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ABSTRACT

I consider the classical (i.e., non-relativistic) limit of Teleparallel Gravity, a relativistic theory of gravity

that is empirically equivalent to General Relativity and features torsional forces. I show that as the

speed of light is allowed to become infinite, Teleparallel Gravity reduces to Newtonian Gravity without

torsion. I compare these results to the torsion-free context and discuss their implications on the

purported underdetermination between Teleparallel Gravity and General Relativity. I conclude by

considering alternative approaches to the classical limit developed in the literature.
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1 Introduction

The standard narrative surrounding the development of General Relativity (GR) states that GR

taught us massive bodies curve spacetime. Gravitational influence is then the manifestation of

that curvature, eliminating the need for gravitational forces to explain gravitational influence.

Such forces had been posited by classical (i.e., non-relativistic) theories like Newtonian

Gravity (NG). In NG, there is no spacetime curvature; instead, space is flat, and gravitational

influences are captured by forces. These forces are mediated by a gravitational potential which

is itself related to the distribution of matter. With the benefit of hindsight, we can develop an

intermediary theory, Newton-Cartan theory (NCT), that shares some features with GR and

some with NG: like GR, it allows some curvature but like NG, it is set on a flat spacetime

background. Its “intermediary” status can even be made precise: it arises as the classical limit

of GR (Malament [1986b]) and as the “geometrized” version of NG (Malament [2012]).

Let us add to the common narrative one (relatively uncontroversial) claim: there is an

empirically equivalent rival to GR that is set on a flat spacetime background—Teleparallel

Gravity (TPG). TPG uses gravitational forces but allows these forces to have non-vanishing

torsion (i.e., spacetime twisting). It is thus able to reproduce the results of GR but seems to be

more akin to a classical theory of gravity.

Now, consider the following series of claims found in the recent literature on these subjects:

• a particular type of torsional Newton-Cartan “geometry is the correct framework to

describe General Relativity in the non-relativistic limit” (Hansen et al. [2020], 1)

• the teleparallel equivalent of a particular solution of GR “can be null reduced to obtain

standard Newtonian gravitation” (Read and Teh [2018], 2)

• a teleparallel version of Newton–Cartan gravity “arises as a formal large-speed-of-light

limit of the teleparallel equivalent of general relativity” (Schwartz [2023a], 1).

The claims above appear to either contradict the standard narrative or one another. As

presented, NCT ought to be understood as the classical limit of GR. But, as indicated in the

first bullet above, some claim that torsional Newton-Cartan geometry arises in the limit

instead. Read and Teh, meanwhile, claim that the limit of Teleparallel Gravity is standard

Newtonian gravitation. Finally, disagreeing with both, Schwartz claims that torsional

Newton-Cartan geometry is not actually the limit of GR but, rather, it ought to arise in the

limit of Teleparallel Gravity. What are we to make of these claims?
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The present paper aims to resolve this puzzling situation. Here, I consider what it means to

take the classical limit of a relativistic theory and how one’s goals inform one’s methodology.

This project enriches the existing literature which has mainly focused on deriving the

predictions of one theory in another. I take the geometric limit of TPG and find that the torsion

gets squeezed out. One recovers a peculiar kind of Newtonian Gravity—one entirely devoid of

gravitational influence—in the limit.

The remainder of the paper will proceed as follows. I begin by motivating the project in §2,

discussing why one might be interested in the classical limit of a relativistic (and torsional)

theory of gravity. I then turn to presenting some preliminaries in §3: on the formalism of TPG,

on the possibility of a torsional classical spacetime, and on the methodology for taking the

classical limit of GR. I next apply this limit procedure to TPG. I prove the main result of the

paper in §4 and discuss the relation of these results with those in the extant literature in §5.

2 Motivations

Above, I have outlined what seem to be conflicting claims in the literature surrounding

torsional theories of gravity. Now, I address the question of why one might be interested in

torsional theories of gravity, or modified theories of gravity more generally, to begin with.

There has been notable philosophical interest recently in modified theories of gravity. Some

are interested in evaluating proposals for modified theories as alternatives to dark matter (see,

e.g., Martens and Lehmkuhl, De Baerdemaeker and Dawid [2020, 2022]). Others are

interested in better understanding the overall theory space and drawing lessons that can be

applied to General Relativity (see, e.g., Duerr [2020]). Yet others are interested in considering

more traditional questions of theory equivalence, conventionalism, and underdetermination in

the context of alternative theories of gravity (see, e.g., Knox, Dürr, Dürr and Read, Wolf et al.

[2011, 2021, 2023, 2023]).

In this last category, Teleparallel Gravity has received special interest. Although it is

empirically equivalent to GR, TPG is set on a flat spacetime background and represents

gravitational influence as a force.1 Thus, some claim that TPG presents an interesting context

for questions about underdetermination and conventionalism. Such arguments themselves

depend on our understanding of theoretical equivalence, specifically, whether we ought to

understand TPG as a distinct theory from GR. Knox, for instance, argues that TPG presents no

1Recent work by Wolf and Read [2023] has questioned the empirical equivalence of GR and TPG.
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genuine case for underdetermination because “both theories [GR and TPG] posit the ‘same’

spacetime” (Knox [2011], 273). More recently, though, Mulder and Read [2023] call Knox’s

verdict into question, defending TPG as a spacetime theory in its own right. They argue that

Knox’s claims require one to posit (contentious) background metaphysical commitments.

Here, I am interested in the issue of underdetermination from a different perspective: rather

than directly comparing GR and TPG, I will compare their limiting behavior and classical

limits. I now turn to discussing classical limits to illustrate the potential insights offered by

this alternative perspective.

2.1 Classical Limits

As discussed by Fletcher [2019], there are two main ways of thinking about the limiting

behavior of spacetime theories. The first, and more common way, is through the reduction of

the predictions of the current theory to those of an earlier one. The goal of such a reduction is

to better understand why a previous, false theory was successful. By deriving the predictions

of the old theory in the current theory, we can, for instance, provide the conditions under

which the previous theory applies. The goal is for the new theory to show us how and why the

old theory was approximately true but nonetheless false.

The second way of thinking about limiting relations is through the models of the theories in

question. On this approach, one aims to show how to recover models of the previous theory

from models of the current one. This approach tends to be more general, not as concerned

about deriving particular formulas or observable consequences of one theory from another, but

more concerned with the relations between the theories themselves. It has thus been referred

to as the “geometric approach.” This approach is less suitable for physical explanations, but

can nonetheless be explanatory, as I hope to illustrate below.

Let us consider the classical limit (i.e., non-relativistic) of General Relativity. It is often

noted that one can recover classical expressions in the low-velocity limit of GR. This involves

a limit of the first kind mentioned above: it helps us understand why Newtonian physics was

(and still is) a successful approximation. It is because, most of the time, we are interested in

macroscopic bodies moving nowhere near the speed of light. Newtonian physics is a suitable

theory to understand such bodies and makes accurate predictions for their motion. Thus, we

have explained how NG, although false, could nonetheless have been successful.

