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Standard textbooks on quantum mechanics present the theory in
terms of Hilbert spaces over the field of complex numbers and
complex linear operator algebras acting on these spaces. What
would be lost (or gained) if a different scalar field, e.g. the real
numbers or the quaternions, were used? This issue arose with the
birthing of the new quantum theory, and over the decades it has
been raised over and over again, drawing a variety of different
opinions. Here I attempt to identify and to clarify some of the
key points of contention, focusing especially on procedures for
complexifying real Hilbert spaces and real algebras of observables.

1 The issue

“Schrödinger put the square root of minus one into the equation,
and suddenly it made sense. Suddenly it became a wave equation
instead of a heat conduction equation. And Schrödinger found
to his delight that the equation has solutions corresponding to
the quantized orbits in the Bohr model of the atom. It turns
out that the Schrödinger equation describes correctly everything
we know about the behavior of atoms. It is the basis of all of
chemistry and most of physics. And that square root of minus
one means that nature works with complex numbers and not with
real numbers ... [Riemann and Weierstrass] always thought of
complex numbers as an artificial construction, invented by human
mathematicians as a useful and elegant abstraction from real life.
It never entered their heads that this artificial number-system
that they had invented was in fact the ground on which atoms
move. They never imagined that Nature had got there first.”
(Freeman Dyson 2010, p. 827)1
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The pioneers of the new quantum theory were led, some of them reluc-
tantly, to a conclusion similar to Dyson’s. But in subsequent years both
physicists and philosophers concerned with the foundations of quantum me-
chanics (QM) have felt the need to find a convincing argument for the con-
clusion, or else a convincing reason to reject it. There are two issues. First, is
there a good argument for the conclusion that complex structure is an indis-
pensable ingredient in the empirical success of QM? Second, if so what can
be inferred from the indispensability of complex structure about the nature
of physical reality? Trying to tackle the second issue involves engaging the
debate about scientific realism, a swamp-of-no-return, so it is wise to decline
to tread on this treacherous ground. But we should be able to make some
headway on the first issue. Let’s try.
Conventional textbook quantum mechanics uses the machinery of Hilbert

spaces over the complex numbers. But there is a huge array of number fields
that could conceivably serve as the “scalars” for a Hilbert space.2 Due to
a remarkable theorem of Solèr (1995) there are only three feasible choices
for infinite dimensional Hilbert spaces: the real numbers R, the complex
numbers C, or the quaternions H.

Solèr’s theorem3: Let F be a ∗-field.4 Let V be a vector space
over F , and let (•|•) be Hermitian form for V , i.e. a mapping V
x V to F with the properties of an expectation value functional.5

1It should be noted that either Dyson forgot about his earlier opinion (Dyson 1962) or
else he changed his mind in the intervening years.

2“Field” is not the technically correct term since the general (but not universal) un-
derstanding is that a field involves commutative multiplication, whereas some of the
candidates– the quaternions in particular– are noncommutative. Sometimes the term
“skew field”is used to cover the noncommutative cases (but this has the flavor of a field
that is not really a field). “Division ring”is perhaps the best terminology since it covers
both commutative and noncommutative cases. I am not much concerned with terminology
as long as we are clear what we are talking about.

3See Holland (1995) for an exposition and assessment of the theorem.
4Here ∗ is an involution of F , a map f 7→ f of F onto itself such that f∗∗ = f ,

(f + g)∗ = f∗ + g∗, and (fg)∗ = g∗f∗ for all f, g ∈ F . ∗ is the identity for R; for C,
(a + ib)∗ = (a+ ib) = a − ib, a, b ∈ R; for quaternions a + ib + jc + kd, a, b, c, d ∈ R,
i2 = j2 = −1, ij = −ji = k, (a+ ib+ jc+ kd)∗ = a− ib− jc− kd.)

5(i) (aϕ+ bψ|ξ) = a∗(ϕ|ξ) + b∗(ψ|ξ)
(ϕ|aψ + bξ) = a(ϕ|ψ) + b(ϕ|ξ)
for all a, b ∈ K and ϕ,ψ, ξ ∈ V

(ii) (ϕ|ψ)∗ = (ψ|ϕ) for all ϕ,ψ ∈ V
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Suppose that there is an infinite sequence of vectors in V that
are ON with respect to (•|•). Then F = R, C, or H. The
corresponding Hilbert space is the completion of the vector space
V with respect to the norm induced by (•|•).6

Cassinelli and Lahti (2017) argue that, because of the noncommutative
nature of quaternions, trying to do QM overH leads to problems in describing
composite systems in terms of tensor products of component systems (see also
Finkelstein et al. 1962 and Araki 1980). No attempt will be made here to
evaluate their argument, and in what follows it will simply be assumed that
H can be left aside, and the concentration will be on the issue why C rather
than R.

2 A little potted history: i in wave mechanics
and matrix mechanics

In his initial investigation of wave mechanics Schrödinger was willing to use
complex numbers to simplify calculations, but when the calculations were
done, only the real component of the wave function was to be assigned a
physical meaning. As he put it to Lorentz in 1926, the wave function “is
surely fundamentally a real function.”7 His desire to implement this attitude
can be seen in his attempt to derive a time-dependent wave equation from
his time-independent equation

∇2ψ +
8π2

h2
(E − V )ψ = 0. (1)

E is eliminated from (1) by assuming ψ ∼ real(e(2πiEt)/h), differentiating ψ
twice with respect to t, and substituting into (1) to obtain an equation that
is second order in time and fourth order in spatial coordinates:

(iii) If either (ϕ|ξ) = 0 or (ξ|ϕ) = 0
for all ξ ∈ V then ϕ = 0.

In some treatments the Hermitian form is required to be conjugate linear in the second
argument rather than the first.

6In what follows attention will be restricted to separable Hilbert spaces, i.e. those with
a countable ON basis..

7Quoted in Karam (2020, p. 433). Schrödinger’s struggles with a complex wave function
are discussed in Yang (1987), Chen (1989, 1990, 1993), and Karam (2020).
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(
∇2 − 8π2

h2
V

)2
+

16π2

h2
∂2ψ

∂2t
= 0 (2)

which is analogous to the equation describing a vibrating plate (see Chen
1993). By 1927 he seems to have reconciled to complex wave functions (see
Schrödinger 1927). In Schrödinger (1928) what we now call the Schrödinger
equation is derived by assuming a periodic time dependence represented by
a complex exponential ψ ∼ e(2πiEt)/h, differentiating once with respect to t,
and substituting the result into (1) to produce an equation first order in time
and second order in spatial coordinates

i}
∂ψ

∂t
= [− }

2

2m
∇2 + V ]ψ, } := h/2π. (3)

The change in Schrödinger’s attitude seems to have been driven by the re-
alization that a complex ψ is needed to account for Bohr’s relation for the
emission frequencies of light (Karam 2020, p. 436).8

As for matrix mechanics, the square root of −1 makes an appearance
in Heisenberg’s pioneering work which involved calculations using complex
Fourier transforms. Soon thereafter Born and Jordan (1925) attempted to
provide a consistent mathematical framework for Heisenberg’s heuristic con-
siderations, and in this framework i appears in important formulas, most
notably in what we now call the Heisenberg form of the canonical commu-
tation relations pq − qp = −i}. Needless to say, the proponents of matrix
mechanics did not have to confront Schrödinger’s worry about what signifi-
cance to assign to the imaginary part of the wave function. It may well be,
as Yang (1987) opines, that Heisenberg, Born, and Jordan did not appre-
ciate at the time that making C play an essential role in QM was a major
development.

