− SG[τβ,V1 ] = −kN log(V1/V0), (17)

which is a much better bound!
This is an illustration of the remark made earlier, about the uniqueness

(up to an additive constant) or lack thereof of entropy functions. If any two
thermodynamic states can be connected reversibly, the state-function whose
existence is asserted in the second law is uniquely determined, up to an
arbitrary constant. If there are states that cannot be connected reversibly,
then there will be more than one function that plays the role of placing
bounds on heat exchanges. This is one such case. There is no process of
macroscopic manipulation that takes the probability distribution ρ(t1) back
to ρ(t0) without expenditure of work. Such a process would have to exploit
the fine-grained differences between ρ(t1) and τβ,V1 , and would have to be
something akin to a magical reversal of all the velocities of the gas molecules.
Thus, the process of expansion does not count as reversible, and we are in a
situation in which the second law does not uniquely determine a function S
that bounds the expectation values of heat exchanges. When such a variety
of bounds exist, the bound of most interest is the strongest bound, which
entails all the others.18

The probability distribution τβ,V1 is a “smoothing” of ρ(t1), in the sense
that they agree on probability distributions of macroscopically ascertainable

18For a systematic discussion of how to do thermodynamics and statistical thermody-
namics without reversibility, see Myrvold (2020b).
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variables, but ρ(t1) makes discriminations between macroscopically indistin-
guishable microstates that τβ,V1 doesn’t, as τβ,V1 has a density function that
is a function only of macrovariables. Let us generalize this smoothing opera-
tion. Given a set {F1, . . . , Fn} of macrovariables, let us say that a probability
distribution ρ̄ is a smoothing (or coarse-graining) of a distribution ρ, with
respect to these macrovariables, if ρ̄ agrees with ρ on distributions for values
of the macrovariables {F1, . . . , Fn}, and ρ̄ has a density function that is a
function only of the variables {F1, . . . , Fn}.

Let us say that two probability distributions are thermodynamically equiv-
alent if they agree on probability distributions of all macroscopically acces-
sible variables and also agree on the expectation values of heat exchanges
with any heat baths that result from macroscopic manipulations. Then one
way to express the Lethean postulate is that any probability distribution is
thermodynamically equivalent to its smoothing ρ̄ with respect to all relevant
macrovariables.

Armed with this, we get the following strengthening of our Fundamental
Theorem.

Proposition 4. a. Classical. Suppose a system A, has associated with it
at time t0 a probability distribution ρA(t0) that has a density fρ with respect
to Liouville measure. In the interval between t0 and t1 it interacts with heat
reservoirs Bi that, at t0, have canonical distributions τβi, uncorrelated with
A. If ρA(t0) is thermodynamically equivalent to ρ̄A(t0), then the expectation
value of heat exchanges Qi between A and the reservoirs are bounded by,∑

i

〈Qi〉
Ti
≤ SG[ρA(t1)]− SG[ρ̄A(t0)],

where, again, SG is the “Gibbs entropy.”
b. Quantum. Same, but with quantum states and von Neumann entropy.

A common refrain of polemics directed against “Gibbsian” methods is
that, for a system that equilibrates in isolation from its environment, the
fine-grained Gibbs entropy fails to represent the difference in thermodynamic
entropy between initial and final states. This is correct; it does not. This
would count as an objection to anyone who has claimed that it does, but one
may search the literature in vain for a claim of that sort. It is also commonly
said that invocation of coarse-grained Gibbs entropies is unmotivated. I hope
that the above discussion has made it clear that this is simply and plainly
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false. We set out to find an analogue, in statistical mechanical terms, of the
second law of thermodynamics, that places bounds on expectation values of
heat exchanges in terms of some functional of probability distributions. If two
probabilistic “states” can be connected reversibly, the requirements imposed
by the theorem determine, up to an additive constant, what that functional
is. In the absence of reversibility, more than one functional takes this role,
but the strongest bound is the one of most interest, and entails all of the
others. If the Lethean postulate holds, we will, whenever the coarse-grained
and fine-grained entropies of the initial probability distribution differ, obtain
a stronger bound if we invoke coarse-grained entropy.

4 Measured values of temperature and en-

tropy

A question that has undoubtedly formed in the reader’s mind is: what is the
relation between the attributes of probability distributions, introduced in the
previous section, and macroscopically measurable values of temperature and
entropy? The answer has to do with the quasi-deterministic regime.

