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Abstract

We define a notion of inaccessibility of a decision between two options represented
by utility functions, where the decision is based on the order of the expected val-
ues of the two utility functions. The inaccessibility expresses that the decision
cannot be obtained if the expectation values of the utility functions are calcu-
lated using the conditional probability defined by a prior and by partial evidence
about the probability that determines the decision. Examples of inaccessible deci-
sions are given in finite probability spaces. Open questions and conjectures about
inaccessibility of decisions are formulated. The results are interpreted as show-
ing the crucial role of priors in Bayesian taming of epistemic uncertainties about
probabilities that determine decisions based on utility maximizing.

Keywords: Utility maximizing, conditional probability, inaccessible decisions,
Bayesianism

1 The main idea of decision making in terms of
utility maximization

The core idea of decision theory based on utility maximization is that an Agent models
the world in terms of probability measure spaces and decisions are identified with
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utility functions represented by random variables. Decisions are preferred that have
the maximal expected utility with respect to the probability measure.

To be more explicit, let (X,S, p) be a probability measure space, with X a set, S
a σ-field of some subsets of X and p a probability measure on S. Real valued random
variables fi : X → IR (i ∈ I) represent decisions, and the prescription of utility theory
is: The Agent should choose decision fj for which

〈fj〉p > 〈fi〉p for all i 6= j (1)

where 〈f〉p
.
=
∫
fdp is the expectation value of f with respect to p (see Briggs (2023),

Buchak (2022), Bradley (2017) and Chakrabarty and Kanaujiya (2023) for a more
detailed review of the main ideas and some history of utility theory).

In the decision theoretic context elements in S are interpreted as states/properties
of the world (equivalently: as propositions stating some properties of the world). The
value fj(x) is the utility (degree of preference) of the action fj from the Agent’s
perspective if the state of the world is x (the larger fj(x) the more the Agent prefers
action fj if x obtains). The probability measure p can be viewed either as

(i) representing subjective degrees of belief in the truth of the propositions in S;
or as

(ii) expressing objective features of the world (e.g. as frequencies with which the features
of the world obtain).

If p is viewed subjectively, the expectation values 〈fj〉p express the Agent’s subjective
degrees of expectations of the value of the decision fj , and the Agent behaves rationally
if it prefers fj because this choice is in harmony with his subjective expectation. If p
is interpreted objectively, say as relative frequency, then the Agent behaves rationally
if prefers fj because (on the average) the value of fj will be objectively higher than
the average value of fi. In this paper we deal only with this latter kind of objectively
rational decision based on utility maximization. From now on, we use the notation p∗

to indicate that the probability measure is viewed as an objective probability.

2 A potential difficulty for decision making based
on utility maximization using probabilities
inferred via conditioning

One difficulty of rational decision making based on utility maximization is that the
Agent might not know the objective probability p∗; or it might not know p∗ in full,
possibly knowing the values p∗(A) only for elements A in a Boolean subalgebra A of
S. In such situations the Agent can try to infer the values of p∗ for elements that are
in S but not in A via conditioning, and calculate the expectation values of the utility
functions using the so-inferred conditional probability measure. This procedure, in
more details, is the following (we refer to Chapter 6. in Billingsley (1995) or Rosenthal
(2006) for the theory of conditioning with respect to σ-fields):

The Agent specifies a probability measure p on S as his prior in such a way that
the restriction p∗A of p∗ to A is absolutely continuous with respect to the restriction
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pA of p to A. Then by the Radon-Nikodym theorem there exists the Radon-Nikodym

derivative
dp∗A
dpA

of p∗A with respect to pA: the function
dp∗A
dpA

is the density function of
p∗A with respect to pA, which gives p∗A on A as

p∗A(A) =

∫
χA

dp∗A
dpA

dpA A ∈ A (2)

(χA above denotes the characteristic (indicator) function of the set A; more generally
below we will use χZ to denote the characteristic function of a set Z in S). The formula
(2) allows one to extend p∗A from A to a probability measure p∗p,A on S by defining

p∗p,A(B)
.
=

∫
χB

dp∗A
dpA

dp B ∈ S (3)

Remark 1. If A is generated by a countable partition {Ai}i∈IN, then (a version of)
dp∗A
dpA

is

dp∗A
dpA

(x) =
∑
i∈IN

p∗A(Ai)

pA(Ai)
χAi(x) x ∈ X (4)