8In Bohmian mechanics the imaginary part of the wave function is, arguably, the most
important part. The “guiding equation” for the position Qk, k = x, y, z, of a single

spinless particle of mass m is
dQk
dt

=
}
m

Im

(
ψ∗∂kψ

ψ∗ψ

)
(Qk). If Im(ψ) = 0 the position of

the particle is unchanging.
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3 Why C rather than R?
After the publication of von Neumann’sMathematische Grundlagen der Quan-
tenmechanik (1932b) it was generally agreed that wave mechanics and matrix
mechanics are not different, competing physical theories but two different
forms of the same theory, and that the appropriate mathematical arena for
this theory is Hilbert space. von Neumann used Hilbert spaces over a com-
plex field, but in retrospect we can ask whether this was necessary and, if so,
why.
First question: What familiar results for Hilbert spaces over C that seem

essential to QM as we know it also hold for Hilbert spaces over R? Spectral
theorem– yes. Stone’s theorem– in a suitably modified form, yes (see below).
Gleason’s theorem– Yes. If R can’t be faulted at this very general level, what
else can we appeal to that will justify the move to C?
Stueckelberg (1959, 1960) claimed that a non-trivial Heisenberg uncer-

tainty relation for a Hilbert space over R requires smuggling in a complex
structure in the form of an operator J that commutes with all observables.
However, at some points he assumed that observables have a pure point spec-
trum, and his arguments sometimes use questionable heuristic inferences (see
Moretti and Oppio 2017). Nevertheless, Stueckelberg’s insights will be crucial
in what follows.
Subsequently Lahti and Maczynski (1987) argued that complex numbers

are required for a proof from equational axioms of a Heisenberg inequality
∆A∆B ≥ h for observables A and B, if ∆X for a state ω is interpreted as
V ar(X,ω)9 and if V ar(A, ω)V ar(B,ω) ≥ h must hold for any state ω of
the system for a positive number h. The analogy they give is that the use
of Cardano’s formulas to calculate the real roots of cubic equations requires
the use of complex numbers. I leave it to someone who knows proof theory
to evaluate the analogy. And assuming that the analogy holds, what is the
payoff for the issue of why a Hilbert space over C rather than R? Showing
that a proof that V ar(A, ω)V ar(B,ω) ≥ h holds in any state ω of the system
must go through the complex numbers seems to fall short of showing that a
non-trivial Heisenberg uncertainty relation is not possible for a Hilbert space
over R.
Moretti and Oppio (2017) showed that complex structure, or at least its

9V ar(X,ω) := ω(X2) − ω(X)2. Here “state” is being used in he algebraic sense, as
explained below.
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simulacrum in the form Stueckelberg’s operator J , emerges from the Poincaré
symmetry. Require that there is a faithful, irreducible, and strongly continu-
ous unitary representation U of the Poincaré group in which M2

U ≥ 0. Then
there is a unique (up to sign) complex structure J that commutes with the al-
gebra of observables generated by the unitary representation.10 Is there some
analogous result for the Galilean group in ordinary non-relativistic QM? Or
did quantummechanics have to wait for Minkowski spacetime and relativistic
quantum theory to have a reason to move from R to C?
Recent work by Renou et al. (2021a, 2021b) promises to give a deci-

sive reason for using complex Hilbert spaces, the claim being that QM done
on real Hilbert space is incapable of accounting for experimentally verifiable
(and, indeed, experimentally verified11) predictions of correlations between
component systems of a composite system. Some skepticism has been ex-
pressed about the effectiveness of their argument (see Finkelstein 2021, Chi
and Pan 2022, and Vedral 2023).
In the present work I will invite the reader to step back from the high

powered investigations mentioned above in favor of a more humble explo-
ration of what is involved in the choice between QM on a complex Hilbert
space vs. QM on a real Hilbert space. Before proceeding it is well to empha-
size that the real issue is not complex Hilbert space vs. a real Hilbert space
but QM on a complex Hilbert space (complex QM for short) vs. QM on a real
Hilbert space (real QM for short). For present purposes accept the algebraic
approach to QM, wherein a quantum system is characterized by three ob-
jects: von Neumann algebra of observables acting on a Hilbert space, either
a complex algebraM acting on a complex H or a real M acting on a real H,
together with a set of admissible states. Here “state”means an expectation
value functional ω on the algebra, i.e. ω : M→ C (respectively, ω : M → R)
that is positive, complex linear on M (respectively, real linear on M), and
taking the value ω(IH) = 1 (respectively, ω(IH) = 1). It is typically assumed
that the admissible states are normal, meaning that there is a density oper-
ator ρ whereby expectation values are calculated via the trace prescription
ω(A) = Tr(ρA), A ∈ M or A ∈ M as the case may be.12 This assumption
will be adopted here. The discussion here will focus on vector states, where

10Uniqueness up to sign is the best that can be done since if J simulates a complex
structure then so does J̃ := −J .
11For the experiments see Chen et al. (2022) and Li et al. (2022).
12Equivalently, a normal ω is countably additive on the projection lattice of the algebra.

A density operator ρ (aka statistical operator) is a positive selfadjoint operator such that
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ω is a vector state means that there is a unit vector ψ ∈ H (respectively, ψ ∈
H) such that ω(A) = (ψ|Aψ)H (respectively, ω(A) = (ψ|Aψ)H for all A in
the algebra). In the case of a complex H the physical/algebraic vector states
correspond to unit vectors up to phase since ω(A) = (ψ|Aψ)H = (ψ′|Aψ′)H
for ψ′ = eiθψ. In the case of a real H the physical/algebraic vector states cor-
respond to unit vectors up to sign (Moretti and Oppio 2017). This difference
makes for problem for real QM as will be discussed presently.
Before embarking on a journey into the bowels of QM it is appropriate to

be clear about the substantive issue at stake; namely, is the complex structure
of the Hilbert spaces and the algebras of observables essential to the empirical
success of conventional complex QM, as is assumed in Dyson’s declaration
that C provides the ground on which atoms move? If this issue is kept in
focus then the doubling-up bromide that a complex number can be replaced
or represented by two real numbers is seen to be beside the point. If real
QM cannot duplicate the empirical success of complex QM then repeating
the bromide any numbers of times will not change the verdict. On the other
hand, if real QM can duplicate the success of complex QM then Dyson’s
declaration is discredited without help of the bromide.
However, one might think that more sophisticated versions of the bro-

