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Abstract

I address some major critical arguments against a constructive truth
concept and intuitionist logic. Accounts of truth in this vein come
in different flavors and I admit that a possibilist concession is neces-
sary. I examine what can be regarded as in principle possible in a
mathematical context. I argue that the objections against a construc-
tive account of truth, concerning intensional contexts, incompleteness
and circularity, are not sound or miss target. I take a look on the notion
and practical nature of proofs, and I provide some principles making
them valid procedures of construction. I claim that constructivism is
at least as cogent and natural a stance as realism.
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1 Introduction
While mathematical intuitionism brings along a remarkable truth concept and
laudable care for proofs, it is still somewhat burdened by its original philosophical
grounding. Indeed, the philosophy of the founding father, Jan Brouwer can be
frowned upon in several respects.1 But once someone is ready to overlook the
idealist and subjectivist or even soliptic sentiments (as they are detachable, for
sure), in the wake of intuitionism a quite sober constructivist account of truth

1. On Brouwer’s philosophy, see Stigt 1998, Placek 1999 and Detlefsen 1990.
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can be articulated for mathematics—and possibly beyond.2 My general claim is
that such a truth concept can be the most modest, natural and reasonable rival to
realism.

By mathematical realism we mean the view that mathematical propositions
refer to an objective, non-material world, and are true or false in virtue of their
correspondence to the necessary facts of this universe. A version of realism, the
view called Platonism emphasizes the mind-independent nature of mathematical
objects. This stance faces serious critics,3 and it is widely held that practicing
mathematicians are also prone to deny their Platonism ’on Sundays’ (i.e., when
they reflect on their activities). However, on weekdays they talk about the objects
of their subject, as if they were flesh and blood existents.4 By contrast, we can say
that a constructive approach, such as intuitionsm, holds that the objects of math-
ematics are human constructions, and they are true or false by a proof procedure,
which may lead to verification or absurdity.

Below I address the respective semantical problems rather than the ontolog-
ical ones. Accordingly, I begin with a look on the language of intuitionist logic,
and a historical survey on its (philosophical) interpretations. I welcome Panu
Raatikainen’s distinction of actualist and possibilist accounts (2004), and con-
clude that a sound constructive truth concept must lean towards some kind of
possibilism. With this admission, I also give an analysis on what can be regarded
as in principle possible in a mathematical context.

I address important critical arguments against intuitionism, and a constructive
concept of truth in general. In particular, I deal with ’Bob sentences’, the awkward
natural language phenomena stemming allegedly from the intuitionist account
of truth. I inquire into the charges that the intuitionist truth concept is (a) self-
contradictory by Gödel’s results, (b) circular with its interpretation of logical
constants. I find that the arguments either fail or can be generalized to a much
broader scope, thus do not suit for disqualifying constructivism.

I close this paper with a glance on the status of mathematical proofs. I argue
that by some clear and common sense principles, namely relevancy, effectivity
and transparency, proofs naturally qualify as valid constructions, hence as the
vehicles of truth.

2. Semantical approaches to intuitionism come in different flavors and do not form any
monolitic endeavor. Here I will not deal with formal semantics, where there is surely
a lot to tell (see Dirk van Dalen 1986 and 2001). I will focus only on the philosophical
interpretations and the problem of truth.

3. See e.g. Benacerraf 1965, Benacerraf 1973, Field 1989.
4. ’Most writers on the subject seem to agree that the typical working mathematician

is a Platonist on weekdays and a formalist on Sundays.’ Davis and Hersh 1981, p.321
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2 Intuitionism and Truth
The most characteristic feature of intuitionistic logic5 against the classical one is
that it abandons the syntactic law of excluded middle:

(LEM) ⊢ P ∨ ¬P.

To explore the possible interpretations of this law, I will consider different forms
of the corresponding semantic rule, the Principle of Bivalence. For now, I state it
like this:

(PB1) Every statement of mathematics is true or false independently of our know-
ing which.

While a devotee for classical mathematics (a realist) holds that every mathematical
statement is true or false, the intuitionist says that a statement is true if we have
a proof for it. Something that is not proved, constructed or exhibited in a proper
way, i.e. , we have no way to know it, cannot be regarded as true. Thus she will
reject (PB1), and duly the corresponding rule of syntax, (LEM).

An informal interpretation for the logical constants of intuitionistic logic was
given by Kolmogorov (1932) in terms of solutions for mathematical problems.
Heyting (1956) talks about the assertibility of the connectives after the construction
of proofs.6 Latter authors such as Troelstra (1977) and Bridges (1999) feature the
word proof, and describe the constants similar to the following:

(i) P: there is a proof of P;

(ii) P ∧Q: there is a proof of P and there is a proof of Q;

(iii) P ∨Q: there is either a proof for P or a proof for Q;

(iv) ¬P: assuming a proof of P leads to absurdity (i.e. P→ (0 = 1));

(v) P→ Q: there is construction turning the proof of P, into a proof of Q;

(vi) ∀xP(x): there is a construction turning any proof of a ∈ D (where D is the
intended domain for x) into a proof of P(a);

(vii) ∃xP(x): there is a construction turning a proof of a ∈ D into the proof of P(a).