The probability p∗p,A(B) defined by (3) with the density function
dp∗A
dpA

in (4) has the
form:

p∗p,A(B)
.
=

∫ [
χB

∑
i∈IN

p∗A(Ai)

pA(Ai)
χAi

]
dp

=
∑
i∈IN

p∗A(Ai)

pA(Ai)

∫
χBχAidp

=
∑
i∈IN

p∗A(Ai)

pA(Ai)
p(B ∩Ai)

=
∑
i∈IN

p(B ∩Ai)

p(Ai)
p∗A(Ai)

=
∑
i∈IN

p(B|Ai)p
∗
A(Ai) (5)

The formula (5) is known in the philosophical literature as ”Jeffrey conditioning”
Jeffrey (1983), Jeffrey (1992) (the terminology ”probability kinematics” also is used to
refer to Jeffrey conditioning, see Diaconis and Zabell (1982)). If X in the probability
space (X,S, p∗) has a finite number of elements, then p∗p,A(B) is always of the form
(5). From now on we assume that the set of elementary events is finite, having n
elements: Xn. See Remark 3 on the case of infinite probability spaces.

Having inferred p∗p,A(B) from the values of p∗ on the elements of A as evidence,
the Agent can use p∗p,A(B) to calculate the expectation values 〈fi〉p∗p,A of the util-
ity functions fi and can base the decision on the relation of the expectation values
〈fi〉p∗p,A . One potential difficulty such a decision making has to face is that the inferred
probability p∗p,A might not be equal to the objective probability: p∗ 6= p∗p,A. Thus it
might happen that 〈fi〉p∗p,A 6= 〈fi〉p∗ . Consequently, it is not obvious that the decision
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between fi and fj based on considering the expectation values of fi and fj calculated
using the inferred probability p∗p,A is objectively correct in the sense that it coincides
with the decision based on considering the expectation values of fi and fj calculated
using the objective probability p∗. That is to say, it is not obvious that

〈fi〉p∗ > 〈fj〉p∗ entails 〈fi〉p∗p,A > 〈fj〉p∗p,A (6)

The next section formulates the possibility of violation of the entailment in (6) in
terms of two definitions, restricted to the case of two utility functions.

3 Inaccessible decisions – definition

Given a probability space (Xn,S, p∗) and two random variables f1, f2 : Xn → IR, we
call 〈

(Xn,S, p∗), f1, f2
〉

(7)

a decision context and the inequality 〈f1〉p∗ > 〈f2〉p∗ a decision. A Boolean subalgebra
A of S is called proper and non-trivial if A ⊂ S and A 6= {∅, Xn}.
Definition 1. Given a decision context

〈
(Xn,S, p∗), f1, f2

〉
, we say that the decision

〈f1〉p∗ > 〈f2〉p∗ (8)

is (p,A)-inaccessible if

� A is a proper, non-trivial Boolean subalgebra of S;
� p is a probability measure on S (prior) such that the restriction p∗A of p∗ to A is

absolutely continuous with respect to the restriction pA of p to A;
� and we have:

〈f1〉p∗p,A ≤ 〈f2〉p∗p,A (9)

where p∗p,A is the (p,A)-conditional probability measure defined by (3).

We call the decision (p,A)-accessible if it is not (p,A)-inaccessible.
The content of (p,A)-inaccessibility is that the Agent cannot reach the right deci-

sion determined by the objective probability if the information available for the Agent
are the values of the objective probability on the subalgebra A, and the Agent calcu-
lates the expectation values of utility functions using conditional probabilities obtained
from the partial information available and using prior p: either the Agent cannot make
a decision between f1 and f2 (if there is equality in (9)), or the decision made this
way by the Agent is objectively wrong (when there is strict inequality in (9)).

A natural strengthening of Definition 1 is:
Definition 2. Given a decision context

〈
(Xn,S, p∗), f1, f2

〉
, we say that the decision

〈f1〉p∗ > 〈f2〉p∗ is p-inaccessible if it is (p,A)-inaccessible (in the sense of Definition
1) for all (proper, non-trivial) subalgebras A of S.