Let us consider the case of temperature, first. The simplest thermometer
to analyze is a constant pressure ideal gas thermometer. Take a monatomic
ideal gas consisting of N molecules, enclosed in a container whose volume can
change (for simplicity, one might imagine a cylinder with a movable piston),
whose expansion is resisted by a constant pressure p on the outside of the
container. The volume is taken as an indicator of temperature, via the ideal
gas law,

pV = nRT, (18)

where R is the ideal gas constant, and n is the number of moles of gas
contained in the thermometer, that is, the number of molecules, N , divided
by Avogadro’s number, NA. So, if we put the thermometer in thermal contact
with some body, and allow the joint system to equilibrate, the temperature
measured by our gas thermometer, as indicated by its volume V , is

Tmeas =
pV

nR
=

pV

N(R/NA)
. (19)

Suppose the thermometer is placed in thermal contact with some object.
The joint system is allowed to equilibrate. In accordance with the Canon-
ical Postulate, it will settle into a condition in which the two systems are
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exchanging quantities of energy and the energy of each separate system is
a fluctuating quantity with probabilities given by a canonical distribution
for the joint system, with some parameter β. This gives us a probability
distribution for the volume, V , and, hence, a probability distribution for the
measured temperature, Tmeas.

For our gas thermometer, a canonical distribution with parameter β yields
a probability distribution for the volume V with expectation value 〈V 〉 that
satisfies,

p 〈V 〉 =
N + 1

β
, (20)

and a standard deviation, σ(V ), given by,

σ(V ) =
〈V 〉√
N + 1

. (21)

Therefore, for a macroscopic gas thermometer containing a number of molecules
on the order of Avogadro’s number, the spread in the probability distribution
for V is of negligible size, compared to typical values of V . We are thus in the
quasi-deterministic regime, and one may take the expectation value as the
value that will almost certainly be obtained. The same holds, of course, for
the measured temperature, Tmeas; for a macroscopic thermometer, it has a
probability distribution tightly focussed around its expectation value 〈Tmeas〉.
That expectation value is related to the parameter β by,

〈Tmeas〉 =
p〈V 〉

N/(R/NA)
=

(
1 +

1

N

)
1

(R/NA)β
. (22)

Take k = R/NA. Recall that the temperature T was related to the parameter
β by β = 1/(kT ). This gives us, for expectation value of the measured
temperature,

〈Tmeas〉 =

(
1 +

1

N

)
T. (23)

The standard deviation of the measured temperature is

σ(Tmeas) =
〈Tmeas〉√
N + 1

. (24)

Thus, for large N , the temperature of an object, as measured by an ideal
gas thermometer, will almost certainly closely approximate the parameter T
invoked in the statistical version of the zeroth law.
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What about entropy? The difference in thermodynamic entropy between
two thermodynamic states, a and b, is calculated by considering some re-
versible process that links the state. Consider the statistical mechanical
treatment of a system whose temperature and external parameters are slowly
varied from (βa,λa) to (βb,λb), while the system is in thermal contact with
a heat bath whose temperature is also slowly varied. If the time-scale of the
change of parameters is slow compared to the equilibration time-scale of the
system, we may take the system to be effectively in equilibrium at each stage
of the process. According to the Canonical Postulate, we may use a family
of canonical distributions with varying parameters to calculate probabilities
for energy exchanges between the system and the heat bath. From (7),∫ b

a

〈Q〉
T

= −k (〈log ρb〉b − 〈log ρa〉a)

= SG[τβb,λb ]− SG[τβa,λa ].

(25)

In the quasi-deterministic regime, actual energy exchanges will be close to
their expectation values, so the measured entropy difference will, with high
probability, be close to the difference in Gibbs entropies.

5 Boltzmann entropy and its relation to ther-

modynamic entropy

The quantity that has come to be called “Boltzmann entropy” is defined as
follows. One chooses a number of functions on phase space {F1, . . . , Fn}, to
be regarded as macrovariables. One then coarse-grains the ranges of these
macrovariables into intervals small enough that all values within the interval
can be consider effectively the same, on a macroscopic scale. This gives a
partitioning of the phase space of the system into coarse-grained macrostates.
Typically one of the macrovariables is energy. Partitioning the range of
possible energies divides the phase space of the system into “energy shells,”
consisting of a narrow band of energies, each of which is partitioned by the
coarse-graining of the other macrovariables into macrostates. Let M(x) be
the element of the macrostate partition to which a phase-space point belongs,
and let µ be Liouville measure on phase space. Then the Boltzmann entropy
of a microstate x is defined as,

