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Abstract

Despite its being one of Roger Penrose’s greatest contributions to spacetime
physics, there is a dearth of philosophical literature on twistor theory. The one ex-
ception to this is (Bain, 2006)—but although excellent, there remains much more
to be said going beyond that article on the foundations and philosophy of twistor
theory. In this article, we seek to make some progress in this direction, by (a) pre-
senting an introduction to twistor theory which should be (reasonably) accessible
to philosophers, (b) considering how the spacetime–twistor correspondence in-
teracts with the blossoming philosophical literature on theoretical equivalence,
and (c) exploring the bearing which twistor theory might have on philosophical
issues such as the status of dynamics, the geometrisation of physics, spacetime
ontology, the emergence of spacetime, and symmetry-to-reality inferences. We
close with an elaboration of a variety of further opportunities for philosophical
investigation into twistor theory.
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1 Introduction
Contemporary philosophy of spacetime has many facets. As one example: there are fa-
mous and well-explored debates regarding the ontological status of spacetime: is this
a fundamental entity in its own right (per the substantivalist), or, rather, is spacetime
somehow reducible to material entities and relations between said entities (per the rela-
tionalist)?1 And as another: there are debates regarding the geometrisation of physics:
what does it mean to geometrise a particular physical theory or effect, and what are the
merits of doing so?2

Sometimes, these debates are broadly orthogonal to one another. For example: sub-
stantivalists and relationalists can debate over the ontological status of the spacetime
manifold in general relativity in light of the hole argument (re-introduced into the phi-
losophy literature by Earman and Norton (1987)3), but the verdict here is largely inde-
pendent of questions of geometrisation.4 And to take another example: one can talk

1Of course, there is a variety of ways of making more precise the difference between substantivalism
and relationalism—see e.g. (Baker, 2021; Dasgupta, 2011; Earman, 1977; North, 2021; Pooley, 2013a)—but
for now, this characterisation is sufficient.

2For literature on this issue, see (Dürr, 2020; Kalinowski, 1988; Lehmkuhl, 2009).
3For some philosophical pre-history of the hole argument, see (Weatherall, 2020).
4Or at least, isn’t connected in any particularly straightforward way. Perhaps one can argue that it

is the geometrisation of gravity in general relativity—in the sense that this is a manifestation of space-
time curvature (although see (Lehmkuhl, 2014) for some contrary thoughts)—which leads to its general
covariance, and thereby to the hole argument raising its head. However, every link in this chain of con-
nections here is difficult and controversial: see e.g. (Norton et al., 2023) for discussion.
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of the geometrisation of Newtonian gravity in Newton-Cartan theory (see e.g. (Fried-
man, 1983; Knox, 2013)) without calling into question the reality (or otherwise) of the
spacetime manifold.

This being said, there are also natural points of convergence between these topics.
One such point—the point which, indeed, will constitute our exclusive focus in this
article—is twistor theory, initially developed by Roger Penrose (1967). The guiding idea
behind twistor theory is that conformally invariant field theory dynamics on a space-
time manifold can be mapped to geometrical statements on an alternative space known
as ‘twistor space’, and vice versa. (For recent reviews of twistor theory, see (Adamo, 2018;
Atiyah et al., 2017).) Via this map, physical theories not only appear to be purged of their
commitment to the basic structure of the spacetime manifold, but also appear to be ge-
ometrised in a quite radical sense. In physics and mathematics, twistors have found
multifarious applications—for example, to string theory, holography, to the evaluation
of perturbation series (see e.g. (Atiyah et al., 2017)), and to the general project of unifi-
cation in physics (see e.g. (Woit, 2021)). However, within the philosophy of physics, the
significance of twistor theory remains lamentably under-explored.

To our knowledge, the only published discussion of twistor theory in the philoso-
phy literature is due to Bain (2006).5 Although we will engage with Bain’s excellent dis-
cussion quite substantially in what follows, in our view there remains much regarding
twistor theory which warrants greater foundational scrutiny; moreover, there remains
space in the market for a more accessible introduction to twistors for philosophers.6

With all of this in mind, then, the structure of this article is as follows. In §2, we pro-
vide a clear route into twistor theory for philosophers of physics (it should be stressed
that this constitutes but one such route—we discuss this more below). In §3, we assess
the spacetime–twistor correspondence from the point of view of the modern philo-
sophical literature on theoretical equivalence, in particular categorical equivalence. In
§4, we further explore the philosophical and foundational significance of twistor theory
with respect to questions of (i) dynamics—is it true that twistor theory is purged of dy-
namics, as is sometimes claimed?; (ii) geometrisation—in what sense does twistor the-
ory offer a novel approach to the geometrisation of physical theories?; (iii) ontology—
what comprise the metaphysical commitments of a theory set on twistor space?; (iv) the
emergence of spacetime—does twistor theory offer any novel outlook on this issue?; and

5There is also (March, 2023), which is approximately contemporaneous with our article; however,
since that piece focuses on non-relativistic twistor theory and its foundational applications, we will not
discuss it further here.

6Since this already involves a significant amount of work, we limit ourselves to what Bain (2006)
refers to as ‘stone age’ twistor theory (i.e., the theory in the period 1967–80), while noting that contem-
porary twistor theory has even broader applications, on which see e.g. (Atiyah et al., 2017).
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(v) symmetry principles—does twistor theory present interesting and novel challenges
to Earman’s famous symmetry principles, as presented in (Earman, 1989)? All of this
achieved, we close this article in §5.

2 Mathematics of twistors
In this section, we present for philosophers (i) the mathematics of twistor space and
some particular paths to the construction of that space (§2.1), and (ii) the Penrose trans-
formations, which map fields in spacetime (and their dynamics) to geometrical state-
ments in twistor space (§2.2). With these preliminaries in hand, we will be in a position
to assess in detail in §§3–4 the philosophical significance of twistor theory.

In order to make our exposition as digestible as possible, we attempt here to syn-
thesise aspects of the various expositions of twistor theory found in the standard texts
(Penrose and Rindler, 1988a,b; Ward and Wells, 1990), the more informal treatments
(Huggett and Tod, 1985; Adamo, 2018), and the recent major review article (Atiyah et al.,
2017). Throughout the article, we use notation consistent with (Adamo, 2018).

Before we begin, one further aspect of the twistor theory literature should be flagged
for the aspiring philosopher of twistors: much of the literature works in coordinates,
and generally we will follow suit. Most of the time, the constructions can be lifted to a
coordinate-free description, but this is rarely addressed explicitly. We will see an example
of this shortly.

2.1 Twistor space
There are at least three equivalent ways of defining twistors:7

1. twistors as α-planes,

2. twistors as spinors for the conformal group,

3. twistors as solutions to the twistor equation.

We turn our attention first to approach (3). And to write down the twistor equation,
we should first discuss spinors. These also matter in their own right: as pointed out in
(Penrose and Rindler, 1988b, p. 43, emphasis added),

7Equivalent in 4-dimensional flat space, at least: see (Atiyah et al., 2017, p. 11), although even there
this is not substantiated.
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two-component spinor calculus is a very specific calculus for studying the
structure of space-time manifolds. Indeed, the four-dimensionality and
(+−−−) signature of space-time, together with the desirable global prop-
erties of orientability, time-orientability, and existence of spin structure,
may all, in a sense, be regarded as derived from two-component spinors,
rather than just given. However [...] there is still only a limited sense in
which these properties can be so regarded, because the manifold of space-
time points itself has to be given beforehand, even though the nature of
this manifold is somewhat restricted by its having to admit the appropri-
ate kind of spinor structure. If we were to attempt to take totally seriously
the philosophy that all the space-time concepts are to be derived from more
primitive spinorial ones, then we would have to find some way in which
the space-time points themselves can be regarded as derived objects. Spinor
algebra by itself is not rich enough to achieve this, but a certain extension of
spinor algebra, namely twistor algebra, can indeed be taken as more primi-
tive than space-time itself.

In light of the above, we will shortly provide a short exposition of spinor algebra and
calculus, following the presentation by Fatibene and Francaviglia (2003).

In addition to this, it is worth noting that we here consider from the outset (unlike
some other treatments) complexified Minkowski space CM as our base space, in place
of the more familiar real Minkowski space M. This is partly for purposes of brevity
and partly because “[t]wistors [...] are essentially complex objects. To get a proper un-
derstanding of twistor geometry, it is therefore necessary to consider complex geometry
and, in particular, the [complexification of Minkowski space]” (Penrose and Rindler,
1988b, p. 306, emphasis in original). Complexified Minkowski space is simply the man-
ifold CM = (C4, η) with the metric η obtained by holomorphic extension of the real
Minkowski metric.8,9 Note in particular that this is not a case of Wick rotation since
all four coordinates are allowed to range over all complex numbers. Note also that this
space will play a double role: first in constructing twistors, and later in the correspon-

8This means simply that the coordinates in the expression for the metric ds2 = dt2−dx2−dy2−
dz2 are allowed to take complex values. Note in particular that this does not make this metric Hermitian.
See (Penrose and Rindler, 1988b, p. 64).

9At this point we could still treat CM as a vector space (or an affine space) rather than as a mani-
fold but soon we will require techniques from differential geometry, so in anticipation we define it as a
manifold right off the bat. The reader should be aware that the mathematical literature often vacillates
between the vector space and manifold descriptions. Luckily, there is an obvious manifold structure on
CM: a standard topology is defined using the Euclidean inner product, and the maximal atlas extends
from the identity global coordinate chart.
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dence between twistorial objects and fields defined on spacetime. To recover the field
as defined on real spacetime, it suffices to restrict complexified spacetime to the subset
of real spacetime points, so we will typically not do this explicitly in what follows.10

Our first goal is to define spinor bundles on our base manifold, such that we can
then define spinor fields as their smooth sections. This is in complete analogy to how
we construct a tangent bundle in order to then define vector fields. The difference is
that while 2π-rotations of coordinate frames act as the identity on vector components,
(famously) they flip the sign of spinor components and we instead need a 4π-rotation
to return to the identity. This suggests that rather than an SO(1, 3)-principal bundle
we need instead a Spin(1, 3)-principal bundle, where Spin(m,n) is the universal dou-
ble cover of SO(m,n). How this is implemented formally is reviewed in (Fatibene and
Francaviglia, 2003, §9); here we wish merely to draw attention to the underlying geo-
metric structures. We have:

Definition 2.1 (Fatibene and Francaviglia (2003), §9.2). A spin structure
(
Σ̄,Λ

)
on a

d-dimensional Lorentzian manifold (M, g) is

(i) (spin bundle) a Spin(1, d− 1)-principal bundle Σ̄, and

(ii) (frame bundle) a principal bundle morphism Λ : Σ̄ → F , where F is the or-
thonormal frame bundle, i.e. an SO(1, d− 1)-bundle on (M, g).

In the case in which (M, g) isCM, there is a unique spin structure. Here the frame
bundle is an SO(4,C)-bundle on CM with universal double cover Spin(4,C), recall-
ing that there is no such thing as signature for complex metrics. We can define the trivial
frame bundleF = C4× SO(4,C) and the trivial spin bundle Σ̄ = C4× Spin(4,C).
This will be seen to define a spin structure on CM with Λ given by the double cover
Spin(4,C)→ SO(4,C).

Spinor fields are then defined as smooth sections of the vector bundleEλ = Σ̄×λV
where λ is a representation of SO(4,C). We are interested only in the component of
the Lie group connected to the identity so we may work on the Lie algebra level. We
have that so(4,C) ∼= sl(2,C) × sl(2,C), as can be checked easily using Dynkin dia-
grams. Representations of sl(2,C) are classified by j ∈ Z/2. Spinor fields in the (1

2
, 0)

representation will be denoted σα, where α is an abstract index, i.e. the index denotes
only the rank of the object and in particular never assumes any numerical values. At any
point of the manifold, a spinor field has two components in a given coordinate frame so

10This is the point at which complexified spacetime differs from complex spacetime, according to
the usage in (Penrose and Rindler, 1988b, pp. 127–8). Complex spacetimes have no privileged subset
designated as the ‘real’ spacetime. Twistor theory is sometimes also constructed on complex spacetimes.