5. For different axiomatic formulations, see Heyting 1930, Kleene 1952, Heyting 1956,
Dirk van Dalen 2001.

6. The standard approach to the intuitionist logical connectives is called BHK interpre-
tation after the names of the founding fathers, though Brouwer himself was not keen on
logic at all. His disciple, Heyting was the first to present a formal system (1930).
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In a mathematical context, by constructions I mean rule-based procedures
resulting in formulas such as e.g. functions. The outcomes themselves are also
called constructions. Proofs constitute a special kind of constructions. Ideally, they
are series of formulas starting from axioms and arriving at a given formula through
finitely many steps governed by a set of rules of inference. In practice, however,
proofs are typically half-formal derivations, combining formalism with informal
reasoning. This urges us to appreciate Michael Dummett’s requirement: we have
to effectively realize a proof whenever we are presented with one (Dummett 1977,
p. 13, in all conscience after Kreisel 1962). But before we devote some more
thoughts to the nature of proofs in section 6, let us examine their relation to truth.

It is clear that for the intuitionst, truth and proofs are interwoven. True is
what is proved. But should we actually have a proof in every case whenever we
regard something as true? Consider an extremely large natural number. Should
not we say that it is either prime or not without actually devoting the resources
to prove? Panu Raatikainen intends to show that in this regard, contrary to the
oversimplification characterizing the literature, intuitionsts have never been on
common grounds, there are a bunch of different concerning views, and it is more
than troublesome to give a cogent account anyway (Raatikainen 2004). Right or
not in his conclusion, I take his historical analysis as a fine starting point. (I will
also address his critical observations in the upcoming sections.) To begin with,
he makes an important distinction by dividing the intuitionist views on truth into
two classes: actualist and possibilist accounts. By this, we can say true is:

(a) what is proved or constructed;

(b) what is in principle can be proven or constructed.

Though the account of the logical constants as given above clearly suggests an
actualist reading, Raatikainen observes that it is not only hard to find a consequent
representative of either kind of approach among the noted intuitionists, but we
are also in trouble with reconstructing their respective views. Brouwer, to begin
with, seems to hold that there is no non-experienced truth, and he expressed this
thought at several places. For instance:

[T]ruth is only in reality i.e. in the present and past experience of
the consciousness. Amongst these are things, qualities of things,
emotions, rules[...] and deeds [...]. But expected experiences and
experience attributed to others are true only as anticipations and
hypotheses; in their content there is no truth.

(Brouwer 1948)

Or simply:

...in mathematics no truths could be recognized which had not been
experienced.
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(Brouwer 1955)

The second quote by every means suggests an actualist reading: direct ex-
perience is needed for truth. The first, however, witnesses some of the highly
puzzling points in Brouwer’s philosophy. Tomasz Placek observes, that Brouwer
suggests a redundant account on truth: whatever is, it’s true (1999, p. 67). I am
not so sure about Brouwer’s ontological claims, but if Placek is right, then one
may venture that there are different types of existence for which different types
of truth apply. First there is the truth of direct individual experience as they are
presented in Brouwer’s consciousness. Then there are the experiences of others
which are ’true only as anticipations.’7

Meanwhile, other places give hints on what is possible. Brouwer devoted
considerable efforts to creating so called weak counterexapmles, mathematical
problems often based on some unknown but possible properties in the unexplored
parts of the decimal expansion of π (Dirk van Dalen 1986, p. 230). By these
experiments he intended to exhibit clear cases where (LEM) cannot be asserted,
hence the name counterexamples. They are called weak, because they do not show
that there are absolutely undecidable problems. After all, someone in the future
might prove that there are nine consecutive 9 digits somewhere in the decimal
expansion of π.

Not least, holding that absolutely undecidable statements exist can be associ-
ated with the negation of an instance of (LEM): ¬(P∨¬P). But it is uncomfortably
stronger than just saying that there is no proof that P and no proof that ¬P. So
much so that it is contradictory. To hold the assertion, there must be a proof
that holding P leads to absurdity and holding ¬P also leads to absurdity. How-
ever, showing that P leads to absurdity amounts to saying that ¬P is true. A
contradiction, since by accepting the formula, the falsity of ¬P is assumed.8

Anyhow, it seems that Brouwer finally settled (if he ever did) on a view flirting
with possibilism. Raatikainen summarizes his latter comments on truth, based
on different sources, similarly to the following:

(c) A mathematical statement P is true when it is proved;

(d) P is false when it is proved to be absurd;

(e) at the moment we do not know the truth value of P but we have an algorithm
to decide;

7. Let me draw attention here to an interesting consonance with Bridgeman’s opera-
tionalism (1927). I am not aware of any elaborated exposition of this analogy, though it
might worth a paper.

8. See e.g. Raatikainen 2013, p. 119.
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(f) at the moment we do not know the truth value of P and we have no algorithm
to decide.9

After a comprehensive survey of his texts, Raatikainen concludes that Brouwer
somewhat oscillated between the actualist and the possibilst accout of truth
throughout his life. I have no reason to doubt. However, this latter summary
is clearly and actualist one: true is what is actually proved. Still, what is really
interesting in it, indeed concerns with possibilities. Note that there are two essen-
tially different ways for mathematical statements not to be true or false. By (c), we
have effective ways to decide. Given an integer, however large we have means to
decide whether it is prime or not in finite time. By (d), we cannot tell whether the
Goldbach-conjecture is true at the moment. We may, however, have the effective
means to decide tomorrow. (If fact, even today we have an algorithm which may
refute it in finite time, but, of course, it well may be that it never stops.) So we are
dealing with different possibilities: if I have the proper tools, I might use them,
but is is not excluded that only tomorrow will I have the needed algorithm for a
given problem at hand. Thus in a certain sense we can say that it is in principle not
impossible to decide the Goldbach-conjecture. By this token, this account remains
wisely silent on absolutely undecidable statements.