The content of Definition 2 is that the prior p chosen by the Agent makes it
impossible to reach the objectively good decision in the following sense: if the Agent
does not know the full objective probability and calculates the expectation values
of the utilities using probabilities inferred via conditionalizing his prior p on partial
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information about the objective probability, then either the Agent cannot make a
decision between f1 and f2 , or the decision the Agent makes will be objectively wrong
– no matter what partial information the Agent has about the objective probability.

Given the definition of p-inaccessibility of decisions, one is led to
Problem 1. Under what conditions on the decision context

〈
(Xn,S, p∗), f1, f2

〉
, and

for which p does it happen that the decision 〈f1〉p∗ > 〈f2〉p∗ is p-inaccessible?
Clearly, p-inaccessibility of the decision 〈f1〉p∗ > 〈f2〉p∗ is a much stronger property

than (p,A)-inaccessibility for some A, and p-inaccessibility can only occur if p∗ belongs
to the set of probability measures that form what is called the ”Bayes Blind Spot” of
p: The Bayes Blind Spot of p is the set of probability measures on S that are absolutely
continuous with respect to p, yet they cannot be obtained as conditional probabilities
from incomplete evidence using p as prior Gyenis and Rédei (2017), Rédei and Gyenis
(2021). That is to say, probability measure p∗ is in the p-Bayes Blind Spot if it is
absolutely continuous with respect to p but cannot be written in the form of (3) for
any proper, non-trivial subalgebra A.

It is known that the p-Bayes Blind Spot is not empty for a lot of p in typical
probability spaces; in fact the p-Bayes Blind Spot is known to be a very large set for
every p in all finite probability spaces: the Bayes Blind Spot

”... has the same cardinality as the set of all probability measures (continuum); it has
the same measure as the measure of the set of all probability measures (in the natural
measure on the set of all probability measures); and is a ’fat’ (second Baire category) set
in topological sense in the set of all probability measures taken with its natural topology.”
Rédei and Gyenis (2021)[p. 3801].

The p-Bayes Blind Spot is known to be large also in probability spaces where X is
countably generated Shattuck and Wagner (2024).

Thus, a necessary condition for the existence of p-inaccessible decisions does hold
in typical probability spaces. But this necessary condition is not sufficient: p∗ 6= p∗p,A
does not entail that the decision 〈f1〉p∗ > 〈f2〉p∗ is p-inaccessible: One can have a
situation in which p∗ is in the p-Bayes Blind Spot but the decision is (p,A)-accessible
for some A and not (p,A′)-accessible for some other A′ 6= A (see Remark 2). It can
even happen that p∗ is in the p-Bayes Blind Spot but the decision is (p,A)-accessible
for all A (see the Example 4.4). That p∗ lies in the p Bayes Blind Spot is not sufficient
for p-inaccessibility of a decision is not surprizing because the p-inaccessibility depends
sensitively not only on p∗ and on the prior p but also on the utility functions f1, f2.
For this reason, finding a compact and useful general sufficient condition for p- and
(p,A)-inaccessibility seems a difficult problem. At any rate we are not able to give
such a condition.

Given lack of a general sufficient condition for p- and (p,A)-inaccessibility, it is not
even obvious that decision contexts displaying (p,A)- (and especially) p-inaccessibility
exist. In the next section we give examples of (p,A)- and p-accessibility in probability
spaces having three and four elementary events.
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4 Inaccessible decisions – examples in finite
probability spaces

4.1 Example of a (p,A)-inaccessible decision in a probability
space having three elementary events

Consider the decision context described by Table 1 (with p∗ as objective probability
and p as prior probability):

X3 x1 x2 x3

p∗ 3
8

1
4

3
8

f1 -2 -2 9
f2 -2 8 -2

p 3
40

32
40

5
40

Table 1
(p,A)-inaccessibility,
n = 3

We have

〈f1〉p∗ = 2
1

8
(10)

〈f2〉p∗ =
1

2
(11)

So the objectively good decision is

〈f1〉p∗ > 〈f2〉p∗ (12)

In the case of a three-element set X3 there are three non-trivial proper sub-Boolean
algebras of the power set of X3, they are generated by three partitions:

A1 generated by {{x1}, {x2, x3}} (13)

A2 generated by {{x2}, {x1, x3}} (14)

A3 generated by {{x3}, {x1, x2}} (15)

The Radon-Nikodym derivatives dp∗

dpAi
(i = 1, 2, 3) (see Remark 1, especially eq.

