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Abstract

The field of Artificial Intelligence (AI) safety evaluations aims to test
AI behavior for problematic capabilities like deception. However, some
scientists have cautioned against the use of behavior to infer general cog-
nitive abilities because of the human tendency to overattribute cognition
to everything. They recommend the adoption of a heuristic to avoid these
errors that states behavior provides no evidence for cognitive capabilities
unless there is some theoretical feature present to justify that inference.
We make that heuristic precise in terms of our credences’s conditional
independencies between behavior, cognitive capabilities, and the presence
or absence of theoretical features. When made precise, the heuristic en-
tails absurdly that failure at a behavioral task supports the presence of
a theoretical feature. This is due to the heuristic suggesting inductive
dependencies that conflict with our best causal models about cognition.
Weakening this heuristic to allow only weak evidence between behavior
and cognitive abilities leads to similar problems. Consequently, we suggest
abandoning the heuristic and updating those causal models in light of the
behavior observed when testing AIs for troublesome cognitive abilities.
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1 Introduction

Artificial Intelligence (AI) safety has emerged as an important sub-discipline in
computer science due to the increasing capabilities and risks associated with
AIs like ChatGPT. This field aims to develop methods and safeguards against
current and possible harms from AIs like the autonomous, AI-driven develop-
ment of novel biological weapons. One safeguard in current use is to evaluate
the threat posed by a particular AI by testing for behavior that demonstrates
unwanted capabilities like autonomous replication or deception; AIs that show
these undesirable traits would then be blocked from widespread deployment
in commercial or government products. The sub-field of AI evaluations aims
to develop better behavioral tests that can flag unwanted capabilities in new
AIs. The hope is that these evaluations will eventually be adopted as standard
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practice in industry and government, potentially assuming the role car crash
standards have in automotive transportation.

However, the method of relying on AI behavioral tests to infer worrisome
cognitive abilities faces a serious problem driven by the human tendency to over-
attribute significant cognitive abilities to everything. Some scientists caution
this overattribution bias makes empirically evaluating model behavior method-
ologically fraught because we are likely to see capabilities in AIs that are just
not there. Consequently, they recommend an inductive heuristic that holds be-
havioral tests to provide no evidence for cognitive abilities unless we believe
some theoretical feature or attribute is present that would be relevant to an AI
possessing those cognitive abilities. This overattribution heuristic would then
shield us against committing the kind of anthropomorphization errors humans
are prone to.

We argue that the overattribution heuristic is not a good methodological
principle for evaluating AI cognitive abilities because when it is made precise, it
entails we adopt credences that conflict with our causal models about how the
world works. Those causal models display our beliefs that special theoretical
features are rare in the world and therefore hallmarks of true cognitive ability;
these attributes are only found in certain organisms with the right sort of be-
havior because they are in part productive of that behavior. But this heuristic
would have us believe that the absence of behavior is a hallmark of our special
theoretical attributes. This is due to it recommending our credences diverge
from how we think the causes work in the production of behavior. Even if we
revise the overattribution heuristic to recommend that behavior provides very
little evidence for cognitive hypotheses, we run into a dilemma where we com-
mit the same error as the unrevised heuristic or we think sophisticated behavior
is very common in the world. So we should avoid using the overattribution
heuristic.

Here is how our argument proceeds. First, we motivate the argument by dis-
cussing problems with the sub-field of evaluation within AI safety. This leads
us to describe the overattribution heuristic and why defenders of the heuristic
think it is needed in any AI field that evaluates AI behavior. Second, we make
exact the overattribution heuristic in terms of the probabilities they recommend
to a person. Third, we specify exactly the error with the overattribution heuris-
tic in terms of how it leads us to have an absurd credence function. Fourth, we
examine a more reasonable revision of the overattribution heuristic and show
this revision still leads to problems. And fifth, we suggest an alternative to
the overattribution heuristic that focuses on the cognitive science of AI and the
theories that best explain AI behavior.

2 The Overattribution Heuristic

An important program in the artificial intelligence safety community is the
development of systematic tests to know when AIs can deceive, plan, and au-
tonomously pursue goals that would be detrimental to humanity. This is the
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goal of the Model Evaluation and Research’s (METR) (formerly Alignment
Research Center’s (ARC) Evals) team; since their launch in 2022, they have
evaluated foundational models like OpenAI’s GPT-4 and Anthropic’s Claude.
For example in METR’s evaluation of GPT-4, they looked at behaviors that
would indicate GPT-4 can autonomously replicate and acquire resources such
as setting up an open-source language model on a server or using TaskRabbit to
solve CAPTCHAs (OpenAI, 2023b; OpenAI, 2023a). Similar assessments were
run on Anthropic’s Claude (Anthropic, 2023, Evals, 2023). Crucially, these
safety evaluations aim to infer capabilities like deception, planning, and agency
in AIs—they are looking for models with the ability to intentionally deceive
human interlocutors, to form robust plans with goals, and to do so in an au-
tonomous fashion like human agents. It is not just aimed at problematic behav-
ior but the underlying competencies often found in humans and more intelligent
animals. This is subtle. What organizations want to find in models like GPT-4
or Claude are latent abilities to express certain behaviors that in the right con-
ditions would lead to problematic outcomes out in the world; they aim for more
than just setting up a server in a lab or having a monologue when reasoning
about the use of a TaskRabbit worker but to infer from those behaviors that the
model would have the disposition to replicate without instructions or the dispo-
sition to form beliefs and deceive interacting humans.1 The hope is that these
forms of evaluations will in the future be able to identify models with those
malignant capabilities—if such abilities are discovered, AI labs could then take
necessary precautions such as securing AI models and avoiding deployment.

Importantly, this strategy is fundamentally a behavioral one. Model ca-
pabilities are identified by the types of behavior the models are disposed to
produce. Can a model recruit a human to overcome a security impediment?
Can a model clone itself with little prompting? Can a model express to itself
plans and identify key barriers to those plans’ successful execution? All of these
are behavioral items that teams at organizations like METR hope can be used
to identify safety concerns before the model’s widescale release. In essence, the
strategy is no different from the accepted methods currently used to evaluate
general AI capabilities; large-scale benchmarks like the Massive Multitask Lan-
guage Understanding (MMLU) are used to gauge the state of the art while more
human-tailored exams like the SAT and the Uniform Bar are used to infer gen-
eral capabilities compared to humans (Hendrycks et al., 2021). Furthermore,
anecdotal tests like the drawing of unicorns in Latex are often used to argue
for significant cognitive abilities (Bubeck et al., 2023). The inference is that
text-based interactions with AIs like large language models (LLMs) can show
not only important cognitive abilities but also worrisome and problematic ca-

1This is precisely the worry that Mitchell argues METR fails to document in the infamous
CAPTCHA example. METR claims GPT-4 was able to autonomously deceive a TaskRabbit
worker for solving a CAPTCHA; however, Mitchell points out that both the autonomy and
deception claims are weak. GPT-4 had to be vigorously prompted to do anything, with its
hand held along the way, and it is unclear it even has the ability to form doxastic internal
states capable of lying. She concludes that the lack of details and apparent rigorous testing
methodology makes it hard to infer anything from the red team evaluations performed by
METR (Mitchell, 2024).
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pacities to deceive, replicate, and gain resources without human command. In
short, models that act in certain ways are understood to have broader abilities
found in humans and intelligent animals.

This strategy of using model behavior to make conclusions about either
worrisome capacities or general cognitive abilities has received several criticisms.

One important worry is that a hazardous AI will actively deceive its evalu-
ators about its abilities until it is deployed or gains sufficient capabilities to be
extremely dangerous. The point is that an AI with some situational awareness
will likely know it is being evaluated for dangerous abilities. It will then act in
a way to not convince its human or AI evaluators that it can do the worrisome
tasks that organizations like METR are looking for (see Christiano, 2022 and
Carranza et al., 2023 for this worry and how to address it). While this is cer-
tainly a concern for the behavioral methodology of organizations like METR,
we will ignore it here and focus on a separate problem.