Brouwer’s most notable disciple was Arend Heyting, who, compared to his
master, remained low-key in philosophical issues. In contrast to Brouwer’s lofty
idealism, he stressed the metaphysical neutrality of mathematics. When it comes
to truth, he seems to be nihilistic, as he confessedly holds that truth has no
meaning for the intuitionist, because, in order to speak about truth there should
be a Platonic mathematical reality to which truth relates (Heyting 1958). Of
course, here truth is understood in the classical sense of correspondence, not
as constituted by proofs. Anyhow, with some minor exceptions, Heyting was
faithfult to actualism, Raatikainen concludes (2004). So much so that instead of
using the suspicious concept of truth, he expressed his actualist views straightly
relying on the (arguably even more problematic) notion of existence. In particular,
he maintained that no mathematical object exists unless it is construed.

A formula of the form ∃xA(x) can have no other meaning than: ’A
mathematical object x satisfying the condition has been constructed.’

(Heyting 1959, p. 69)

Without doubt, Michael Dummett gave the most thorough analysis of the
problem of truth in intuitionist veins. He wrote extensively on the the topic over
several decades, and meanwhile his claims evolved and changed considerably. In

9. By this presentation, it is interesting to see a Brouwer, who otherwise insisted that
all mathematical is happening in the ideal mathematician’s mind, finally letting in the
thought of mechanical derivations.
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his early writings he tacitly endorsed an actualist view (Dummett 1959), but later
he explicitly addressed the problem and showed readiness for departure towards
some kind of possibilism (Dummett 1975). He distinguishes direct (canonical) and
indirect proofs, in case of the latter we in principle have the means for obtaining a
direct proof. Interpreting this in principle clause is a key for a cogent possibilism, as
I will argue below. By in principle available proofs, Dummett eventually arrives to
what Raatikainen calls ’liberalized actualism’: a statement is true, if we either have
a proof or we are in possession of a means for constructing one, independently of
whether we are aware of this fact or not (Dummett 1998, Raatikainen 2004).

One may raise brows on this last amendment, as it seems to steal back the
spirit of the realist’s credo (PB1): there are truths out there, independently of
our awareness. Another one of Dummett’s distinctions may give a hint: some
mathematical assertion are determinately true or false, without actually proving
either. My reading is this: the formal verification procedure of mathematics is
internally and inherently determined, independently of whether we are looking
at it or not. The same does not go for empirical statements: the assertion that ’the
number of hairs on Professor Künne’s head is even or odd’ cannot be build on
the counterfactual ’if we had the means to count the number of hairs, we would
find that it is even or we would find that it is odd’ (Dummett 2007, pp. 349-350).
True, the efficiency of a formal derivative machinery exceeds that of any of our
hair-counting methods, not least because the subject of counting is rather vague.

3 What Bob Wonders About
Above I have not given account of every twist and turn that Raatikainen metic-
ulously covered in his historical survey. After all, in itself it is not so surprising
that verdicts on a given issue by one and the same philosopher uttered at different
occasions often diverge. He might, for instance, change his mind meanwhile.10

What I find really important is the conceptual analysis along the lines of actualism
and possibilism.

First it is to be seen that differentiating between actualist and possibilist ac-
counts does not make a dichotomy. It is clear that a possibilist is always an
actualist at the same time, since an actually exhibited proof is of course a proof
for a possibilist. Rather, the intuitionist accounts of truth can be seen as grades
on a scale running from the strictest actualism to the most liberal possibilist view.
The place of a view is partly determined by the interpretation we give to the in
principle clause when talking about in principle provability or constructibility. (I
will address in principles in the next section.)

Second, it seems that the classical interpretations of intuitionist mathematics
and the spirit of the different branches of constructive mathematics should all

10. One version of the famous bonmot credited to John Maynard Keynes goes like this:
’When someone persuades me that I am wrong, I change my mind. What do you do?’
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either lean toward some possibilism or relax on the notion of proof. At least I
venture that no constructivist will deny, e.g., that given an integer however large
we can in principle always decide whether it is prime or not, without actually
devoting the needed resources.11

Someone who still wants to keep an actualist stance, i.e. insists that for a
statement to be true (or false) we must actually possess a proof, has to face further
difficulties. Citing Dag Prawitz (1987) Raatikainen (2004) indicates that equating
truth with actual proofs, may lead to awkward consequences. For instance,
probably everyone agrees with a statement like this one:

(1) If Bob has a proof for the Goldbach-conjecture, then Bob knows a great deal
about the Goldbach-conjecture.

However, this implies the following:

(2) If the Goldbach-conjecture is true, then Bob knows a great deal about it.

It indeed seems puzzling. For it is probably natural to suppose that if Bob
has such a proof, then he is a mathematician well acquainted with the problem at
issue. But observe that Bob’s having a proof and the conjecture being true is not
equivalent: the first implies the latter but not vice versa. What is more, the thought
that Bob’s proof alone is enough for the conjecture to be true can be challenged
on the grounds that a lonely and isolated derivation is not enough, a proof must
be canonized. Anyhow, Bob’s having a proof cannot exhaust the meaning of a
statement being true. Still, maintaining that Bob’s having a proof for P implies
’P is true’ which in turn implies ’Bob knows a great deal about P’, we indeed
have a quite weird consequence. At the very least it shows that there is a conflict
between a constructive account of truth and everyday language use. But one
may even insist that the conflict affects our common intuition. Now, somebody
else can argue – indicating that intuition is not always our best guide – that
everyday language is messy, incorporates naive realist sentiments and reflected
and elaborated accounts of truth are prone to come into conflict with it. As for
me, I will argue accordingly below.