6



we write informally σα = (σ0, σ1) with σ0, σ1 ∈ C. We also have ‘conjugate spinors’
in the representation

(
0, 1

2

)
which are denotedσα̇. Finally we have the dual spinorsσα,

which are sections of the dual bundleE( 1
2
,0)

∗, and the conjugate duals.
As with vectors, we can take tensor products to obtain objects of higher rank. We

adopt the common convention that the order among the dotted and undotted indices
does not matter, thus e.g. σαα̇ = σα̇

α. There is a way to identify vectors with two-
index spinors and we write informally va = vαα̇, where va is a vector. To motivate
this, recall that vectors transform in the (1

2
, 1
2
) representation of sl(2,C) × sl(2,C).

Following (Adamo, 2018, § 1.2) and (Ward and Wells, 1990, § 4.2), associate to every
vector va = (v0, v1, v2, v3) ∈ CM—seen here as a vector space—a matrix

vαα̇ :=
1√
2

(
v0 + v3 v1 − iv2
v1 + iv2 v0 − v3

)
. (2.1.1)

Incidentally, in flat spacetime, every point is associated with a vector which is then man-
ifestly represented as a spinor–conjugate spinor pair.

With objects of higher rank, the prescription is simply to replace every tensorial
index with a pair of spinorial indices, exactly one of which should be dotted. One makes
much use of symmetrised and antisymmetried indices,11 so it is important to note that
skewing over more than two spinor indices always gives zero, essentially because spin
space is two-dimensional.12 We also make a choice of a non-zero skew two-index spinor
εαβ which allows for the identification of spinors and dual spinors in the following
way: σα = σβεβα and σα = εαβσβ . Note that, unlike the metric tensor, εαβ is skew
so index placement matters. The usual convention is summarised by the mnemonic
‘adjacent indices, descending to the right’. The Levi-Civita connection∇a onM can be
extended to a connection on spin bundles∇αα̇ and we write informally∇αα̇ = ∇a.13

In a particular coordinate frame, this amounts to∇αα̇ = ∂
∂xa where xαα̇ = xa is the

position vector relative to some origin. Finally, this allows us to write down the ‘twistor
equation’,

∇ (α
α̇ ωβ) = 0, (2.1.2)

11It is perhaps instructive to illustrate what permuting abstract indices amounts to. Tensors can be
defined uniquely by their action on vectors and covectors. Consider a tensor Tab which maps from
the set of pairs of vectors to an algebraic field. For any two vectors va, ua, we can define Tba via
Tba(v

a, ua) = Tab(u
a, va), i.e. by flipping which argument is passed to which ‘slot’. Such contrac-

tions are more commonly written Tbavbua = Tabu
avb.

12To see this, expand the antisymmetrisation in any spin frame and realise that out of any three indices,
two will necessarily be numerically equal, as in (Penrose and Rindler, 1988a, p. 136).

13See (Huggett and Tod, 1985, p. 28), although strictly they claim this only for real manifolds.
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where brackets denote symmetrisation and of course ∇α̇
α = εαβ∇βα̇. Solutions to

(2.1.2) can be found by proceeding à la (Penrose and Rindler, 1988b, pp. 45–6). First,
consider the object ∇α̇

α∇β̇
βωγ , where ωγ solves the twistor equation. The object is

skew in the indices βγ:

∇α̇
α∇β̇

βωγ = ∇α̇
α∇β̇

(βωγ) −∇α̇
α∇β̇

γωβ = −∇α̇
α∇β̇

γωβ . (2.1.3)

In flat space, derivatives commute so the object is also skew in αγ. Hence it is skew in
all three indices αβγ, meaning that it vanishes since (recall) spinorial objects can only
be non-trivially skew in up to two indices. Therefore, ∇β̇

βωγ is constant. Since it is
skew in the indices βγ, it has to be proportional to the unique skew two-index spinor
εβγ . Hence

∇βα̇ω
γ = −iεβγµα̇ , (2.1.4)

whereµα̇ is a constant spinor and−i is inserted for later convenience. Integrating (2.1.4)
then yields the general solution to the twistor equation

ωα = λα − ixαα̇µα̇ , (2.1.5)

with λα a constant of integration and xαα̇ the position vector relative to some origin.
The solutions of the twistor equation are determined fully by the spinors λα and µα̇,
i.e. by four complex numbers. Now define twistor space T to be the vector space of
the solutions to the twistor equation, making it a 4-dimensional complex vector space
coordinatised by the two spinors λα and µα̇ as in (Huggett and Tod, 1985, p. 54). A
twistorZA ∈ T can be written as14

ZA = (ωα, µα̇) , (2.1.6)

and is also coordinatised by four complex numbers so we write informallyZA = (Z1, Z2,
Z3, Z4) withZ1, Z2, Z3, Z4 ∈ C.

We can establish a correspondence between (complex) spacetime points and twistors
by considering the points at which the field ωα vanishes. This yields the so-called ‘inci-
dence relation’ (also sometimes called the ‘Klein correspondence’15)

λα = ixαα̇µα̇. (2.1.7)

For a given twistor ZA = (λα, µα̇), what is the locus of spacetime points xαα̇ that
satisfies the incidence relation? It can be shown—see (Huggett and Tod, 1985, p. 56)—
that this locus is a 2-plane with the additional properties that

14Note that Adamo (2018) hasZA = (λα, µα̇) here. We take this to be a typographic error.
15Note, though, that typically the terminology ‘Klein correspondence’ is reserved for the context in

which one is working with compactified complexified Minkowski space CMC , more on which below.
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1. every tangent is null,

2. any two tangents are orthogonal,

3. the tangent bivector is self-dual.16

Such an object is referred to as an ‘α-plane’. Now it is clear how definition (1) links to
definition (3). Notice also that (2.1.7) is invariant under rescalings of the twistor by a
non-zero complex number. This motivates the definition of projective twistor space
PT, coordinatised by the homogeneous coordinates Z1 : Z2 : Z3 : Z4.17 Commonly,
PT is referred to as ‘twistor space’ whereas T is called ‘non-projective twistor space’.
Since we had T ∼= C4, then also PT ∼= CP3.

It is useful to divide PT into three subspaces PT+, PN, and PT− depending upon
whether the twistor ‘norm’

∥ZA∥ = Z̄2Z0 + Z̄3Z1 + Z̄0Z2 + Z̄1Z3 (2.1.8)

is positive, negative or zero. One can show from the incidence relation that a null twistor
(∥ZA∥ = 0, i.e. ZA ∈ PN) corresponds to a real null geodesic (light ray) in M, i.e. that
the twistor space of real Minkowski space is PN.18

There is one complication that we have not yet dealt with. Looking at the inci-
dence relation (2.1.7), it is clear that ifµα̇ = 0, then λα also vanishes but then the entire
twistor vanishes, meaning that it cannot be represented using homogeneous coordi-
nates. Unless, that is, xαα̇ is allowed to be infinity. We can indeed achieve this through
compactification, so what we have actually shown is that CP3 is the twistor space for
compactified complexified Minkowski space CMC :

PT := PT(CMC) = CP3 . (2.1.9)
16‘Self-duality’ is a notion that appears all over the literature on twistor theory, so let us be clear about

what it means. Recall the Hodge star operator, familiar from e.g. the construction of the dual Faraday
tensor in classical electrodynamics. On 2-forms, the action of the operator is simply Fab 7→ ∗Fab =
1
2εab

cdFcd, where ε is a choice of non-zero skew 4-index tensor that represents a choice of orientation.
Since ∗∗ = −1, the eigenspace of the operator decomposes into the subspace with eigenvalue +i (self-
dual two-forms) and that with eigenvalue −i (anti-self-dual two-forms). The operator generalises to
arbitrary k-forms.

17A brief refresher on projective spaces. Given a real vector space V, we can construct the projective
space PV by identifying nonzero real multiples of vectors, i.e. PV = {[v] : v′ ∈ [v] if v′ = λv for λ ∈
R\0}. Projective spaces have a natural manifold structure. But clearly homogeneous coordinates are not
a coordinate system, as they are many-to-one: indeed there is no global coordinate system for projective
spaces, as is typical of manifolds.

18See (Adamo, 2018, § 2.1).
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If we instead wish to work with the twistor space for CM, we simply have to remove
the points in the full twistor space corresponding to spacetime infinity: PT(CM) =
{(λα, µα̇) ∈ CP3 : µα̇ ̸= 0}. This gives a subset of the full twistor space which is
commonly written19

PT(CM) = CP3 − CP1 . (2.1.10)

There is another way of looking at this, presented in (Adamo, 2018, § 2.3). Notice that
the full twistor space PT = CP3 represents the entire class of conformally flat space-
times, essentially because the twistor equation is conformally invariant. To pick out the
desired conformal structure, one introduces an object called the infinity bi-twistor IAB .
In this way, one can for example show that the twistor space of Euclidean anti-de Sitter
spacetime (a conformally flat spacetime) is PT+.20

In the midst of all this formalism, it is easy to lose sight of what the underlying idea
behind twistors is supposed to be. Recall that the original goal was to unify spacetime
and spinor degrees of freedom. The natural object to consider, then, is

G2(C4) = {2-complex-dimensional subspaces of C4} , (2.1.11)

which is called the ‘Grassmannian’. Here, C4 is to be understood as a vector space,
but in fact G2(C4) will have a canonical manifold structure. Since spinors are repre-
sented locally by two complex numbers, and (complexified) spacetime points by four,
the Grasmannian seemingly provides the spinor degrees of freedom at each point of
complexified spacetime. The Grasmannian also has a canonical manifold structure, and
in fact we haveG2(C4) = CMC . Compactified complexified spacetimeCMC provides
spinor degrees of freedom for each point of C4. Then, as Woit (2021, p. 16) puts it, “[a]
space-time point is thus a C2 in C4 which tautologically provides the spinor degree of
freedom at that point. The spinor bundle S is the tautological two-dimensional com-
plex vector bundle over [G2(C4)] whose fiber Sm at a point m ∈ [G2(C4)] is the C2

that defines the point.” To link to twistors, we proceed along the lines of (Ward and
Wells, 1990, §1.2), and first define the ‘flag manifold’

Fd1...dn := {(S1, . . . , Sn) : Sjare dj-dimensional subspaces of T
and S1 ⊂ · · · ⊂ Sn}

(2.1.12)

We use these flag manifolds to define complex manifolds of twistor geometry. Con-
sider three special twistor manifolds (twistor manifolds because the vector space chosen

19E.g. in (Atiyah et al., 2017, p. 7).
20The reader will notice that we do not discuss definition (2) from the list. This is because we think

that it does not contribute to the questions raised in this article, although it is useful to know it exists for
the sake of completeness.
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to construct the flag manifold is the twistor space T), F12, F1 and F2. We define two
maps α and β such that

F1
α← F12

β→ F2. (2.1.13)

These mappings are projection mappings and (2.1.13) is called a ‘double fibration’. A
correspondence between F1 and F2 is an assignment of a subspace c(p) ⊂ F2 for each
subspace p of F1 (since F1 is a collection of subspaces), where c = α−1 ◦ β.21 A double
fibration (2.1.13) always yields a correspondence between F1 and F2. Now, since F1 is
a collection of 1-complex-dimensional subspaces of T, by definition it is a projective
space. So F1 = PT. F2 is a collection of 2-complex-dimensional spaces. So from what
we have remarked in this section, F2 = G2(C4) = CMC . We denote F12 simply as
F. F is nothing but the correspondence space between PT and CMC . So one could
rewrite the double fibration (2.1.13) as

PT α← F β→ CMC . (2.1.14)

The double fibration (2.1.14) allows us to transform from PT to CMC and vice-versa;
it is therefore a geometrical statement of the incidence relation (2.1.7).