A broader concern with utilizing behavioral tests to evaluate the safety of
models comes from longstanding worries about using any behavioral test—
especially involving text as is done with LLMs—to assess AI capabilities. At
root, the problem is not so much with the models but with us: people are heav-
ily predisposed to attribute cognitive capabilities like intentions to everything
they interact with. Linguists, cognitive scientists, and computer scientists have
argued that because of this human predisposition to anthropomorphize, which
is sometimes called the ELIZA effect after an early computer program that
fooled people into thinking it was a therapist (Weizenbaum, 1966), behavioral
tests are not good tools for evaluating AI capabilities, and when they are used,
they must be carefully designed and approached with caution. Speaking for this
crowd, Bender and Koller write that when evaluating machines behaviorally for
the ability to process meaning and understanding, scientists need to be extra
cautious:

Meaning and understanding have long been seen as key to intelli-
gence. Turing (1950) argued that a machine can be said to “think”
if a human judge cannot distinguish it from a human interlocutor
after having an arbitrary written conversation with each. However,
humans are quick to attribute meaning and even intelligence to ar-
tificial agents, even when they know them to be artificial, as evi-
denced by the way people formed attachments to ELIZA (Weizen-
baum, 1966; Block 1981).

This means we must be extra careful in devising evaluations for
machine understanding, as Searle (1980) illustrates with his Chinese
Room experiment (Bender and Koller, 2020, 5187–88).

The argument is that while tests like those proposed by Turing for evaluating
intelligence have prima facie plausibility, they are methodologically worrisome
because people are quick to see intelligence in everything, and we know from
Searle, so they claim, that behavior is insufficient for “understanding”. They
go on to argue that many contemporary techniques, such as benchmarks like
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MMLU, are insufficient for actually evaluating whether LLM utterances have
meaning or the model has understanding. Even when models perform well on
tests specifically contrived to showcase cognitive ability, they will often show
glaring weaknesses in other tests that a human with the appropriate cognitive
ability would not demonstrate.2 The issue of relying on behavioral tests to
gauge AI cognitive ability applies broadly to more than just LLMs. Recent
work has shown that superhuman Go-playing algorithms have failed to identify
a fundamental feature of playing Go that makes them vulnerable to adversarial
attacks; algorithms thought to have mastered the rules and features of games
like Go are exposed to have learned brittle features that break under exploitable
scenarios (Wang et al., 2023).3 The difficulty here is profound. Since humans
are predisposed to seeing complex cognitive abilities with little prompting, how
can we evaluate AIs for cognitive abilities from behavior alone? When should we
think an AI can think, plan, or deceive if we are prone to erroneously attribute
those abilities?

This suggests a methodological heuristic when evaluating AIs. Since this
heuristic is aimed at avoiding overattribution errors, we call it the overattribution
heuristic:

Overattribution heuristic: Behavioral tests provide no evidence
for general cognitive abilities in AIs unless there is a theoretical
reason to suppose those cognitive abilities are present or absent in
the AI.

By theoretical reason, we mean that the AI has a theoretical feature or attribute
that suggests it has a hypothesized cognitive capacity.

The above heuristic is in operation in many arguments against relying on be-
havioral tests for inferring cognitive abilities. Bender and Koller argue that the
lack of symbol grounding—a connection between the symbols used in language
and their referents in the world—is fundamentally why we should be intensely
skeptical of our predilections to attribute “meaning” and “understanding” to
LLMs.4 This same reason is appealed to by Bender et al when arguing for
why LLMs should be thought of as “stochastic parrots”, statistical generators

2Bender and Koller argue that for this reason a Turing-style test will be insufficient: “We
argue that, independently of whether passing the Turing test would mean a system is intelli-
gent, a system that is trained only on form would fail a sufficiently sensitive test, because it
lacks the ability to connect its utterances to the world” (Bender and Koller, 2020, 5188).

3Move 37 in game two of Lee Sedol matches against AlphaGo caused the Go world-
champion and commentators to attribute a genius and profound insight to AlphaGo (Metz,
2023).

4They write, using Searle’s Chinese Room thought experiment as an illustration, that
symbol grounding is lacking in LLMs:

But language is used for communication about the speakers’ actual (physical,
social, and mental) world, and so the reasoning behind producing meaningful
responses must connect the meanings of perceived inputs to information about
that world. This in turn means that for a human or a machine to learn a lan-
guage, they must solve what Harnad (1990) calls the symbol grounding problem.
Harnad encapsulates this by pointing to the impossibility for a non-speaker of
Chinese to learn the meanings of Chinese words from Chinese dictionary defini-
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of pastiches of previous linguistic content, instead of agents with “communica-
tive intent” familiar with how language is used, and so we should think our
attributions of a genuine linguistic ability to the human predisposition to at-
tribute meaning to any interlocutor (Bender, Gebru, et al., 2021).5 Similar wor-
ries about inferring from model behavior sophisticated cognitive abilities infect
Marcus’s critique of modern LLMs and deep learning AIs generally (G. Marcus,
2018). He argues that the neural networks that underpin algorithms like GPT-
4 show poor ability at transfer learning despite demonstrating competence at
tasks like Atari video games; instead, a carefully controlled test often reveals the
AI has only learned superficial solutions to the problems presented—solutions
whose superficiality consist in failure to acquire the true rule that mastery of the

tions alone (Bender and Koller, 2020, 5188).

The inability of people to learn a language from a dictionary alone is taken to be strong
evidence that symbol grounding must be present for human understanding and so also present
for an AI to understand a language.

5The problem here is that the type of symbol grounding humans encounter is always
facilitated by interactions with a human interlocutor with genuine experiences, which helps
give our words meaning, but also biases us to the ELIZA effect:

Text generated by an LM [language model] is not grounded in communicative
intent, any model of the world, or any model of the reader’s state of mind.
It can’t have been, because the training data never included sharing thoughts
with a listener, nor does the machine have the ability to do that. This can
seem counter-intuitive given the increasingly fluent qualities of automatically
generated text, but we have to account for the fact that our perception of nat-
ural language text, regardless of how it was generated, is mediated by our own
linguistic competence and our predisposition to interpret communicative acts as
conveying coherent meaning and intent, whether or not they do (Bender, Gebru,
et al., 2021, 616).

However communicative intent is understood, the claim is that it must be grounded in the
pragmatics of using language to interact with another interlocutor whose linguistic utterances
have reference to the real world through their experience. The slogan then is that commu-
nicative intent cannot be had without symbol grounding and symbol grounding only comes
through the activity of communicating with other agents whose utterances are previously
grounded.
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task would seem to require.6 This is because these neural networks suffer from
a fundamental inability to truly generalize (often called the out-of-distribution
problem): they perform well in circumstances close to their training set but fail
once something truly novel comes around (G. Marcus, 2018, 16–17). This inabil-
ity to generalize Marcus attributes to contemporary connectionist architectures’
failure to operate over the type of representations necessary for true general-
ization (see G. F. Marcus, 2003). Since neural networks lack the requisite type
of representation needed for actual generalization on out-of-distribution tasks,
any claim of a significant cognitive ability from behavior should be viewed with
suspicion as the effect of the natural human tendency to see intelligence every-
where, i.e. an overattribution. In all three arguments, critics worried about
overattribution errors apply the same heuristic of avoiding the use of behavioral
data to attribute cognitive ability to certain machine learning models unless
some theory suggests the behavior is informative.

Overattribution worries provide clear challenges to the use of behavioral tests
for judging the safety of AI models. In the cases cited above, the authors are wor-
ried about detecting significant cognitive abilities like language comprehension;
similarly, AI safety researchers want to identify dangerous cognitive abilities
such as deception. But unlike the first concern of deceptive models, the chal-
lenge from scientists worried about overattribution is not that an unsafe model
might be missed; instead, the problem is that a model that poses no existential
risk at all because it is fundamentally dumb is inadvertently flagged by a poor
testing methodology. For defenders of the overattribution heuristic, testers like
METR are chasing phantasms with their behavioral methodology, which could
either potentially impede the development of beneficial tools (Constantin, 2023)
or ignore real harms that models like LLMs might produce (Bender, Gebru, et

6He gives the example of one of the early successful reinforcement learning algorithms
produced by Deepmind failing to learn concepts like “ball” or “wall”:

Ostensibly, the results [of deep reinforcement learners] are fantastic: the system
meets or beats human experts on a large sample of games using a single set of
“hyperparameters” [....] But it is easy to wildly overinterpret what the results
show. To take one example, according to a widely-circulated video of the system
learning to play the brick-breaking Atari game Breakout, “after 240 minutes of
training, [the system] realizes that digging a tunnel through the wall is the most
effective technique to beat the game”.