Raatikainen goes a bit further than Prawitz, as he intends to show that a
possibilist concession cannot help avoid these difficulties. His point is that every
theory of truth of a constructive nature, either an actualist or a possibilist one,
must admit that truth is in some sense temporal. For if the constructivist ties the
truth of a propsition P to a construction of a proof, he cannot say that P was true
before the construction. A possiblist view cannot provide defense: if we have in
priciple means to prove P now, it may not have always been the case. Let we
have:

11. Although I can imagine objections based on some theoretical limits of physical
possibilities.
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(3) Bob wonders whether the Goldbach-conjecture is true.

Then, we must conclude along a possibilist account of truth that:

(4) Bob wonders whether the Goldbach-conjecture is provable by presently
available methods.

Raatikainen observes that the (3) and (4) expressess quite different thoughts,
they can by no means regarded as equivalent. I can only agree with him. Unfor-
tunately the same is true for other reflected accounts of truth. Suppose Bob is a
coherentist:

(5) Bob wonders whether the Goldbach-conjecture is coherent with his other
beliefs.

Clearly (3) and (5) express quite distinct thoughts. But let Bob be a correspon-
dace theorist, widely held to be the most ’natural’ stance:

(6) Bob wonders whether the proposition G expressing the Goldbach-conjecture
corresponds to the fact G that every even number can be given as the sum
of two primes.

Do (3) and (6) express the same thoughts? By no means. A constuctivist
account of truth may well be incriminated by comparing a statement of truth (3)
and a statement with a truth definition (4), but alas, other accounts of truth do
not fare any better. In general, it seems that reflected truth concepts flounder in
intensional, natural language contexts, should whatever be the case with tem-
porality. But it is no surprise: we have a good deal of examples bringing along
similar cruxes like wondering Bob’s.12 Natural languages incorporate their own
metalanguages, and this is often a source of some mess.

Nevertheless, the temporal nature of constructive truth has been causing fre-
quent headaches to its advocates too. Raatikainen intends to show that this
uncomfortable feature even leads to absurdities (2004, p. 139). Let us assume that
the following is the case:

(7) Bob strongly believes that the hypothesis h is true.

(8) h is undecidable at Bob’s time by the available means.

(9) h is provable by methods available well after Bob’s time.

The point is, according to Raatikainen, that we cannot say that Bob’s conviction
was incorrect, but we should do this following the constructivist principles. And
this is absurd.

12. Just consider the Cretan who says that every Cretan is a liar.
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Now (7), a common language sentence, can be read in several ways and the
absurdity here lies in a certain, peculiar interpretation. Of course, equating it
with the claim that Bob believes that h has a proof is at odds with the fact that
h is undecidable by (8). However, If we are open to a more plausible reading,
namely that what Bob really believes is that the ongoing research will finally yield
a proof for h, there is no problem. In fact, constructivism has nothing to do with
an agent’s convictions. All it claims that truth is to be established through an
actual or possible construction. By this token, I cannot really see why we should
not later say that Bob was right (by (9)). If I say today that there will be a sea
battle tomorrow, and indeed there is, you must admit that I was right. Even if a
hypothesis is undecidable today, someone can endorse it and may provide to be
right tomorrow, either a realist or a constructivist. Indeed, the term true is quite
sloppy in its common, informal use, but this should not impair the constructive
truth concept, nor any other concepts which likewise seem to be miserable in the
above natural language examples.

Again, we can by no means say that a classical account is free of temporality
issues. We know since Aristotle that a future possible sea battle may pose a sticky
problem even to the most sober realist. And consider this:

(10) The hypothesis that every planar map is four-colorable has always been
true.

Clearly, this hypothesis had not been worded before the eighteenth century
and has been proved only in the seventies of the twentieth.13 A Platonist, i.e. a
realist about a mathematical universe, would say that the truth had always been
there waiting to be exposed, just as the element oxygen had been existed before
its discovery. What is more, the existence of mathematical objects are even less
arbitrary than that of plebeian elements, they necessarily exist in an eternal and
ideal immaterial world.

But now we can assume that there are infinitely many truths out there in the
eternal mathematical universe, thus most of them probably will never be realized
by finite mathematicians in a world with an end in time. Thus the realist must
hold a particularly uncomfortable version of the Principle of Bivalence:

(PB2) Every mathematical proposition is true or false independently of our know-
ing which and our outright inability for knowing it ever.

At the same time, there are well-known inconveniences for a realist stemming
from question on the structure of the mathematical world itself:

(11) It has always been true or false that there is a cardinality between those of
the natural numbers and the reals, independently of our knowing which
and having no means whatsoever for knowing it.

13. This event is also remarkable due to the fact that this was the first theorem proven
by the aid of a computer (Appel, Haken, and Koch 1977 and Appel and Haken 1977).
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A hardliner Platonist, like Gödel (1964) may still insist that there is a set
theoretical universe out there, which is imperfectly described by all of our axiom
systems. But many philosophers and practicing mathematicians are much more
cautious than that. For one, Scott Aaronson (2023) suggests, somewhat in the
spirit of Quine and Putnam, that there is an objective mathematical reality (at
least) up to arithmetic, but set theoretical speculations are beyond that. They are
quite interesting tinkering with formal systems on their own right, but outside
the realm of reality and truth.