2.2 Penrose transformations
‘Penrose transformation’ is an umbrella term denoting the transformations from twisto-
rial (geometric) objects to solutions of various (dynamical) classical field theories de-
fined on a spacetime manifold, and vice versa. The original (‘the’) Penrose transforma-
tion describes solutions of the massless free (non-interacting) field equation of arbitrary
rank and will be discussed in §2.2.1. This can be extended (under some conditions) to
gauge potentials generating these fields in what is known as the ‘Sparling transform’.
Another case of interest to high energy physics is the ‘Ward transform’, which per-
tains Yang-Mills theories, again under some rather limiting conditions leading to what
is called the ‘Googly problem’. In this article, we will skip over these transformations;
however, an accessible account is given by Adamo (2018). We will, however, in §2.2.2
sketch a proof of ‘Kerr’s theorem’, which relates shear-free null congruences inCM and
homogeneous, holomorphic functions on PT. Finally we describe in §2.2.3 the ‘non-
linear graviton’: a construction due to Penrose that describes solutions to the Einstein
field equations, again only in some limited cases.22

21This ‘correspondence’ is a generalisation of a function in the sense that it maps objects in the do-
main to subsets of the range.

22For further philosophical discussion of these transformations, see (Bain, 2006).
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2.2.1 Zero rest-mass Penrose transform (ZRMPT)

To set the stage for the original Penrose transformation—the ‘zero rest-mass Penrose
transformation’ (ZRMPT)—we first provide a short discussion of classical field theory
and in particular of massless (zero rest-mass) fields. A simple (and hopefully familiar)
example is that of a Maxwell field in classical electrodynamics. The field strength tensor
in spinor indices is

Fαα̇ββ̇ = ∂αα̇Aββ̇ − ∂ββ̇Aαα̇. (2.2.1)

It is easy to observe that this is antisymmetric inαα̇ and ββ̇. This antisymmetry can be
attained ifFαα̇ββ̇ is symmetric in the dotted indices and antisymmetric in the undotted
indices or vice versa. This property of the field strength tensor results in the decompo-
sition

Fαα̇ββ̇ = εαβF
′
α̇β̇

+ εα̇β̇F̃αβ. (2.2.2)

Here, F ′
α̇β̇

and F̃αβ are the ‘self dual’ (SD) and ‘anti-self dual’ (ASD) parts of the field
strength tensor, respectively.23 It should be remarked upon that in the context of classi-
cal fields, this decomposition is not the most natural: bothF ′ and F̃ are complex since
we haveF± = 1

2
(F ∓ i ∗F ) as can be verified easily. Further, if the overall fieldF is to

be real—as it is, classically—then the two components have to be complex conjugates of
each other, as is likewise verified easily. With a view to quantum theory, however, these
components represent the right- and left-handed photons respectively and are indeed
independent of each other since F is complex. The first source-free Maxwell equation
in terms of spinor indices is then given as

∂αα̇Fαα̇ββ̇ = 0. (2.2.3)

On substituting the decomposition given by (2.2.2) into the Maxwell equation (2.2.3),
we get

∂α̇βF
′
α̇β̇

+ ∂α
β̇
F̃αβ = 0. (2.2.4)

The Bianchi identity in terms of SD/ASD decomposition of the field strength is given
as

∂α̇βF
′
α̇β̇
− ∂α

β̇
F̃αβ = 0. (2.2.5)

(2.2.4) and (2.2.5) give rise to the zero rest-mass (ZRM) equations in the case of the
electromagnetic field (spin 1, helicity +1,-1):

∂α̇βF
′
α̇β̇

= 0, (2.2.6)

∂α
β̇
F̃αβ = 0. (2.2.7)

23See footnote 16.
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So we obtain free-field equations expressed entirely in terms of SD and ASD compo-
nents of the field strength tensor. F̃αβ (undotted indices) is a ZRM field of negative
helicity and F ′

α̇β̇
(dotted indices) is a ZRM field of positive helicity.

We obtain a similar set of ZRM equations in the case of the linearised vacuum grav-
itational field resulting from a similar decomposition of the Weyl tensor φabcd. This
decomposition contains components that encode the SD and ASD parts of the Weyl
curvature. We obtain the following equations (after linearizing—i.e. after replacing the
covariant derivative with partial derivative):

∂α̇βφ
′
α̇β̇γ̇ϕ̇

= 0, (2.2.8)

∂α
β̇
φαβγϕ = 0. (2.2.9)

In general, a ZRM field ϕ of helicity h (having 2|h| dotted or undotted indices,
depending on whether it is a negative or positive helicity field), obeys the differential
equations

∂βα̇1ϕα̇1...α̇2|h| = 0 (h > 0), (2.2.10)

∂α1β̇ϕα1...α2|h| = 0 (h < 0). (2.2.11)

One of the key properties of ZRM equations is that they are conformally invariant
(Adamo, 2018, §3.1).24 Also, it is worth noting that conformal invariance is encoded in
twistor space. So this motivates the construction of ZRM fields in terms of twistorial
objects. From the incidence relation (2.1.7), we observe that a fixed point in CM corre-
sponds to a twistor line (X∼= CP1) in PT. So in order to express a field which is local
onCM in terms of twistorial objects, it is natural to integrate overX ∼= CP1 and excise
the CP1 degrees of freedom. The following is one natural such integral construction
(considering a negative helicity field):

ϕα1...α2|h|(x) =

∫
X

Dµ ∧ µα1 . . . µα2|h|fX(Z
A). (2.2.12)

There is a lot to explain in order to justify the above construction. Here Dµ (=
µαdµα) is a holomorphic differential form onCP1: Dµ ∈ Ω(1,0)(PT,O(2)) (i.e. (1, 0)
form on PT), homogeneous of projective weight 2.25 We wedge it with µα1 . . . µα2|h|

because µα is the most natural choice to account for the 2|h| indices on the LHS. Ig-
noring for now the f term in the integrand, the ingredients that we have discussed

24Following Wald (1984), a field equation for Ψ is conformally invariant of conformal weight s ∈ R
provided that ψ is a solution with metric gab iff ΩsΨ is a solution with metric Ω2gab.

25By projective weight 2, we mean f(rZA) = r2f(ZA)).
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so far make the integrand a (1, 0) form of homogeneity 2|h| + 2. But, in order for
the integral to make sense, the integrand should be a (1, 1) form of homogeneity 0
(the homogeneity necessarily has to be zero for the integral to be well-defined, because
we are integrating over the projective space). So we add an extra ingredient f(ZA)
(where the subscript X denotes f being restricted to the twistor line over which the
integral is performed) in order to make the integral consistent and well-defined. Thus
f ∈ Ω(0,1)(PT,O(−2|h|−2)). So, after constructing an integral that is consistent and
well-defined, the obvious question we ask is whether (2.2.12) satisfies the ZRM equation
(2.2.11). It turns out that this is indeed the case, given that f is a holomorphic function
(i.e. independent of the conjugated twistor variables). This holomorphicity condition
on PT can be expressed as ∂̄f = 0, where ∂̄ is the Dolbeault operator, the generealisa-
tion of the exterior derivative to complex manifolds.26 However, there are some trivial
solutions of which one wishes to dispose. Note that ∂̄2 = 0, as for the exterior deriva-
tive. This implies that f = ∂̄g also satisfies the holomorphicity condition ∂̄f = 0.
However, on substituting f = ∂̄g into the integral (2.2.12), the ZRM field vanishes
identically. So we should exclude functions f of the form f = ∂̄g from the space of
functions f that are holomorphic. So, we conclude that

f ∈
{
h ∈ Ω(0,1)(PT,O(−2|h| − 2)) : ∂̄h = 0, h ̸= ∂̄g

}
(2.2.13)

in order for the integral (2.2.12) to represent a nontrivial ZRM field. Further, from the
linearity of the integral, we know that any two functions that differ by an ∂̄-exact form
will evaluate to the same field, so we wish to treat them as equivalent. So we are working
with a cohomology group ker∂̄/im∂̄, in this case the first Dolbeault cohomology group,
H(0,1)(PT,O(−2|h| − 2)).27 We can carry out a similar procedure for ZRM fields of
positive helicity. What we have shown here is that helicity h ZRM fields on CM can
be specified by cohomology classes on twistor space. One can prove that this holds the
other way around as well—see e.g. (Eastwood et al., 1981)—although we will not go into
the details here. The final result is an isomorphism relation between helicity h ZRM
fields on CM and Dolbeault cohomology classes on twistor space:

Helicity h ZRM fields on CM ∼= H(0,1)(PT,O(2h− 2)). (2.2.14)

In fact, the isomorphism is for any U ⊂ MC open and convex, as verified in (Ward
and Wells, 1990, §§ 7.1–2), which also specifies precisely in what sense this is an iso-

26See (Adamo, 2018, p. 15) for more details.
27This is also isomorphic to the first Čech cohomology group Ȟ1(U,O(−2|h| − 2)), which is a

sheaf cohomology. The isomorphism goes through via Dolbeault’s theorem with U a good open cover
of PT—see (Maddock, 2009).
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morphism.28 We refer to this construction as the ‘zero rest-mass Penrose transform’
(ZRMPT). If we are interested in solutions on real Minkowski space M, we can find
a solution on CM an restrict it to real coordinates, but there is a caveat: since the
d’Alembertian (‘wave’) operator is hyperbolic, we need to extend our solution space to
generalised functions in order to recover the well-known non-smooth solutions to the
wave equation. More discussion on this point can be found in (Ward and Wells, 1990,
§ 7.4). At the end of the day, we obtain the Penrose transformation:

Helicity h ZRM fields on M ∼= H
(0,1)
A (PN,O(2h− 2)), (2.2.15)

whereAdenotes that we are working with distributions, i.e. generalised functions. This
is Eq. 7.4.10 in (Ward and Wells, 1990). Note that, unlike for (2.2.14), Ward and Wells
(1990) do not prove (indeed, do not even claim) that (2.2.15) is an isomorphism, in the
above sense. For an isomorphism between real Minkowski space and twistor space, one
would need to use second cohomologies—see (Ward and Wells, 1990, Thm. 7.4.5). This
makes it less obvious that to recover fields on real Minkowski space it is sufficient to
restrict the constructions on complexified Minkowski space, as claimed by e.g. Adamo
(2018) and as discussed above. Still, one can work with second cohomologies and pre-
sumably recover the desired results in that way. We discuss some of these issues further
in §3.

2.2.2 Kerr’s theorem

Kerr’s theorem establishes a correspondence between holomorphic functions on twistor
space and shear-free null congruences in Minkowski space. A null congruence is a set of
non-intersecting null geodesics in an open region U , such that there is a geodesic pass-
ing through each point inU . The tangent vectors to these null geodesics define a vector
field Ka (up to a scale) and so a spinor field µα (also up to a scale). Then the geodesic
equation in terms of the spinor field µα is given as

µαKa∇aµα ≡ µαµβµ̄β̇∇ββ̇µα = 0. (2.2.16)

Notice, in spinorial terms, that the directional derivative is along the µβµ̄β̇ direction
since the geodesic is in the µβµ̄β̇ direction. The shear of the null congruence is given

28In particular, the result to which we refer is Theorem 7.2.3. Note that this result is expressed in terms
of sheaf cohomology, which we are free to convert to Dolbeault cohomology via Dolbeault’s theorem
discussed in footnote 27. In addition, instead of talking about the set of ZRM fields, one talks about
sections of sheaves Γ(Z) in order to define a sense of isomorphism.
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as29

σ = µαµβλ̄β̇∇ββ̇µα, (2.2.17)

with the spinor λα satisfying µαλ
α = 1 and µβµ̄β̇∇ββ̇λ

α = 0. If the congruence is
shear-free, then σ = 0, in which case we can combine the two equations to obtain an
equation for a shear-free congruence,

µαµβ∇ββ̇µα = 0. (2.2.18)

(In what follows, we use ‘adapted’ coordinates, replacing covariant derivatives with par-
tial derivatives.) Solving for spaces with conformal curvature has certain difficulties dis-
cussed in (Huggett and Tod, 1985, p. 49); in line with that work we now proceed to
work with conformally flat spacetimes. In order to solve (2.2.17), we pick a constant
and normalized dyad (κα, ρβ) and coordinatise µα as

µα = t(κα + Lρα); L = µ0/µ1 = −µ1/µ0. (2.2.19)

On substituting in (2.2.18), we obtain

∂0α̇L− L∂1α̇L = 0. (2.2.20)

Recalling (2.1.1), we can write these equations in Minkowski coordinates represented
by a pair of SL(2,C) Weyl spinors:

xαα̇ =

(
t+ z x+ iy
x− iy t− z

)
=

(
τ ς
ς̄ ω

)
. (2.2.21)

Then we obtain the equations:

∂L

∂τ
− L∂L

∂ς̄
= 0 (α̇ = 0), (2.2.22)

∂L

∂ς
− L∂L

∂ω
= 0 (α̇ = 1). (2.2.23)

Using the method of characteristics to solve these equations, we arrive at

F (Lτ + ς̄ , Lς + τ̄ , L) = 0. (2.2.24)

The solution of our equations is determined by (2.2.24). Making use of (2.2.19), we can
rewrite (2.2.24) in terms of a homogeneous holomorphic function of four variables, as

f
(
−ixαα̇µα, µα

)
= 0. (2.2.25)

29We don’t prove this here—for details, see (Huggett and Tod, 1985).
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So we see that a shear-free null congruence is determined by a homogeneous holomor-
phic function of four variables. This should certainly tempt one to invoke twistors in
the analysis. Consider the point on PN, ZA = (πα, µα̇), where πα = xαα̇µα̇ (xαα̇
being real). Consider the zero locus of an analytic function on twistor space, f(ZA),
given by

f(ZA) = 0. (2.2.26)

The intersection set of the surface traced out by the zero set and PN is given by

f(ixαα̇µα̇, µα̇) = 0, (2.2.27)

where again xαα̇ is real. So, clearly from the above analysis each point belonging to the
intersection set defines a null geodesic in the direction of µαµ̄α̇, passing through xαα̇
and the intersection set defines a shear-free null congruence in the Minkowski space.
This result is what is known as Kerr’s theorem.