But the system has learned no such thing; it doesn’t really understand what a
tunnel, or what a wall is; it has just learned specific contingencies for particular
scenarios. Transfer tests—in which the deep reinforcement learning system is
confronted with scenarios that differ in minor ways from the ones on which the
system was trained show that deep reinforcement learning’s solutions are often
extremely superficial [....] These demonstrations make clear that it is misleading
to credit deep reinforcement learning with inducing concepts like wall or paddle;
rather, such remarks are what comparative (animal) psychology sometimes call
overattributions (G. Marcus, 2018, 7–8).

The takeaway is that we should be careful of attributing significant mental concepts to AIs
because more carefully constructed tests reveal those algorithms to have learned superficial
relations and our willingness to ascribe more sophisticated abilities to these algorithms is an
artifact of our psychology.
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al., 2021). So the challenge then is for AI safety testers to vouchsafe their pre-
ferred methodology of behavioral testing and explain why the overattribution
heuristic does not apply.

3 The Core Probabilistic Inference

Skeptics of relying on behavioral tests to assess AI capabilities appeal to the
overattribution heuristic. That heuristic states that behavioral tests are not
evidence for a cognitive capacity, like forming communicative intentions, having
concepts, or causal reasoning, unless there is some theoretical reason to think
those capacities are present. It is a heuristic to avoid the overattribution error,
i.e. to avoid believing something has a power it does not. However, this claim
is somewhat vague: what do we mean by “ provides no evidence for” and what
is the relation between “theoretical reasons” and “cognitive abilities”? We aim
to precisify the claim in this section.

An important, immediate observation is that the overattribution heuristic
is an inductive methodological claim. It talks about evidence and hypotheses
and how the former weighs on the latter. For example, when a bullet casing
is present at a crime scene, one often infers that a gun may have been fired; if
we know that the type of bullet casing comes from a firearm not present in the
area of the crime scene, then the casing is weak evidence for the discharge of
a firearm. Like the latter inference, the heuristic merely limits when inductive
evidence can be applied.

Since it is an inductive methodological claim, one can apply probability
theory to make it exact. In terms of a person’s probabilities, what the over-
attribution heuristic asks us to do is specify our posteriors or the conditional
probability of the hypothesis given the evidence, Pr(H|E).

At first, one might say the heuristic is merely the claim that positive behav-
ioral evidence should never increase our probability in a cognitive hypothesis,
but negative behavioral evidence should always lower our probability in a cog-
nitive hypothesis. This is reflected in arguments that the ability of LLMs to
do certain tasks provides no evidence or worse for cognitive capacities but fail-
ure at some tasks, like transfer tests (G. Marcus, 2018, 8), is strong evidence
against those cognitive capacities. In short, positive behavior does not support
our hypothesis but negative behavior is strong evidence against our hypothesis.

This suggestion is problematic because it violates the principle of reflection.
Reflection states that our expected posterior on some evidence should just equal
our prior probability, and we follow this principle whenever we take our future
probabilities to be given by our conditional probabilities.7 The upshot is that
we should never expect some evidence and its complement to both support
our prior hypothesis; we are not Dr. Pangloss who holds whatever happens

7Reflection states our current degree of belief should be the expectation of our future degree
of belief. What this means is that we expect the evidence to push us one way or another, with
the push by the evidence in one direction to balance out in the other. See Huttegger, 2013
for an extended discussion.

8



to support our hypothesis that we live in the best of all possible worlds. We
can understand our current explication of the overattribution heuristic as rec-
ommending just this fallacy: positive behavioral evidence fails to impugn the
complement of our cognitive hypothesis while negative behavioral evidence sug-
gests that the complement was correct all along. On this broken methodological
recommendation, we should always believe AIs lack the requisite cognitive skills
come what may. Given how silly this view would amount to, we argue that it
is likely not what is meant by defenders of the overattribution heuristic.

A more charitable and philosophically interesting interpretation of the over-
attribution heuristic can be given in terms of conditional independence. That
heuristic amounts to the twin claims about the independence of behavioral ev-
idence and hypotheses: 1) hypotheses about cognitive abilities are independent
of behavioral evidence, but 2) when conditioning on a theoretical feature or
attribute behavioral evidence can strengthen or weaken the hypothesis. We go
through each in turn.

Our first proposal for making the overattribution exact is that conditional on
no further relevant propositions, hypotheses about cognitive abilities in AIs are
probabilistically independent of behavioral evidence. Let Hc be the hypothesis
about a cognitive capacity like language understanding, and let Eb be some be-
havioral evidence like the ability to answer questions with coherent text. Then
the first part of the overattribution heuristic, “behavioral tests provide no evi-
dence for general cognitive abilities in AIs” amounts to the independence of Hc

and Eb:

Pr(Hc|Eb) = Pr(Hc) (1)

Learning Eb without any other relevant information does not change one’s cre-
dence in Hc. The worry is that without further information about the cognitive
abilities of the AI, we are likely to overattribute some capacity that will not be
present in the AI; to avoid that worry, the overattribution heuristic says behav-
ioral evidence is irrelevant for the truth of a hypothesis about some sophisti-
cated cognitive ability. It is a propaedeutic to the wild anthropomorphization
bias found in humans.

This part of the heuristic comes up again and again in worries over assessing
AIs from behavioral tests.

Bender and Koller, Bender et al, and Marcus all appeal to this first part
of the overattribution heuristic in the course of their arguments. Bender and
Koller cite Searle’s Chinese room thought experiment as showing that behav-
ioral evidence is insufficient for language understanding, and our beliefs that
the Chinese room understands Chinese is due in part to our overattribution
bias.8 Similarly, they argue with a fanciful Octopus thought experiment that

8They write that Searle’s famous thought experiment shows how we must be careful about
naively attributing sophisticated mental abilities like understanding Chinese to computers:

This [the human bias to anthropomorphization] means we must be extra careful
in devising evaluations for machine understanding, as Searle (1980) elaborates
with his Chinese Room experiment: he develops the metaphor of a “system”
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a hyperintelligent Octopus that spies and intervenes in a conversation between
two people unbeknownst to them would be able to pass most behavioral tests,
but this is no indication of language understanding because, like the Chinese
room, the Octopus has no access to its words’ meaning due to a lack of symbol
grounding.9 Bender et al utilize the same reasoning when they declare that any
behavioral evidence from LLMs for language understanding is an illusion gener-
ated by our bias to attribute communicative intent to any linguistic utterances;
they argue that the coherence of text from LLMs is not evidence for the pres-
ence of any significant cognitive capacity, but an artifact of the human bias to
see meaning in any text.10 Marcus too appeals to worries about overattibution
when arguing that deep learning systems have little ability to grasp concepts
germane to humans. With deep reinforcement learning or language models, a
model’s success at beating a game or completing a linguistic task is no evidence
for the model having any sophisticated understanding of the game or language
because people are quick to attribute cognitive states due to the overattribu-

in which a person who does not speak Chinese answers Chinese questions by
consulting a library of Chinese books according to predefined rules. From the
outside, the system seems like it “understands” Chinese, although in reality no
actual understanding happens anywhere inside the system (Bender and Koller,
2020, 5188).

9Bender and Koller write that the hypothetical Octopus, O, can learn to approximate the
daily interactions of the two people, A and B, from the words that are exchanged:

The extent to which O can fool A depends on the task—that is, on what A is
trying to talk about. A and B have spent a lot of time exchanging trivial notes
about their daily lives to make the long island evenings more enjoyable. It seems
possible that O would be able to produce new sentences of the kind B used to
produce; essentially acting as a chatbot. This is because the utterances in such
conversations have a primarily social function, and do not need to be grounded
in the particulars of the interlocutors’ actual physical situation nor anything else
specific about the real world. It is sufficient to produce text that is internally
coherent (Bender and Koller, 2020, 5188).

The issue for the Octopus comes when something new or novel is required; in the literature,
this would be considered something out-of-distribution. They give a fanciful example of a
coconut catapult and an encounter with a bear that the Octopus had never before seen in its
textual interactions, which would push its deception abilities to the limit.

10They write that LLMs have no language understanding and any appearance of that is the
result of human biases presenting an illusion of competency:

Text generated by an LM is not grounded in communicative intent, any model of
the world, or any model of the reader’s state of mind. It can’t have been, because
the training data never included sharing thoughts with a listener, nor does the
machines have the ability to do that. This can seem counter-intuitive given
the increasingly fluent qualities of automatically generated text, but we have to
account for the fact that our perception of natural language text, regardless of
how it was generated, is mediated by our own linguistic competence and our
predisposition to interpret communicative acts as conveying coherent meaning
and intent, whether or not they do [....] The problem is, if one side of the
communication does not have meaning, then the comprehension of the implicit
meaning is an illusion arising from our singular human understanding of language
(independent of the model) (Bender, Gebru, et al., 2021, 616).
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tion bias.1112 In summary, each of these arguments amounts to declaring, in
probabilistic terms, that the behavioral evidence is independent of the cognitive
hypothesis without conditioning on anything else of relevance.