Still others, however, seem to outright deny the legitimacy of any weekday
or weekend Platonism. Andrew Granville speaks in this vein. In his (2023)
he provides a vivid snapshot on the current mathematical practice and presents
his own reflections to the situation. According to him we should abandon ’the
naive notion that formal proofs will improve objectivity,’ but we should keep ’the
community based approach to proof that has long served us so well,’14 even when
we seek for the assistance of computers during the proving procedure. By proofs,
we are not in an approach for ever improving understanding of some objective
truths – just as a Popperian realist would insist for empirical research –, but we are
constituting mathematical truth with the kind help of machines in a cooperation
of an expert community.15 It does not at all mean that anything goes, the game
has definite rules. I will come back to these points below. For now it is enough to
see that a shift from a realist stance towards a constructivist one is also motivated
by the self-reflection of practicing mathematicians.

4 What Do the in Principle Clauses Say?
As it seems, a constructivist must lean toward some kind of possibilism if she does
not want to be too strict and deny assertions which are otherwise look evident.
We know, for instance, that there are infinitely many primes16 and also, trivially,
that every natural number is either a prime or a composite. We also have an
algorithmic method for deciding for each number whether it is prime or not,
however we may have trouble with applying it for very large numbers. And of
course, we do not have means to decide it for all natural numbers at the same time.
But it should be okay to say that in principle we can decide whether a number n is
a prime or not.

Now the strength and the accountability of a possibilist constructive account of
truth strongly depends on how one interprets these in principle clauses. According
to Parsons (1997), we usually rely on what we know about the usual, observed

14. Granville 2023, p. 11
15. It is, of course, does not mean that Granville is an intuitionist or constructive math-

ematician, only that he is an antirealist about mathematical objects and truths.
16. The first proof which is attributed to Euclid used reduction ad absurdum, a non-

constructive step. A very simple constructive proof is given by Saidak 2006.
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abilities of human actors and characteristics of machines. But in itself it cannot
be a strict guide. Suppose that x stands for the distance a rubber boot was ever
thrown at by a human, e.g., in meters. Should not we say that it is in principle
possible to throw a rubber boot at x+ 1 meters by a human? Probably we should.
x + 2? And any x + y? By every measure, one can insist that no one ever will
throw a rubber boot to the orbit, or not even at 10x meters. But is it in principle
impossible?

When we talk of in principles, there is large scale of interpretations from avail-
able, through physical to logical possibilities. Having a pair of rubber boots in
my shed I could, in principle, throw, say, the left one at some distance, even if
I actually choose not to. I may not have a rubber boot at hand, but physically I
might still be able to throw it at some distance in principle. Now give me one,
surely I cannot cast it for a mile and I do not know anyone who can, but logically
it is surely possible, after all it needs only proper muscular buildup and the right
technique. Also the laws of physics do not prevent this scenario, but is it really
a physically possibility for a human? Contingent qualities of a human body may
make such a feat unavailable.

It can be argued that in a mathematical context the most important is what a
machine can do, or more exactly, what a human-computer collaboration can do.
Thus, in principles should be characterized through physical17 and computational
(mathematical) limits. For what can be algorithmically solved, i.e., what is in
principle computable, we have a delicate theory: that of computability. Its most
important restrictive result, the Church-Turing thesis, roughly says that nothing
can be computed beyond the capabilities of a Turing machine.

There are voices, however, that in the light of the recent development of large
language model AIs, these old paradigms are no longer valid. With deep learning,
new capabilities arouse spontaneously and we are no longer in the position to
assess where the progress ends. I think otherwise. Pattern-based computation
does not supersede the good old rule-based one, even if it endows machines with
new abilities. Now they are better and better at sensual recognition and imitating
human linguistic behavior (by default with all of the flaws in character and with
no regard to established facts). No doubt, AIs can be of great help also when we
put problems in algorithmic setting, but I do not see how could they broaden the
set of computable functions. What we can in principle calculate is left intact by
AI.

Perhaps another challenge for the received computation paradigm is the pos-
sibility of supertasks and hyper-computation. At least, some researchers argue
that computation can go beyond the Turing-barrier in the sense that the laws of
physics make it possible.18 In particular, our prevailing theory on the structure of
space-time allows for situations where some supposed observers can read their

17. For a die-hard Brouwerian, connecting mathematical truths to contingent physical
facts would be unacceptable. Here I pursue a much more liberal approach.

18. See Németi and Dávid 2006 and Andréka, Németi, and Németi 2009.

12



clocks so to realize that infinite time elapsed. And this time is obviously ’enough’
for a computer to prove the Goldbach-conjecture or even the consistency of set
theory (say ZFC), simply by brute force: by probing each even integer or deriving
all of the consequences of the axiom system.