SB(x) = k log µ(M(x)). (26)
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The connection between Boltzmann entropy and thermodynamic entropy
is via Gibbs entropy. As we have seen in the previous section, in the quasi-
deterministic regime, measured differences in thermodynamic entropy are,
with high probability, approximately equal to Gibbs entropy differences. As
we will now argue, in that regime Boltzmann entropy differences are ap-
proximately equal to Gibbs entropy differences. Therefore, in the quasi-
deterministic regime, Boltzmann entropy differences are approximately equal
to thermodynamic entropy differences.19

Consider some Boltzmannian energy shell ΓE. Let ΓE(λa) and ΓE(λb)
be the subsets of ΓE that are compatible with those values of the external
parameters. In the quasi-deterministic regime, we expect each ΓE(λ) to be
dominated by a single macrostate, ME(λ), which takes up the vast majority
of its Liouville measure. Therefore, in the quasi-deterministic regime,

SB(λb)− SB(λa) = k log (µ(ME(λb))/µ(ME(λa)))

≈ k log (µ(ΓE(λb))/µ(ΓE(λa)))
(27)

In the quasi-deterministic regime, a canonical distribution is sharply peaked
near its expectation value. If τβ,λa and τβ,λb are both peaked around a com-
mon energy expectation value E, with the same spread in energy, and if ΓE
is an energy shell focused on E, with a width comparable to the spread of
energy of those canonical distributions,

S[τβ,λb ]− S[τβ,λa ] ≈ k log (µ(ΓE(λb))/µ(ΓE(λa))) . (28)

Therefore, in this regime, the difference of the Boltzmann entropies SB(λb)
and SB(λa) will approximate the difference in thermodynamic entropy of
the corresponding thermodynamic states. Outside the quasi-deterministic
regime, Boltzmann and thermodynamic entropies part ways.

6 But wait...! Some possible objections

I expect that some of what has been said will strike some readers as prob-
lematic, particularly the idea that statistical-mechanical analogues of tem-
perature and entropy are attributes of probability distributions, rather than
some functions of the physical state of a system. I can imagine an objection
along the lines of the following.

19See Werndl and Frigg (2020b) for a detailed discussion of conditions under which
Boltzmann entropy differences agree with Gibbs energy differences.
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Can you be serious when you say that temperature is a parameter
of a probability distribution? Are you asking me to believe that,
when I inadvertently put my hand on a hot stove, what I feel is
something as abstract, non-physical, and insubstantial, as that?

The response to this is, of course, is that what you are feeling is the physical
effects of an influx of energy into your hand from the stove. So where does
probability come in? Temperature is a dispositional property par excellence,
the disposition to transfer energy when placed in thermal contact with a
body of lower temperature, and to receive energy when placed in thermal
contact with a body of higher temperature. Statistical mechanics tells us
that this is a probabilistic disposition. Though you may be as sure that
you will feel pain when you put your hand on a hot stove as you can be of
anything, your certainty should fall short (albeit by a negligible amount) of
absolute certainty, and you should admit that it is possible (albeit extremely
unlikely) that the molecules in your hand and in the stove element are in a
state such that no energy will flow, or one such that energy will flow in the
direction opposite from that expected. That is, the disposition to behave in
a way expected of a body of high temperature is a disposition to do so with
high probability. For a system in thermal equilibrium, once its Hamiltonian
is specified, the parameter β is all that is needed to specify the relevant
probability distribution. The parameter β, or, equivalently, T , is an indicator
of the nature of the disposition to transfer energy when placed into thermal
contact with another system. The difference between two such parameters,
T1 − T2, tells us which direction to expect energy flow, and indicates the
strength of the disposition for energy to be transferred.

A related worry that might come to the minds of some readers: isn’t there
a more straightforward relation between temperature and some statistical
mechanical quantity? It has become a commonplace of the literature on
theory reduction, racing its lineage back at least to Nagel’s classic work
(Nagel, 1961, p. 341), that temperature is mean kinetic energy of molecules,
where “mean” here is not expectation value with respect to some probability
distribution, but rather the population mean, that is, the total kinetic energy
of all molecules, divided by the number of molecules. This has a familiar,
reassuring ring to it; a high-level property, temperature, is explicitly defined
as a function of the microstate, as one would antecedently expect in theory
reduction.