But now consider how we might take the limit of GR on the second approach. A central
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feature of relativistic theories, one that differentiates them from classical theories, is the upper

bound they place on the speed of light. This approach asks what happens as we relax this

condition. Indeed, our goal is to show how models of GR with upper bounds on the speed of

light can be related to models of a classical theory that places no such upper bound.2 The

limiting procedure will begin with a model of GR and allow the light cones to “open up.” At

every step along the limit, we can ensure that we retain a model of GR (albeit with a different

upper bound on the speed of light). It turns out that, as the speed of light goes to infinity, we

recover a spatially flat, classical spacetime model.

How is such an approach explanatory? Fletcher argues that understanding how this

methodology is explanatory relies on considering the collection of all spacetime models (with

an appropriate topology on this collection). This enables us to see the classical and relativistic

models as “instantiations of a more general ‘frame theory’ that makes explicit the conceptual

and technical continuity between the two” (Fletcher [2019], 3). There is, however, a narrower

question we might ask for which the geometric approach is more immediately explanatory: Is

it a mere coincidence that Newtonian physics presumes a Euclidean background? This

question is what Malament [1986a] took himself to be explaining. He demonstrates how,

when the limiting procedure is applied to General Relativity, the procedure itself guarantees

the Euclidean (i.e., spatially flat) nature of the resultant space. As Malament puts it, “...the

limiting process which effects the transition from general relativity to Newtonian gravitational

theory ‘squeezes out’ all spatial curvature” ([1986a], 406). Malament describes his

methodology for addressing the issue of spatial flatness issue as from the inside, i.e., from

within physical theory. He takes a question of long-standing philosophical interest—one that

some philosophers take to be a priori true while others think is a conventional choice—and

locates it within physical theory. He shows that the geometric approach allows us to answer

why classical spacetimes are set on flat spatial backgrounds: to the extent that they can be

thought of as the classical limit of GR, they must.

Having described how understanding the geometric limit of GR can be explanatory, let us

now consider what might be gained by studying the classical limit of TPG. First, and most

simply, understanding the limiting behavior of TPG will be instructive for understanding TPG

2As noted by Fletcher ([2019], 2), this approach dates back to Minkowski [1952]. Minkowski observed that,
as we allow the speed of light to become unbounded (i.e., c→ ∞), the hyperboloids of constant coordinate time
of General Relativity become hyperplanes. The approach has since been expanded on by many others, including
Ehlers ([1991]; since published as a “Golden Oldie,” see Buchert and Mädler [2019]) and Malament [1986b]
Here I focus on Malament’s work.
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itself. This is because while TPG is typically formulated using the tetrad formalism,

non-relativistic theories are typically not. Thus, studying their relation formally will help

clarify various features of the TPG formalism.

Second, such a project will help us situate the theories, not only in relation to one another

but also in relation to other nearby gravitational theories. We know some aspects of the

conceptual landscape. We know, for instance, how to construct models of TPG from models

of GR. We also know that the classical limit of GR is Newton-Cartan theory and we know

how to recover Newtonian Gravity from it. By studying the classical limit of TPG, I will

address whether the theories form a commuting diagram. Specifically, I will address whether,

if one starts with GR, taking the classical limit and then allowing torsion commutes with first

allowing torsion and then taking the classical limit.

Finally, determining whether the classical limit of GR is the same as that of TPG will

provide some perspective on the above discussion about underdetermination. If the classical

limits of the two theories end up being the same, this can provide some evidence towards the

claim of underdetermination. If they are not, however, it will be instructive to consider why

the two theories yield different classical limits and how this difference ought to be considered

in evaluating questions of underdetermination.

3 Preliminaries

In what follows, I assume that a model of GR is specified by a pair (M, gab) where M is a

smooth, connected, four-dimensional, paracompact, Hausdorff manifold, and gab is a smooth,

Lorentz-signature metric on M. A model of a classical spacetime, meanwhile, is given as

(M, ta, hab, ∇̃) where M is again a smooth, connected, four-dimensional, paracompact,

Hausdorff manifold; ta is a smooth field on M of signature (1, 0, 0, 0); hab is a smooth

symmetric field on M of signature (0, 1, 1, 1) that is orthogonal to ta (i.e., tahbc = 0); and, ∇ is

a derivative operator compatible with ta and hab (i.e., ∇atb = ∇ahbc = 0).

3.1 The Limit Procedure in General Relativity

As discussed above, on the geometric approach to taking the classical limit, the goal is to

capture the characteristic difference between models of relativistic and classical theories. The

characteristic difference here is the upper bound that relativistic theories place on the speed of

light, i.e., the light cone structure. Thus, our goal is to describe a limiting procedure that
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features this lightcone structure. The methodology will be to develop a limiting procedure that

allows the speed of light to become unbounded. This can be visualized as “opening up” the

lightcones of a relativistic theory. Indeed, allowing the lightcones to “open up” is the method

adopted in Malament’s proof showing the relation between GR and NCT ([1986b], discussed

in more detail below). There, he writes:

...the work under discussion provides the means with which to make clear
geometric sense of the standard claim that Newtonian gravitational theory is the
“classical limit” of general relativity. One considers an appropriate one-parameter
family of relativistic models (M, gab(λ),Tab(λ)) satisfying Einstein’s equation,
defined for λ > 0, and the proves that in the limit as λ→ 0 a classical model
(M, ta, hab,∇a, ρ) satisfying (the recast version of) Poisson’s equation is defined.3

Intuitively, as λ→ 0, the null cones of the gab(λ) “flatten” until they become
degenerate. ([1986b], 182)

The proofs deriving the classical limit of GR proceed in two steps. The first step involves

specifying the process of opening up the light cones and showing that, in the limit, the metric

and derivative operator of GR converges to those of NCT. The second step involves

considering how the matter content behaves in the limit. Let us consider each step in turn

below.

Since classical theories have both a spatial metric (hbc) and a temporal metric (ta), our goal

is to have the GR metric (gab) converge to the temporal and spatial metrics of a classical

theory. We will allow gab(λ) to be a one-parameter family of non-degenerate Lorentz metrics

where λ ranges over some interval (0, k). In the limit, however, we will require the metric to

satisfy

C1 gab(λ)→ tatb as λ→ 0 for some closed field ta, and

C2 λgab(λ)→ −hab as λ→ 0 for some field hab of signature (0,1,1,1),

where λ is 1
c2 . The scaling is necessary in the second condition because, as the light cones

open up, spacelike vectors will begin to diverge. To ensure convergence, we rescale the spatial

metric with 1
c2 .