All computations are, it can be argued, running on physical systems, humans
included.19 So the in principle clause should be highly affected by what is phys-
ically possible. Now one can say that even if the above scenarios are allowed by
theory we are very far from harnessing them. But this is not the point. Some-
where in the past, e.g. in Leibniz’s time, ordinary computers had also been a
distant possibility. But observing the phenomena closer some day, auxiliary theo-
ries may come into the picture, warning for more restricted views on our genuine
possibilities. By Newtonian mechanics we can give all the pool balls scattered
across the billiard table exactly the right momentum so to form the initial pyra-
mid rack. Still, due to imperfections in the setup, the theoretical imprecision in the
measurement of the initial conditions and our robotic gadgets (with which we are
by all probabilities would like to make such experiment), I suppose that no one
regards it as a real, practical possibility. But can someone say that in principle
it is possible? Maybe, but I would not join. I am inclined to put a narrower
scope on the in principle clauses. In particular, I am suspicious with scenarios,
where the possibilities of one physical theory run against those of another one.
In the case for hyper-computability, general relativity allows for supertasks. At
the same time thermodynamics makes infinitely running machines impossible
or at the very least infinitely improbable. So at the end of the day, in my view,
hyper-computability is not something that we should consider as an in principle
possibility in theorem proving.

On the other hand, some more mundane and immediate state-of-affairs of the
physical world do pose challenges even for calculations well within the Church-
Turing limits. Suppose we give a computer the relatively easy task of calculating
257729, and then printing out the result in the unary system, i.e., by tally marks.
The number of the digits needed for this simple output far exceeds the supposed
number of atoms in the known universe.20 Perhaps actual printing is not a genuine
computation tasks after all, and we can surely choose a form and method so to
fit a normal screen.21 Let it, but as some results of computations theory warn us,

19. For the sake of simplicity I adopt this physicalist stance here, not distinguishing
between different actors. However, it is not at all unproblematic. For instance, we are
not in a good position when we are seeking a theory of meaning for the symbols which
constitute a proof. Indeed, even when talking about different tokens and types of symbols,
and thus about recognizing a proof when seeing one. I will not address these difficulties
here, though I have argued against a radical physicalism elsewhere (Csatári 2012). My
reason is that from the point of view of computation theory, it is quite apt to handle a
machine and a human computer on the same page (Granville 2023, p. 3).

20. It is estimated somewhere at 1082.
21. I typed the problem into Python, and it immediately gave the result in decimal, a

1757-digit number.
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only problems with a restricted complexity can have a solution factually viable
on a computer. And problems, where the output is not too large related to the
algorithmic size of the task and can be delivered in due time constitute only a
fraction of all decidable problems. Since the volume of this practical set is not
clear cut, however, as what we consider as reasonable time is up to technological
advancements, one may claim that we are legitimate to use the concept of in
principle computability up to decidability, i.e. up to the Church-Turing barrier. In
a mathematical context we may well do with it as a characterization of in principles.

5 Incompleteness and Circularity
Even if we suppose that the scope of in principles is more or less clear, there may
remain some further worries when ordering truth under proofs. An important
one is that at this point the methods of the construction of proofs are not at
all characterized, so far any procedure goes as a proof when it is in principle
available. I will address this problem in the next section. Here I discuss two other
difficulties. The first concerns with incompleteness, the second with a supposed
circularity of a constructivist truth concept. As we will see, these objections are
not independent of each other.

Raatikainen (2004) observes that that there are most probably a finite number
of available methods of proof at every point in time, giving room for a denumer-
able set of derivations. Naturally supposing that the methods do not contradict
each other, they may be added up to a formal system. But if so, then by Gödel’s
first incompleteness theorem (1931) it follows that there are true sentences which
cannot be derived. But this cannot be the case, since according to the intuition-
ist, true sentences are exactly those which are or can in principle be derived—a
contradiction. Hence equating truth with a possible proof is ill-taken.

I take it that ’methods’ can be thought of as step by step rules, while axioms
do not enforce definite procedures. It is thus at least questionable whether there
is a method by which we can construct an axiom system encoding those and only
those steps available in the existing methods. We know that first order intuitionist
logic is undecidable (as a matter of fact so is classical predicate logic), meaning
that there is no algorithmic way to decide for each and every sentence whether it
follows from the system or not. So it does not seem to be a viable task to grab the
underlying logic of a derivative system by adding up the available algorithmic
rules, i.e. actual or potential derivations.

Each derivation ends with a proposition P, the very one supposed to be proved.
(Of course, P may happen to be ¬Q.) However, nothing ensures that for every
statement R in the language at issue either R or ¬R will end one of the derivations.
In other words, it is still possible, that the rules for our methods of proof constitute
a subsystem with the sufficient arithmetic, but I do not see why anyone should
suppose that something like negation completeness holds for it, the very prop-
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erty denied by Gödel’s first incompleteness theorem in case of sufficiently rich,
consistent systems. In fact, it should not hold, since intuitionist logic implicitly
denies it own completeness by not endorsing (LEM).

Further, the identification of syntactic and semantic layers by making clear
difference between the language of a formal system, its interpretations and the
language (and metalanguage) of metalogic is important. The ’truth’ of the ind-
educible sentence is a truth in metalogic: an assessment of the formula’s formal
properties. Gödel’s non-derivable formula does not speak about its own non-
derivability, rather it makes a complex statement of arithmetic, which may belong
to the formally defined set tagged as the true sentences. But this set could just as
well been called as the correct sentences, nice sentences, tame sentences, whatever.
Strictly speaking, we do not need any truth concept in order tell the incomplete-
ness story. The incompleteness results, of course, deeply affect the endeavors
of a formalist too, who happen to deprive the object language formulas of any
meaning or truth values. And intuitionist arithmetic is of course affected by
Gödel’s theorems too: if consistent, it cannot prove its own consistency. Just like
its classical counterpart.