2.2.3 The nonlinear graviton

So far, we have discussed two different Penrose transformations in the context of con-
formally flat spacetime physics. One can extend such transformations to spacetimes
with conformal curvature, although typically this is not straightforward. The twistors
are well-defined for conformally flat spacetimes (i.e.φαβγδ = 0 and φ̄α̇β̇γ̇δ̇ = 0) because
the solutions of the twistor equation are constrained by the condition φαβγδω

δ = 0.
We can impose the conditions φαβγδ = 0 and φ̄α̇β̇γ̇δ̇ ̸= 0 on the complexified space-
time. Note that such a condition cannot be imposed on real spacetime because the dot-
ted and the undotted Weyl spinors are complex conjugates and thus not independent of
each other. In the complex picture, we can treat the dotted and undotted Weyl spinors
as independent quantities and thus can impose the above conditions. This requires that
the Weyl tensor is anti-self-dual and thus we define a spacetimeMwhich is referred to
as anti-self-dual. For such anM, it is possible to construct a projective twistor space
PT (note that this is not the same as the projective twistor space PT). We do not sketch
a proof of the construction in this section, but we formally state the twistor correspon-
dence known as the ‘non-linear graviton Penrose transform’ (for a proof, see (Huggett
and Tod, 1985)). The statement is this: from a solutionM of vacuum Einstein equa-
tions with anti-self-dual Weyl curvature, we can construct a four dimensional complex
manifold T, equipped with the following:

1. a ‘homogeneity operator’ Υ = µα̇
∂

∂µα̇
,

2. a projection π on the dotted spin space ,
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3. 2-forms τ = εα̇β̇dπα̇ ∧ dπβ̇ and µ = εαβX
αα̇Y ββ̇πα̇πβ̇ (where X and Y are

tangent vectors to fibre of T containing a particular α-plane) on each fibre over
the dotted spin space ,

4. a four-parameter family of holomorphic curves which are compact and have nor-
mal bundle O(1)⊕O(1) in PT.

3 Theoretical equivalence
So much for the technical background on twistor theory. In this section, we explore the
sense in which a theory set on twistor space is ‘equivalent’ to a relativistic theory set on
a Lorentzian spacetime (in particular CM, for reasons discussed below); to do this, we
draw on philosophers’ recent work on theoretical equivalence, and on different ways
of cashing out this notion, with particular attention given to categorical equivalence
(since, being the weakest ‘mainstream’ notion of theoretical equivalence, a failure of cat-
egorical equivalence implies also a failure of other notions of theoretical equivalence—
e.g., definitional equivalence or Morita equivalence—cf. (Weatherall, 2019a,b)).30 For
the sake of keeping the discussion tractable while nevertheless seeking to make an inter-
esting philosophical point, most of our considerations in this section focus upon the
case of the zero rest-mass Penrose transformations (ZRMPTs), introduced in the pre-
vious section. Specifically, in §3.1, we provide some background to the existing philo-
sophical literature on theoretical equivalence; in §3.2, we remaind the reader of the rel-
evant basics of category theory; in §3.3, we consider categorical equivalence in the case
of ZRMPTs.

3.1 Background on theoretical equivalence
To any philosopher of a logical empiricist persuasion, if two theories make the same em-
pirical predictions (i.e., are ‘empirically equivalent’), then they are equivalent tout court
(i.e., are ‘physically equivalent’). Setting aside the issue that securing the verdict that
any given two theories are indeed empirically equivalent is hardly trivial,31 more prin-
cipled objections can also be made to the above logical empiricist foil. For a scientific
realist, exclusive focus upon the notion of empirical equivalence is blind to the further
aim of a scientific theory to capture some features of the reality underlying the observed

30For a recent generalisation of the notion of categorical equivalence to theory kinematics, see
(March, 2024b).

31Not least because there seems to be no theory-independent notion of empirical content—see e.g.
(Read and Møller-Nielsen, 2020).
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phenomena. Even if two theories make exactly the same predictions, one might wish
to treat them as being physically inequivalent. This, of course, opens the door to the
possibility of the underdetermination of theory by evidence—hence, it would be valu-
able to have some criteria for when two theories really do ‘say the same thing about the
world’, and when they do not—the purpose of discussions of ‘theoretical equivalence’
is (at least in part) to address this issue.32

One way of approaching the issue of theoretical equivalence—with practical ap-
plications to scientific practice—is to peg equivalence to the inter-definability of two
theories, as in e.g. (Quine, 1975). Note that this is an essentially syntactic approach. An
(apparently) opposing view is provided by the semantic approach, according to which
a scientific theory is identified with the class of models, which might or (more com-
monly) might not be taken to be models of some formal theory, such as a theory ex-
pressed in first-order logic.33 Note that as a result of this, the word ‘model’ can mean
either a model of some formal theory, or more loosely a model in the sense of e.g. a
solution of the equations specifying the theory. The basis of much of contemporary
discussion of theoretical equivalence is (Halvorson, 2012), in which it is argued that the
semantic approach thus characterised is inadequate, pointing out that, according to
common understanding, scientific theories not only provide a class of models, but also
say something about the relations between these models:

[T]he semantic view was not wrong to treat theories as collections of mod-
els; rather, it was wrong to treat theories as nothing more than collections
of models. Beginning with a syntactically formulated theory T , we can
construct its class Mod(T ) of models. But we have more information than
just the collection of models: in particular, we have information about re-
lations between these models. For example, any sentence φ induces a re-
lation on Mod(T ), namely, the relation “m [∈ Mod(T )] assigns the same
truth value asm′ to φ.” (Halvorson, 2012, p. 204)

This specific argument requires the existence of a formal theory from which these rela-
tions can be obtained, but it seems plausible that even when we speak more loosely of a
solution to the theory’s equations, that theory could also say something about the rela-
tion between various kinds of solutions. It was realised later by Halvorson (2016) that
category theory provides a fruitful way of accounting for such relations; this insight was

32One might quite reasonably demand some argument to the effect that theoretical equivalence im-
plies physical equivalence; we won’t discuss this further here. For worries about formal notions of theo-
retical equivalence, see (Coffey, 2014; Teitel, 2021).

33Whether the two approaches really are opposing isn’t so obvious, in light of the work of Lutz (2017).
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then put to work by Weatherall (2016a) in the context of specific theories such as New-
tonian gravity and electromagnetism. As this is a relatively novel approach, we provide
here some background on the relevant basics of category theory; readers already familiar
with this can skip the next subsection.

3.2 Category theory
We take as our basis the statement of category theory by Mac Lane (1998). A categoryC
consists of a set of objects Ob (C) and a set of morphisms (also called arrows) Mor (C)
between the objects, satisfying certain conditions. It is useful to also introduce the con-
cept of hom-sets, which are sets of arrows between two objects, i.e. for a, b ∈ Ob (C)
one defines homC (a, b) := {f |f : a→ b, f ∈ Mor (C)}. Note that despite the sug-
gestive notation, it is not always desirable to think of morphisms as functions. It is much
more apposite to think of them as arrows between objects, and indeed the first formal
definition of categories by Mac Lane (1998) is in terms of graphs. We give an alterna-
tive but equivalent definition from Mac Lane (1998) since it requires less groundwork,
although it does potentially miss out on some intuition:

Definition 3.1 (Mac Lane (1998), §I.8). A category C consists of

(i) a set of objects Ob (C)

(ii) a function (a, b) 7→ homC (a, b) for all a, b ∈ Ob (C)

(iii) (composition) a function (g, f) 7→ g ◦ f for all g ∈ homC (b, c) and f ∈
homC (a, b) for all a, b, c ∈ Ob (C)

(iv) (identity) an arrow 1a ∈ homC (a, a) for all a ∈ Ob (C)

satisfying

1. (associativity)k◦(g ◦ f) = (k ◦ g)◦f for allk ∈ homC (c, d), g ∈ homC (b, c)
and f ∈ homC (a, b) for all a, b, c, d ∈ Ob (C)

2. (unity) 1b ◦ f = f and g ◦ 1b = g for all f ∈ homC (a, b) and g ∈ homC (b, c)

3. (disjointness) if (a, b) ̸= (a′, b′) then homC (a, b) ∩ homC (a′, b′) = ∅.

Two common examples of categories are Set and Top, as given here:
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Ob Mor

Set {x : x is a set}34 {x : x is a map}

Top {x : x is a topological space} {x : x is a continuous map}

Note that in contrast to the definition, we here specify a category just by its objects and
morphisms, since it is clear how to fill in the blanks. For example, the identity arrow
1a is given by the identity function ((x ∈ a) 7→ x) ∈ Mor(Set). There is a sense in
which topological spaces have more structure than bare sets: they come equipped with
a topology. To show this in the language of category theory, we can construct a functor
(a mapping from a category to another category satisfying certain conditions) and show
that it is not full (in the sense defined below). The obvious choice is a functor that maps
topological spaces to their underlying sets, and continuous maps to maps between the
underlying sets. According to the terminology developed by Baez et al. (2004), the fact
that this functor is not full shows that Top has more structure* than Set.35 Note that
the amount of structure* depends upon the choice of functor which is in general not
unique. One way to proceed would be to instead peg structure* to the existence of a full
functor. Instead, in keeping with the majority of the literature on this topic, we stress
that structure* is only one of the several pieces of structure we would like to preserve. In
terms of Baezian nomenclature, we also care about stuff and properties. It can be shown
that a functor that preserves all of structure, stuff and properties (i.e. one that is full,
faithful, and essentially surjective) instantiates a categorical equivalence. To formalise
this, we first give the definition of a functor:

Definition 3.2 (Mac Lane (1998), §I.3). A functor T : A→ B consists of

(i) (object function) a function a 7→ Ta ∈ Ob (B) for all a ∈ Ob (A)

(ii) (arrow function) a functionf 7→ Tf ∈ homB (Ta, Ta′) for allf ∈ homA (a, a′)

satisfying

1. (identity) T (1a) = 1Ta for all a ∈ Ob (A)

34Of course, ZFC does not allow unrestricted comprehension—which is to say that in ZFC the set of
all sets does not exist. The standard way of avoiding this issue is to postulate a setU called the universe set
whose elements are called small sets and then define Set as the category of small sets, i.e. Ob (Set) = U .
Alternatively, one might prefer to use TG set theory. For more on this, see (Mac Lane, 1998, §I.6).

35As in (Nguyen et al., 2020), we denote by ‘structure*’ the technical functorial notion and reserve
‘structure’ as a separate term.
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2. (composition) T (g ◦ f) = Tg ◦ Tf for all g ◦ f ∈ Mor (A).