Malament shows that, if the metric converges in a way satisfying the above conditions,

there is a derivative operator that one can use to define a classical spacetime.

Proposition 1 (Malament [1986b], Proposition on Limits (1)) Suppose gab(λ) is a

one-parameter family of Lorentz metrics on a manifold, M. Suppose also that ta and hab

satisfy C1 and C2. Then
3The recast version of Poisson’s equation referred to here is geometrized Poisson’s equation: Rab = 4πρtatb.
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1. There is a derivative operator ∇a on M satisfying
λ

∇ → ∇a as λ→ 0.

2. (M, ta, hab,∇a) is a classical spacetime model satisfying R[a
(b

c]
d) = 0.

In other words, as long as our metric is properly behaving in the limit (i.e., it satisfies C1

and C2), the derivative operators corresponding to the GR metric “along the way” will

converge. Furthermore, the derivative operator they converge to, along with the temporal and

spatial metrics, will yield a classical spacetime.

Though I will not reproduce the proof, I will highlight one aspect of it: the role of the

connecting fields. Connecting fields, Ca
bc, relate any two derivative operators. In this context,

we are considering the derivative operators in the limit,
λ

∇a. We want to show that these

derivative operators converge to ∇a, the derivative operator of a classical spacetime. To do so,

the proof considers an intermediary derivative operator, ∇̃a, that relates any two derivative

operators along the way. These intermediary derivative operators express the difference

between the derivative operator of GR and of a classical theory at any point in the limiting

process. Specifically, we take
λ

∇a = (∇̃a,
λ

Ca
bc) and ∇a = (∇̃a,Ca

bc). Then, it suffices to show

that
λ

Ca
bc → Ca

bc in order to demonstrate the convergence of the derivative operators. I

highlight the role of these connecting fields here as they will play an important role in the

below proof regarding the classical limit of TPG.

Let us now consider how the matter fields behave in the limit. Somewhat surprisingly, it is

in this step that we see the curvature being “squeezed out.” Up to this point, all we know about

the curvature is that it satisfies R[a
(b

c]
d) = 0. By considering the limiting behavior of Einstein’s

equation, aiming to show that it reduces to (some form of) Poisson’s equation in the limit, we

find that the resultant spacetime is spatially flat.

We begin, like above, by placing conditions on the limiting behavior of Einstein’s equation

C3
λ

Rab = 8π(Tab(λ) − 1
2gab(λ)

λ

T ) holds for all λ, and

C4 T ab(λ)→ T ab as λ→ 0 for some field T ab.

The second condition arises from the requirement that the limiting process assign limiting

values to various components of the energy-momentum tensor (i.e., the mass-energy density,

three-momentum density, and three-dimensional stress tensor). Using these conditions,

Malament proves the following.

Proposition 2 (Malament [1986b], Proposition on Limits (2)) Suppose gab(λ) is a

one-parameter family of Lorentz metrics on a manifold, M which, together with the symmetric
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family Tab(λ), satisfies conditions C1 - C4. Further suppose (M, ta, hab,∇a) is the classical

spacetime model described in the previous proposition. Then, there is a function ρ on M

satisfying

1. Tab(λ)→ ρtatb as λ→ 0.

2. Rab = 4πρtatb.

The above states that Einstein’s equation reduces to a geometric formulation of Poisson’s

equation in the limit. This geometrized Poisson’s equation is, in turn, what tells us that space

is flat (see (Malament [2012], Proposition 4.1.5) for detailed discussion on this point).

Reflecting on this point, Malament writes:

If at every intermediate stage of the collapse process [i.e., the opening up of the
lightcones] spacetime structure is in conformity with the dynamic constraints of
general relativity (as embodied in Einstein’s field equation), then the resulting
induced hyperspaces are necessarily flat, i.e., have vanishing Riemann curvature.
([1986a], 406).

This two-step, geometric limiting procedure is what I aim to reproduce in the contexts of

torsional theories of gravity.

3.2 Teleparallel Gravity

As mentioned above, Teleparallel Gravity is a relativistic theory (it posits a Lorentz-signature

metric) and is empirically equivalent to GR, at least locally.4 Unlike GR, though, it is set on a

flat spacetime background. Instead of the Levi-Civita connection, the unique, torsion-free

metric compatible connection, TPG uses the Weitzenböck connection, a flat connection with

4The first formulation of teleparallel gravity is often attributed to Einstein. In a paper published in June 1928
(“Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus” or “Riemannian Geometry
with Maintaining the Notion of Distant Parallelism”), he begins developing a gravitational theory with torsion
using the tetrad approach. The motivation for the project was to unify gravity and electromagnetism, the idea
being that the (six) extra degrees of freedom afforded by torsion could be used to represent the electromagnetic
field. Just one week later, he publishes “Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und
Elektrizität” (“New Possibility for a Unified Field Theory of Gravitation and Electricity”) which presents the
field equations of the new theory. After corresponding with Weitzenböck and Cartan, Einstein abandoned the
project, finding himself unable to attribute physical meaning to the structures posited by the theory (see,
especially, his 1932 letter to Cartan, reprinted in Debever 2015, 209-10).
The theory of absolute parallelism remained abandoned until it was taken back up nearly 30 years later by Møller
in 1961, and, completely independently, by Hayashi and Nakano in 1967. After some further work in this area,
Hayashi and Shirafuji bring together these distinct projects in their paper “New general relativity” published in
[1979]. The contemporary formulation TPG began to emerge in the 1990s with work by de Andrade, Pereira,
Obukhov, and Aldrovandi (see especially de Andrade and Pereira [1997]).
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torsion.5 Thus, (con)torsion is used to represent the (velocity-dependent) forces that

characterize gravitational influence.6

The TPG literature typically uses the tetrad approach.7 The tetrad approach generalizes the

coordinate basis approach: instead of requiring (holonomic) coordinate bases as the bases for

the tangent bundle, one only requires a locally defined set of linearly independent vector fields

as the basis for the tangent bundle. When the vector bundle has four-dimensional fibers, it is

referred to as a “tetrad” or a “vierbein” (where “veir” means “four”). Though in general, there

may not be such bases (also called “frames” or “frame fields”) across all the manifold, they do

always exist locally.

Suppose we fix an arbitrary manifold, M. Let E
π
→ M be a vector bundle over the manifold

with n−dimensional fibers. We denote elements of the bundle with capital Latin indices and

define a frame field (and coframe field) as follows.

Definition 1 A frame field for E on a neighborhood of the manifold (O ⊆ M) is a collection of

n vector fields, {(ei)A} (where i = 1, . . . , n), that form a basis for the fiber at E at each point

p ∈ O. A coframe field on O is a collection of n covector fields {(ei)A} forming a basis for the

dual bundle at each point p ∈ O.

Note here that the lowercase indices are counting, not abstract, indices. Taking i to range

from 1 to n = 4 yields the tetrads.