(5)) are given by Table 2:
So one can calculate the expectation values of f1, f2 with respect to the inferred

probabilities p∗p,Ai
(i = 1, 2, 3):

〈f1〉p∗p,Ai
=

3∑
j=1

f1(xj)
dp∗

dpAi

(xj)p(xj) i = 1, 2, 3 (16)
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X3 x1 x2 x3

dp∗

dpA1
5 2

3
2
3

dp∗

dpA2
3 3

4
1
3

3 3
4

dp∗

dpA3

5
7

5
7

3

Table 2 Radon-Nikodym
derivatives

〈f2〉p∗p,Ai
=

3∑
j=1

f2(xj)
dp∗

dpAi

(xj)p(xj) i = 1, 2, 3 (17)

The results are given in Table 3.

A1 〈f1〉p∗p,A1
= −1 〈f2〉p∗p,A1

= 3 2
5

A2 〈f1〉p∗p,A2
= 3 1

6
〈f2〉p∗p,A2

= −12 1
2

A3 〈f1〉p∗p,A3
= 2 1

8
〈f2〉p∗p,A3

= 3 5
7

Table 3 Expectation values of utility
functions

Thus we have the following ordering of the expected utilities calculated using the
inferred probabilities:

〈f1〉p∗p,A1
< 〈f2〉p∗p,A1

(18)

〈f1〉p∗p,A2
> 〈f2〉p∗p,A2

(19)

〈f1〉p∗p,A3
< 〈f2〉p∗p,A3

(20)

The inequality (18) means that the decision (12) is (p,A1)-inaccessible; the inequal-
ity (20) means that the decision (12) is (p,A3)-inaccessible, and the inequality (19)
means that the decision (12) is (p,A2)-accessible.
Remark 2. The decision (12) is not p-inaccessible because the decision is not (p,A2)-
inaccessible: the decision between f1 and f2 based on the relation of their expectation
values expressed by inequality (19) is the same as the decision (12) based on p∗. Yet,
the objective probability p∗ lies in the Bayes Blind Spot of p: It is known (Proposition
3.1 in Rédei and Gyenis (2021)) that p∗ is in the p-Bayes Blind Spot if and only if the

Radon Nikodym derivative dp∗

dp is an injective function. This holds for p∗ and p in this
example:

dp∗

dp
(x1) =

p∗({x1})
p({x1})

= 5 (21)

dp∗

dp
(x2) =

p∗({x2})
p({x2})

=
5

16
(22)
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dp∗

dp
(x3) =

p∗({x3})
p({x3})

= 3 (23)

4.2 Example of a p-inaccessible decision with the uniform p in
a probability space having three elementary events

Consider the decision context described in Table 4.

X3 x1 x2 x3

p∗ 1
2

1
6

1
3

f1 1 -1 2
f2 2 3 -2

p 1
3

1
3

1
3

Table 4
p-inaccessible decision,
n = 3, uniform prior

An explicit calculation carried out exactly along the steps outlined in the Example
in section 4.1 yields:

〈f1〉p∗ = 1 (24)

〈f2〉p∗ =
5

6
(25)

So the objectively good decision is

〈f1〉p∗ > 〈f2〉p∗ (26)

But we have the expectation values of utility functions given by Table 5.

A1 〈f1〉p∗p,A1
= 3

4
〈f2〉p∗p,A1

= 11
4

A2 〈f1〉p∗p,A2
= 1 〈f2〉p∗p,A2

= 11
2

A3 〈f1〉p∗p,A3
= 2

3
〈f2〉p∗p,A3

= 1

Table 5 Expectation values of utility
functions

Table 5 shows that he relation of the expectation values is:

〈f1〉p∗p,A1
< 〈f2〉p∗p,A1

(27)

〈f1〉p∗p,A2
< 〈f2〉p∗p,A2

(28)

〈f1〉p∗p,A3
< 〈f2〉p∗p,A3

(29)

The inequalities (27)-(29) mean that the decision (26) is p-inaccessible.
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To illustrate p-inaccessibility described in this section, imagine the following deci-
sion situation: A random generator produces the numbers 1, 2 and 3 randomly
according to the distribution p∗ in Table 4: in an N -long series of the numbers 1, 2, 3
produced by the generator, the probabilities give the relative frequencies of how many
times the numbers 1, 2, 3 come up in the N -long sequence. The Agent is offered the
following two lotteries:

1. Lottery #1:

Pay $ 5
and get

$ 6 if 1 is the outcome, $ 4 if 2 is the outcome, $ 7 if 3 is the outcome.