We will also require the definition of a natural isomorphism which is a special case
of a natural transformation, a so-called morphism of functors. First we need to define
invertibility of arrows:

Definition 3.3 (Mac Lane (1998), §I.5). For a category C, an arrow f ∈ homC (a, b)
is called invertible if there exists an arrow g ∈ homC (b, a) such that f ◦ g = 1b and
g ◦ f = 1a.

Definition 3.4 (Mac Lane (1998), §I.4). For two functors S, T : A → B, a function
τ : a ∈ Ob (A) 7→ τa ∈ homB (Sa, Ta) is called a natural transformation (τ : S

.−→
T ) if Tf ◦ τa = τa′ ◦ Sf for all f ∈ homA (a, a′). A natural transformation τ is
called a natural isomorphism (τ : S ∼= T ) if τa is invertible for all a ∈ Ob (A).

To specify the various kinds of functors we want to consider, we first need to define
the isomorphism of objects in a category. (Note the dual use of ‘∼=’.) As usual, it should
be clear from context which one is meant.

Definition 3.5 (Mac Lane (1998), §I.5). Two objects a, a′ ∈ Ob (A) are isomorphic
(a ∼= a′) if there exists an invertible arrow f ∈ homA (a, a′).

Definition 3.6 (Mac Lane (1998), §I.3). Consider a functor T : A → B. For a, a′ ∈
Ob (A), define a function Ta,a′ : homA (a, a′) → homB (Ta, Ta′) by Ta,a′ : f 7→
Tf . The functor T is called

• full if Ta,a′ is surjective for all a, a′ ∈ Ob (A)

• faithful if Ta,a′ is injective for all a, a′ ∈ Ob (A)

• essentially surjective if ∀b ∈ Ob (B)∃a ∈ Ob (A) such that Fa ∼= b.

Definition 3.7 (Mac Lane (1998), §I.4). A functorT : A→ B is called an equivalence
of categories if there exists a functorS : B→ A such thatT ◦S ∼= IA andS◦T ∼= IB.
Then A and B are called equivalent as categories.

Note the dual use of ‘◦’ which here denotes the composition of functors, defined
in the obvious way. IC denotes the identity functor on C that maps objects and mor-
phisms of C to themselves. Finally, we state without proof the theorem that links cate-
gorical equivalence and forgetful functors:
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Theorem 3.1 (Mac Lane (1998), §IV.4). The following properties of a functor T : A→
B are equivalent:

1. T is an equivalence of categories.

2. T is full, faithful, and essentially surjective.

This much about category theory proper. Consider now the category Mod (T )
of models of a formal theory T . Recall that a model of a formal theory is an interpre-
tation M such that M |= ϕ for all ϕ ∈ T . The idea here is that once we have the
required model-theoretic objects, we are free to ‘throw away’ the formal theory that
generated them and consider models as objects in their own right, as in (Halvorson,
2012). At the end of the day, this commits us to the semantic approach. Back to our
category Mod (T ): its objects are given by the elements of the set of models of T but
the choice of arrows between models is not as obvious. If we really are dealing with for-
mal theories, then the choice of arrows will be given by elementary embeddings which
are injections from one model to another, which preserve the extensions of formulae
(Barrett and Halvorson, 2016; Halvorson, 2016; Weatherall, 2016a; Barrett and Halvor-
son, 2022; Dewar, 2022). However, more commonly on the semantic approach one
deals with semi-formal models, typically understood of solutions to the dynamics of
some given theory (e.g., models of vacuum GR being given by tuples (M, g), where
g is constrained to satisfy the Einstein equation (on this, see e.g. (Weatherall, 2016b;
Nguyen et al., 2020; Rosenstock et al., 2015)); in this case, the appropriate arrows for
a theory are typically taken to be some appropriate maps between the models of the
theory, such as isomorphisms (e.g., in the case of GR, the isomorphisms of Lorentzian
manifolds are isometries).

In practice, it turns out not to be crucially important whether one goes down the
formal route of elementary embeddings, or the semi-formal route of set-theoretic iso-
morphisms, since one rarely provides the relevant formal theory in the first place. In-
stead, one first puts in the arrows and implicitly assumes there exists a formal theory
such that it reproduces the category one has constructed. For example, Nguyen et al.
(2020) consider three different categories with the same objects but different isomor-
phism arrows, implicitly assuming there exist corresponding formal theories that gen-
erate the required isomorphisms. The methodological lesson from Nguyen et al. (2020)
is precisely that one should consider all the combinations of objects and arrows to de-
termine which one corresponds best to our sense of the contents of a given scientific
theory. One could envisage a critique of this somewhat ad hoc way of going about this,
but we won’t dwell further on the issue here.
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3.3 Categorical equivalence and massless free fields
With all of the relevant background on category theory now in hand, in this subsection
we now apply to twistor theory the kinds of considerations on categorical equivalence
propounded by Nguyen et al. (2020). In particular, we are interested in whether the
twistor-theoretic formulation of field theory is categorically equivalent to the standard
spacetime formulation, or whether there is a way twistors in which can realise the latter
with less overall structure*.36

Recall from the discussion in §2.2.1 of the ZRMPT that there is a one-to-one corre-
spondence between helicity h ZRM fields on CM and Dolbeault cohomology classes
on PT. Since the correspondence is an isomorphism for (2.2.14) but not for (2.2.15), we
focus on the former in what follows. That is to say: in this subsection we consider only
the categorical equivalence of a field theory set on CM and twistor space; clearly, this
sense of equivalence is not as directly pertinent to questions of which of two theories is
most apt to describe the actual world, although note that theories which involve com-
putations on CM do still have operational and empirical significance—consider, e.g.,
theories obtained via Wick rotation.

The fact that one obtains the same field from any choice of class representative
leads one to conjecture that this choice is related to the usual gauge freedom wherein
the same field is generated by an entire class of gauge potentials. This is supported by
(Sparling, 1990, p. 173), which holds that the “freedom in the choice of solutions [of the
ZRM equation] corresponds precisely to the gauge freedom [in the gauge potential]”—
although for certain specific reasons we will see below that this claim is in fact problem-
atic. Recall from (Ward and Wells, 1990, §7.2)37 that the potential for a negative helicity
field ϕα1α2...α2|h| is a spinor field ψα̇2...α̇2|h|

α1 such that

∇α1(α̇1ψ
α̇2...α̇2|h|)
α1 = 0, (3.3.1)

ϕα1α2...α2|h| = ∇α̇2|h|(α2|h| · · · ∇α̇2α2)ψ
α̇2...α̇2|h|
α1 , (3.3.2)

where the symmetrisation in (3.3.2) is to be performed over the undotted indices. Notice
the gauge symmetry

ψ
α̇2...α̇2|h|
α1 → ψ

α̇2...α̇2|h|
α1 +∇(α̇2

α1
γα̇3...α̇2|h|), (3.3.3)

where γα̇3...α̇2|h| is any spinor field.
36Since amount of structure* is a functor-relative notion, there might exist one functor which pre-

serves structure* and another which does not.
37Although note that this section in particular is riddled with misprints.
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Now we are in a position to define our categories. We consider affine complexified
Minkowski spaceCM and its twistor spacePT. LetTwistbe the category of all the indi-
vidual members of the equivalence classes from (2.2.14). Let the morphisms be provided
by the ∂̄-exact forms relating individual members of a class. Then morphisms exist only
between members of a given equivalence class. For a given helicityh, the models are then
given by

(
PT, ∂̄, f

)
, where f is any representative f ∈ [f ] ∈ H0,1 (PT,O(2h− 2)).

For completeness, also consider the category Class whose objects
(
PT, ∂̄, [f ]

)
are pro-

vided by entire equivalence classes and the only morphisms are the identity arrows.38

Conversely, the category Field has objects (CM, ϕ), whereϕ solves the helicityhZRM
field equation, and the morphisms are given by diffeomorphisms39 χ : CM → CM
that preserve the field: χ∗ϕ = ϕ. In addition, construct the category Gauge with ob-
jects being the gauge potentials ψ generating the helicity h field ϕ via (3.3.2), and the
arrows being provided by both the diffeomorphisms that preserve the gauge potential
and the gauge transformations themselves.

We note that there is some disagreement in the literature about whether diffeomor-
phisms should be part of the models. In response to Weatherall (2016b) who considers
them as such, Nguyen et al. (2020) omit them, stating that the focus of their article is
on gauge structure simpliciter. It seems, however, that in order to establish something
like theory equivalence, one should carefully consider which models are treated as rep-
resenting the same physical state by the theory. If one considers Leibniz equivalence to
be part of the theory formulation, one rather should consider diffeomorphically-related
models as such. Without committing to this view, we elect to include diffeomorphisms
at this point, in order to try to obtain the strongest form of equivalence possible.

Let us summarise in the following table:

Ob Mor

Twist
(
PT, ∂̄, f

)
f 7→ f + ∂̄g

Class
(
PT, ∂̄, [f ]

)
[f ] 7→ [f ]

Field (CM, ϕ) ϕ 7→ χ∗ϕ

Gauge (CM, ψ) ψ 7→ χ∗ψ, ψ 7→ ψ +∇γ

We now look for the following functors:
38These categories are analogous to those used by Nguyen et al. (2020) for classical electromagnetism.
39Of course, a diffeomorphism of manifolds generates a unique isometry of (pseudo-)Riemannian

manifolds so these terms are often used interchangeably. Here we stick to the more evocative ‘diffeomor-
phism’.
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−→ Twist Class

Field FT FC

Gauge GT GC

Let us first construct FC . Let the action on objects be provided by the ZRMPT,
that isFC : (CM, ϕ) 7→

(
PT, ∂̄, [f ]

)
such that the cohomology class [f ] generates the

field ϕ such as in §2.2.1. The only arrows in Class are identities so we map all the dif-
feomorphisms of a given field to the same identity acting on the cohomology class onto
which the fields map. There is a question of well-definedness: do all diffeomorphically
related fields map to the same cohomology class? Indeed they do, because we choose
precisely those diffeomorphisms that preserve the field.

Proposition 3.1. FC is a functor.

Proof. The objects (i) and (ii) have been provided. Identity and composition are both
easy to verify because all the arrows inField are identities in the sense of category theory
(see (iv) in Definition 3.1).

We now propose:

Proposition 3.2. FC forgets stuff.

Proof. We need to show that FC is not faithful. Consider a field ϕ ∈ Ob(Field) and
the associated FCϕ,ϕ

: homField (ϕ, ϕ)→ homClass (FCϕ, FCϕ), FCϕ,ϕ
: ϕ 7→ FCϕ. It

is clear thatFCϕ,ϕ
is not injective since there is only one identity onFCϕ ≡ [f ]whereas

there are in general several diffeomorphisms preserving a given field on spacetime. It
follows that FC is not faithful.

A short philosophical intermezzo: here it is clear how the choice of arrows makes
or breaks equivalence. One is reminded of Weatherall (2016b) and the response offered
by Nguyen et al. (2020). Weatherall considers the isometries to be structure-preserving
maps between models of classical electromagnetism, whereas Nguyen et al. dispense
with them in favour of focussing exclusively on the issue of gauge. We are of the opinion
that such a step is more significant than it is perhaps made out to be, as the argument is
strongly dependent upon which arrows are available in which category. So: are there any
additional structure-preserving maps on twistor space that we might want to consider?
We have diffeomorphisms on twistor space, but there is apparently no canonical way
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to map them to spacetime isometries.40,41 Another way of seeing this is as a problem
of the category-theoretic method of establishing equivalence, in that there is a degree
of arbitrariness involved in how arrows are defined. Alternatively, this is a strength of
the approach since it allows one to very precisely define which models are treated as
equivalent in an ‘interpretation’ of a theory by carefully selecting the arrows.42 For well-
understood theories, however, relatively uncontroversial choices of arrows can be made
which then allows the approach to derive relatively undisputable results, such as the
equivalence of standard GR and Einstein algebras (Rosenstock et al., 2015). Perhaps,
then, this limitation is only applicable to novel theories with less established standards
of equivalence. We’ll return below to issues related to these.