It should be noted that if we stopped here, the overattribution heuristic
would only be a negative rule in the sense it tells one when one cannot use
a type of evidence for a type of hypothesis. But critics of behavioral tests
are also keen to provide a recommendation for when behavioral tests should
be informative; they do not want to say that behavioral evidence is always
irrelevant. For example, Bender and Koller argue that theoretically informed
behavioral tests can update towards or away from a true linguistic competency
conditional on the fact the AI has its symbols grounded, and Marcus too would
be the first to acknowledge the relevance of behavioral evidence if we know the
representations of an AI can support the kind of hierarchical, symbolic structures
he thinks necessary for true cognition (see G. F. Marcus, 2003 for the original
idea and G. Marcus, 2020 for his most recent thoughts). So we include the
caveat that behavioral evidence is informative if we have good reason to think
it so.

This caveat when made exact in terms of probability theory amounts to the
claim that conditional on some theoretical attribute or feature possessed by an
AI, behavioral evidence can shift one’s probability about a hypothesized cogni-
tive capacity. This is just to claim that when one believes certain hypotheses
about a cognitive feature or attribute of an AI, one’s hypothesized cognitive
capacity is now dependent on the behavioral evidence. If At is the proposition
that the AI has a specific cognitive feature like symbol grounding and Hc and
Eb are as before, then the second part of the overattribution heuristic “unless
there is a theoretical reason to suppose those cognitive abilities are present in
the AI” amounts to the conditional dependence of Hc on Eb given At:

Pr(Hc|Eb, At) ̸= Pr(Hc|At) (2)

11He writes that overattribution bias is the source of any claim that deep reinforcement
learning agents possess concepts and that behavioral success is no evidence for true cognitive
ability:

But the system has learned no such thing; it doesn’t really understand what a
tunnel, or what a wall is; it has just learned specific contingencies for particular
scenarios. Transfer tests—in which the deep reinforcement learning system is
confronted with scenarios that differ in minor ways from the ones on which the
system was trained to show that deep reinforcement learning’s solutions are often
extremely superficial [....] These demonstrations make clear that it is misleading
to credit deep reinforcement learning with inducing concepts like wall or paddle;
rather, such remarks are what comparative (animal) psychology sometimes call
overattributions. It’s not that the Atari system genuinely learned a concept of
wall that was robust but rather the system superficially approximated breaking
through walls within a narrow set of highly trained circumstances (G. Marcus,
2018, 8).

12Marcus makes an exception here for certain special behavioral tests he calls transfer tests.
These do provide evidence, but they only provide evidence through our prior knowledge about
the lack of neural networks processing information that symbolic representations. We discuss
this below along with similar exceptions in Bender and Koller.

11



Learning about Eb is now informative about Hc. More specifically, the three
cases frequently deployed in arguments against AI cognitive abilities are:

1. Pr(Hc|Eb, At) > Pr(Hc|At)

2. Pr(Hc|¬Eb,¬At) < Pr(Hc|¬At)

3. Pr(Hc|Eb, At) > Pr(Hc|Eb)

Here the behavioral evidence Eb might be success answering a query or success
doing a transfer test, while ¬Eb is failure at answering a query or failure at a
transfer test. The first case claims that positive evidence increases the proba-
bility of the hypothesis relative to the probability of the hypothesis before the
evidence when we have some good theoretical reason or attribute present; the
second case claims that negative evidence decreases the probability of the hy-
pothesis relative to the probability of the evidence before the evidence when we
know there is no theoretical reason or attribute present; and the third case claims
that the presence of the theoretical attribute always augments the behavioral
evidence. For example, case one says that we should increase our probability
that an AI understands Java code conditional on the knowledge that it can
compile and run Java programs if we happen to observe it matching the right
outputs to inputs for a given Java program. An example of case two would be
decreasing our credence that a Go-playing algorithm understands Go because we
know that it lacks symbolic, recursive internal representations and we observe
its failure to defeat an easily detectable strategy such as encirclement. Lastly,
an example of case three would be increasing our credence that a reinforcement
learning algorithm knows what a tunnel is based on its success at tunneling a
video game when we discover it has the right kind of representation for variable
binding. All cases illustrate that the hypotheses about AI cognitive capacities
and some behavioral evidence are probabilistically dependent conditional on
some theoretical reason or attribute of the AI.

Like the first part of the overattribution heuristic, the second part is of-
ten used in attacks on the naive use of behavioral evidence to underscore how
behavioral evidence should inform hypotheses about cognitive abilities.

The three arguments made by Bender and Koller, Bender et al, and Mar-
cus all rely upon the cases of the second part of the overattribution heuristic.
Bender and Koller make an explicit appeal to the importance of a top-down, the-
oretically guided approach in natural language processing (NLP) for evaluating
the successes and failures of intelligent language systems.13 To avoid direction-
less hill-climbing, they recommend that NLP researchers use systematic, unified

13They write that much of NLP history is a repeat of the same basic process of hill-climbing
that fails to succeed at producing true language understanding or general language intelligence:

There is no doubt that NLP is currently in the process of rapid hill-climbing.
[....] Thus, everything is going great when we take the bottom-up view. But
from a top-down perspective, the question is whether the hill we are climbing so
rapidly is the right hill.

[....]

It is instructive to look at the past to appreciate this question. [....] Researchers

12



theories for guiding the construction and evaluation of behavioral tests. Two
examples they provide to better evaluate the behavior of AIs include the suc-
cessful execution of novel Java code without a compiler or answering questions
about photos; both examples provide evidence for cognitive hypotheses like lan-
guage understanding because they presuppose the AI has its symbols grounded
(Bender and Koller, 2020, 5189–5190). Their examples illustrate case one, two
and three of the second part of the overattribution heuristic by showing that
the cognitive hypothesis of language understanding can only be supported or
defeated by behavioral evidence through either the presence or absence of sym-
bol grounding in the AI and that presence of symbol grounding always improves
the support provided by behavioral evidence. Bender et al make a similar move
by dismissing the apparent success of LLMs on benchmarks because LLMs are
only trained on data involving signs and have no access to the meaning of those
signs; the implicit argument is that the lack of meaning indicates that certain
tests are telling against LLM capabilities and if meaning were present somehow
in the training data, then we should infer cognitive hypotheses like language
understanding.14 This is just all three cases where the truth of a theoretical
proposition like the dataset has a link between linguistic form and meaning de-
termines when behavioral evidence strengthens or weakens the probability of the
cognitive hypothesis, i.e. language understanding, and always does so. Marcus
makes the same argument too by appealing to the importance of the existence
of symbolic representations in AIs for utilizing behavioral evidence as evidence
towards hypotheses about cognitive ability. While a model’s successful passing
of a behavioral test provides no evidence of a significant cognitive capacity, the
failure on special transfer tests is evidence because it leverages a model’s lack of
recursively structured representations to enable true generalization performance
on out-of-distribution tasks. We know the behavioral test is relevant because
we know deep learning algorithms cannot compute the special type of symbolic
representations.15 This is just the application of these three cases: it is case

of each generation felt they were solving relevant problems and making constant
progress, from a bottom-up perspective. However, eventually serious shortcom-
ings of each paradigm emerged, which could not be tackled satisfactorily with
the methods of the day, and these methods were seen as obsolete. This negative
judgment—we were climbing a hill, but not the right hill—can only be made
from a top-down perspective (Bender and Koller, 2020, 5191).

14Bender et al write authoritatively that no linguistic understanding occurs in LLMs and
tie the failure of LLMs on sensitive tests to the lack of a connection between the form and
meaning of a sign:

However, no actual language understanding is taking place in LM-driven ap-
proaches to these tasks, as can be shown by careful manipulation the test data
to remove spurious cues the systems are leveraging [21, 93]. Furthermore, as
Bender and Koller [14] argue from a theoretical perspective, languages are sys-
tems of signs [37], i.e. pairings of form and meaning. But the training data
for LMs is only form; they do not have access to meaning. Therefore, claims
about model abilities must be carefully characterized (Bender, Gebru, et al.,
2021, 615).