2. Lottery #2:

Pay $ 6
and get

$ 8 if 1 is the outcome, $ 9 if 2 is the outcome, $ 4 if 3 is the outcome.

The Agent is then told that the probability that the generator generates 1 is equal to
1
2 , and that the probability that the generator generates either 2 or 3 is also equal to
1
2 . Then the Agent is asked which lottery he prefers. Assuming that the Agent wishes
to maximize gain, the Agent first defines the gain function (utility function) for each
of the two lotteries:

f1(1) = $ 6− $ 5 = $ 1 (30)

Lottery #1 f1(2) = $ 4− $ 5 = −$ 1 (31)

f1(3) = $ 7− $ 5 = $ 2 (32)

f2(1) = $ 8− $ 6 = $ 2 (33)

Lottery #2 f2(2) = $ 9− $ 6 = $ 3 (34)

f2(3) = $ 4− $ 6 = −$ 2 (35)

These functions are exactly the ones in Table 4. Then the Agent wishes to find out
what the expectation values of these two utility functions are. Since the Agent does
not know the objective probability p∗ in Table 4, only the restriction of p∗ to A1, the
values of p∗ must be inferred from this information. If the Agent chooses the uniform
probability p in Table 4 (unbiased prior), and infers the values of p∗ via conditioning,
then the values will be given by the conditional probability measure p∗p,A1

. Calculating
the expectation values of the gain functions f1, f2 with respect to p∗p,A1

, the Agent
obtains the values in ”row A1” of Table 4, and concludes that, because of the relation
(27), Lottery #2 is the preferred one. But, by (26), Lottery #1 has objectively higher
expectation value. The same reasoning holds if the information given to the Agent is
the value of the objective probabilities on A2 or on A3. The Agent, with the unbiased
prior, cannot make an objectively good decision about the two Lotteries on the basis
of partial information and conditioning.
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One might think that the p-inaccessibility of the decision (26) with respect to the
uniform prior is due to the very special nature of this prior and that with a non-
uniform prior there might not exist p-inaccessible decisions. The next example shows
that this intuition is wrong: One can have p-inaccessible decisions with respect to a
non-uniform prior p.

4.3 Example of a p-inaccessible decision with a non-uniform
prior p in a probability space having three elementary
events

Consider the decision context described by Table 6.

X3 x1 x2 x3

p∗ 0.31 0.34 0.35

f1 -1 -1 1
f2 -1 1 -1

p 0.05 0.9 0.05

Table 6 p-inaccessible
decision, n = 3,
non-uniform prior

An explicit calculation carried out exactly along the steps outlined in the Example
in section 4.1 yields:

〈f1〉p∗ = −0.3 (36)

〈f2〉p∗ = −0.32 (37)

So the objectively good decision is

〈f1〉p∗ > 〈f2〉p∗ (38)

But we have the expectation values described by Table 7.

A1 〈f1〉p∗p,A1
= −0.92737 〈f2〉p∗p,A1

= 0.307368

A2 〈f1〉p∗p,A2
= −0.34 〈f2〉p∗p,A2

= −0.32
A3 〈f1〉p∗p,A3

= −0.3 〈f2〉p∗p,A3
= 0.231579

Table 7 Expectation values of utility functions

Table 7 shows that we have the following relations:

〈f1〉p∗p,A1
< 〈f2〉p∗p,A1

(39)
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〈f1〉p∗p,A2
< 〈f2〉p∗p,A2

(40)

〈f1〉p∗p,A3
< 〈f2〉p∗p,A3

(41)

The inequalities (39)-(41) show that the decision (38) is p-inaccessible.

4.4 Example of a decision in a probability space having three
elementary events that are (p,A)-accessible for all
(proper, non-trivial) A; yet the objective probability is in
the p-Bayes Blind Spot

Consider the decision context described by Table 8.

X3 x1 x2 x3

p∗ 1
2

1
6

1
3

f1 -1 -1 1
f2 -1 1 -1

p 1
3

1
3

1
3

Table 8 Accessible
decision with objective
probability in Blind
Spot

We have

〈f1〉p∗ = 6
5

6
(42)

〈f2〉p∗ = −1 (43)

So the objectively good decision is

〈f1〉p∗ > 〈f2〉p∗ (44)

And we have the expectation values described by Table 9.