A similar story can be told about GC . Map all potential fields generating the same
gauge field to the cohomology class related to it via the ZRMPT. Then map all arrows
between different gauge potentials (diffeomorphisms, gauge transformations) to the
identity on the cohomology class related to the gauge potentials via the gauge field they
generate.

Proposition 3.3. GC is a functor.

Proof. As above.

Proposition 3.4. GC forgets stuff.

Proof. Much like above.

Let us now construct FT . Let a field be mapped to any single representative of the
cohomology class related to it via the ZRMPT.43 As to how diffeomorphisms should be
mapped to ∂̄-exact forms, this is in general unclear, and indeed there is no obvious way
of encoding spacetime isometries in terms of twistors.44 Certainly, twistor space has its
own structure-preserving maps but they allegedly do not have an obvious relation to
spacetime diffeomorphisms. We might then wish to consider the category Field′ which

40We are grateful to Lionel Mason for conversations on this point.
41The only substantial paper on this topic is (Davidov, 2023), which considers diffeomorphisms be-

tween twistor spaces for two elements of a conformal class of metrics, and concludes these diffeomor-
phisms must be the identity map. Since we are interested in breaking such conformal classes by intro-
ducing an infinity twistor—see discussion below (2.1.10)—we will not engage with these results further
here.

42For another illustration of this, see (March, 2024a).
43Here we potentially require the axiom of choice, because there is no canonical representative of the

class.
44We are grateful to Lionel Mason for discussion on this point.
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is just Field stripped of diffeomorphisms (by which we mean: take one arbitrary rep-
resentative of each equivalence class of diffeomorphism-related models—this would be
one way of making good on Nguyen et al. (2020) dispensing with isometries, as men-
tioned above). Of course, identities have to remain in order to satisfy the category ax-
ioms. Then we wish to construct a functor F ′

T : Field′ → Twist. We will map fields
to cohomology classes as before, and map the identities to identities.

Proposition 3.5. F ′
T is a functor.

Proof. As above.

Proposition 3.6. F ′
T forgets structure*.

Proof. By construction, we never map to any of the ∂̄-exact form transformations. So
F ′
T a,a′ : homField (a, a

′)→ homClass (F
′
Ta, F

′
Ta

′) is not surjective. In fact, homField (a, a
′)

is even empty for a ̸= a′ since our only morphisms are identities. Hence F ′
T is not

full.

As forGT , we will again want to purgeGaugeof diffeomorphisms to obtainGauge′
and we now look for G′

T : Gauge′ → Twist. In order to establish equivalence, we
need a way of mapping gauge transformations to ∂̄-exact forms. One sometimes finds
the claim in the literature that there is a canonical such map for h > 0—for example,
Adamo (2018) calls this map the ‘Sparling transform’. This is claimed by Adamo (2018)
to be demonstrated in (Sparling, 1990) but we were not able to recover the result from
that paper. Instead, the only explicit constructions which we were able to obtain are
for the case h = 1 in (Adamo, 2018, pp. 27–8) and for the case h = 2 in (Mason and
Skinner, 2010). In the absence of a general construction, we will here consider only the
case h = 1 as a ‘proof of concept’.

Let us provide a brief account of the construction. Let f ∈ [f ] ∈ H0,1(PT,O(0))
be a cohomology class representative. To obtain the gauge potential at some spacetime
point x, consider the restriction of f to the lineX ∼= CP1 ∈ PT related to this space-
time point via the Klein correspondence. Then f |X ∈ [f |X ] ∈ H0,1(X,O(0)). But
H0,1(X,O(0)) ∼= H0,1(CP1,O(0)) since diffeomorphic manifolds have isomorphic
cohomology, and it turns out that the latter is empty. Therefore f |X is exact and we
can write f |X = ∂̄|Xh(x, λ, λ̂) for some h of homogeneity degree zero in λ, λ̂ which
are the holomorphic and the antiholomorphic coordinates on theCP1 subspace. Now,
since f ∈ H0,1(PT,O(0)), it can only depend on x via xαα̇λα (this simply follows
from the incidence relation (2.1.7)). Now consider

∂̄|X(λα∂αα̇h) = λα∂αα̇∂̄|Xh = λα∂αα̇f |X ∝ λαλα = 0 , (3.3.4)
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recalling that λα is the homogeneous coordinate on CP1 and hence λαλα = 0. Using
the extended Liouville’s theorem,45 we conclude that the function λα∂αα̇h must take
the form

λα∂αα̇h = λαAαα̇(x), (3.3.5)

whereAαα̇ is the Maxwellian gauge potential.
In light of this, there is a map from Dolbeault-exact (0, 1)-forms on PT and gauge

potentials Aαα̇ on CM. This suffices to establish the existence of a map (G′
T )

−1 :
Twist → Gauge′. There do, however, remain open two issues. First: it is not com-
pletely clear that a different choice of Dolbeault-exact (0, 1)-form on PT would yield
a different gauge potential on CM—so it remains open whether this map is one-one.
And second: it also remains open whether any map G′

T : Gauge′ → Twist is one-
one—that, is, whether gauge potentials can be mapped one-one to elements of the rel-
evant class of forms on PT. As far as we can tell, there is no particularly natural such
map which one can identify with such properties. In principle, one could try to con-
struct such a map by fiat: to associate Dolbeault-exact (0, 1)-forms to gauge transfor-
mations, it suffices to specify arbitrary choices for each such mapping, but since both
spaces are continua there must exist a bijection between them. This would presumably
yield a functor that establishes equivalence between the two categories, but one would
be hard-pressed to conclude that this is an interesting case of theoretical equivalence
since the choice of functor is so arbitrary. It could be seen as a methodological draw-
back of categorical approaches to theoretical equivalence that one can define such fiat
constructions in the cases of continua and suitably simple categories, but one should
note that proponents of category equivalence are careful to point out that equivalence is
a functor-dependent notion and one should expect there to be a natural enough func-
tor establishing a purported equivalence, rather than one that is simply based on the
equal cardinality of both sides, and then made to respect the internal structure of the
theory also by fiat. Preserving internal structure by fiat, however, will only be possible
for similar enough structures, e.g. in the case of Gauge′ and Twist we are dealing with
groupoids46 defined on continua so it is not inconceivable that there is an equivalence-
generating functor between them, whereas in general one would not obtain this level
of similarity between two categories representing two distinct theories.

45The statement of the extended Liouville theorem is as follows: If g is a holomorphic function and
for sufficiently large z, |g(z)| ⩽ A + B|z|k, where A and B are positive constants and k ∈ N, then g
is a polynomial of degree at most k. In our case, the holomorphicity of the function λα∂αα̇h is ensured
by (3.3.4) and one can prove that the bound exists for k = 1. So the function can be a linear polynomial
of λα. The coefficient is imposed by the index structure to be of the formAαα̇(x) and can only depend
on x and not on λ, since the RHS has to be a linear polynomial in λ.

46Groupoids are categories with all morphisms invertibile.
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In any case, so much for theh = 1 case. One could apply the same technique to the
other cases of twistor correspondence, such as the correspondence for Yang-Mills, and
the non-linear graviton for the sourceless Einstein equation. Stepping back somewhat,
the situation regarding the equivalence of spacetime and twistor space physics, as we see
it, is this. First: such equivalence is only relative to a choice of Penrose transformation—
and often, such transformations (e.g. the ZRMPT which we have considered here) are
somewhat restricted in scope (in the sense that they do not pertain to the entire solution
space of GR—note indeed that the ZRMPT considers fields on CM and so in fact has
more to do with SR than GR!). Second: even focusing on a specific Penrose transforma-
tion, whether there indeed is equivalence—in the sense of categorical equivalence—will
depend upon particular choices as to how to formulate spacetime physics and twistor
space physics: as illustrated above in our specific choices of categories on each case, and
the problems for demonstrations of equivalence between Gauge′ and Twist. In our
opinion, therefore, any ab initio declarations of the equivalence of spacetime physics
and twistor space physics should be tempered with a certain degree of caution.

4 Philosophical issues
Having now presented the relevant background on twistor theory, as well as some regi-
mentation of the spacetime–twistor correspondence using the resources of categorical
equivalence, we turn now to an exploration of five topics pertaining to twistor theory
and its philosophical significance. In §4.1, we consider the issue of whether there are dy-
namics on twistor space—a claim which one often finds denied in the existing literature;
see e.g. (Bain, 2006). In §4.2, we explore the sense in which the move to twistor space
offers a novel form of ‘geometrisation’ of a physical theory. In §4.3, we try to understand
the ontology of twistor space on its own terms. In §4.4, we assess whether twistor the-
ory presents a case of spacetime emergence in physics. Finally, in §4.5, we consider how
twistor theory interacts with some ‘symmetry principles’ which are widely discussed in
the philosophy of physics.

4.1 Dynamics on twistor space
According to Bain’s (2006) account of twistor theory, Penrose transformations can be
said to ‘geometrise away’ dynamics. Specifically, Bain writes that “the dynamical infor-
mation represented by the differential equations in the tensor formalism gets encoded
in geometric structures in the twistor formalism. Advocates of the twistor formalism
emphasize this result—they observe that, in the twistor formalism, there are no dynam-
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ical equations; there is just geometry” (Bain, 2006, p. 40). Be that as it may, this is simply
not something that appears to be widely claimed by twistor advocates: the claim, for ex-
ample, is not found in (Penrose and Rindler, 1988a,b; Ward and Wells, 1990; Penrose,
2005). Still, Bain’s claim appears prima facie plausible and is certainly worthy of atten-
tion.

The key notion to unpack here is, of course, that of ‘dynamics’. The way in which
Bain uses the word seems to be tied closely to the use of a derivative operator in a phys-
ical theory. For example, he talks about the “dynamical role” of the manifold having to
do with “the support structure on which derivative operators are defined” (Bain, 2006,
p. 39). Later in his article, he adopts a somewhat different stance saying that the dy-
namical role of the manifold is “a local back-drop on which differential equations can
be defined that govern the dynamical behavior of fields” (Bain, 2006, p. 47). That is
to say, rather than dynamics having to do with a derivative operator per se, dynamical
equations are some class of differential equations, i.e. equations deploying a derivative
operator. But then the question of what we take dynamics to be is not really addressed
beyond saying that they are a kind of differential equation. In fact, there are several ways
of characterising ‘dynamics’, as has been discussed by e.g. Linnemann and Read (2021).
These are:47

1. Dynamics as some representation of a system evolving diachronically.

2. Dynamics cashed out in terms of quantities which vary between possibilities ac-
cording to the theory, à la Curiel (2016).48

3. Dynamics as having to do with hyperbolic (rather than e.g. elliptic) differential
equations.

(The relations between all three of these notions are not entirely straightforward—see
(Linnemann and Read, 2021).) The question to be addressed here is this: does a theory
set on twistor space have ‘dynamics’ in any of the above three senses?

Sense (1) can be dealt with fairly swiftly. Time does not feature explicitly in twistor
theory so with that goes any hope of grounding its dynamics in temporal evolution. In-
deed, the twistor programme regards twistors as pre-spatiotemporal (see §4.4), so this
is hardly surprising. Now, of course, there are questions lurking in the background
here regarding what it means to identify (perhaps by way of functionalist considera-
tions) time in a given physical theory—various options here are canvassed by Callender

47Cf. (Read and Cheng, 2022).
48There are various ways in which this might be expounded—see (Linnemann and Read, 2021). For

an alternative approach to identifying dynamical possibilities according to a theory to that offered by
Curiel (2016), see (March, 2024b).

31



(2017). However, we take it that in none of these senses of time is present in a theory
set in twistor space as defined in the previous section. For example (to take Callender’s
preferred functional definition of time) there are no equations in such theories which
admit of well-posed Cauchy problems—at least to our knowledge.

Indeed, since it is only hyperbolic partial differential equations which admit of well-
posed Cauchy problems, this suffices to address also sense (3) above, and so just leaves
sense (2)—more can be said about this. Curiel (2016) differentiates kinematical equa-
tions from dynamical equations by their “particular form” being invariant across pos-
sibilities according to the theory. An example makes this clear: consider the four equa-
tions of Maxwellian electrodynamics:

∇⃗ × E⃗ = −∂tB⃗,
∇⃗ · B⃗ = 0,

∇⃗ · E⃗ = ρ,

∇⃗ × B⃗ = J⃗ + ∂tE⃗.