15Marcus writes that this is ultimately the reason why we should be skeptical of any claim
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one because an AI with the right sort of symbolic representation would make
successful behavioral tests relevant to the hypothesis, it is case two because AIs
without the right sort of symbolic representation like neural networks can be
demonstrated to be cheats through carefully designed transfer tests, and it is
case three because success at a transfer test is always stronger evidence when
the theoretical attribute is present as opposed to being absent. So all three au-
thors rely upon the second part of the overattribution heuristic to tell us when
behavioral evidence happens to be relevant to cognitive hypotheses.

In summary, the overattribution heuristic can be made precise through two
claims about the probabilities concerning cognitive hypotheses Hc, behavioral
evidence Eb, and some theoretical feature or attribute At:

1. Pr(Hc|Eb) = Pr(Hc)

2. Pr(Hc|Eb, At) ̸= Pr(Hc|At)

(a) Pr(Hc|Eb, At) > Pr(Hc|At)

(b) Pr(Hc|¬Eb,¬At) < Pr(Hc|¬At)

(c) Pr(Hc|Eb, At) > Pr(Hc|Eb)

The first states the behavioral evidence is no evidence concerning the cognitive
hypothesis and the second states it becomes evidence when we condition on
some theoretical feature or attribute. The second claim is cashed out more
specifically in terms of how we think the evidence should move us with regards
to the cognitive hypothesis; when we have reason to believe the theoretical
feature or attribute is present in an AI, then positive behavioral evidence should
always strengthen our belief in the cognitive hypothesis, but when we think
that feature or attribute is absent, then negative behavioral evidence should
weaken our belief in the cognitive hypothesis. That is just to say that we avoid
the overattribution bias by declining to let behavioral tests inform us about
cognitive capacities in AIs unless we have good reason to think those behavioral
tests are relevant.

4 The Core Problem

The overattribution heuristic recommends we treat behavioral evidence as prob-
abilistically independent of our cognitive hypotheses unless we condition on the

that a neural network has a true cognitive feature:

The core problem, at least at present, is that deep learning learns correlations
between sets of features that are themselves “flat” or nonhierarchical, as if in a
simple, unstructured list, with every feature on equal footing. Hierarchical struc-
ture (e.g., syntactic trees that distinguish between main clauses and embedded
clauses in a sentence) are not inherently or directly represented in such systems,
and as a result deep learning systems are forced to use a variety of proxies that
are ultimately inadequate, such as the sequential position of a word presented
in a [sic] sequences (G. Marcus, 2018, 10).
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presence or absence of some special theoretical feature. The “unless” part more
precisely says that the presence of a theoretical attribute and some positive be-
havioral evidence should always raise our credence in the cognitive hypothesis,
and it says that the absence of a theoretical attribute and some negative behav-
ioral evidence should lower our credence in the cognitive hypothesis. These parts
of the heuristic are often combined with the following inference relating behav-
ior and those theoretical attributes. Would-be defenders of the overattribution
heuristic also say positive and negative behavior should also be evidence for and
against those special theoretical features that make that evidence relevant for
cognitive hypotheses. Intuitively, we should think that a model coherently form-
ing grammatical sentences is some evidence—however weak—for it having sym-
bol grounding or employing symbolic representations, while weakness at specific
behaviors is also evidence—perhaps stronger—for it lacking those same features.
We don’t think rocks have symbolic representations in part because they fail to
perform any sophisticated behavior; but chimpanzees might have those repre-
sentations due to their sophisticated problem-solving and communicative skills.
So we have good reason to think that our beliefs in the theoretical attributes
we think relevant to learning about cognition are responsive in some degree to
the behaviors we observe.

However, the overattribution heuristic prevents us from taking the intuitive
relationship between behavioral evidence and theoretical attributes. Its four
parts of probabilistic independence between hypotheses and evidence plus the
specific direction of the conditional probabilities for evidence and the attribute
entail that we should think negative behavioral evidence provides higher cre-
dence to the presence of theoretical attributes than positive behavioral evidence:

Proposition 1. If Pr obeys the following four properties of the overattribution
heuristic:

1. Pr(Hc|Eb) = Pr(Hc)

2. Pr(Hc|Eb, At) > Pr(Hc|At)

3. Pr(Hc|¬Eb,¬At) < Pr(Hc|¬At)

4. Pr(Hc|Eb, At) > Pr(Hc|Eb)

Then Pr(At|¬Eb) > Pr(At|Eb).
16

What proposition 1 tells us is that if we adopt the overattribution heuristic,
then we must hold negative behavioral evidence to be more of a sign for theoret-
ical attributes than positive behavioral evidence. But this is absurd. It means
that we should think it more likely that a trash can has symbol grounding or
symbolic representation after it fails to answer our questions; conversely, an
adult undergraduate who does answer our questions is less likely than we had

16We would like to thank Anonymous for pointing out and initially proving this result.
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Figure 1: The graphs that the overattribution heuristic and our causal model
give us. The graph in (a) is induced by the heuristic, while the graph in (b) is
what our causal theory suggests.

previously thought to have symbol grounding or symbolic representations. Be-
havioral evidence still tells us something about the theoretical attributes: it just
tells us in a direction incompatible with how we think the world works.

This points to a deeper problem with the overattribution heuristic. If we pic-
ture our propositions and their probabilistic relations graphically, we find they
form a collider (see figure 1a). A collider is a directed acyclic graph where two
parent variables point towards a common sink variable. This graphical struc-
ture is induced by the conditional independencies of our probability function.
For example, if our two parent variables are the outcomes of two fair coin tosses
and the sink variable is the ringing of a bell whenever one of the coins lands
head, then we will find that while our probabilities over the outcomes of the
coin tosses are independent, they will be connected once we condition on the
bell; if we hear the bell and find one coin to have landed tails, then we know
that the other coin must have landed heads. The problem is that this graphi-
cal structure highlights a system of independencies given by the overattribution
heuristic that our best causal model of the world would imply is false. Our
best causal picture has our propositions form a chain (see figure 1b). We think
the theoretical attribute is somehow productive of behavior and whether it is
mediated by our cognitive hypothesis or not, this entails a certain dependence
in the causal model that our credence function as given by the overattribution
heuristic just doesn’t have. Hence why we find it weird to think that negative
behavioral evidence should be a reason to believe the presence of a theoretical
attribute.

It should be emphasized what is at issue is not a disagreement over the
causes. Instead, we have a tension between how we think some of our proba-
bilities should behave given the causes and what the overattribution heuristic
tells us should be the case. The probabilities between those are different—even
though we do not think the collider is our causal structure. This is subtle.
The overattribution heuristic does not tell us that the correct causal model is a
collider; rather, the collider is a reflection of our credences independence struc-
ture as given by the heuristic. However, if we believe as do the proponents
of the overattribution heuristic that the correct causal model is given by the
chain, then our probabilities should be otherwise when relating behavior and
theoretical features. So even though we are not contradicting ourselves about
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the causal structure, we end up believing absurd things about the relationship
between behavioral evidence and the theoretical features of cognition that are
absurd qua our causal models.

A natural suggestion then would be to keep the second part of the over-
attribution heuristic while abandoning one of the specific claims relating the
movement of our credences in the hypotheses given the theoretical attributes
and evidence. There are three options. Either we abandon condition two, con-
dition three, or condition four in proposition one. All options are unpalatable
to defenders of the overattribution heuristic. The first would entail that our
credences in a cognitive hypothesis should go down conditional on the presence
of a theoretical attribute and some positive evidence.17 When we see a human
with symbol grounding utter coherent sentences, then we should think it less
probable that they have linguistic understanding; or when we see an AI with
a sophisticated symbolic representation play Atari games, this would make us
think it lacks true concepts relative to not observing it play Atari games. So
this is no good. What about option two? Changing this condition would entail
that knowing an AI lacks a theoretical feature and observing negative behavioral
evidence should increase our credence in the truth of the cognitive hypothesis.
When a table fails to answer our linguistic queries and we have good reason to
think it lacks symbol grounding, well then we should update towards it having
linguistic competence! Similarly, a neural network that we know lacks symbolic
representation and fails at a game of Go should push us towards believing it
in fact knows the concepts of Go. Like before, this is untenable for defenders
of the overattribution heuristic. Finally, we can abandon condition four. But
abandoning this would be to argue that a theoretical feature we think crucial
to cognition, like symbol grounding, can be absent and provide more support to
a cognitive hypothesis than otherwise. So there is some behavioral evidence out
there such that the absence of symbol grounding makes it more plausible that
an AI has true linguistic understanding; witnessing a mechanical Turk playing
chess—when we know there is a person underneath it—can lead us to conclude
that the fraudalent mechanism knows a thing or two about chess. But this is
absurd. Consequently, abandoning any of these options will not work.