A1 〈f1〉p∗p,A1
= 3 1

4
〈f2〉p∗p,A1

= 0

A2 〈f1〉p∗p,A2
= 10 〈f2〉p∗p,A2

= −3 1
2

A3 〈f1〉p∗p,A3
= 6 〈f2〉p∗p,A3

= 2
3

Table 9 Expectation values of utility
functions

Table 9 shows:

〈f1〉p∗p,A1
> 〈f2〉p∗p,A1

(45)
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〈f1〉p∗p,A2
> 〈f2〉p∗p,A2

(46)

〈f1〉p∗p,A3
> 〈f2〉p∗p,A3

(47)

The inequalities (45)-(47) show that the decision (44) is (p,Ai)-accessible for all i =
1, 2, 3. But p∗ is in the p-Bayes Blind Spot because the Radon-Nikodym derivative of
p∗ with respect to p is an injective function.

4.5 Example of a p-inaccessible decision in a probability space
having four elementary events

All the above examples are in a probability space having three elementary events.
In such probability spaces there are three non-trivial partitions defining three non-
trivial proper sub-Boolean algebras. The utility functions have a domain that also
has three elements. One might think that the existence of p-inaccessible decisions in
such spaces might thus be due to the peculiar circumstance that there are exactly as
many elementary events as non-trivial subalgebras. But this is not so: Here we give
an example of a p-inaccessible decision in a probability space having four elementary
events.

When the number of elementary events increases, the number of non-trivial sub-
algebras is growing exponentially: the number of non-trivial proper subalgebras is
equal to the number of all non-trivial partitions, which is the number of all partitions
minus 2, since the finest partition does not define a proper subalgebra and the trivial
partition defines a trivial subalgebra. The number of all partitions of a finite set hav-
ing n elements is called the ”n-th Bell number” Bell(n) Conway and Guy (1996). In
case of n = 4, the Bell number is Bell(4) = 15; hence in case of a probability space
having four elementary events, the number of proper, non-trivial subalgebras is 13.
Thus, checking whether a decision is p-inaccessible in this situation requires check-
ing (p,A)-inaccessibility with respect to 13 subalgebras A. We will not present the
detailed calculations here (they are exactly along the lines of the calculation in case of
the example in section 4.1). We just claim that the decision context described in Table
10 represents a p-inaccessible decision when the probability space has 4 elementary
events:

X4 x1 x2 x3 x4

p∗ 0.05 0.08 0.86 0.01

f1 −0.99 −1 0.1 1.0001
f2 6 1.98 −1 36.58

p 0.25 0.25 0.25 0.25

Table 10 p-inaccessible decision,
n = 4
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5 Degree of inaccessibility

In the example in section 4.1 displaying a (p,A)-inaccessible decision, the decision
is (p,A)-inaccessible for two (of the altogether three) subalgebras – the decision in
this example is ”one-subalgebra-close” to being p-inaccessible. The decision in the
example in section 4.4 showing that a decision can be (p,A)-accessible for all A (and p∗

still be in the p-Bayes Blind Spot) is ”three-subalgebra-close” to being p-inaccessible.
Numerical calculations also show that the following is true in the situation when the
set of elementary events is 4: Given any number k ∈ {0, 1, 2, . . . 12}, one can change
the value of f1(x3) in Table 10 to obtain decisions that are (p,A)-inaccessible for k
number of non-trivial subalgebras A. Table 11 below shows these values of f1(x3):

k 0 1 2 3 4 5 6 7 8 9 10 11 12
f(x3) 39 37 36 12 10 8 6 5 4 2 1.6 0.8 0.3

Table 11 Values of f(x3) to obtain (p,A)-inaccessible decisions for k
number of subalgebras A in the decision context described in Table 10

These observations motivate the following
Definition 3. Let

〈
(Xn,S, p∗), f1, f2

〉
be a decision context and let p be a prior. We

call the number of Boolean subalgebras A for which the decision 〈f1〉p∗ > 〈f2〉p∗ is
(p,A)-inaccessible the degree of p-inaccessibility of the decision.