The above definition yields the following proposition.

Proposition 3 Given any frame field {(ei)A} for E on O ⊆ M, there exists a unique coframe

field {(ei)A} such that (ei)A(e j)A equals 1 if i = j and 0 otherwise.

We express the metric in terms of the tetrads as

gab =

4∑
i=1

4∑
j=1

ηi j(ei)a(e j)b =

4∑
i=1

ηii(ei)a(ei)b, (3.1)

5One can visualize torsion as the twisting of the tangent space as it is parallel transported along a curve. One
can also imagine parallel transporting two end-to-end vectors along one other. When the torsion is vanishing, this
procedure yields a parallelogram. However, in spaces with torsion, the parallelograms break because the vectors
do not end up tip-to-tip.

6The expression for the acceleration of test bodies in the presence of a gravitation field in TPG involves the
contorsion tensor (given below). In brief, the contorsion tensor relates any metric-compatible connection to the
unique Levi-Civita connection and, when antisymmetrized on its bottom indices, returns the torsion tensor.

7I derive the main result of the present paper in the tetrad formalism in order to be consistent with the TPG
literature so it will be important to introduce it in detail here.
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where ηi j are the Minkowski metric components and the second equality follows because

ηi j = 0 when i , j (c.f., Aldrovandi and Pereira 2013, Eq. 1.27). The metric with raised

indices is given similarly.

Finally, let us also consider the torsional derivative operator. Assume that ∂ is a coordinate

derivative operator relative to some local coordinate system on M; we know ∂ is both flat and

torsion-free (symmetric). Next, consider any frame field, {(ei)a}, as defined above. It turns out

that there always exists a unique derivative operator D relative to which all n frame elements

are constant: Da(ei)b = 0. This derivative operator can be defined relative to ∂ by taking

D = (∂,Ca
bc), where for each i = 1, . . . , n, we have Ca

bc(ei)c = ∂b(ei)a, or, equivalently,

Ca
bc =
∑n

i=1(ei)c∂b(ei)a.

The torsion of this derivative operator is given in terms of the tetrads as

T a
bc =

n∑
i=1

(ei)[c∂b](ei)a. (3.2)

Finally, as mentioned above, the trajectories of massive test particles are influenced by the

presence of mass. Their acceleration is

ξn∇nξ
a = Ka

bcξ
bξc, (3.3)

where ξa is tangent to the particle’s trajectory, Ka
bc is the contorsion tensor, and ∇ is the

torsional derivative operator.8 On the conventions adopted here Ka
bc =

1
2 (T a

bc + Tcb
a − Tbc

a).

3.3 A Torsional Classical Theory of Gravity

Before considering the classical limit of TPG, we should ask whether it is possible to

formulate a classical theory of gravity with torsion. If not, we will clearly be unable to

maintain torsion in the classical limit. But if it is possible, it is not immediately clear what the

implications would be to our present project. On the one hand, we might expect such a theory

to arise as the classical limit of TPG. On the other hand, in the context of GR, we saw how the

curvature gets squeezed out in the limit, so we might expect that torsion will be similarly

squeezed out in the limit.

There have been some efforts in the literature to develop a torsional, classical theory (e.g.,

8This expression is sometimes given in terms of the torsion tensor instead of the contorsion tensor as in Eq.
28 of Knox [2011]; see Comment 6.4 of Aldrovandi and Pereira [2013] for further discussion.

11



Bergshoeff et al., Geracie et al. [2014, 2015]). Many of these projects, however, drop the

requirement that the (classical) temporal metric be closed (see Meskhidze and Weatherall

2023, §3.4 for more). For the purposes of the present paper, I require the temporal metric to be

closed. (Indeed, this requirement will be formalized below as a condition on the behavior of

the tetrads in the limit.) This means that these previously developed theories will be unsuitable

as the limit of TPG on our approach.

Fortunately, a classical theory with torsion and a closed temporal metric has been developed

by Meskhidze and Weatherall ([2023], Theorem 1). There, the authors prove a theorem

analogous to the Trautman degeometrization theorem which establishes that, for every model

of Newton-Cartan theory, there is a corresponding (non-unique) model of classical, torsional

gravity with the same mass density and particle trajectories. The model of classical, torsional

gravity features a closed temporal metric as well as a derivative operator that is compatible

with the spatial and temporal metrics, is flat, and has non-vanishing torsion. Additionally, they

provide force and field equations featuring the torsion. Notably, the field equation is a

generalization of Poisson’s equation (i.e., in the limit of vanishing torsion, they recover

Poisson’s equation). The result provides a proof of concept: it is possible to formulate a

classical spacetime with torsion. It remains to be seen whether this spacetime is the classical

limit of GR.

4 The classical limit of Teleparallel Gravity.

4.1 The behavior of the tetrads

To take the classical limit of TPG, we will need to constrain the behavior of the metric in the

limit. Recall that, ultimately, we want to derive the temporal and spatial metrics of a classical

spacetime theory. Given that the TPG metric we begin with is expressed in terms of tetrads,

we will need to express the classical spacetime metrics in terms of tetrads too. The goal will

be to mimic the decomposition of the standard metric into the temporal and spatial metrics

with tetrads. On the tetrad formalism, we have, at each point, a collection of four orthonormal

vector fields. Suppose that we fix the first “leg” of the cotetrad to correspond to the temporal

metric of a classical spacetime. As with the standard temporal metric of a classical spacetime,

we require it to be closed. The remaining cotetrad elements will vanish for a classical

spacetime while the other tetrad elements (besides the first) will compose the spatial metric.
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Definition 2 Call a tetrad {( fi)a} a “classical tetrad” if and only if an element of its cotetrad

is closed.9 If this is the case, then classical metrics ta and hab can be defined such that the

cotetrad element that is closed corresponds to ta and the following conditions are satisfied:

1. ( f1)ata = 1,

2. ( fi)ata = 0 for i = 2, 3, 4,

3. ( f 1)a( f 1)bhab = 0, and

4. ( f i)a( f j)bhab = 1 for i = j = 2, 3, 4 and 0 otherwise.

With this definition of a classical tetrad in hand, we now turn to the desired limiting

behavior. In the case of GR, we considered the limit of a family of metrics as the speed of

light is allowed to become unbounded (i.e., c→ ∞). Here, we similarly consider the behavior

of {(ei)a(λ)}, a one-parameter family of tetrads where 0 < λ < k. To recover a “classical

tetrad,” we will consider the convergence of the tetrad components. We need the first “leg” of

the cotetrad to yield the temporal metric in the limit, i.e. (e1)a → ta. We will need to

appropriately rescale the tetrad components yielding the spatial metric to ensure that they

converge in the limit. We rescale these components with 1
c =
√
λ so the desired limiting

behavior is
√
λ(ei)a → ( fi)a for i = 2, 3, 4.10

I formalize these considerations with the following conditions (designed to be analogous to

Malament’s [1986b] limiting conditions, C1 and C2, discussed in §3.1 above):

C1*
∑4

i=1(
λ
ei)a →

∑4
i=1( f i)a = ( f 1)a = ta as λ→ 0 for some closed field ta, and

C2*
√
λ
∑4

i=1(
λ
ei)a →

∑4
i=2( fi)a as λ→ 0.