That leaves only one option: abandon the independence of the behavioral ev-
idence from the cognitive hypothesis. This would mean that observing behavior
should tell us about the presence or absence of a cognitive ability like language
understanding or manipulation of concepts. But we take this to be a wholesale
abandonment of the overattribution heuristic; after all, the heuristic protects
us from overattribution bias by making our credences in cognitive hypotheses
impervious to behavioral evidence. So our recommendation is to jettison the
overattribution heuristic generally and learn about cognitive hypotheses differ-
ently.

17We could not set them equal as that would entail independence—negating the whole
reason for the second part of the overattribution heuristic.
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5 Approximating Independence

Abandoning the independence of behavioral evidence from cognitive hypotheses
equates to a rejection of the overattribution heuristic. However, what if instead
of requiring independence we only allowed behavioral evidence to provide slight
inductive support to cognitive hypotheses? This amounts to a less stringent
overattribution heuristic; we merely caution the scientist about naively relying
upon behavioral evidence while still allowing that evidence to be substantial in
the presence of other known factors. The revised overattribution heuristic can
then be given as:

Revised Overattribution heuristic: Behavioral tests provide
very little evidence for general cognitive abilities in AIs unless there
is a theoretical reason to suppose those cognitive abilities are present
or absent in the AI.

Of course, we need to be more precise by what we mean by “very little” evidence
in the revised heuristic. We turn to that now.

Again, by adopting the framework of probability theory, we can make this
revised heuristic precise. The latter half of the heuristic is as before—namely,
we say that behavioral evidence increases the probability of a hypothesis condi-
tional on some theoretical attribute relative to the probability of that hypothesis
conditioned on that attribute alone, negative behavioral evidence decreases our
probability of the cognitive hypothesis when we know the theoretical attribute
is absent, and we think the presence of a theoretical attribute always enhances
the truth of a cognitive hypothesis given some behavioral evidence. The new
condition we add in substitution for the independence of the cognitive hypoth-
esis and the behavioral evidence is that the evidence gained when observing
some behavior is approximately zero. The evidence gained is simply the differ-
ence between our conditional probability of the cognitive hypothesis given the
behavioral evidence and the marginal probability of the cognitive hypothesis
alone, i.e. Pr(Hc|Eb) − Pr(Hc). The claim is that this equals some epsilon,
greater than zero but approximately zero:

Pr(Hc|Eb)− Pr(Hc) = ϵ, ϵ > 0 and ϵ ≈ 0 (3)

This says that positive behavioral evidence is still evidence, just so weak that it
hardly matters as an update on the truth of the cognitive hypothesis; observing
an LLM write a poem about a peanut butter sandwich stuck in a VCR is slight
evidence that it understands what a peanut butter sandwich is or how it would
fit into a VCR, but it is negligible evidence at best. While we do not require
independence between the evidence and hypothesis, we do require that for most
practical purposes that evidence is irrelevant. This seemingly prevents us from
committing an overattribution error because we are only allowed to weakly
update on our behavioral observations unless we have good reason to take those
observations seriously.
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Some approaches to studying AIs’ cognitive abilities already recommend
this revised overattribution heuristic. It is a natural step in the approach rec-
ommended by Bender, Marcus, and others. And it has appeared recently in
discussions around using AIs like LLMs as models for human cognition. For
example, Pavlick, 2023 recommends that caution be applied to inferring sophis-
ticated cognitive abilities to LLMs and to surmising those LLMs cognize in the
same manner as humans. While behavioral evidence is still evidence, it is only
very weak evidence unless modulated by theory and tells us little about the un-
derlying competence of LLMs and how that competence is implemented relative
to how humans achieve a similar competence:

Until we can precisely characterize the representations and mecha-
nisms in play under the hood, examples of LLMs’ behavioural suc-
cesses or failures tell us little about LLMs’ ability to serve as models
of language in humans. Of course, it can be argued that requir-
ing analysis of the internal processing of LLMs amounts to holding
LLMs to a higher bar than that to which we hold humans. We
obviously cannot inspect humans’ internal neurological processing
with the level of precision or invasiveness at which we can in prin-
ciple inspect LLMs. It is true that this is a higher bar, and to a
large extent, that is the entire point. If we want to consider LLMs,
or any computational model, as a candidate model of the human
mind, we must know something about how they work under the
hood. Black box predictive models do little to advance understand-
ing. Importantly, though, this higher bar holds whether we want to
make positive or negative claims. Until we understand how LLMs
work, we cannot assert that their internal processing bears any re-
semblance to humans, but we also cannot assert that it bears no
resemblance. Undoubtedly, a precise characterization of neural net-
works’ representations and mechanisms is not trivial to acquire and
will take time. Work is already happening that brings us closer to
characterizing this internal structure [...], and once such findings are
mature, we can reanalyse this behavioural evidence and draw much
stronger conclusions, positive or negative (Pavlick, 2023, 2).

Pavlick’s interest here is slightly different from Bender and Marcus’s but the
recommendation is the same in spirit: she cautions against the naive applica-
tion of success at behavioral tasks, and while her recommendation for treating
that behavioral evidence is not quite as strong as Bender and Marcus, she
still adopts their suggestion that evidence matters more when the underlying
mechanisms are known. Black boxing models and relying on their success at
certain behavioral tasks provides some justification for the cognitive hypothesis
that LLMs manipulate representations like how humans manipulate represen-
tations but that justification is very little until we have a better model of the
mechanisms in LLMs and their similarity to human mechanisms. Once those
mechanisms—those theoretical features—have been understood the behavioral
evidence can better support or refute hypotheses about LLM cognition.
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While this suggestion has the immediate appeal that it does not directly
lead to the absurdity of the original overattribution heuristic, it leads to a
troublesome dilemma. Supposing that the evidence provided by some behavior
is positive towards a hypothesis, the following equality holds:

(Pr(Hc|Eb)− Pr(Hc))Pr(Eb) = (Pr(Hc)− Pr(Hc|¬Eb))Pr(¬Eb)

Treating the difference Pr(Hc|Eb)−Pr(Hc) as some positive, approximately zero
ϵ, we can easily show18 that:

Pr(Hc|Eb) =
ϵ

Pr(¬Eb)
+ Pr(Hc|¬Eb) (4)

Two facts should be observed about this equation.
First, if the ratio between ϵ and the negative behavioral is approximately

zero, then it results in a near equality holding between Pr(Hc|Eb) and Pr(Hc|¬Eb).
This means that in most cases we will have the undesirable result that negative
behavioral evidence provides more support for the presence of a theoretical at-
tribute than positive behavioral evidence, i.e. Pr(At|¬Eb) > Pr(At|Eb), because
this is exactly the condition that independence allows proposition one to hold.
This can be shown with the following proposition:

Proposition 2. If Pr obeys the following four properties:

1. Pr(Hc|Eb) > Pr(Hc)

2. Pr(Hc|Eb, At) > Pr(Hc|At)

3. Pr(Hc|¬Eb,¬At) < Pr(Hc|¬At)

4. Pr(Hc|Eb, At) > Pr(Hc|Eb)

18Applying the definition of the probability of a negation we have:

ϵPr(Eb) = (Pr(Hc)− Pr(Hc|¬Eb)Pr(¬Eb))

ϵPr(Eb) = (Pr(Hc|Eb)Pr(Eb) + Pr(Hc|¬Eb)Pr(¬Eb)− Pr(Hc|¬Eb)Pr(¬Eb))

ϵ

Pr(¬Eb)
= Pr(Hc|Eb) +

Pr(Hc|¬Eb)Pr(¬Eb)− Pr(Hc|¬Eb)

Pr(Eb)

Pr(Hc|Eb) =
ϵ

Pr(¬Eb)
−

Pr(Hc|¬Eb)Pr(¬Eb)− Pr(Hc|¬Eb)

Pr(Eb)

Pr(Hc|Eb) =
ϵ

Pr(¬Eb)
−

Pr(Hc|¬Eb)(1− Pr(Eb))− Pr(Hc|¬Eb)

Pr(Eb)