mide can be used to raise doubts about whether the issue of complex vs. real
QM is really a substantive one. First version: double-up on the dimension
of the Hilbert space; that is, in place of an n-dim complex Hilbert space
use a 2n-dim real Hilbert space where a vector with 2n real components is
used to represent its complex counterpart with n complex components, and
observables are symmetric real linear operators acting on this 2n-dim space.
It turns out that the resulting real QM admits too many observables with
too much eigenvalue degeneracy. Second version: a real Hilbert space, unless
it has a finite and odd dimension, contains a simulacrum of i that can can
be used to complexify the Hilbert space (“internal complexification”), and
the real Hilbert space theory is (often claimed to be) empirically equivalent
to its complexified version. The trouble here is that real Hilbert space the-
ory used in internal complexification circumscribes the observables in such a
way that not all instances of complex QM can be reached by internal com-
plexification of real QM. With these misdirections set aside, the way is open
to study another form of complexification (“external complexification”) that
avoids the circumscription of observables that troubles internal complexifi-

for an ON basis ξj ∈ H, Tr(ρ) =
∑
j

(ξj |ρξj)H = 1.
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cation. But it too fails to establish the empirical equivalence of real and
complex QM because, for different reasons, not every instance of complex
QM can be reached by external complexification of an instance of real QM.
To understand these issues we need to go on our journey into the bowels of
QM. Let’s get underway.

4 Why I can’t do without you (or someone
very much like you)13

4.1 Dynamics

For reasons that will not be reviewed here, in conventional QM on a com-
plex Hilbert space H time translation symmetry is implemented by a one-
parameter unitary group U(t), where U(t + s) = U(t)U(s) for all t, s ∈ R.
U(t) is strongly continuous just in case for all ψ ∈ H if t → t0 then
U(t)ψ → U(t0)ψ.14 In the “Schrödinger picture” the dynamics for vector
states takes the form ψ(t) = U(t)ψ(0). Physicists want more than this.
Given U(t) they want to extract an equation of motion which, in the case
of vector states, is the infinitesimal version of ψ(t) = U(t)ψ(0) obtained by
taking the limit as t → 0. And in the other direction they want to be able
to construct the unitary dynamics by identifying the appropriate generator
for time translation, and they want this generator to be an observable.
These desires are satisfied by appealing to Stone’s theorem and a converse.

First the converse (proved in Reed and Simon (1980, Theorem VIII.7) and
then Stone’s theorem for complex H.

Theorem. Let S be a selfadjoint operator acting on a complex H
and let U(t) := e−itS, t ∈ R. Then U(t) is a strongly continuous
unitary group and

(i) if ψ ∈ H and if t→ t0 then U(t)ψ → U(t0)ψ

(ii) the limit limt→0
U(t)ψ − ψ

t
exists iffψ ∈ D(S), in which case

limt→0
U(t)ψ − ψ

t
= −iS.

13To be read with The Once’s version of “I Can’t Live without You” playing in the
background.
14For unitary groups weak and strong continuity coincide.
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When U(t) is time translation, then for ψ(0) ∈ D(A), ψ(t) = e−itSψ(0) is a

solution the Schrödinger equation
dψ(t)

dt
= −iSψ(t), or i

dψ(t)

dt
= Sψ(t).15

Stone’s Theorem16. Let U(t) be a strongly continuous one pa-
rameter, t ∈ R, unitary group acting on H. Then there is a
selfadjoint S acting on H such that U(t) := e−itS.

A neutral version of Stone’s theorem, applying equally to a complex
Hilbert space H or a real Hilbert space H, asserts that if U(t) is a strongly
continuous unitary group acting on H or H, then there is an anti-selfadjoint
(aka skew adjoint) operator A on (i.e., A† = −A) such that U(t) = etA.
When U(t) is time translation, for ψ(0) ∈ D(A), ψ(t) = etAψ(0) is a solu-

tion the equation
dψ(t)

dt
= Aψ(t). This equation serves as the Schrödinger

equation for a real H.
This real version of the Schrödinger equation is physically awkward. The

eigenvalue equation for an anti-selfadjoint operator has solutions only in the
purely imaginary numbers so that the spectrum of A cannot represent the
energy spectrum of a system of interest unless 0 is regarded as an imag-
inary number and the system only admits 0 energy. And in any case an
anti-selfadjoint A cannot represent an observable if we hew to the idea that
observables are represented by selfadjoint operators. If the Hilbert space is
over the complex numbers we can simply use i to define a selfadjoint op-
erator S := iA, and substituting −iS for A we recover U(t) = e−itS and

the standard Schrödinger equation i
dψ(t)

dt
= Sψ(t). Following the path of

canonical quantization S is obtained by writing the classical equations of
motion for the system of interest in Hamiltonian form and then substitut-
ing appropriate selfadjoint Hilbert space operators for the classical position
and momentum variables to obtain the quantum Hamiltonian operator, from
which the energy spectrum of the system is obtained.17

15The “Schrödinger equation”in this context is not a wave equation but a Hilbert space
equation for the time rate of change of the state vector ψ(t). Since ψ(t) is here considered
only as a function of t, d/dt is used rather than the partial derivative ∂/∂t of eq. (3).
16For a proof see Reed and Simon (1980, Theorem VIII.8). von Neumann (1932a)

showed that when the Hilbert space is separable, the hypothesis of strong continuity of
U(t) can be replaced by weak measurability.
17When the Stone-von Neumann uniqueness theorem applies one is justified in using
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These considerations need not force one out of a real Hilbert space H and
into a complex H, but they do indicate that to reach satisfactory physical
results H needs to be equipped with a simulacrum of i. Mathematicians refer
to this simulacrum as “complex structure.”Here a distinction needs to be
drawn. “Complex structure”may denote an operator J on the real Hilbert
space H that mimics properties of the operator iIH for a complex H. In this
sense this “complex structure” is not some exogenous element super-added
to real H– either H admits such an operator or it doesn’t. If it doesn’t then
that’s an end to it; if it does then the structure doesn’t need to be added.
New physics enters if one adds the Stueckelberg (1959, 1960) requirement that
J commutes with all observables. This posit has substantive consequences,
some of which may be thought unpalatable, as subsequent developments will
reveal. But this is getting ahead of the game. Let’s start with basics.
For real H we seek an analog of the operator iIH for a complex H. This

would be a bounded (real) linear operator J acting on H with the properties
J2 = −IH and J† = −J .18 If A is an anti-selfadjoint operator acting on H
then in analogy with the complex case we can define S := JA. From the
properties of J we have S† = (JA)† = A†J† = (−A)(−J) = AJ , and if J
commutes with all of the elements of the algebra of observables (as does iIH)
then S† = S and S is selfadjoint. Questions of existence and uniqueness
naturally arise: Does every real H admit such a J and, if so, to what extent
is it unique? More on this below.