There’s a grain of truth to this, but only a grain. For a system whose
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Hamiltonian consists of a kinetic energy term that is quadratic in generalized
momenta (which could include, in additional to momentum of translation,
also rotational and vibrational terms) plus a potential energy term that is
a function only of the generalized coordinates, the expectation value, in a
canonical distribution, of each kinetic energy term is kT/2. For a macroscopic
system the actual value of total kinetic energy will, with high probability, be
close to its expectation value, and hence, with high probability, the mean
kinetic energy, that is, the total kinetic energy divided by the number of
degrees of freedom contributing to it, will be close to kT/2. There is thus a
relation between temperature and mean kinetic energy—for systems of that
sort.

But, as Larry Sklar has emphasized, not all systems are like that. A radi-
ation bath in thermal equilibrium with a black body has a temperature, even
though its energy doesn’t divide into kinetic and potential in that way. This
has given rise to claims that temperature is multiply realizable. The claim
is, as Sklar puts it, that “[t]he microscopic feature of the system associated
with its temperature can . . . vary from system to system depending on its
constitution.” This, as Sklar argues, is misleading, “because ‘temperature’
in many of its uses in statistical mechanics refers not to an instanced prop-
erty of a particular system sample at a time, but, rather, to some feature of
a probability distribution over systems of a specified type” (Sklar, 1993, p.
352). And that feature is the same feature, whatever the constitution of the
system.

7 Foundations and keystones: on the relation

between “Boltzmannian” and “Gibbsian”

methods

It has become a commonplace of the philosophical literature on statistical
mechanics that there are rival approaches to statistical mechanics, usually
called “Boltzmannian” and “Gibbsian.” The terminology is unfortunate, as
both have their roots in the work of Boltzmann, and, in particular, the use
of an imaginary ensemble of systems, usually thought to be a hallmark of
the “Gibbsian” approach, was originated by Boltzmann, as Gibbs took pains
to acknowledge on the second page of the preface to his book (Gibbs, 1902,
p. viii). Sometimes, the contrast is expressed as one between “individualist”
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and “ensemblist” approaches (see Goldstein 2019). This is also misleading,
as the point of introducing ensembles is to consider the consequences of an in-
complete specification of initial conditions for the behaviour of an individual
system.20

The idea that the families of methods labelled “Boltzmannian” and “Gibb-
sian” constitute incompatible and competing approaches is alien to the way
the founders of the subject thought of it, and to the textbook tradition that
emerged.21 Though Boltzmann’s work on statistical mechanics, which in-
volves a bewildering variety of approaches, might give the impression that he
is merely opportunistic and unsystematic, a careful reading, undertaken by
Olivier Darrigol, demonstrates that Boltzmann was deeply concerned with
the relations between the various techniques he introduced (Darrigol, 2018).
Gibbs himself presented his work, not as a rival to Boltzmann’s, but as ex-
tending and building upon it.

Another attitude that has been expressed in the literature is that “Boltz-
mannian” statistical mechanics forms a foundation for the subject, and “Gibb-
sian” methods are to be thought of as calculational tools, and nothing more
(see Goldstein et al. 2020; Werndl and Frigg 2020a).

Einstein, who, independently of Gibbs, developed much of the machinery
of “Gibbsian” statistical mechanics, saw the relation of that machinery to the
work of Boltzmann differently. In a letter to Marcel Grossman of September
1901, he wrote,22

Lately I have been engrossed in Boltzmann’s works on the kinetic
theory of gases and these last few days I wrote a short paper

20Gibbs himself was unambiguous on this point: “The states of the bodies which we
handle are certainly not known to us exactly. What we know about a body can generally
be described most accurately and most simply by saying that it is one taken at random
from a great number (ensemble) of bodies which are completely described” (Gibbs, 1902,
p. 163).

21Here’s a way to think of it, that I find helpful. Is Boltzmann’s Lectures on Gas
Theory (Boltzmann 1896, 1898, 1964) a work of “Boltzmannian” or “Gibbsian” statistical
mechanics? The H-theorem, usually awarded to the “Boltzmannian” camp, is there, in
Boltzmann’s fullest presentation. But so are the ensembles of systems (which Boltzmann
called Ergoden); see especially sections 26 and 32 of Part II. Is it possible to divide these
lectures into two treatises, a “Boltzmannian” one and a “Gibbsian” one, each capable of
standing on its own?

22Ich habe mich in letzer Zeit gründlich mit Boltzmanns Arbeiten über kinetische Gas-
theorie befaßt & in den letzen Tagen selbst eine kleine Arbeit geschreiben, welche den
Schlußstein einer von ihm begonnen Beweiskette liefert.
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myself that provides the keystone in the chain of proofs that he
had started (Einstein 1987b, p. 181, from Einstein 1987a, p.
315).