Now for circularity. Firstly, it worth noting that circularity is an ubiquitous
suspicion whenever foundational theories are on trial. Founding mathematics
by the means of mathematics, an endeavor also known as mathematical logic, is
flirting with circularity at large. Some say that the notion of a successor function
already contains the concept of numbers, the very one it is supposed to build a
foundation for. And elsewhere I showed that concatenation, as a basic empirical
procedure for measurement is also burdened by circularity (Csatári 2020, pp.
30-33).22

Now let see the case against intuitionism. The construtivist truth concept
relies on procedures of proof. But only those derivations are constructively valid,
for with axioms and rules are set up in constructive (in this case: intuitionist)
manner, i.e., they reflect the very truth concept themselves, which is to be defined
by them. ’If the explication of the notion of provability in turn presupposes
intuitionistic interpretation of logical constants, the whole account appears to be
viciously circular, or to lead to an infinite regress’ (Raatikainen 2004, p. 140).

It is clear that traditionally we have the most interest in those formal systems,
which reflect some of our ontological or alethic convictions. True, we may well
indulge in tinkering with Hofstadter’s MIU-system (1999, pp. 33-35), where
downright meaningless strings of a tiny alphabet are manipulated by a couple of
contingent rules. And this activity definitely has takeaways for formal systems in
general. Typically, however, the focus is on systems which had been created with
some meaning in head. First order logic (FOL) is intended to grab the essence of
valid argumentation and the concept of consequence. Peano Arithmetic (PA) is
vehicle for natural numbers and their manipulation on the top of FOL. Just like
its intuitionist counterpart, Heyting Arithmetic (HA) on intuitionistic first order

22. As a matter of fact, I did this to argue for a constructive approach.
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logic. By no means it comes as a surprise that the intended semantics deeply
affects syntax, and the interpretations of logical and non-logical constants are not
independent of the accepted truth concept.

Again, in a classical setup we say the the proposition P is true, iff it is the
case that P, i.e. the state of affairs is indeed so as described by P. One can say
that this truth concept is circular or at the very best flat, since the clause true adds
nothing to the sentence P. I would not follow suit, because I put great importance
on the observation that P and ’P is true’ belong to different languages, or at least
different layers of a language. Anyhow, classically ¬¬P → P is a valid formula
exactly because it is supposed that if it is not true that ’P is not true’ then nothing
else should be the case than P as described by P, exactly by the intended account
of truth above. Intuitionistically, however, ¬¬P→ P should not be true, since the
absurdity of ’P is absurd’ will not constitute a positive proof that can be turned
into a proof of P. I do not see genuine circularity here, however it is quite clear that
both in the classical and the intuitionist cases, formal systems, logical constants
and their interpretations are vehicles of higher devotions.

6 Proofs as Valid Procedures
I still owe with with an exposition on what proofs are, or in general, what can be
regarded as a valid procedure for a construction exhibiting truth in mathematics
(and perhaps beyond). While examining the nature of procedural activities re-
sulting in proofs, I will leave intuitionistic logic behind. Or to be more precise, I
will not be concerned here with the question whether there is any specific logic
forced upon us if we base truth on these procedures.

By a valid procedure I mean canonized ways for establishing truth in a certain
domain of knowledge. There is no scientific endeavor where everything goes. To
measure the mass of the Higgs boson, to construct it, a complex and delicate theory,
the hugest and most expensive accelerating machinery and large computers for
the data handling are needed—by the consent of particle physicists. It is clearly
not enough to tell fortune from coffee grounds, say.

When concerned with the nature of mathematical proofs, we can choose an
easy-looking way to go on by ’adopting the basic intuitionostic idealization that
we recognize a proof when we see one’ (Kreisel 1962, p. 201). The road is not
so smooth, but realization is indeed an important point when the mathematical
community reflects on proofs.23 A recent study, intended as a collection of different
views of contemporary practitioners, indicates two conceptual focus points when
it comes to proofs, similar to the following (Bayer et al. 2024, p. 79):

(Def1) A mathematical proof is a deduction of a formula from the initial formulas
(axioms) following the rules of deduction.

23. ’[I]n practice a proof is what is considered to be a proof by all mathematicians (Bayer
et al. 2024, p. 82).’
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(Def2) A mathematical proof is a sequence of arguments that convinces the edu-
cated reader (i.e. the experts of the topic).

(Def1) is tagged as the formal definition (even called as idealistic), whereas (Def2)
as the practical one, more faithfully reflecting the nature of weekday activities by
mathematicians.

Mathematics is traditionally proud to be the strictest of all sciences, as all
of its assertions are deemed to be based on some conceptual necessity. In this
light it is all the more surprising that there is such a huge gap between an ideal
proof definition, seemingly for the drawer, and a much more relaxed one for
everyday use. However, may the first definition be sterile, the second one is for
sure not sufficient. Since, after all, I may convince the educated colleagues with
my arguments while bribing or blackmailing them, which by no means amounts
to a mathematical proof. But do not split hairs, the intended message is clear.

If we look at papers in journals for mathematics, we see formal assertions as
well as natural language arguments, invoking of former results and appeal to
insight and intuition. Logical connectives are often also given as plain text argu-
ments. It is a common wisdom among mathematicians, though, that all of those
informal leaps and jumps could be translated into strict, formal derivations—in
principle. But on what is at stake with such translations, opinions diverge.