For C1*, the equality follows because {( f i)a} is a classical tetrad, which means that only the

first “leg” of the cotetrad (i.e., i = 1) is non-vanishing. For C2*, we take∑4
i=1 η

ii( fi)a( fi)b = −hab for some field hab of signature (0, 1, 1, 1), ensuring that we recover the

spatial metric in the limit.

9From the fact that a cotetrad element is closed, we know that it is locally exact. So, taking the first cotetrad
element to be ∇[a( f 1)b] = 0 implies ( f 1)b = ∇bt for some smooth function t. Contracting this with the spatial
metric would yield 0 since (∇a∇bt)hab = 0.

10Note that, in the case of GR, we had λgab(λ)→ −hab. The proposed rescaling (
√
λ) is reasonable since we

are rescaling one tetrad leg at a time.
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4.2 The Classical Limit of TPG

We are now in a position to consider the classical limit of TPG. The proof will begin by

considering the behavior of the tetrads and derivative operators in the limit. I will express the

derivative operators at each stage of the limit in terms of a connecting field relating them to a

flat, torsion-free derivative operator. I will then consider the limiting behavior of the

connecting field. Following the requirement that the derivative operator converges in the limit,

I will require that the connecting field converge too. This will lead to the surprising result that

the torsion must vanish in the limit. For those interested in the implications but not the details

of the proof, I suggest skipping to §4.3.

Theorem 1 Suppose that {(ei)a(λ)} is a one-parameter family of tetrads on a manifold, M.

Suppose {( fi)a} satisfies conditions C1* and C2* and that there is a derivative operator ∇a on

M satisfying
λ

∇a → ∇a as λ→ 0. Then, the following holds.

1. ∇a is such that (M, {( fi)a},∇a) is a classical spacetime model where {( fi)a} is a classical

tetrad and ∇a is flat.

2. For any derivative operator, ∇a, satisfying the above, the torsion vanishes.

Proof. Suppose, for the sake of contradiction, that the torsion does not vanish in the limit

(i.e.,
λ=0
T a

bc , 0 ). We know that {(
λ
ei)a})→ ( f 1)a smoothly. This means that there must exist

smooth fields ma, na(λ), and na satisfying11

(
λ
e1)a → ( f 1)a − λma + λ

2na(λ), and na(λ)→ na as λ→ 0.

Similarly, since
√
λ{(
λ
ei)a} → {( f i)a} for i = 2, 3, 4, there must exist some smooth fields ra,

sa(λ), and sa satisfying

4∑
i=1

√
λ(
λ
ei)a →

( 4∑
i=2

( f i)a
)
− λra + λ2sa(λ), and sa(λ)→ sa as λ→ 0.

We begin by fixing some flat, torsion-free ∂ on M. The existence of such a ∂ is always

guaranteed locally (see §3.2). Suppose we define
λ

∇ in terms of a ∂ and a connecting field

λ

∇ = (∂,Ca
bc(λ))

11As noted by Malament ([1986b], 194), these conditions follow from the smoothness of the limit and are
another way of saying the limit is twice-differentiable.
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for all λ. The expression for the torsion in terms of the tetrads and this derivative operator is

λ

T a
bc =

n∑
i=1

(
λ
ei)[c∂b](

λ
ei)a

for all λ. (Recall that we have assumed, for contradiction, that the torsion is non-vanishing.)

Relative to ∂ and for each λ, the C-fields defining the tetrad derivative operators can be

expressed as12

Ca
bc(λ) =

1
2

gad(λ)
[
∂dgbc(λ) − ∂bgdc(λ) − ∂cgdb(λ) (4.1)

− gdm(λ)T m
cb(λ) + gbm(λ)T m

dc(λ) + gcm(λ)T m
db(λ)
]
.

We now consider the tetrad expressions for all the terms starting with the metric, then the first

three terms in the square brackets, and then the torsion terms. Using C2*, we rewrite gad(λ) in

terms of the tetrads as

gad(λ) =
4∑

i=1

nii(
λ
ei)a(

λ
ei)d.

Then, in the limit, we have

4∑
i=1

nii(
λ
ei)a(

λ
ei)d →

1
λ

[( 4∑
i=2

( f i)a − λra + λ2sa(λ)
)( 4∑

i=2

( f i)d − λrd + λ2sd(λ)
)]

=
[1
λ

( 4∑
i=2

( f i)a( f i)d
)
−
( 4∑

i=2

( f i)ard +

4∑
i=2

( f i)dra
)

+ λ
(
rard +

4∑
i=2

( f i)asd(λ) +
4∑

i=2

( f i)d sa(λ)
)

− λ2
(
rd sa(λ) + rasd(λ)

)
+ λ3
(
sa(λ)sd(λ)

)]
.

12C.f. Jensen 2005, Eq. 3.1.27 where Tabc(λ) = gam(λ)T m
bc(λ).
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Next, consider the first three terms inside the square brackets of Eq. 4.1.

∂dgbc(λ)−∂bgdc(λ) − ∂cgdb(λ) = ∂d

4∑
i=1

ηii(
λ
ei)b(

λ
ei)c − ∂b

4∑
i=1

ηii(
λ
ei)d(

λ
ei)c − ∂c

4∑
i=1

ηii(
λ
ei)d(

λ
ei)b

→ ∂d

(
( f 1)b − λmb + λ

2nb(λ)
)(

( f 1)c − λmc + λ
2nc(λ)

)
(4.2)

− ∂b

(
( f 1)d − λmd + λ

2nd(λ)
)(

( f 1)c − λmc + λ
2nc(λ)

)
− ∂c

(
( f 1)d − λmd + λ

2nd(λ)
)(

( f 1)b − λmb + λ
2nb(λ)

)
.

We now consider the terms arising from the torsion. It will suffice to consider the expansion

of the first torsion term

gdm(λ)T m
cb =

4∑
i=1

ηii(
λ
ei)d(

λ
ei)m

4∑
j=1

(
λ
e j)[b∂c](

λ
e j)m.