4.2 Phases and interference

The need for the simulacrum J is also indicated by another consideration. In
the standard form of ordinary non-relativistic QM (sans superselection rules)
whereM = B(H), the von Neumann algebra of bounded operators acting on
a complexH, the pure physical states correspond to unit vectors up to phase.
Thus, overall phase does not matter. But in superpositions relative phases

do matter. If ψ1 and ψ2 are unit orthogonal vectors then
1√
2

(ψ1+ ψ2) and

the Schrödinger representation for position and momentum. For some of the pitfalls in
applying this theorem see Earman (2023).
18Alternatively we can ask for an operator J : H → H giving a (real) linear surjection

that preserves the norm || • ||H and having the property that J2 = −IH . From norm
preservation we can infer by polarization that (Jx, Jy) = (x, y) for all x, y ∈ H. So
(J†Jx, y) = (x, y) for all x, y ∈ H, implying that J†J = IH . So J†JJ = −J† = J or
J† = −J .
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1√
2

(eiθψ1+ ψ2) correspond to different states if θ 6= nπ, n ∈ N, and the

difference shows up in interference effects.19

In real QM without i, where physical vector states correspond to unit
vectors up to sign rather than up to phase (Moretti and Oppio 2017), there
doesn’t seem to be enough apparatus to express phase relations. Here again
J comes to the rescue. Instead of writing eiθ we can write eJθ. Expanding
eJθ in a power series (which converges because we are dealing with bounded
operators) and using the properties of J we find, as expected, that eJθ =
cos θ+J sin θ.20 If J commutes with all the the elementsA ∈M of the algebra
of observablesM then physical vector states correspond to unit vectors up to
J-phase, for then (eJθψ|AeJθψ)H = (ψ|e−JθAeJθψ)H = (ψ|Ae−JθeJθψ)H =
(ψ|Aψ)H for all ψ ∈ H and all A ∈M .
By the same token if J commutes with the algebra of observablesM then

the algebra cannot comprise all of B(H), the von Neumann algebra of all
bounded operators acting on H. For if M were equal to B(H) the Stueck-
elberg commutation condition would imply that J commutes with B(H).
However, the the only non-zero operators on H that commute with B(H)
are real multiples of IH , but obviously J 6= rIH for any r ∈ R since such
a J cannot yield J2 = −IH . Thus, if we accept Strocchi’s and Wightman’s
(1974) dictum that a superselection rule in the broadest sense for a quantum
mechanical theory “can be defined as any restriction on what is observable
in the theory”(p. 2198) then real non-relativistic QM M , H has a superse-
lection rule when JM = MJ .21 This humble observation marks the start of
a road that leads to important consequences for the subsequent discussion.

19More accurately, they correspond to different physical states if the superpositions are
coherent in the sense that ψ1 and ψ2 do not belong to different superselection sectors of
the Hlbert space. Stueckelberg’s commutation condition on J engenders a superselection
rule; see below.
20To make eiθ and eJθ more analogous write eiIHθ instead of eiθ, and have the operators

eiIHθ and eJθ act on a vector of their respective Hilbert spaces. But there is still an
important disanalogy. eiIHθψ = (cos θ + i sin θIH)ψ = cos θψ + sin θiψ.
And eJθψ = cos θψ+sin θJψ. Jψ is a vector orthogonal to ψ whereas iψ is not orthogonal
to ψ. If this difference makes for a measurable difference in interference effects then using
J to try to account for interference effects in real QM is in real trouble.
21SinceM is proper subalgebra of B(H) it acts reducibly on H, leaving invariant a non-

null proper subspace H̃ ⊂ H as well as its orthogonal complement H̃⊥; thus, H resolves
into the direct sum H̃⊕H̃⊥, andM also resolves into a direct sum of algebrasMH̃⊕MH̃⊥

acting on H̃ ⊕ H̃⊥.
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4.3 Existence and uniqueness

A finite dimensional real Hilbert space H admits a complex structure J
iff dim(H) is even. The only if part can be seen from the facts that for
dim(H) = n <∞ real linear operators can be realized as n x n real matrices,
and that for such matrices A,B, det(AB) = det(A) det(B) so that det(J2) =
det(−IH) = (−1)n = det(J)2 ≥ 0, which is satisfied only for even n. If
H is infinite dimensional and separable it admits a complex structure. As
for uniqueness, the best that can be hoped is uniqueness up to sign since
J ′ := −J is a complex structure if J is. Depending on features of the algebra
of observables M acting on H uniqueness up to sign may be achievable for
complex structures J that commute with the algebra.

5 Masquerade? Confection?22

Suppose H is a real Hilbert space admitting a complex structure J . Then,
if JM = MJ , there is a natural way to complexify H (dubbed “internal
complexification”by Moretti and Oppio 2017) to produce a complex Hilbert
space HJ . The complexification of H is achieved by defining multiplication
by complex scalars by (a+ ib)ξ := aξ+bJξ, ξ ∈ H and a, b ∈ R, and defining
an inner product on HJ by

(ξ|η)HJ := (ξ|η)H − i(ξ|Jη)H , ξ, η ∈ H (4)

where (•|•)H , the inner product for H. Evidently ||ξ||HJ = ||ξ||H , ξ ∈ H,
and HJ is complete in the norm, ensuring that it is a Hilbert space.
Moretti and Oppio (2017, Prop. 2.23) prove that a real linear operator

A on H is a complex linear operator on HJ iffAJ = JA. If JM = MJ then
Moretti and Oppio (2017, p. 9) opine that H is really complex Hilbert space
masquerading as a real Hilbert space; or more carefully,

[A] quantum theory formulated in a real Hilbert space H may actu-
ally be a standard theory, formulated in a corresponding complex
Hilbert space HJ . It happens if there is a complex structure J
which commutes with every observable of the theory.23

22To be read with the Carpenters’version of “This Masquerade”playing in the back-
ground, alternating with the Archies’version of “Sugar, Sugar.”
23Italics in the original.
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But equally, if quantum theory formulated in a real Hilbert space actually is
a standard theory formulated in a corresponding complex Hilbert space, then
one might be tempted to say that standard theory formulated in a complex
Hilbert actually is (or is a confection of) quantum theory formulated in a real
Hilbert space. Our initial inquiry, “Why i?”, is in danger of being buried
under epithets. So I will hastily move on to consider a related but different
spin that is directed towards the substantive issue of whether or not complex
structure is essential to the empirical success of conventional QM.
According to Stueckelberg the “r.h.s. [real Hilbert space] theory may

be shown to be equivalent to conventional theory in complex h.s. (c.h.s.)”
(Stueckelberg 1959, p. 254; see also Stueckelberg 1960 and Stueckelberg
and Guenin 1961). This is a claim endorsed by other researchers (see, for
example, Finkelstein et al. 1962, p. 208; Aleksandrova et al. 2013, p. 2;
and Wooters 2021, p. 608). A more cautious and vaguer claim would be
that “complex structure is somehow to be located or embedded in the real
theory”(Aleksandrova et al. 2013, p. 2).24 And if philosophers were to get
their hands on the topic one or more of them would surely use the language
of emergence with complex structure said to emerge from real structure.
The basis of such claims initially seems rather slender and questionable.