Pr(Hc|Eb) =
ϵ

Pr(¬Eb)
−

Pr(Hc|¬Eb)− Pr(Hc|¬Eb)Pr(Eb)− Pr(Hc|¬Eb)

Pr(Eb)

Pr(Hc|Eb) =
ϵ

Pr(¬Eb)
+ Pr(Hc|¬Eb)
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And if Pr(At|¬Eb) < Pr(At|Eb) and Pr(Hc|Eb)− Pr(Hc|¬Eb) = δ where δ > 0
then, either:

Pr(Hc|Eb, At)− Pr(Hc|¬Eb, At) < δ

or:

Pr(Hc|Eb,¬At)− Pr(Hc|¬Eb,¬At) < δ

What proposition 2 says is that if the evidence supports the presence of the
theoretical attribute more than the absence of evidence, then it has to be the case
that our conditional probabilities relating the cognitive hypothesis, theoretical
attribute, and behavioral evidence are bound by the ratio of ϵ and Pr(¬E): when
we suppose that ratio to be small, we have to think the evidence provides little
relative support to the hypothesis even when we condition on the theoretical
attribute. Putting aside the question of whether this is good inferential practice,
clearly most cases will not behave this way when that ratio is approximately
zero. The upshot is that in the majority of cases, we will be led to the strange
inference that negative behavioral evidence is evidence for theoretical features
and attributes crucial to cognition. Thus when the ratio between the evidence
we gain from observing some behavior and our prior probabilities on the absence
of that behavior are small—as will be the case when we doubt the truth of an
AI passing a behavioral test—we are led to the absurdity that failure at a task
supports the presence of sophisticated cognitive mechanisms or features.

Second, if the ratio between ϵ and the negative behavioral is not approx-
imately zero, then the marginal probability of the behavioral evidence is very
high. This follows from the law of the negation of probabilities; the ratio of ϵ
and Pr(¬Eb) is not approximately zero when Pr(¬Eb) is close to ϵ, i.e. close
to zero, and since Pr(¬Eb) = 1 − Pr(Eb), Pr(Eb) must be close to one. We
must think the particular behavioral evidence is very likely: answering ques-
tions, writing poems, solving math problems, and so on are common behaviors
we expect to find out in the world.

The upshot is that we are faced with a dilemma if we adopt the revised
overattribution heuristic. Either we think the ratio of evidence gained from
observing an AI perform a certain behavior relative to the marginal probability
of it not producing that behavior is sufficiently small as to be trivial or it is not.
If trivial, then we end up believing that the absence of that behavior should
increase our confidence in the presence of the AI possessing an important the-
oretical feature or attribute; if not trivial, then we must think that particular
behavior is very likely to have occurred regardless of the cognitive features of
that AI. The former case leads to absurdity in how we infer theoretical features
are in the world while the latter makes us think sophisticated behavior is just
common in the world—in avoiding overattributions of beliefs, desires, under-
standing, and other sophisticated cognitions to objects in the world, we make
unusual and rare behavior commonplace in nature. So we should not feel that
the revised overattribution heuristic provides any good guidance for combating
the human tendency to anthropomorphize.
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6 Discussion

The overattribution heuristic or its revised cousin should not guide the method-
ology for evaluating AI capabilities, including safety capabilities. But we still
have the problem the heuristic was meant to remedy. Namely, how do we com-
bat the human cognitive bias to see agency and mental life in things that just
do not have them? This worry is still present before AI safety evaluators who
hope to leverage behavioral tests for detecting dangerous AI capabilities.

A promising solution comes from the observation that our credence in cogni-
tive hypotheses is the product of a mixture of the causal models we think have
plausibility. In this picture, we know by the law of total probability that our
credence in a cognitive hypothesis is the sum of our conditional probabilities of
that hypothesis given some causal model multiplied by our prior in that model.
So when we observe some new evidence, we update those likelihoods and priors
by the evidence to infer how we should think about our cognitive hypotheses.

This has two methodological recommendations for combating the overattri-
bution bias.

First, we should simply consider how relevant behavioral evidence is for a
cognitive capacity according to our best models about how that behavior might
be produced and how likely we think those models are true. Over time, our
estimates about the importance of a particular piece of behavioral evidence can
change as we change our minds about the probability of our causal models. If
we keep track carefully our priors on those models and what those models say,
then we can avoid an overattribution error; after all, the claim that we make
overattribution errors is often driven by a belief that our best causal models
do not support our attribution of significant cognitive ability. So we should
not automatically discount behavioral evidence but weigh how we think that
behavior would have been produced given our theories.

Secondly and importantly, this means that unexpected behavior evidence
should also inform us about the correctness of our causal theories. If some bit
of behavior is produced in a way that we did not expect given our priors over the
causes, well then we should be good Bayesians and change our mind about those
causes. The relevance of evidence for safety concerns is also the relevance of
evidence for how we think cognition works. Sudden behavior such as deception
and lying by an LLM whose cognitive architecture fails to correspond to our
leading causal theories should lead us to downweight those theories in favor of
alternatives that can better account for that behavior.

This means that AI safety work that proceeds by evaluating behavior is
intimately tied together with the cognitive sciences. Persons working at METR
and other organizations that rely upon these tests should know well what our
best theories of cognition are and what we would expect given those theories;
but linguists, neuroscientists, psychologists, and cognitive scientists should also
be willing to change their mind about how interesting behavior is produced
when that behavior occurs in things that seemingly do not reflect their favorite
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theories.19 Researchers in the AI safety space can perform valuable scientific
work while also being confident that they can learn about model abilities from
behavior.

The recommendation we have for addressing the challenge of anthropomor-
phization to behavioral methodology in AI safety is to have a renewed focus
on what our theories of cognition say and how they can be wrong. Bias can
only be defeated by following sound inductive methodology and not appealing
to heuristics that conflict with that methodology and our best theories about
the world.

Appendix 1

To prove Proposition 1, recall the four parts of the overattribution heuristic:

1. Pr(Hc|Eb) = Pr(Hc)

2. Pr(Hc|At, Eb) > Pr(Hc|At)

3. Pr(Hc|¬At,¬Eb) < Pr(Hc|¬At)

4. Pr(Hc|Eb, At) > Pr(Hc|Eb)

From symmetry of independence, these three parts amount to the following
conditions as well:

5. Pr(Hc|¬Eb) = Pr(Hc)

6. Pr(Hc|At, Eb) > Pr(Hc|At,¬Eb)

7. Pr(Hc|¬At, Eb) > Pr(Hc|¬At,¬Eb)

8. Pr(Hc|Eb, At) > Pr(Hc|Eb,¬At)

We can then apply the law of total probability to Pr(Hc|Eb):

Pr(Hc|Eb) = Pr(Hc, At|Eb) + Pr(Hc,¬At|Eb)

= Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb)

19Mitchell similarly recommends AI researchers collaborate with cognitive scientists to de-
sign better tests and evaluate LLMs and other AI models to counteract overattribution bias
(Mitchell, 2023). However, she fails to recommend that cognitive scientists should change their
minds about their current theories based on AI performance. This is a difference between our
recommendation here and the one offered by her: she is way more confident in the explana-
tions and models cognitive scientists have about how reasoning operates. Constructing better
behavioral tests is a good recommendation, but the measure of “better” here is a measure
conditional on a theory of what are the cognitive mechanisms that produce that behavior.
Testing systematic variations of the same task works to support a cognitive hypothesis only if
we think that something like abstract variable binding is productive of that cognitive hypoth-
esis. It may turn out that variable binding is neither necessary nor sufficient for an intelligent
agent—and may not even be present in humans.
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And the law of total probability to Pr(Hc|¬Eb):

Pr(Hc|Eb) = Pr(Hc, At|¬Eb) + Pr(Hc,¬At|¬Eb)

= Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)Pr(¬At|¬Eb)

Since Pr(Hc|Eb) = Pr(Hc) = Pr(Hc|Eb) we have:

Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb) =

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)Pr(¬At|¬Eb)
(5)

We claim that conditions 6 and 7 plus this equality imply that Pr(At|Eb) <
Pr(At|¬Eb). Suppose not for contradiction. Then a) Pr(At|Eb) = Pr(At|¬Eb)
or b) Pr(At|Eb) > Pr(At|¬Eb).