We have here two architectural metaphors, foundation and keystone. The
two metaphors convey very different conceptions of the relation between
“Boltzmannian” and “Gibbsian” methods in statistical mechanics. The re-
lation of a foundation to the structure built on it is one of asymmetric de-
pendence. The foundation does not need the superstructure for its stability,
but the superstructure cannot stand without the foundation. In contrast,
an arch is not stable until the keystone is in place, and must be held up by
temporary scaffolding. Once the arch is completed, no part of it can stand on
its own, without the other parts. It is, of course, possible that Einstein was
simply wrong about the relation of his work (and Gibbs’) to Boltzmann’s.
But I invite the reader to seriously consider the possibility that Einstein and
Gibbs, both of them deeply immersed in study of Boltzmann’s work on sta-
tistical mechanics, correctly understood the relation of their work to that of
their predecessor.

8 Appendix. Proofs

As we have seen, the theorems invoked in this note come in two versions,
quantum and classical. In this appendix, we adopt systematically ambigu-
ous notation, and use the notation ρ for either a probability distribution on
a classical phase space, represented by density function fρ with respect to
Liouville measure, or a quantum state, represented by a density operator ρ̂
on a Hilbert space. We will use the notation S[ρ] for the Gibbs entropy (clas-
sical), or the von Neumann entropy (quantum). We will occasionally use S(t)
as shorthand for S applied to the probability distribution (or quantum state)
for time t. By Hamiltonian evolution we will mean, in the classical context,
evolution of a system according to Hamilton’s equations, for some (possi-
bly time-varying) Hamiltonian H, and, in the classical context, evolution of
a quantum state according to the Schrödinger equation, for some (possibly
time-varying) Hamiltonian operator Ĥ. The key feature of Hamiltonian evo-
lution that we need is that, in the classical context, it conserves Liouville
measure, and, in the quantum context, it induces a unitary mapping of the
Hilbert space to itself.

35



As mentioned in the main text, for a Hamiltonian Hλ, which may depend
on exogenous parameters λ, a canonical distribution is one that has a density
function, with respect to Liouville measure µ,

τβ,λ(x) = Z−1
β,λ e

−βHλ(x). (29)

Zβ,λ is a normalization constant, required to make the integral of τβ,λ over
all of the accessible region of phase space equal to unity.

Zβ,λ =

∫
e−βHλ dµ. (30)

It depends on the parameter β and on the form of the Hamiltonian Hλ. In
fact, this dependence is informative about certain properties of the canonical
distribution. In particular, the dependence of Zβ,λ on β yields information
about the expectation value of energy, and its variance, for a canonical dis-
tribution.

〈Hλ〉τβ,λ = − ∂

∂β
logZβ,λ; (31)

Varτβ,λ(Hλ) =
∂2

∂β2
logZβ,λ = − ∂

∂β
〈Hλ〉τβ,λ . (32)

Because the variance of H is always positive, for any canonical distribution,
it follows that, for fixed λ, expectation value of energy for the canonical
distribution, 〈Hλ〉τβ,λ , is a monotonic decreasing function of β, that is, a
monotonic increasing function of temperature. From this it follows that, for
fixed λ, no two distinct canonical distributions have the same expectation
value of energy.

A useful property of canonical distributions is the following.

Lemma 1. For any T > 0, the canonical distribution τβ, where β = 1/kT ,
uniquely minimizes the quantity

〈H〉ρ − TS[ρ].

That is, for any distribution ρ,

〈H〉τβ − TS[τβ] ≤ 〈H〉ρ − TS[ρ],

with equality only if ρ = τβ.
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To prove Lemma 1, we define the relative entropy of two probability
distributions. If two distributions have density functions ρ, ω, such that ρ is
equal to zero wherever ω is, we define their relative entropy (also known as
the Kullback-Leibler divergence), as

S[ρ ‖ω] = −k ( 〈logω〉ρ − 〈log ρ〉ρ) . (33)

It can be proven (see, e.g., Cover and Thomas 1991, §2.6) that S[ρ ‖ω] ≥ 0,
with equality only if ρ = ω. From this Lemma 1 follows, taking τβ as ω.

From Lemma 1, and the fact that 〈Hλ〉τβ,λ , is a monotonic decreasing
function of β, we have,

Lemma 2. The canonical distribution τβ,λ uniquely maximizes S among dis-
tributions that agree with it on expectation value of energy. That is, if

〈Hλ〉ρ = 〈Hλ〉τβ,λ ,

then
S[τβ,λ] ≥ S[ρ],

with equality only if ρ = τβ,λ.