(4.1.1)

The first two equations here have the same form no matter the application, making
them kinematical, whereas the third and the fourth require one to substitute for the
charge density and the current density respectively in order to fix their form, making
them dynamical. One worry with calling twistor theory ‘non-dynamical’ according to
this criterion, though, is that we have so far only translated vacuum electrodynamics
in the twistor formalism. In vacuo, we have ρ, J⃗ = 0, thereby making all the four
equations kinematical in the strict sense. How could we then possibly expect to obtain
dynamics if we already started from a system that is not dynamical?49

On the other side of the same coin is the following fairly natural point. A given
theory set in spacetime (for the time being assuming conformal invariance, so that the-
ory is presumed to be amenable to a Penrose transformation) will in general have many
solutions (conformally inequivalent to one another), and it needn’t be the case that all
such solutions—qua models of spacetime geometry—map to the same twistor space
geometries (indeed this won’t be the case, if the spacetime models are conformally in-
equivalent). That however means—pace Bain—that theories set in twistor space do have
dynamics according to criterion (2)—because not all dynamical possibilities of twistor
theory will be equivalent: some quantities will vary between possibilities according to
the theory. Of course, we are not claiming here that criterion (2) should be endorsed—
in fact, we don’t regard it as unreasonable to see these kinds of cases as a reductio on

49This worry will not apply on the understanding of the kinematics/dynamics distinction offered by
March (2024b).
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criterion (2).50 Ultimately, our point here is just that the ‘no dynamics’ claim becomes
delicate, once one attempts to cash out more precisely what’s meant by ‘dynamics’.

4.2 Geometrisation
Related closely to the question of whether there are dynamics on twistor space is that
of whether, in any precise sense, twistor theory ‘geometrises’ a given set of dynamics
on spacetime. Again, for Bain (2006) it seems that twistor theory offers prospects for a
novel form of geometrisation of a physical theory—as he writes, “the local dynamics in
the spacetime formulation gets encoded in a global “static” geometric structure in the
twistor description” (p. 47).

In order to get clearer on the sense (if any) in which twistor theory ‘geometrises’ a
physical theory formulated in spacetime, we of course first need to get clearer on what
it means to ‘geometrise’ a physical theory. On this, surprisingly little has been written
in the existing philosophical literature—exceptions are (Dürr, 2020; Kalinowski, 1988;
Lehmkuhl, 2009); we’ll begin with the tripartite classification of degrees of geometri-
sation debeloped by Lehmkuhl (2009), and summarised succinctly by Dürr (2020) as
follows:

• Strength-1 geometrisation dresses up field theories in geometric cloth-
ing. The fiber bundle formulation of electromagnetism is a case in
point: while in such a representation everything looks geometric, we
have prima facie little reason to regard the theory as describing any-
thing inherently related to spacetime geometry.

• In strength-2 geometrisation, physical degrees of freedom can be
accounted for in terms of geometric properties (e.g. topology, cur-
vature, or torsion) of augmented spacetime structure. An example
is Weyl’s (1918, 1919) unified field theory. In it, the electromagnetic
field is reconceptualised (“strength-2 geometrised”) as a manifesta-
tion of what Weyl called “length curvature” of a non-Riemannian
spacetime (i.e. a spacetime in whose geometry parallel transport of
vectors alters their length).

• Strength-3 geometrisation, paradigmatically instantiated by GR’s
geometric interpretation, is essentially eliminative: a geometric the-
ory of strength-3 reduces physical degrees of freedom to manifesta-
tions of (a universal) inertial structure—a preferred path structure

50Cf. (Read, 2023, ch. 3).
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of “natural”, uncaused/default motion that, for instance, force-free
test particles trace out. (Dürr, 2020, p. 6)

In our own words, we’d put the classification like this: strength-1 geometrisation
regards writing physical theories in (differential-)geometric formalism; strength-2 ge-
ometrisation regards reconceptualising physical effects/forces/etc. in terms of (novel)
geometrical effects; strength-3 geometrisation regards reducing physical effects/forces/etc.
to existing geometric quantities (e.g., curvature of a Levi-Civita connection in the case
of gravity in GR). The question to be addressed now is this: does the geometrisation
in the case of twistor theory amount to geometrisation in any of the above three senses,
or is it in fact a novel form of geometrisation (of course assuming that we have a case of
geometrisation here at all!)?

The kind of geometrisation offered by twistor theory is clearly more than merely
strength-1—although it is true that twistor theory is articulated using differential/algebraic
geometrical methods, there is good reason to think that there is more at stake than just
this. With respect to strength-2 geometrisation, however, it is not obvious to us that it
is correct to view the geometric setting of twistor space as an augmented version of a
more traditional spacetime setting (e.g., Minkowski space, possibly complexified), for
the geometric arena of twistor space PT is clearly simply different from e.g. CM. With
respect to strength-3 geometrisation, on the other hand, it seems to us that this notion
is indeed satisfied by the twistorial equivalents of spacetime theories, for—as already ex-
plained above—facts about spacetime dynamics are encoded in geometrical facts about
cohomology classes on twistor space. Note, though, that the kind of geometrisation at
play here is rather more extreme and thoroughgoing than what Lehmkuhl (2009) and
Dürr (2020) seem to have in mind when it comes to strength-3 geometrisation—for in
the case of the transition from a spacetime model to a twistor space model, it is not
merely (as in Dürr’s GR-inspired example) that forces such as gravity are absorbed into
a new derivative operator; rather, all dynamics are absorbed into facts about twistor
geometry. This demonstrates that there is some ambiguity in the scope of strength-
3 geometrisation; twistor geometrisation (and here we concur with the spirit of what
Bain (2006) writes) appears to lie at the more extreme end of what it would mean to
strength-3 geometrise a theory.
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4.3 Ontology of twistor space
What would an interpretation of twistor theory ‘on its own terms’—what de Haro
(2019) might call an ‘internal interpretation’—look like?51 In this subsection, we ad-
dress this question with particular attention directed towards the status of spacetime in
(the physical interpretation of the models of) twistor theory. Clearly, there are broader
questions at play in the background here: interpreted per se, does twistor theory invite
a substantivalist or a relationalist ontology?52

Regarding the status of spacetime in twistor theory, Bain (2006) writes that “the
twistor constructions indicate that the differentiable manifold is not essential” (p. 46)—
by this, we take Bain to mean that twistor theory interpreted per se does not invite a
commitment to a manifold of points. We confess that we find it a little difficult to
make sense of this claim, for a couple of reasons. First: twistor space PT is still built
upon the mathematical structure of differentiable manifolds; hence, interpreted unto
itself it does not appear that the theory liberates us from a commitment to (the physical
correlates of) such structures. Second, and relatedly: we have seen above that—at least
in certain restricted contexts—one might argue that there is an equivalence between a
proper subset of the models of relativistic spacetime theories and models formulated in
twistor space.53 But in that case, there is a sense in which twistor theory is committed to
(spacetime) differentiable manifold structure after all. Perhaps—to be charitable—all
Bain has in mind here is that with twistor space PT in hand and armed with various
Penrose transformations, one need not treat the spacetime formulation of a physical
theory as being ontologically fundamental.

Compare here the case of the equivalence between models of GR and Einstein al-
gebras.54 In that case, one side of the ‘duality’ (i.e., the Einstein algebras side) does not

51Roughly, for de Haro, an internal interpretation of a given theory does not invoke specific structure
unavailable in that theory per se; not so for an external interpretation. Presumably, it is internal interpreta-
tions which Weatherall (2018) has in mind when he asserts that general relativity and hole-diffeomorphic
models thereof ‘do not generate a philosophical problem’; for critical engagement with this claim, see
(Pooley and Read, 2021). Of course, mention of the hole argument here invites questions as to how this
would pan out in twistor theory; we’ll return to these questions below.

52For background on the substantivalism/relationalism debate more generally, see (Pooley, 2013b).
53Note here that we have moved to considering the correspondence between twistor theory and the

general theory of relativity—a correspondence already acknowledged to be delicate and piecemeal in §2.
This poses a further obstacle to any straightforward ontological fundamentality claim made on the basis
of twistor theory in the context of general relativity, as we will discuss further below.

54This equivalence was first presented by Geroch (1972), before being taken up in the context of
the philosophical debate regarding substantivalism and relationalism by Earman (1977). More recently,
Rosenstock et al. (2015) proved a categorical equivalence between models of GR and Einstein algebras;
Wu and Weatherall (2023) demonstrate that this equivalence breaks down when one liberalises the mod-
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involve a differentiable manifold (at least in any direct sense); the interpretation of those
models therefore—Rosenstock et al. (2015) claim—invites a relationalist ontology; by
contrast, of course, models of GR do involve a differentiable manifold and so invite a
substantivalist ontology.55 With respect to the first of the above two points, then, the
GR–twistor relation is clearly disanalogous to the GR–algebras case, for the ‘alterna-
tive’ formulation still helps itself to a differentiable manifold. And with regard to the
second of the above two points: one can profess a certain ambivalence about the status
of manifold points in GR given the existence of an equivalence formulation of the the-
ory in terms of Einstein algebras (cf. (Rosenstock et al., 2015)); clearly, one cannot do
this in the twistor case, if the twistor space formalism invites itself to the same kinds of
mathematical objects anyway!

So, vis-à-vis the status of spacetime in twistor theory, we are somewhat sceptical of
claims made by Bain (2006). Nevertheless, in his defence, it is worth registering that
those working in the mathematics of twistor theory do sometimes make similar claims.
For example, Atiyah et al. (2017) write that

[i]n the twistor approach, space-time is secondary with events being de-
rived objects that correspond to compact holomorphic curves in a com-
plex threefold—the twistor space. (Atiyah et al., 2017, p. 1)

On this, we say the following. First, one has to distinguish the fact that point events—
e.g., intersections of worldlines—in the spacetime formulation are mapped to non-local
(i.e., extended) objects in twistor space; true enough, however, this does not detract
from the fact that—as explained above—twistor theory remains committed to (the
physical correlate of) a differentiable manifold of points. Second, one must recall lessons
from Teh (2013) made in the case of dualities: the existence of a mathematical mapping
between two theories does not in itself invite any metaphysical asymmetry between the
two—thus, the above claim that the spacetime formulation is subordinate to the twisto-
rial formulation seems prima facie to be specious. On this latter issue, Bain writes the
following:

The tensor formalism suggests a commitment to local fields and spacetime
points, whereas the twistor formalism suggests a commitment to twistors,
which themselves admit diverse interpretations. The traditional realist might

els of GR by dropping the Hausdorff condition. Bain (2006) also assesses the case of Einstein algebras
alongside the case of twistor theory.

55Here, following Earman and Norton (1987), we have in mind manifold substantivalism, which is
the position that it is the differentiable manifold in a model of a physical theory which represents physical
spacetime.
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respond by claiming that the Penrose Transformation just shows that so-
lutions to certain field equations behave in spacetime as if they were ge-
ometric/algebraic structures that quantify over twistors. In other words,
we should not read the twistor formalism literally—it merely amounts to a
way of encoding the behavior of the real objects, which are fields in space-
time, and which are represented more directly in the tensor formalism. In
other words, we should only be semantic realists with respect to the tensor
formalism. This strategy smacks a bit of ad hocness. All things being equal
[...], what, we may ask, privileges the tensor formalism over the twistor
formalism? (Bain, 2006, p. 50)

What Bain is countenancing here is a (‘traditional realist’) position according to which
the spacetime formulation is preferred over the twistor formulation. In fact, we agree
with Bain that, in the absence of further details/argument, such a position would seem
to be just as ad hoc (and contrary to the morals of Teh (2013)) as the twistors-first view
adumbrated by Atiyah et al. (2017) in the above-quoted passage. That said, we do think
that there are ways in which one might be able to break this interpretative symme-
try/impasse in one manner or another—for example, one could appeal to (i) function-
alism à la Knox (2017), (ii) considerations of surplus ‘gauge’ degrees of freedom (see
e.g. Weatherall (2016b)), (iii) considerations to do with the existence of dynamics in one
formulation versus the other (which could be regarded as the sine qua non of physical
theorising)—cf. §4.1, (iv) descriptive/explanatory power.