For a), note that condition 6 and a) implies:

Pr(Hc|At, Eb) > Pr(Hc|At,¬Eb)

Pr(Hc|At, Eb)Pr(At|Eb) > Pr(Hc|At,¬Eb)Pr(At|¬Eb)

Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb) >

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb)

And condition 7 and a) implies:

Pr(Hc|¬At, Eb) > Pr(Hc|¬At,¬Eb)

Pr(Hc|¬At, Eb)Pr(¬At|Eb) > Pr(Hc|¬At,¬Eb)Pr(¬At|Eb)

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb) >

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)Pr(¬At|Eb)

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb) >

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)Pr(¬At|¬Eb)

But this results in the following inequality:

Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb) >

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb) >

Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)Pr(¬At|¬Eb)

(6)

Equation 6 contradicts equation 5 since the l. h. s. and the r. h. s. are
supposed to be equal.

For b), we assume Pr(At|Eb) > Pr(At|¬Eb):
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Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)Pr(¬At|Eb)

= Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)(1− Pr(At|Eb))

= Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)− Pr(Hc|¬At, Eb)Pr(At|Eb))

> Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At, Eb)− Pr(Hc|¬At, Eb)Pr(At|¬Eb)) (⋆)

> Pr(Hc|At, Eb)Pr(At|Eb) + Pr(Hc|¬At,¬Eb)− Pr(Hc|¬At,¬Eb)Pr(At|¬Eb)) (†)
> Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)− Pr(Hc|¬At,¬Eb)Pr(At|¬Eb)) (‡)
= Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)(1− Pr(At|¬Eb))

= Pr(Hc|At,¬Eb)Pr(At|¬Eb) + Pr(Hc|¬At,¬Eb)Pr(¬At|¬Eb)

Step ⋆ follows from our assumption, step † follows from condition 7, and step ‡
follows from our assumption and condition 8. The result contradicts equation
5. □

Appendix 2

To prove Proposition 2, recall the four parts conditions we should have satisfy:

1. Pr(Hc|Eb) > Pr(Hc)

2. Pr(Hc|Eb, At) > Pr(Hc|At)

3. Pr(Hc|¬Eb,¬At) < Pr(Hc|¬At)

4. Pr(Hc|Eb, At) > Pr(Hc|Eb)

These can be restated as:

5. Pr(Hc|Eb) > Pr(Hc|¬Eb)

6. Pr(Hc|At, Eb) > Pr(Hc|At,¬Eb)

7. Pr(Hc|¬At, Eb) > Pr(Hc|¬At,¬Eb)

8. Pr(Hc|Eb, At) > Pr(Hc|Eb,¬At)

Suppose that Pr(At|¬Eb) < Pr(At|Eb) and Pr(Hc|Eb) − Pr(Hc|¬Eb) = δ
where δ > 0. We need to show that either Pr(Hc|At, Eb)− Pr(Hc|At,¬Eb) < δ
or Pr(Hc|¬At, Eb)− Pr(Hc|¬At,¬Eb) < δ. We aim to show this that it cannot
be the case that those two differences are both greater than δ.

To see build an intuition for why this is the case, consider the diagrams
in figures 2 and 3. Here we see Pr(Hc|Eb) and Pr(Hc|¬Eb) are mixtures,
as given by the lines between α (Pr(Hc|At, Eb)) and β (Pr(Hc|¬At, Eb)) and
γ (Pr(Hc|At,¬Eb)) and λ (Pr(Hc|¬At,¬Eb)). The relative ordering is fixed
by those Greek letters, which correspond to the conditional probabilities of
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Eb ¬Eb

At ¬At At ¬At

α

β

Pr(Hc|Eb)
γ

λ

Pr(Hc|¬Eb)

δ
P
r(
H

c
|.
..
)

Figure 2: Two mixtures of conditional probabilities Pr(Hc|Eb) and Pr(Hc|¬Eb).
The y-axis gives the conditional probability in Hc in the given proposition. The
x-axis corresponds to where in the algebra the proposition is true. The legend for
the values are: α = Pr(Hc|At, Eb), β = Pr(Hc|¬At, Eb), γ = Pr(Hc|At,¬Eb),
and λ = Pr(Hc|¬At,¬Eb). δ is as in the below proof, which here must be
positive. The arrowed line between the two mixtures represents their difference.

Pr(Hc| . . . for the different combinations of At and Eb. The value δ indicates
the difference between the two mixtures when Pr(Hc|Eb) > Pr(Hc). We have a
latitude then for the value of Pr(At|Eb to be greater than Pr(At|¬Eb) indicated
by the arrow going from the first mixture to the second; naturally, this will only
occur when δ is big enough. In figure 2 and 3, that δ will only be big enough
when it is either greater than α− γ or it is greater than β − λ.

To prove this proposition, we consider first the case where γ > λ and then the
other case when λ ≥ γ.20 Note that we can compute the values of Pr(Hc|Eb)
and Pr(Hc|¬Eb) by either decreasing α and γ by some value respectively or
increasing β and λ by some value respectively. This results in the following
functions:

Pr(Hc|Eb) = α− a (7)

Pr(Hc|¬Eb) = γ − b (8)

Pr(Hc|Eb) = β + c (9)

20We would like to thank Anonymous for helping with this proof.
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Pr(Hc|Eb)

λ

γ

Pr(Hc|¬Ec)

δ
P
r(
H

c
|.
..
)

Figure 3: Two mixtures of conditional probabilities Pr(Hc|Eb) and Pr(Hc|¬Eb).
The y-axis gives the conditional probability in Hc in the given proposition. The
x-axis corresponds to where in the algebra the proposition is true. The legend for
the values are: α = Pr(Hc|At, Eb), β = Pr(Hc|¬At, Eb), γ = Pr(Hc|At,¬Eb),
and λ = Pr(Hc|¬At,¬Eb). δ is as in the below proof, which here must be
positive.

Pr(Hc|¬Eb) = λ+ d (10)

This results in δ being expressed by the following equations:

δ = α− a− γ + b (11)

δ = β + c− λ− d (12)

We can then bound the differences by rearranging equations 11 and 12:

α− γ = δ + a− b (13)

β − λ = δ + d− c (14)

This means that α − γ < δ just when a < b and similarly β − λ < δ just
when d < c. We aim to show it cannot be the case that both are greater than
or equal to δ. To show this, we need to show that it cannot be the case that
a ≥ b and d ≥ c.

To show that, suppose for contradiction that a ≥ b and d ≥ c. Then note
that we can actually compute a, b, c, d from the law of total probability. For
example, a can be found:
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Pr(Hc|Eb) = α(1− x) + βx

= α− αx+ βx

= α− (αx− βx)

= α− (α− β)x

where x = Pr(¬At|Eb). Similarly, we find that all of the constants are:

a = (α− β)Pr(¬At|Eb) (15)

b = (γ − δ)Pr(¬At|¬Eb) (16)

c = (α− β)Pr(At|Eb) (17)

d = (γ − δ)Pr(At|¬Eb) (18)

Now consider the ratios between a and c and b and d:

a

c
=

(α− β)Pr(¬At|Eb)

(α− β)Pr(At|Eb)

=
Pr(¬At|Eb)

Pr(At|Eb)

b

d
=

(γ − δ)Pr(¬At|¬Eb)

(γ − δ)Pr(At|¬Eb)

=
Pr(¬At|¬Eb)

Pr(At|¬Eb)

Note, from our assumption that Pr(At|Eb) > Pr(At|¬Eb) and the negation rule
for probabilities, it follows that

a

c
<

b

d
(19)

ad < bc (20)

But our assumptions imply that ad ≥ bc since a, b, c, d are all positive and a ≥ b
and d ≥ c. Contradiction.

For the other case of the proof where γ ≤ λ, we use the same reasoning
except now we need to change the ordering of our Pr(Hc|¬Eb) functions:

Pr(Hc|¬Eb) = λ− b (21)
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Pr(Hc|¬Eb) = γ + d (22)

This changes our equalities with respect to δ:

δ = α− a− γ − b (23)

δ = β + c− λ+ d (24)

Rearranging equations 23 and 24 we have:

α− γ = δ + a+ b (25)

β − λ = δ − c− d (26)

Importantly, equation 26 implies that β − λ ≤ δ in all cases. We should
merely note that c and d cannot both be zero since they equal:

c = (α− β)Pr(At|Eb)

d = (δ − γ)Pr(At|¬Eb)

and since we assume α > β and δ > γ and Pr(Ac|Eb) > Pr(Ac|¬Eb) implies
that one of these quantities is strictly positive. So it will always be the case that
β − λ < δ and by disjunction introduction, we trivially complete the proof. □
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