In the limit, this yields

gdm(λ)T m
cb →

(
( f 1)d − λmd + λ

2nd(λ)
)(

( f 1)m − λmm + λ
2nm(λ)

)
(
( f 1)[b − λm[b + λ

2n[b(λ)
)
∂c]

1
√
λ

( 4∑
i=2

( f i)m − λrm + λ2sm(λ)
)
. (4.3)

With the expression for some of the components of the connecting fields expanded, we can

now consider the behavior of these components in the limit. Since λ→ 0, any terms that are

multiplied by
√
λ, λ, or higher orders of λ will vanish. Any terms divided by

√
λ, λ, or higher

orders of λ will become unbounded. The first term, the metric, yielded an expression with a 1
λ

term, a term with no λ dependence, and terms with λ and higher-orders of λ dependence. Of

the remaining terms in the expression for the connecting field, only the torsion terms have an

inverse λ dependence. Thus, when the terms from the metric are multiplied through and the

limit is taken, only the 1
λ

term and the term with no λ dependence will remain, yielding∑4
i=1

[
1
λ

(
( f i)a( f i)d

)
−
(
( f i)ard + ( f i)dra

)]
.

Consider the limit of the next three terms when multiplied by the above. Only terms with no

λ dependence or those linearly dependent in λ will remain in the limit. Eq. 4.2 simplifies to

∂d

(
( f 1)b − λmb

)(
( f 1)c − λmc

)
− ∂b

(
( f 1)d − λmd

)(
( f 1)c − λmc

)
− ∂c

(
( f 1)d − λmd

)(
( f 1)b − λmb

)
.

= ∂d( f 1)b( f 1)c − ∂b( f 1)d( f 1)c − ∂c( f 1)d( f 1)b − 2λ∂d( f 1)(bmc) + 2λ∂b( f 1)(dmc) + 2λ∂c( f 1)(dmb).
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where we have dropped the λ2 terms in the second line. Take just the first three terms in each

expansion above (i.e., all the terms without λ in front). In the limit, they yield

∂d( f 1)b( f 1)c − ∂b( f 1)d( f 1)c − ∂c( f 1)d( f 1)b

= ( f 1)b∂d( f 1)c + ( f 1)c∂d( f 1)b − ( f 1)d∂b( f 1)c − ( f 1)c∂b( f 1)d − ( f 1)d∂c( f 1)b − ( f 1)b∂c( f 1)d

= −2( f 1)d∂(b( f 1)c) = −2( f 1)d∂b( f 1)c.

We have used the fact that the temporal metric will be closed (i.e., ∂[a( f 1)b] = 0) to simplify

this expression. To move from line two to three, notice that the first and last terms cancel and

the second and fourth terms cancel. This leaves only the third and fifth terms. Then, since

∂[a( f 1)b] = 0, we can drop the symmetrization parentheses. (One can see that this is the

corresponding tetrad expression to Malament’s −2td∇̃btc.) Combining with the above, we find

that Eq. 4.2 simplifies to

−2( f 1)d∂b( f 1)c − 2λ
(
∂d( f 1)(bmc) − ∂b( f 1)(dmc) − ∂c( f 1)(dmb)

)
.

Finally, we return to the limiting behavior of the terms corresponding to the torsion, Eq. 4.3.

When multiplied by the expression out front (which has a λ−1 and a term with no λ

dependence), we end up with terms of 1
λ3/2 , 1

√
λ

dependence,
√
λ dependence, and higher-orders

of λ dependence. In order to show that the torsion must vanish in the limit, it will suffice to

consider the 1
λ3/2 terms. These are

4∑
i=2

1
λ

( f i)a( f i)d
(
− ( f 1)d( f 1)m( f 1)[b∂c]

1
√
λ

4∑
j=2

( f j)m

+ ( f 1)b( f 1)m( f 1)[c∂d]
1
√
λ

4∑
i=2

( fi)m + ( f 1)c( f 1)m( f 1)[b∂d]
1
√
λ

4∑
i=2

( fi)m
)
.

The first term in the parentheses will vanish as
∑4

i=2( f i)d( f 1)d yields 0. Any terms with ( f 1)d

from anti-symmetrization will also vanish. However, we have no way of constraining the

remainder: the 1
λ3/2 dependence means that they will become unbounded in the limit. Indeed,

we can collect together some of these terms into a tensor,
λ

Za
bc, that we define as follows.

λ

Za
bc :=

1
λ3/2

4∑
i=2

( f i)a( f i)d( f 1)b( f 1)m( f 1)c∂d

4∑
i=2

( fi)m.
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From the above discussion, we know
λ

Za
bc will become unbounded in the limit. What is the

significance of this? Recall that our theorem statement requires that the derivative operators

converge in the limit. The connecting fields relate the derivative operators and we have been

expanding the expression for the connecting fields in the limit. We have, in this expansion,

found an unbounded quantity,
λ

Za
bc, and derived a contradiction.

Indeed, for the connecting fields to converge in the limit,
λ

Za
bc must be bounded. However,

the only way for it to be bounded is if it vanishes. If
λ

Za
bc = 0, Ca

bc(λ)→ Ca
bc as λ→ 0 where

Ca
bc =

4∑
i=1

[1
λ

(
( f i)a( f i)d

)
−
(
( f i)ard + ( f i)dra

)]
[
− 2( f 1)d∂b( f 1)c − 2λ

(
∂d( f 1)(bmc) − ∂b( f 1)(dmc) − ∂c( f 1)(dmb)

)]
.

Note, though, that this expression is just the expression for the connecting fields in the

torsion-free context. In other words, if
λ

Za
bc vanishes, then the torsion will also vanish since

λ

Za
bc captures the only remaining contribution to the torsion. Consequently, torsion must

vanish in the limit. □

4.3 A notable consequence

One striking aspect of the reduced theory is regarding the behavior of test bodies. In TPG,

recall that the acceleration of test particles is given as

ξn∇nξ
a = Ka

bcξ
bξc, (4.4)

where ξa is tangent to the particle’s trajectory, Ka
cd is the contorsion tensor which relates any

metric-compatible connection to the unique Levi-Civita connection, and ∇ is the torsional

derivative operator. Recall that in Newtonian gravity, the trajectories of massive test particles

are also influenced by the presence of matter. The acceleration is governed by

ξn∇nξ
a = −∇aϕ,

where ξa is tangent to the particle’s trajectory, ϕ is the gravitational potential, and ∇ is flat.

The torsion vanishing in the classical theory means that the contorsion, too, will vanish.

This means that Eq. 4.4 will reduce to ξn∇nξ
a = 0. One can think of this reduced theory as a
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special case of Newtonian gravity where the scalar field ϕ representing the gravitational

potential vanishes. This means that in the reduced theory, particles are not accelerated in the

presence of matter. Put simply, in this reduced theory, there are no gravitational effects.

From the above discussion, one might conclude that the theory derived in the limit cannot

be considered a gravitational theory. Indeed, one might argue that Teleparallel Gravity has no

classical limit at all.13 I am sympathetic to this argument but worry it might be too quick.