Many hold that the essence of mathematics lies in understanding, heuristic
thinking, mastering intuition and creativity (see e.g. Thurston 1994 and Bayer et
al. 2024, pp. 81-82). Indeed, informal means constitute a large part and arguably
the sunny side of the profession from journal argumentation through teaching to
conference discussions both in the room and at the coffee counter. At the same
time, never has the imperative that all mathematics ought to be based on strict,
full-fledged formal proofs more articulated. And this is to do with the fact that
proof assistants gained currency. Much of mathematics is now fully formalized
and stored in the databases associated with proof assistants like Metamath, Lean
or Isabelle. There are projects ongoing to translate not yet covered, highly complex
proofs, such as the one of Fermat’s Last Theorem, and also initiatives to require
machine translation and check for every journal proof in the future (ibid.). So
even if they are time-consuming, tiresome and bring no credit, full formalization
and machine verification are slowly becoming the norm.

Having said this, one must admit that the validity of procedures for construct-
ing truths is, to a large part, a normative concept. Acceptable methods are marked
off by the scholarly community. At the same time, as the moral of formal recon-
struction of former proofs clearly shows, truths of mathematics could be reached
in several ways: by fully formal flawless derivations, and also by the good old,
more sloppy, half-formal, intuitive means. All in all, recent changes seem to
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amount to this: while there is more emphasis on strict, mechanical verification,
the playground for the intuitive and heuristic mathematics remains.24

Where more than one procedures are available, identical (or similar enough)
results can be regarded as an indication for validity. Here I sketch three other
principles, all of them may sound quite natural. They go beyond the scope of
mathematics, and may worth some more elaboration elsewhere. It is important to
note that these principles are not simple norms established by scholar communi-
ties, rather factors stemming from a common sense view of ’how things are,’ thus
regulating the received community norms.

The first requirement is relevancy. It is not surprising that we would like to see
that the procedure we are pursuing towards truth is relevant to the subject matter.
When aiming for some truth, say, on the behavior of certain bacteria, it is relevant
to look into the microscope and record the observations of experiments with the
given species. It is less adequate to ask a medicine man. (However, he might
be aware of some of the effects of this behavior.) It is worth emphasizing that
in practice, relevancy is often not transparent at all, it may be hidden in delicate
theories and complex machinery. Looking at a collider with its many-mile long
pipeline, extent supplier equipment and staff, it is not self-evident that crafted
experiments with these are the relevant way to make true assertions about the
masses of certain subatomic particles. Likewise, in complex mathematical proofs
there may be trains of thoughts that seem to be completely irrelevant to the goal
at the first sight.

Secondly, valid procedures must show effectivity. Practically this means that
a method is more successful than others, and it is successful in several similar
but distinct cases. Measuring distances by laser beams are effective in contrast to
bare sight estimations. In the context of mathematics, Granville calls this feature
robustness (2023, p.5 ). Well-used technical tools make verifying smooth, ’[a]nd
even if there is a mistake, experience shows that a simple modification should be
enough to make the argument work.’

Last but not least there is a need for transparency. The procedure must be
open, each and every element of it must be built so that it could be scrutinized by
everyone, but most importantly the expert peers. Given the complexity of many
scientific projects, this principle may seem to be beyond the pale. A collider con-
sists of highly sophisticated elements each built on intricate theories and running
million lines of proprietary software. It is clear that even a relatively small part
of the system is so intricate that its complexity cannot be digested by one and the
same human. Similarly, machine assisted proofs may require an extremely wide
range of specific skills and may be so extent laid out in full, that it cannot be sur-
veyed by any individual, mortal mathematician (Tymoczko 1979). But this kind of
surveyability cannot even be the purpose. All we can require is that each process
has to be legally and technically open for scrutiny, every part of the machinery

24. However, with the advance of large language model AIs, machines may gain more
and more grounds here as well.
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must be open for a review by the community of specialist peers. This leads to
interesting policy-related problems such as proper documentation, accessible lit-
erature and open source software, a realm which I will not explore here. For now,
it is enough to declare that if a proof is to be recognized as such, the transparency
principle is there to help the scientific community in this recognition.

7 Conclusions
With my defense of a constructivist approach to truth I had no intention to suggest
that intuitionistic logic is superior to classical one, or anything like this. The focus
was set on the different truth concepts, and all I wanted to show in this paper
that maintaining a constructive one is just as natural and at least as defendable as
betting on a correspondence account. In doing so, I gave myself the freedom to
diverge from a strictly mathematical context every now and then.

I admitted the distinction of actualist and possibilists account of truth as a
fruitful one, and concluded that a certain degree of possibilism is inevitable for a
cogent constructive truth concept. At this point in principle clauses come into the
picture, and I concluded that, at least in a mathematical context, what we can in
principle do is by and large clear.

I examined some of the most important objections against a truth concept
traditionally paired with intuitionist logic. I found that they can easily turned
against correspondence theory and classical logic also, a fact showing that these
difficulties go beyond the scope of a specific account of truth.

On the positive side, with the natural principles of relevancy, effectivity and
transparency we can account for proofs as valid procedures. These may provide
constructivism a good base to build its truth concept on.

My primal intention here was to show that attacking constructivism along the
lines of common language intensionality, circularity and incompleteness results
are not enough for settling on realism, as all of the cruxes likewise affect other
reflected viewpoints. If we want to choose a massive stance on the issue of truth,
arguments must be searched for elsewhere.
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