Stueckelberg’s “proof”of the equivalence of real and complex Hilbert space
theory consists of pointing to the inner product (4) onHJ and noting that the
relation “exists between the one complex number [(ξ|η)HJ ], formed in c.h.s.,
and the two real numbers [(ξ|η)H and (ξ|Jη)H ] formed in r.h.s.”(Stueckelberg
1959, p. 254, note ***)). More accurately the relation exists between the one
complex number (ξ|η)HJ , formed in c.h.s., and the two real numbers (ξ|η)H
and (ξ|Jη)H in r.h.s, plus the square root of minus one which is inserted by
hand as the coeffi cient of the second real number.
What is more plausible and still interesting is the claim that real QM and

complexified QM are empirically equivalent, at least on one understanding of
what constitutes the empirical content of a quantum theory. Under Stueckel-
berg’s condition that J commutes with all observables, the expectation value
(ξ|Aξ)HJ of any for any selfadjoint A ∈M (which is a complex linear opera-
tor on HJ) as computed in the complexified Hilbert space HJ is the same as
the expectation value (ξ|Aξ)H computed in real H. Start by noting that for
any ξ ∈ H, (ξ|Jξ)H = 0. ((ξ|Jξ)H = (Jξ|JJξ)H = −(Jξ|ξ)H = −(ξ|Jξ)H =

24The goal of Aleksandrova et al. (2013) is to present a model in which complex structure
emerges dynamically without using Stueckelberg’s J that commutes with all observables.
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−(ξ|Jξ)H ⇒ (ξ|Jξ)H = 0.) Using the fact that JA = AJ similar manipu-
lations show that (ξ|JAξ)H = (ξ|AJξ)H = 0. ((ξ|AJξ)H = (A†ξ|Jξ)H =
(Aξ|Jξ)H = (JAξ|JJξ)H = −(JAξ|ξ)H = −(AJξ|ξ)H = −(ξ|AJξ)H =
−(ξ|AJξ)H ⇒ (ξ|AJξ)H = (ξ|AJξ)H = 0, and the imaginary part of
(ξ|Aξ)HJ vanishes.)25
Now add the premise that the empirical content of a quantum theory is

encapsulated (largely? entirely?) in the expectation values it delivers for
observables as represented by selfadjoint operators in the algebra of observ-
ables. Now the claim that real Hilbert space theory is empirically equivalent
to conventional quantum theory in complex Hilbert space becomes plausible,
at least if the complex space arises from internal complexification via a J
that commutes with all observables. For real QM reproduces the expecta-
tion values predicted by complex QM at any given time, and the evolution of
the expectation values predicted by complex QM is reproduced by real QM
with the help of Stueckelberg’s J . Though the claim of empirical equivalence
may seem plausible, it is wrong.

6 More on internal complexification26

The preceding section focused on the internal complexification of a real
Hilbert space H to produce a complex HJ using Stueckelberg’s J . But real
QM (respectively, complex QM) isn’t just real H (respectively, complex H)
but H and a real von Neumann algebra of observables M (respectively, a
complex von Neumann algebraM) acting on H (respectively, on H), as well
as a set of physically realizable states in the form of normal states on M
(respectively,M). This prompts a pair of questions. First, given the internal
complexification HJ of H, what is the corresponding complexification MJ

of M? The elements A ∈ M are bounded real linear operators acting on

25The result generalizes to cover expectation values computed from density operators.
A density operator ρ acting on a separable Hilbert space H has a pure point spectrum wk
where the wk are positive real numbers such that

∑
k

wk = 1. If A ∈M is selfadjoint and

ξk is an ON basis for H then Tr(ρA) =
∑
k

wk(ξk|Aξk)H, which by the above is equal to∑
k

wk(ξk|Aξk)H .

26To be read with Avril Lavigne’s version of “Complicated”playing in the background,
alternating with Weird Al Yankovic’s “A Complicated Song (Parody of “Complicated”
by Avril Lavigne).
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H. Recall that under Stueckelberg’s condition that JM = MJ a real linear
operator A ∈M is a complex linear operator on HJ , so that M is a subalge-
bra of B(HJ). All that remains is to make M into a complex von Neumann
algebraMJ acting on HJ . The natural way to do this is to takeMJ to be the
von Neumann algebra given by the weak closure of M in B(HJ) or, equiva-
lently, by the double commutant M ′′ of M in B(HJ), formed by first taking
the commutant M ′ of M (consisting of all elements of B(HJ) that commute
with M), and then taking the commutant (M ′)′ := M ′′ of M ′ (consisting of
all elements of B(HJ) that commute with M ′).
With this settled, we can say that a case of complex QM M, H arises

from the internal complexification of a case of real QM iff there is real M ,
H and a complex structure J of H such that JM = MJ and such that H is
HJ = H and MJ = M.27 The question that naturally arises is then:

Q1: Does every case of complex QM M, H arise from internal
J-complexification of some real QMM , H whereby H = HJ and
M = MJ?

A possible obstruction to internal complexification is the dimension of
H– we saw that H admits a complex structure iff dim(H) is finite and even
or else infinite dimensional and separable. But since N ⊂ HJ is an ON basis
for HJ iff {x, Jx|x ∈ N} is a basis for H (Moretti and Oppio 2017, Prop.
2.21), whatever the dimension of H and thus, of HJ , dim(H) will be even if
dim(HJ) is finite, and will be infinite dimensional and countable if dim(HJ)
is countably infinite. So no obstruction here. But this is far from proving
that the answer to Q1 is positive.
A serious obstruction to a positive answer to Q1 is that the real alge-

bras satisfying Stueckelberg’s condition may not contain enough observables

27HJ = H meaning that they are isometrically isomorphic, and MJ = M meaning that
they are ∗-isomorphic. The “∗” symbol here is potentially confusing. It does not stand
for complex conjugation but the Hermitian conjugation operation, typically denoted in
the physics literature by †. (It does involve complex conjugation since for cA, c ∈ C,
(cA)† = cA†.) A ∗-isomorphism Θ : M → N of complex von Neumann algebras is a
bijection such that for A,B ∈M and λ, µ ∈ C

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)
(ii) Θ(A∗) = Θ(A)∗

(iii) Θ(AB) = Θ(A)Θ(B).
For a ∗-anti-isomorphism (iii) is replaced by

(iii′) Θ(AB) = Θ(B)Θ(A).
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so that its complexification results in the desired M. We saw above that
Stueckelberg’s commutation condition implies that M is a proper subalge-
bra of B(H). But how impoverished is M? Stueckelberg’s commutation
condition implies that M does not contain rank one projections (projections
whose ranges are one-dimensional subspaces). Let ξ ∈ H be a unit vector,
and let E[ξ] be the projection onto the ray [ξ] spanned by ξ. Suppose for
reductio that E[ξ] ∈ M . Then we can compute 1 = (ξ|ξ) = (E[ξ]ξ|E[ξ]ξ) =
(JE[ξ]ξ|JE[ξ]ξ) = (E[ξ]Jξ|E[ξ]Jξ). But we have seen that Jξ is orthogonal to
ξ and, therefore, E[ξ]Jξ is the zero vector, producing 1 = 0. So E[ξ] /∈M .
The limitation on observables results in a limitation on the admissible