Namely, one might want to think about classical spacetimes as providing arenas for

gravitational forces/effects. On such an interpretation, we do still have a spacetime theory at

the classical limit of TPG, though perhaps not a gravitational one. In any case, I do not think it

is of great importance whether we say TPG has no classical limit or it has a trivial one.

5 Discussion

We now turn to contextualizing these results. I first compare the results presented here to the

results obtained in the torsion-free context. Then, I move to considering the methodology used

here in comparison to other methods proposed in the recent literature. This discussion will

clarify the seemingly inconsistent claims found in the recent literature.

5.1 Comparison to the torsion-free context

Recall (from §3.1) that GR reduces to NCT theory in the limit and that spatial flatness is

proven by considering Einstein’s equation in the limit. From the perspective of the reduction

of GR to NCT, one might find the results proven here unsurprising. One might argue that since

the classical limit squeezes out curvature, we should have expected it to squeeze out the

torsion as well. Put differently, the two results seem consistent. When the limiting procedure

is applied to General Relativity, it returns a spatially flat theory; meanwhile, when it is applied

to Teleparallel Gravity, it returns a torsion-free theory.14

However, there is an important disanalogy between the results: the failure to derive a

classical torsional spacetime was not a result of the behavior of matter fields as in the case of

GR. Rather, it arose from the requirement that the derivative operators converge, a requirement

13I thank [redacted] as well as the audience of my presentation of this work at the [redacted] for pressing this
interpretation.

14Notably, though, in the context of the reduction of GR to NCT, the spacetime is not flat; while the spatial
curvature is squeezed out, one does still find temporal curvature. In the classical limit of TPG, the torsion
vanishes entirely.
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that had to be made independently.15 It is not clear what to conclude from this disanalogy. On

the one hand, one might want to argue that the link between the matter fields and geometry is,

in some sense, more tightly constrained in TPG. On the other hand, this disanalogy may be

more simply interpreted as a consequence of the limiting behavior of the torsion tensor.

5.2 Alternative limits

What is the relation between the results presented here and the many seemingly contradictory

claims regarding limits found in the literature? As mentioned in §2.1, there are multiple means

of taking the classical limit of a relativistic theory. One’s goals may dictate which

methodology is most appropriate. This makes the fact that there is a diversity of viewpoints

quite natural. Indeed, we are now in a position to evaluate the merits of some of these

approaches and highlight inconsistencies. Let us consider the different approaches in turn,

comparing them to the geometric approach taken here.16

5.2.1 1/c2 expansion

We begin by considering the claim that torsional Newton-Cartan “geometry is the correct

framework to describe General Relativity in the non-relativistic limit” (Hansen et al. 2020, 1;

see also Van den Bleeken, Hansen et al., Hartong et al. [2017, 2020, 2023]). Considering the

results from Malament discussed above—that standard NCT is the non-relativistic limit of

GR—, how can such a claim be substantiated? This claim is based on Van den Bleeken’s

[2017] paper. There, he uses 1
c2 expansion to derive what he takes as the non-relativistic limit

of GR, recovering a torsional theory in the limit. On the 1
c2 expansion approach, one typically

allows the metric to diverge in the large c limit but the associated Levi-Cevita connection

remains finite. However, Van den Bleeken takes this approach further, allowing the connection

to diverge as well. As he puts it,

[In previous work,] it is assumed that the relativistic metric is such that the
associated Levi–Cevita connection remains finite in the large c limit. Although
this might appear a natural assumption at first, one should keep in mind that the
metric is allowed to diverge as c→ ∞. So why not the connection one could ask.
([2017], 2)

15Another way of understanding the disanalogy between the two situations is in terms of the strength of the
requirement that the connecting fields be symmetric. The symmetric components of the connecting fields have a
well-behaved λ→ 0 limit while the anti-symmetric components turn out not to. Therefore, taking the limit
requires that those anti-symmetric components—here, the torsion—vanish entirely.

16This section has benefited immensely from discussions with [redacted]. Needless to say, any errors in the
below presentation are my own.
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Allowing the connection to diverge, he argues that the standard connection of NCT is not

“the most natural connection for the expanded theory, as it is not compatible with the structure

provided by the [spatial and temporal metrics]” ([2017], 6). Instead, he advocates for a

torsional connection, that of twistless-torsional Newton-Cartan theory (TTNC). TTNC is a

classical theory of gravity with torsion that does not require the temporal metric to be closed;

it instead uses Frobenius’s theorem and the so-called “hypersurface orthogonality condition”

(i.e., t[a∂btc] = 0) to derive flat, spacelike hypersurfaces.17

The first and more pressing issue with Van den Bleenken’s methodology concerns its

viability. Previous work, including Malament’s [1986b] proofs discussed above, demonstrate

that if one has a sequence of metrics of GR parameterized by λ and these converge, their

derivative operators converge as well. In the above quotation, Van den Bleenken suggests that

one can consider allowing the connections to diverge. However, given Malament’s results, if

the metrics converge, then their connections must as well. Thus, it seems that Van den

Bleenken is entertaining a contradictory methodology.

Though critical, let us set aside this issue and consider the methodology generally. When

taking the classical limit using the geometric approach, one considers a sequence of models,

parameterized by λ, but all of one theory. In other words, at each step along the limit, one has

a model of GR. Insofar as the sequence of models are models of GR, their connections—and,

correspondingly, the connection of the recovered spacetime—are all required to be symmetric.

Thus, on the geometric approach, if you begin with GR, you cannot derive a spacetime with

torsion in the limit. However, the 1/c2 expansion approach places no such constraints—one

simply expands the relevant equations or quantities of interest in powers of c. This means you

may be able to derive a limiting spacetime that has a very different structure than the original.

What are the implications of this difference in approach? Typically, the goal of projects that

expand in powers of the speed of light is to show how a previously successful theory was

successful, i.e., to derive the empirical consequences of an earlier theory in the limit of a later

one. If this is Van den Bleenken’s goal, it is not clear what we should say based on the above

since our previous theory did not involve torsion. Indeed, if we want to explain the success of

the previous theory, it seems like we would also need to answer why is it that the temporal

curvature of Newton-Cartan theory can be traded for the torsion of TTNC. At best, we could

use them to argue for the conventionality of geometry—that the choice between torsion and

17For more on TTNC, see (Meskhidze and Weatherall [2023], §3.4).
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curvature here is conventional as one can derive either in the limit. However, given the

above-described inconsistency between these results and previous work, such an argument

does not seem viable.

5.2.2 Null Reduction

Another limiting procedure, one that has received philosophical treatment, is null reduction.

In their [2018] paper, Read and Teh develop a method for “teleparallelizing” in the classical

context and show the relation between teleparallel gravity and their classical, teleparallelized

theory using null reduction. Their argument draws on a notion of “extended torsion” which I

describe next.