Let us go into a little more detail here. On (i), recall that, for Knox (2011, 2013), if
one theory can be mapped to another theory which better picks out a “structure of local
inertial frames”, then that latter theory offers the superior roster of ontological commit-
ments with which to associate even the former theory. In the case of the GR–twistor
correspondence, the lack of dynamical equations on the twistor side, as discussed above,
militates in favour of an interpretation per Knox on which even in the twistor space con-
text, it is really the spacetime interpretation which is fundamental. On (ii), if one has an
interpretation of the twistor space setting according to which objects in the cohomol-
ogy classes are distinct (see §3), then one might be able to argue that the twistor space
setting has more gauge freedom than the spacetime setting, thereby favouring the lat-
ter over the former. On (iii), if one maintains that there are indeed no dynamics in the
twistor space context, then this might again weigh in favour of the spacetime interpre-
tation. And on (iv), of course ultimately explanatory considerations will depend upon
the definition of scientific explanation in play (see (Woodward and Ross, 2021) for a
survey of the options here), but one thing which can be said immediately is that the
piecemeal nature of the map from the GR solution space to models of twistor theory
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via various Penrose transformations might also be taken to detract from thinking that
the latter is somehow more fundamental, ontologically speaking, than the former.

4.4 Emergence of spacetime
In the literature on twistor theory, it is often claimed that spacetime is supposed to be
emergent from some underlying twistor space ontology.56 As one representative exam-
ple of this among many, Penrose writes that in twistor theory,

spacetime points are deposed from their primary role in physical theory.
Spacetime is taken to be a (secondary) construction from the more primi-
tive twistor notions. (Penrose, 2005, p. 962)

(We have, indeed, already seen something of this in the previous subsection.) Give the
preponderance of statements of this kind, it is worth pausing on whether it really is
plausible to understand general relativistic spacetime as ‘emerging’ from some more
fundamental twistorial depiction of reality—or whether, instead, ‘emergence’ might
be an inappropriate classification of what is going on here. Moreover, one can go on to
ask: if ‘emergence’ is indeed inappropriate here, what would in fact be a suitable cate-
gorization?

Before proceeding further on these issues, it will help to fix terminology; we will
follow the lead of Castellani and de Haro (2020). First, let us say that a duality is “a bi-
jective map between the states and quantities of two theoretical descriptions, such that
the dynamics and the values of the quantities are preserved” (Castellani and de Haro,
2020, p. 199).57 Second, let us say that one has a case of emergence in physics when there
are entities which “arise out of more fundamental entities and yet are ‘novel’ or ‘irre-
ducible’ with respect to them” (O’Connor and Wong, 2005).58 One might also wish to
distinguish strong from weak cases of emergence. The former “is the lack of derivabil-
ity in principle—the theory simply lacks the resources to derive whatever is emergent
from it” (Castellani and de Haro, 2020, p. 201); the latter is “the lack of derivability in
practice—some derivations may be available, but they are difficult to carry out within
the theory’s methods or resources, so that the situation is, in practice, as if one was deal-
ing with strong emergence” (Castellani and de Haro, 2020, p. 201). As Castellani and

56Related to this, there is a by-now quite large philosophical literature on the emergence of spacetime
in quantum gravity—see e.g. (Huggett and Wüthrich, 2013) for an introduction.

57For further philosophical literature on dualities, see e.g. (de Haro and Butterfield, 2017) and refer-
ences therein.

58Following (Castellani and de Haro, 2020), we focus in this section exclusively upon what has come
to be known as ‘epistemic emergence’, which regards novelty ‘in the description’ rather than ‘in the
world’. For further philosophical background on emergence in general, see e.g. (Batterman, 2009).
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de Haro (2020) correctly go on to point out, if a duality is exact, then one can at best
have a case of weak emergence; if, however, a duality is approximate, then one can have
both weak and strong cases of emergence.59

Turning now to twistor theory, we have seen that, at least in certain circumstances
(more restricted, admittedly, than one might have initially thought/hoped—recall again
§3), there is an exact, one-to-one correspondence between the twistor space description
and the spacetime description; moreover, the correspondence preserves empirical con-
tent. For the relevant particular subsector of GR, then, we seem to have an exact du-
ality between said subsector and twistor space. For this particular subsector, in turn,
only weak emergence seems to be possible—not strong emergence, as the above passage
from Penrose would seem to suggest. Each Penrose transform (and its inverse) provides
a derivation mechanism and the existence of Penrose transforms clearly eliminates the
case of strong emergence in twistor theory. Indeed, in the case of twistor theory, it is not
even obvious to us that there is a serious case of weak emergence here, because the the-
ory has all the required resources to derive the spacetime notions and all the descriptions
have an associated (inverse) Penrose transform that provides a well-defined mechanism
to derive the corresponding spacetime notions.

It’s also not clear to us that any discussion of ‘fundamentality’ in the context of
twistor theory is particularly relevant, because when ones talks about fundamentality
typically one has two theories which one classifies as a ‘top’ theory and a ‘bottom’ the-
ory, and one considers the ‘top’ theory to be less fundamental if it can be derived (at
least partly) from the more fundamental ‘bottom’ theory but not the other way around
(Castellani and de Haro, 2020). But in twistor theory, each Penrose transform is a two-
way implication (i.e. one can also derive the twistorial objects from physical spacetime
notions). And hence it wouldn’t be appropriate to compare the relative fundamental-
ity of the twistor space and spacetime—as mentioned in the previous subsection, this
point has indeed already been made by Teh (2013) in the context of holography.

From this, what we see is that if twistor proponents are to maintain that it indeed
is the twistor description which is fundamental, they will need to give further justifi-
cation for this claim than what has been proffered thus far. Here is one possible such
argument which they might give. Since points in twistor space are supposed to corre-
spond to light cones (i.e., the trajectories of possible light rays emanating from a point),
and since the latter are sometimes argued to have immediate operational significance
(see e.g. (Ehlers et al., 2012)), one could perhaps argue that, on operationalist grounds,
the twistorial description is to be preferred. Any such reasoning, however, faces some
immediate questions: (i) is the operationalism upon which it is predicated actually plau-

59For further background on exact versus approximate dualities, see (de Haro et al., 2016).
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sible?; (ii) what of the GR solutions which do not have obvious twistor correlates but
which seem to be important for the physical modelling of the actual world? Etc.

Now, if neither description here is to be regarded as being more fundamental than
the other, then there arise for the scientific realist straightforward issues of underdeter-
mination: what is the structure of the world really like, in those circumstances? Here,
the usual roster of interpretative options arise: one could either try to find some fur-
ther reasons which privilege one of the two descriptions, per the above; one could try to
identify the mathematical ‘common core’ of the descriptions (cf. (Le Bihan and Read,
2018)); or one could embrace some kind of geometric conventionalism (on which see
e.g. (Dürr and Read, 2023)). We will leave for another day further exploration of the
merits of each of these options.

4.5 Symmetry principles
As we have discussed, the twistor equation is conformally invariant, so if we want to rep-
resent metric structure on twistor space, we have to introduce further structure in the
form of the infinity twistor. This allows us to construct the twistor space of Minkowski
space PT(M) = PN. On the other hand, when we study field theory we have seen that
twistor theory only provides convincing examples of correspondence for conformally
invariant field theories such as the massless free field (ZRMPT) and self-dual Yang-Mills
(via the Ward transform), apart from some partial results such as those presented by
Eastwood (1981).

Focussing on the former, we have seen that massless fields on CM correspond one-
to-one to cohomology classes on PT(CM). The more general statement is that this
holds for arbitrary subsets U of CMC and the twistor spaces thereof, pending some
conditions on U as shown by Eastwood et al. (1981). Imagine then that we want to
study the massless free field on the compactified complexified Minkowski space CMC .
Then we have PT = CP3. But in fact the first cohomology on this space vanishes so
we can only recover the trivial field. If we instead break the conformal invariance and
consider PT(CM) = CP3 − CP1, or even impose PT(M) = PN, we get much more
cohomology and recover a rich variety of fields on M.

But now we are in a peculiar situation: we started studying the conformally invari-
ant zero rest mass equation but ended up breaking the conformal invariance of space-
time such that we can obtain any interesting solutions. Our spacetime symmetry group
is smaller than our dynamical symmetry group in apparent violation of Earman’s prin-
ciple SP1 (Earman, 1989, ch. 3). What does this tell us about twistor theory? Clearly the
problem is that there are no convincing twistor results for non-conformally-invariant
theories. At the end of the day, we want twistor theory to reproduce our standard de-
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scription of the world which consists of non conformally invariant field theory on a
manifold with metric structure. But even if we try to move in the realm of the confor-
mally invariant, it seems that twistor theory forces us to break conformal invariance on
the spacetime side.

5 Outlook
In this article, we have presented what we hope is a reasonably accessible introduction
to twistor theory for philosophers (§2). We have then shown that one can bring to bear
recent philosophical work on theoretical equivalence in order to shed some light on the
spacetime–twistor correspondence (§3). Further, we have explored how twistor theory
bears on a range of contemporary issues in the foundations of spacetime theories (§4).
We’ll close now by briefly outlining some further areas for possible research into the
philosophy of twistor theory:

1. Just as philosophers have asked whether the hole argument (on which see (Nor-
ton et al., 2023)) can be generated when one moves from the manifold-based for-
malism of general relativity to an algebras-based formalism (see e.g. (Rynasiewicz,
1992)), one might likewise ask of the status of the hole argument when one moves
to twistor theory. Of course, the answer to this question will hinge upon how
diffeomorphisms in the spacetime formalism translate to maps in the twistor
formalism—an issue which we have already seen in §3 to be rather delicate. More-
over, the issue will hinge upon whether one can really regard the twistor formal-
ism are more ‘fundamental’ than the spacetime formalism—a matter on which
we have already expressed our scepticism in §4.

2. It would be valuable to probe the extent to which twistor theory can offer any
kind of unification in physics. We’ll illustrate with three examples:

(a) Woit (2021) has proposed that twistor theory provides a novel framework
for gravi-weak unification, and moreover a unification of all the four funda-
mental forces. However, there is no physical correlation between the forces
being unified, in the sense that e.g. there is no non-trivial coupling of said
forces in some mutual dynamics. According to Maudlin (1996), this kind
of physical correlation (which he calls “nomic correlation”) is one of the
key criteria required in order to regard a theory as being unificatory. So,
following Maudlin’s lead, we would suggest that there is no unification in
a ‘true’ physical sense—though, of course, this ultimately warrants further
investigation.
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(b) The significance of twistor theory in string theory is becoming increasingly
well-appreciated (in particular see e.g. work on ‘ambitwistor strings’)—see
(Atiyah et al., 2017) for a recent survey.

(c) In order to establish the ZRMPT in §2.2.1, we adopted the Dolbeault co-
homology description, with cohomology classes f(ZA) containing (0, 1)-
forms. However, one can also adopt the Čech cohomology description to
establish the ZRMPT (Huggett and Tod, 1985).60 The cohomology classes
of the Čech cohomology group contain holomorphic functions. Recall
from §2.2.2 that these holomorphic functions also appear in Kerr’s theo-
rem, where the null set of some holomophic function defines a shear-free
null congruence. So, if we pick a cohomology class that defines a ZRM field
on CM, its null set will also define a shear free null congruence on CM.
Hence there is a common mathematical object that describes the two phys-
ical notions. Interestingly, there is previous work which establishes physi-
cal correlations between these two notions. For example, (Robinson, 1961)
deals with connections between the Maxwell field and shear-free null con-
gruences. So one can conjecture that twistor theory might be used to realise
such connections between various notions in the spacetime formalism.

3. There is a dearth of philosophical literature on the geometrical foundations of
spinor fields—one admirable exception being (Pitts, 2012). Given their close re-
lation to spinors, twistors could well be brought to bear on future foundational
explorations in this direction.

4. In §3 of this article, we focussed on the equivalence of spacetime formulations
and twistor formulations via the ZRMPT. This leaves open for future explo-
ration such equivalences when one considers e.g. the non-linear graviton, or Yang-
Mills fields on spacetime, etc.
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