(= normal) pure states on a real M satisfying Stueckelberg’s commutation
condition.28 It is known that the support projection for a normal pure state
on a von Neumann algebra must be minimal in the algebra.29 If minimality
for a projection always implies that the projection is rank one rank one then
we could conclude that there are no normal pure states on M .30 However,
a minimal projection is not necessarily rank one. A lengthier argument,
sketched in the Appendix, establishes the non-existence of normal pure states
on M .31

Interpreting the transition probability from a normal pure state ξ to a
normal pure state η as the expectation value, computed in state ξ, of the
support projection of η, transition probabilities are undefined in the version
of real QM under study. In itself there is nothing sinister here. Similar situ-

28A state ω on a von Neumann algebra is mixed if there are distinct states ω1 and ω2
and a λ ∈ R, 0 < λ < 1 such that ω(A) = λω1(A) + (1 − λ)ω2(A) for every A in the
algebra; otherwise ω is said to be pure.
29For von Neumann algebra M acting on H a minimal projection is a projection E 6= 0

such that for any projection 0 6= F ∈ M if F ≤ E then F = E. F ≤ E means that
FH ⊆ EH.
The support projection (aka carrier) of a normal state ω on the algebra is the orthogonal

complement of the largest projection P in the algebra such that ω(P ) = 0. More formally,
the support projection a projection Sω in the algebra is defined by I − Sω =

∑
j

Ej where

{Ej} is a family of orthogonal projections in the algebra maximal with respect to the
property that ω(Ej) = 0 for all j. See Kadision and Ringrose (1991, Sec. 7.1).
30There certainly are non-normal pure states– pure states that are not represented by

density operators– on M . Admitting non-normal states introduces problems; but this is
not the place to discuss them. When the Hilbert space on which the algebra acts is finite
all states are normal.
31And as a corollary that minimal projections in M satisfying Stueckelberg’s commuta-

tion condition are rank one.
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ations are encountered in relativistic QFT where the local algebras are typi-
cally Type III, meaning that not only are there no minimal and no rank one
projections in these algebras but also there are no finite rank projections in
these algebras. But here we are simply trying to do ordinary non-relativistic
QM, and what we are finding is that version of real QM with which we are
saddled by internal complexification is certainly not a disguised version of
the ordinary non-relativistic complex QM we have been taught to know and
love from our textbooks on QM. And we have a tentative answer to Q1,
pending a verification of the equality MJ = M + iM . For then MJ does not
contain any rank one projections and so aM, H does not arise from internal
J-complexification of a real M , H if M does contain rank one projections.
There is something of a damned-if-you-do and damned-if-you-don’t situa-

tion here. Real QM without Stueckelberg’s commutation condition seems to
have too many observables, i.e. those that don’t correspond to complex linear
operators on complex Hilbert space32 (and correspondingly too many states
qua expectation valued functionals on the algebra of observables); but with
the commutation condition imposed there are too few observables (and cor-
respondingly too few states) to accommodate various phenomena of ordinary
non-relativistic QM.
Fans of C may feel like celebration. But the celebration should be tem-

pered, for whatever the victory here for i, it depends on accepting internal
complexification as the correct way to view the relation between real and
complex QM. Other approaches to complexification are available.

7 External complexification33

Leaving aside internal complexification, there is a more general complex-
ification procedure that can be applied to any M , H without resort to
Stueckelberg’s J (see Kadison and Ringrose 1983, pp. 161-162; Meise and
Vogt 1997, p. 232; and Li 2003, Ch. 1). In external complexification real
H is turned into a complex Hilbert space Hc = H x H; and one writes
x + iy ∈ Hc = H + iH for (x, y) ∈ H x H. Scalar multiplication is defined
by (α + iβ)(x + iy) = (αx − βy) + i(αy + βx), x, y ∈ H, α, β ∈ R. The set
{(x, 0) : x ∈ H} is a closed real-linear subspace Hr of Hc and H 3 x 7→ (x, 0)

32And in addition the observables in real QM have too much eigenvalue degeneracy. See
Mryheim (1999).
33To be read with Marc Gulli’s “It’s Very Complicated”playing in the background.
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is an isometric isomorphism onto Hr (Kadison and Ringrose 1983, p. 162).
For an A acting on H there is a counterpart Ac acting on Hc defined by
Ac(x + iy) := Ax + iAy, and if A is selfadjoint for H then Ac is selfadjoint
for Hc (Meise and Vogt 1997, p. 232). The inner product for Hc is defined
by

((x, y), (ξ, η))Hc := (x|ξ)H + (y|η)H − i((y|ξ)H − (x|η)H) (6)

for all x, y, ξ, η ∈ H, where (•|•)H is the inner product for H.
Li (2003, Ch. 4) proposes a companion procedure for complexifying a real

von Neumann algebra M acting on H into a complex von Neumann algebra
Mc = M + iM acting on Hc = H+ iH.34 Say that a case of complex QMM,
H arises from external complexification of some real M , H if H = Hc and
M = Mc.

For external complexification the companion question to Q1 for internal
complexification is:

Q2: Does every case of complex QM M, H arise from external
complexification of some real M , H?

A folk theorem asserts that the answer to Q2 is positive iffM admits a ∗-
anti-automorphism.35 For example, Li (2003, p. viii) writes that “A complex
operator algebra can be expressed as the complexification of some real op-
erator algebra if and only if it has a ∗-anti-automorphism.”I have not been
able to find a proof in the literature.
For present purposes an implication of a result reported by Størmer (1967,

p. 357) is of central importance: if M is a von Neumann algebra, M a real
von Neumann subalgebra of M such that M = M + iM , M ∩ iM = {0},
then the map A+ iB → A∗+ iB∗, A,B ∈M , is a ∗-anti-automorphism ofM
of order 2.36 This result together with with negative results on the existence

34Is it the case that Mc is a von Neumann algebra, i.e. is it the case that M ′′c = Mc,
where the commutant and double commutant of Mc are taken in B(Hc)? Li remarks:
“Let M be a ∗ subalgebra of B(H), and Mc = M + iM . Clearly, M ′c = M ′ + iM ′, and
M ′′c = M ′′ + iM ′′. Therefore, M is a real von Neumann algebra on H, if and only if Mc

is a von Neumann algebra on Hc = H + iH”(p. 63). Here the commutant and double
commutant of M are taken in B(H).
35The reader is reminded again that in this context the ∗ symbol does not stand for the

operation of complex conjugation but for the Hermetian conjugation operation.
36That an anti-automorphism Θ is order 2 means that it is involutory, i.e. Θ2 = I.
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of ∗-anti-automorphisms entail a No answer to Q2. Connes (1975a, 1975b)
gave examples of a Type III factor and a Type II1 factor where there are no
∗-anti-automorphisms at all.37 Subsequently Jones (1980) gave an example
of Type II1 factor which admits ∗-anti-automorphisms but none are of order
2.