The notion of “extended torsion” was introduced by Geracie, Prahbu, and Roberts [2015]

but the general approach dates back to the 1980s (see, e.g., Duval and Künzle [1984]). One

standardly takes the symmetries of Newton-Cartan theory to be those described by the

Galilean group. Recent projects have argued that, properly considered, the symmetry group of

NCT is not the Galilean group, but rather the Bargmann group. The (inhomogenous) Galilei

group (IGal) includes space and time translations and rotations as well as Galilei boosts. The

Bargmann group is the one-dimensional central extension of inhomogenous Galilei group

Barg = Gal ⋉ (R4 × U(1)).18

Using the Bargmann group as the symmetry group of NCT yields an “extended vielbein”:

eµI = (τµ, eµa,mµ) where τµ is dubbed the clock torsion, eµa is the spatial torsion, and mµ is the

mass torsion (see, e.g., Geracie et al. 2015, Eq. 2.14). As explained by Geracie, Prabhu, and

Roberts, the mass torsion introduces “an additional gauge-field which couples to the mass of

matter fields” ([2015], 4). Importantly, the mass torsion cannot be converted into spacetime

torsion, as noted by Read and Teh ([2018], 2).

With this broadened notion of torsion, Read and Teh construct the teleparallel equivalent of

Newton-Cartan theory and consider its relation to TPG using null reduction. Null reduction is

a limiting procedure outlined in Duval [1985] wherein one considers the reduction of a

(D + 1)-dimensional gravitational wave solution of a relativistic theory. Read and Teh show

that the null reduction of TPG is their teleparallelized Newtonian Gravity.

18The unitary extension corresponds to “translations along a ‘mass dimension”’ (Read and Teh [2018], 2).
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These results offer another way of investigating the relationships among these theories. By

broadening the notion of torsion that is at play to include “mass torsion,” Read and Teh show

that a commuting diagram can be constructed. Namely, either one can start with GR,

teleparallelize to get TPG, and null reduce to get NG; or one can start with GR, null reduce to

get NCT, and teleparallelize to get NG.

The methods adopted in the present paper are more continuous with those typically used in

the torsion-free context (e.g., those of Wald, Malament [2010, 2012]). With such methods, I

have shown that a commuting diagram cannot be constructed: if one only allows spacetime

torsion and considers the classical limit as the speed of light becomes unbounded, the addition

of torsion in the classical context does not commute with the classical limit of TPG. Taking

the classical limit of GR yields NCT and allowing torsion yields the classical theory described

by Meskhidze and Weatherall [2023]. However, as shown here, starting with GR, allowing

torsion to get TPG, and then considering the classical limit yields Newtonian Gravity.

5.2.3 1/c expansion

The next comparison is to a recent paper by Philip Schwartz [2023b]. Schwartz is interested in

investigating the limit of Teleparallel Gravity but his project combines the two methods

discussed above: he constructs the classical limit by performing a 1/c expansion while also

considering the ‘gauge-theoretic’ description of Newton-Cartan gravity in terms of the

Bargmann group. In the end, Schwartz claims that teleparallel Newton-Cartan gravity is the

large speed-of-light limit of TPG. His is the final approach I consider.

The classical, torsional theory developed by Schwartz closely resembles that developed by

Read and Teh but is intended to be more general. As Schwartz puts it

[Read and Teh’s theory] is constructed only in a restricted ‘gauge-fixed’ situation;
in the present paper, we develop instead a completely general teleparallel
description of Newton–Cartan gravity, without introducing arbitrary assumptions
on the connection or the frame. ([2023b], 2)

The ‘gauge-fixing’ indicated by Schwartz is regarding the so-called spatial torsion of the

extended vielbein. Whereas Read and Teh assume that this quantity vanishes for the torsional
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Newton-Cartan gravity they construct, Schwartz does not.19,20

Then, with this torsional equivalent to Newton-Cartan theory in hand, Schwartz turns to the

1/c expansion of TPG. The tetrads are expanded as follows (Schwartz [2023b], Equations 3.2a

and 3.2b). E0
µ = cτµ + c−1aµ + O(c−3), Ea

µ = ea
µ + O(c−2), and

Eµ0 = c−1vµ + O(c−3), Eµa = eµa + O(c−2).

Here, aµ is eventually related to the mass torsion, τµ corresponds to the temporal metric, and

the spatial metric is defined as h := δabea ⊗ eb.

With these expansions in hand, Schwartz claims to recover a torsional classical theory from

TPG. As he writes

This means that as the formal c→ ∞ limit of the Lorentzian manifold we started
with, we obtain a Galilei manifold with a Bargmann structure. We stress again
that the only assumption that is needed for this result is an expansion of the
Lorentzian tetrad and dual tetrad as in [the equations above], with a nowhere
vanishing τ. ([2023b], 15)

He then shows how one might derive the field and force equations of standard Newtonian

gravity in the recovered theory.

One can understand his project as another way of capturing the results of Read and Teh.

While Read and Teh use null reduction to show how to recover a torsional classical theory

from TPG, Schwartz shows how this theory arises as the large speed-of-light limit of TPG. In

a sense, then, the two methods converge on similar results. Importantly, however, both

proposals require generalizing the notion of torsion with the extended vielbein formalism.

Indeed, the results in the present paper indicate that one must generalize the notion of torsion

to recover a classical spacetime with torsion from TPG. Without this more general notion, the

torsion is proven to vanish in the limit. That said, once you do generalize the torsion, the

limiting methods (null reduction and 1/c expansion) seem to agree. This helps make sense of

19Though he does not assume it at the outset, Schwartz does ultimately take the spatial torsion to vanish:

Let us stress here again that this ‘gauge-fixing’ assumption of vanishing purely spatial torsion is,
differently to the situation considered in [Read and Teh], not part of the formulation of the theory,
but only added afterwards for the recovery of standard Newtonian gravity. ([2023b], 20)

Given that the spatial torsion ultimately does not seem to play any meaningful role in the theory, it is not clear
what the significance of this generalization to the theory is supposed to be.

20Notably, the form for the connection that Schwartz adopts is more general than that typically adopted in this
literature. This allows him to incorporate both torsion and a notion of absolute time expressed by means of a
closed temporal metric (see his discussion in §2, especially his expression for the connection in Eq. 2.13).
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the seemingly surprising claim that torsional Newton-Cartan theory is the large speed-of-light

limit of the TPG. Only once allows this extended notion of torsion is such a claim plausible.

6 Conclusion

In this paper, I have proven that the classical limit of Teleparallel Gravity is Newtonian gravity

devoid of any gravitational influence. The classical limit squeezes out any torsion in the

original theory. I discussed the relation of these results to recent, related results in the

literature, results that seemed to either contradict some standard claims made about GR or

contradict one another. I found that many of these inconsistencies stemmed from differences

in methodology and objectives regarding the classical limit of a theory. However, some

inconsistencies remain that require further investigation to resolve fully.
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