We will also use the following facts about the Gibbs/von Neumann en-
tropy S.

Lemma 3. S[ρ] is conserved under Hamiltonian evolution.

Lemma 4. ( Subadditivity of S). For any system AB consisting of disjoint
subsystems A, B, and any probability distribution over AB,

S[ρAB] ≤ S[ρA] + S[ρB],

with equality only if the subsystems A and B are uncorrelated on ρAB.

We are now in a position to prove what we set out to prove.

Proposition 5. Suppose that, at time t0, two systems A and B have associ-
ated with them uncorrelated canonical distributions with parameters βa and
βb. During the time interval [t0, t1], the joint system consisting of A and B
undergoes Hamiltonian evolution according to the time-varying Hamiltonian

HAB(t) = HA +HB + VAB(t),
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where the interaction potential VAB is zero at the endpoints of this interval.

VAB(t0) = VAB(t1) = 0.

No restrictions are placed on VAB other than the condition that no net work
is done on the system.

〈HA +HB〉t0 = 〈HA +HB〉t1 .

Then,

� If βa = βb, 〈∆HA〉 = 0,

� if βa > βb, 〈∆HA〉 ≥ 0, and

� if βa < βb, 〈∆HA〉 ≤ 0.

Proof. We begin with the case βa = βb. Then the initial distribution for
the joint system AB is a canonical distribution. Because the evolution from
t0 to t1 is Hamiltonian, S has the same value at the beginning and end
of the evolution. The expectation value of total energy is the same at t1
as it is at t0. Since, by Lemma 2, the initial canonical distribution is the
unique distribution that has the values for S and 〈H〉 that it does, the final
distribution is the same as the initial canonical distribution.

Now consider the case in which βa 6= βb. By Lemma 1,

〈HA(t0)〉 − Ta SA(t0) ≤ 〈HA(t1)〉 − Ta SA(t1), (34)

or,
∆〈HA〉 ≥ Ta ∆SA. (35)

Similarly,
∆〈HB〉 ≥ Tb ∆SB. (36)

Because the subsystems A and B are uncorrelated at t0,

SAB(t0) = SA(t0) + SB(t0). (37)

By Lemma 4,
SAB(t1) ≤ SA(t1) + SB(t1). (38)

Because S is conserved under Hamiltonian evolution,

SAB(t1) = SAB(t0). (39)
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Combining (37), (38), and (39), we get,

SA(t0) + SB(t0) ≤ SA(t1) + SB(t1), (40)

or,
∆SA + ∆SB ≥ 0. (41)

Combining (35), (36), and (41), we get

∆〈HA〉
Ta

+
∆〈HB〉
Tb

≥ ∆SA + ∆SB ≥ 0. (42)

Because total energy is conserved, ∆〈HB〉 = −∆〈HA〉, and so,(
1

Ta
− 1

Tb

)
∆〈HA〉 ≥ 0, (43)

or,
(βa − βb) ∆〈HA〉 ≥ 0. (44)

From this follow the claimed assertions.

Proposition 6. Consider a system A that, at time t0, has a probability
distribution ρA(t0). Between t0 and t1 it interacts successively with systems
{Bi, i = 1, . . . , n}, which at t0 have canonical distributions at temperatures
Ti, uncorrelated with A. The joint system consisting of A and the systems
{Bi} undergoes Hamiltonian evolution in the interval, and the coupling of
A with the systems {Bi} conserves total energy. At t1 the systems are no
longer interacting. Let 〈Qi〉 = −∆〈HBi〉 be the expectation value of the
energy received by A from Bi. Then,

n∑
i=1

〈Qi〉
Ti
≤ SA(t1)− SA(t0).

Proof. By the same reasoning that led to (36), we have, for each Bi,

∆〈HBi〉 ≥ Ti ∆SBi , (45)

or,

−〈Qi〉
Ti
≥ ∆SBi . (46)
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From this, it follows that,

∆SA −
n∑
i=1

〈Qi〉
Ti
≥ ∆SA +

n∑
i=1

∆SBi . (47)

By the same reasoning that led to (41),

∆SA +
n∑
i=1

∆SBi ≥ 0. (48)

Combining (47) and (48) gives us,

∆SA −
n∑
i=1

〈Qi〉
Ti
≥ 0, (49)

or,

∆SA ≥
n∑
i=1

〈Qi〉
Ti

, (50)

which is what was to be proven.
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