Cases where complex QM M, H arises from external complexification
of some real M , H would provide a clear sense in which complex structure
is to be located in, or embedded in, or emergent from the real QM. More
importantly, in such cases the way is open for showing that real QM can du-
plicate the empirical success of complex QM, as codified in the expectation
values of a selfadjoint operator Ac in Mc acting on Hc, using the real inner
product of H to compute expectation value of counterpart selfadjoint oper-
ator A in M acting on H.38 And unlike internal complexification where the
real algebra M is circumscribed by Stueckelberg’s commutation condition,
here M is free to be whatever it needs to be. The downside is that, without
Stueckelberg’s J , real QM has no answer to the issues of dynamics and phase
relations/interference effects discussed in Sections 4.1-4.2.
On the opposite side of the coin are cases of complex QMM, H whereM

does not admit a ∗-anti-automorphism of order 2 and, consequently, M, H
does not arise from external complexification of some real M , H. Then the
complex structure of the complex QMM,H, and its contribution to empirical
success ofM, H, cannot be located in or grounded in any real QM M,H, at
least if the grounding is via external complexification. This qualification puts
a damper on any celebrating the fans of C might want to do. And further,
even if external complexification is the correct lens though which to view
the relation between real and complex QM, the victory for i will be narrow
to nil if the only complex Ms that fail to admit ∗-anti-automorphisms of
order 2 are exotic algebras with few if any physical applications. Thus, the
importance of expanding existing knowledge of which von Neumann algebras
admit ∗-anti-automorphisms.
I close with a point that has emerged from our discussion and, though

37That M is a factor algebra means that the center M ∩M′ of M is CI.
38A consistency check shows that the imaginary part of the expectation value of a

selfadjoint Ac acting onHc vanishes, as it must, for any state (x, y) ∈ Hc. For selfadjoint A
acting onH, (y|Ax)H = (A†y|x)H = (Ay|x)H = (x|Ay)H = (x|Ay)H . Thus, for selfadjoint
Ac corresponding to A, the expectation value Ac for any (x, y) ∈ Hc is ((x, y)|Ac(x, y)Hc

=
(x|Ax)H + (y|Ay)H
−i((y|Ax)H − (x|Ay)H) = (x|Ax)H + (y|Ay)H for all x, y ∈ H.
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obvious, is worth underlining. One should be prepared to find that the issue
of whether or not complex structure is essential to the empirical success of
QM does not admit simple Yes or No but requires a divided verdict: the
empirical success of some instancesM, H of complex QM can be duplicated
by a real QM M , H, in other cases not.

8 Conclusion

We began by noting that for real QM to function as we have grown to ex-
pect a quantum theory to function, it needs to employ a simulacrum of i in
the form of an operator J on the real Hilbert space H with the properties
J2 = −IH and J† = −J . As first discussed by Stueckelberg in the 1960s, J
can be used to “internally complexify”H. This led to the issues of whether
or not internally complexified QM actually is complex QM in disguise or, at
least, is empirically equivalent to complex QM. In answering these questions
it was assumed that a quantum system is characterized by a von Neumann
algebra of observables acting on a Hilbert space– a complex algebraM act-
ing on a complex Hilbert space H in the case of complex QM vs. a real
algebra M acting on a real Hilbert space H in the case of real QM– and
that the admissible states on the algebra are the normal states. For some
instances of complex QMM, H the answers were in the negative. Stueckel-
berg’s condition that J commute with the real algebra M puts a substantial
restriction onM , limiting the applicability of real QM; specifically,M cannot
be a Type I algebra, meaning that it does not contain minimal projections
and, consequently, that none of the normal states are pure states. And as
an additional consequence there are cases of complex QMM, H that do not
arise by internal complexification from a real QM M , H.
We then turned to an alternative complexification procedure, naturally

dubbed external complexification, which does not use Stueckelberg’s J . While
not subject to the limitations internal complexification places on the real al-
gebra of observables, the reach of external complexification is also limited
because complex von Neumann algebras do not arise from external complex-
ification of real algebras if they do not admit ∗-anti-automorphisms.
While the negative side of the ledger for real QM creates some presump-

tion that, at least in a range of cases, complex structure is essential to the
empirical success of QM, the line of attack on the question “Why i?” is is
subject to the obvious limitation that it requires allegiance to viewing the
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relation between real and complex QM through the lens of one or another
complexification procedure. But by the same token it is hard to see how a
strong no-go result can be obtained without the help of some substantive
assumptions about the about the relationship between real QM and complex
QM. The presumption would be made stronger by combining an argument for
a set of necessary conditions for a real QMM , H to be empirically equivalent
to a complex QM M, H together with a demonstration that satisfaction of
said conditions implies thatM, H is a complexification of M , H. More gen-
erally there is a need for an exploration of the substantive assumptions about
the relationship between real QM and complex QM necessary for achieving
a no-go result on the ability of real QM to duplicate the empirical successes
of complex QM.
On the positive side of the ledger for real QM, it was noted that in cases

where complex QM M, H arises, from complexification of a real QM M ,
H, the empirical success of complex QM, insofar as the success is codified
in expectation values of selfadjoint elements of M, can be duplicated by
real QM. But this success applies only to the statics of QM. The desire for
a unitary dynamics creates an apparent need for complex structure, or a
simulacrum thereof. In real QM the generator of a strongly continuous one-
parameter unitary group is an anti-unitary operator A that serves as the
Hamiltonian in the Schrödinger equation of real QM. Such a Hamiltonian
is physically unsatisfactory since A has only purely imaginary eigenvalues.
Using Stueckelberg’s operator J , A can be converted to a self-adjoint S :=
JA if J is required to commute with A. But to repeat, extending this
commutation condition to all elements of the algebra M puts a substantial
restriction on M , limiting the applicability of real QM.
The work of Renou et al. (2021a, 2021b) promises an alternative demon-

stration of the indispensability if complex structure. In staking their claim
that the empirical success of some instances of complex QM M, H in pre-
dicting/explaining measurement outcomes outruns the capacity of real QM,
Renou et al. assume that composite systems are to be described by a tensor
product of component systems and that when M takes the form of a tensor
product N1 ⊗ N2 ⊗ ... ⊗ Nn of complex von Neumann algebras Nj acting
on a tensor product K1 ⊗ K2 ⊗ ... ⊗ Kn of complex Hilbert spaces Kj, then
any competing real QMM , H must mirror this tensor product structure, i.e.
M is a tensor product N1 ⊗N2 ⊗ ...⊗Nn of real von Neumann algebras Nj

acting a tensor product K1⊗K2⊗ ...⊗Kn of real Hilbert spaces Kj. This is
a step down from the claim that the empirical success of some instances of
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complex QMM, H in predicting/explaining measurement outcomes outruns
the capacity of any real QMM , H. Nevertheless, this weaker claim is of con-
siderable interest in itself, especially since it is backed by the further claim of
experimental demonstration of instances of the failure of real QM. If correct,
we would have a significant case of naturalized metaphysics in action: real
QM has been experimentally falsified.
As a cautionary note, one should recall that analogous claims of experi-

mental metaphysics in action, whereby experimental tests of the Bell inequal-
ities were said to falsify local hidden variable theories, were found to require
caveats (see Jones and Clifton 1993). To raise one concern, the Renou et
al. claim seems to be in tension with the fact that in cases where complex
QM M, H arises, by complexification, from real QM M , H, its success can
be duplicated by real QM. The tension here is resolved if the case at issue
is a case where the complexification of real QM does not properly respect
the tensor product structure. This way out seems to be closed off for exter-
nal complexification since taking the external complexifications of the tensor
products N1 ⊗N2 ⊗ ...⊗Nn and K1 ⊗K2 ⊗ ...⊗Kn is equivalent to taking
the tensor products of the respective complexifications of the Nj and the Kj,
j = 1, 2, ..., n (see Li 2003, Ch. 4). The tension would also be resolved if
the case Renou et al. discuss does not arise from complexification of any real
QM; but then their proof is not needed to show the inadequacy of real QM.
One issue surfaces in the proof of Proposition 1 (Renou et al. 2021b)

which appeals to the notion that the density operator ρc of complex QM
describing the experiment that is supposed to falsify real QM is “complex
separable”but not “real separable.”First what does it mean for a density
operator ρc to be separable for, say, a bipartite system described by a tensor
product Hilbert space H12 = H1⊗H2? It means that ρc can be written
as
∑
j

pjρ
1
c ⊗ ρ2c where the pj are positive real numbers such that

∑
j

pj =

1 and ρ1c and ρ2c are density operators acting respectively on H1 and H2.
The definition of separability for a real density operator ρr acting on the
tensor product H1 ⊗H2 of real Hilbert spaces H1 and H2 is exactly similar.
Then what does it mean for ρc to be real separable, or for ρr to be complex
separable? That ρc is real separable presumably means that the realification
or decomplexification of ρc into a a real density operator ρr acting on a
tensor product H1 ⊗ H2 of real Hilbert spaces is separable; and conversely
that ρr is complex separable means that the complexification of ρr into a
complex ρc acting on a tensor product H1⊗H2 of complex Hilbert spaces is
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separable. Finally, what is the realification or decomplexification of ρc, and
conversely what is the complexification of ρr? The obvious way to approach
these questions is to relativize them to complexification scheme whereby the
complex QM M, H arises from complexifying a real M , H, and in such a
scheme ρr ∈ M is the realification of ρc ∈ M iff ρc is the complexification
of ρr ∈ M . But in such a scheme real M , H reproduces the the successes
of complex QM M, H as codified in the expectation values of experimental
outcomes. This success includes, of course, the probabilities of experimental
outcomes, which are expectation values of the relevant projection operators.
In sum, it seems at first glance that the proof strategy of Renou et al. assumes
a situation that is at odds with the goal of the proof. This and related issues
require a careful analysis, beginning with a careful specification of the algebra
of observables for the experimental setup that is supposed to demonstrate
the empirical inadequacy of real QM. That task will not be undertaken here.
In conclusion, it may well be, as Freeman Dyson says, that in the quantum

realm “nature works with complex numbers and not with real numbers”and
that the complex numbers provide the “ground on which atoms move.”But
if this is the message quantum physics is trying to convey to us, it is not a
message written in unequivocal, bold headlines, but rather a message that
needs decoding and qualifying. But then isn’t the same true of any interesting
lesson we are supposed to draw about what physics teaches us about some
fundamental aspect of physical reality?

Appendix

A von Neumann algebra M satisfying Stueckelberg’s commutation condition
admits no normal pure states. Suppose for reductio that ϕ is a normal pure
state on M . A contradiction is obtained by showing that the subalgebra
SϕMSϕ is a Type I factor, which contains all rank one projections, whereas
M contains no rank one projections (as noted in Sec. 6 above).
Towards this end let’s show that ϕ is faithful on SϕMSϕ. (For this it

is suffi cient to show that if ϕ(SϕASϕ) = 0 then SϕASϕ = 0.) Since Sϕ is
minimal it follows that SϕASϕ = cASϕ for allA ∈M , where cA is a scalar that
may depend on A (Kadison and Ringrose 1997, Prop. 6.4.3). Since ϕ(Sϕ) =
1, ϕ(SϕASϕ) = ϕ(A). (A = SϕA+S⊥ϕA. So ϕ(A) = ϕ(SϕA) +ϕ(S⊥ϕA). But
ϕ(S⊥ϕ ) = 0 and if ϕ(X) = 0 then ϕ(XY ) = 0, so ϕ(A) = ϕ(SϕA). Then
apply the same argument again to SϕA = SϕASϕ +SϕAS

⊥
ϕ .) Next note that

23



ϕ(A) = ϕ(cASϕ) = cAϕ(Sϕ) = cA. So ϕ(SϕASϕ) = 0⇒ cA = 0⇒ SϕASϕ =
0.
Now let’s tease out the implication of the faithfulness of the state ϕ on

SϕMSϕ for the GNS representation induced by ϕ. A state ϕ onM induces a
GNS representation (πϕ,Hϕ,Φϕ), Φϕ ∈ Hϕ, where πϕ : M → B(Hϕ) gives a
representation ofM as a subalgebra ofB(Hϕ) whereby ϕ(A) = (Φϕ|AΦϕ) for
all A ∈M . When ϕ is a normal state the continuity of the representation πϕ
implies that πϕ(N), N ⊆M , is closed in the weak topology so that πϕ(N)′′ =
πϕ(N), showing that πϕ(N) i a von Neumann subalgebra. If in addition ϕ is
pure onM then the representation πϕ is irreducible, implying that πϕ(M) =
B(Hϕ). The purity of ϕ on M implies that ϕ restricted to the subalgebra
SϕMSϕ is pure. (This can be shown by demonstrating the contrapositive.
If ϕ is mixed on SϕMSϕ then there are distinct normal states ϕ1 and ϕ2 on
SϕMSϕ such that ϕ(SϕASϕ) = λϕ1(SϕASϕ) + (1−λ)ϕ2(SϕASϕ), 0 < λ < 1,
for all A ∈M . Since ϕ(SϕASϕ) = ϕ(A), ϕ(A) = λϕ̃1(A) + (1− λ)ϕ̃2(A), for
all A ∈ M , where ϕ̃1(A) := ϕ1(SϕASϕ) and ϕ̃2 := ϕ2(SϕASϕ) are distinct
normal states onM .) The faithfulness of ϕ on SϕMSϕ implies the faithfulness
of the representation πϕ. Hence, πϕ gives a ∗-isomorphism between SϕASϕ
and the Type I factor B(Hϕ) which contains all rank one projections.
As a corollary, infer that if a von Neumann algebra admits normal pure

states then the support projection for such a state is rank one since this
projection must be minimal in the algebra and since a minimal projection
must be rank one if the algebra contains all rank one projections.
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