The degree of inaccessibility of a decision is a measure of how suitable a prior is in
connection with a decision situation in the case when no complete information about
the objective probability is available. If the degree of p-inaccessibility is maximal (in
this case the degree is equal to the Bell number minus 2), then this is the situation of p-
inaccessibility. If the degree is zero, then the prior suits the decision situation well: one
can obtain the objectively good decision on the basis of partial information about the
objective probability – no matter what the partial information is. In the intermediate
cases, the prior is the more suitable the lower the degree of p-inaccessibility.

Having the notion of degree of p-inaccessibility, one can ask several questions about
it:

� Given a decision context, what are the properties of the set of probability measures
p having a fixed degree of p-inaccessibility?

� Given a decision context and a fixed number k, does there exist a prior for which
the decision is p-accessible to degree k?

� Are there some compact sufficient conditions that entail p-inaccessibility to degree
k?

We do not have answers to the above questions. But on the basis of the examples of
(p,A)- and p-inaccessibility presented in this paper we make a general conjecture:
Conjecture 1. In any finite probability space having n ≥ 3 number of elementary
events there exist decisions and for any k priors pk such that the decisions are pk-
inaccessible to degree k, where 0 ≤ k ≤ Bell(n)− 2.

The truth of this conjecture entails that the following weaker conjecture is true,
yet we formulate it explicitly:
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Conjecture 2. For any decision context (with a finite probability space) there exist
priors p such that the decision is p-inaccessible.
Remark 3. The notions of (p,A)- and p-inaccessibility are meaningful also in prob-
ability spaces with an infinite number of elementary events. The examples presented
in section 4. can be ”embedded” into an infinite probability space in a natural way to
see that (p,A)-inaccessible decisions exist in infinite probability spaces as well. But p-
inaccessible decisions do not exist in infinite probability spaces in general: if the σ-field
S is such that there exists a filtration Ai (i ∈ IN) in S that generates S (Billingsley
(1995)[p. 458]), then martingale convergence theorems (Billingsley (1995) Theorems
35.6 and 35.7) entail that the conditional probabilities p∗p,Ai

tend to p∗ as i→∞; thus,
for all large enough i, the expectation values 〈fj〉p∗p,Ai

and 〈fj〉p∗ (j = 1, 2) will be close

enough to yield the objectively correct order of the expectation values of the utility
functions fj (j = 1, 2). In such situations the concept of the degree of p-inaccessibility
should be modified appropriately in order for it to express the degree of suitability of
a prior for making the right decision – we leave this problem for further study.

6 Closing Comments

The possibility of decision situations with p- and (p,A)-inaccessible decisions is not to
be interpreted as an argument against decision making based on utility maximization.
Rather, they should be viewed as caution about how to treat epistemic uncertainty
about objective probabilities in such decision contexts.

There are in principle two sorts of epistemic uncertainties about the objective
probability: One can know the probabilities of all events with some imprecision (call
this ”Type I uncertainty”); or one can know with precision the probabilities of some
events but not of all (call this ”Type II uncertainty”).

Reducing the Type I uncertainty by learning more about the probability of every
event is clearly a very safe strategy to produce good decisions based on utility maxi-
mization: as one gets closer and closer to the objective probability p∗, the expectation
values of utility functions calculated using the more and more objectively correct
probability tend to the expectation values calculated using p∗. At some point the cal-
culated expectation values of the utilities can be so close to the one calculated using
the objective one that the correct order of the expectation values is obtained.

It is the Type II, epistemic uncertainty that one can try to mitigate by infer-
ring the unknown objective probabilities from the known ones via conditioning. The
phenomenon of p- and (p,A)-inaccessible decisions shows that dealing with Type II
uncertainty by inferring unknown probabilities via conditionalization is very risky: it
can result in probabilities that lead to objectively wrong decisions. This risk does not
seem to be eliminable: in order to avoid choosing a prior for which a decision is p-
inaccessible one would need a condition that tests p-inaccessibility of a decision, and
such a condition needs to involve the precise values of the objective probability – which
is precisely what is not known.

Thus in decision theory based on utility maximization in the context of finite
probability spaces it seems better to know something about everything than knowing
everything about something and inferring what one does not know via conditioning.
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The reason for this (which is the cause of p-inaccessibility) is that the inference via
conditioning is a content-increasing inference, not a deductive one (the logic of this
kind of inference is not even finitely axiomatizable Brown et al (2019)). The material,
objective correctness of the inductively inferred probabilities is contingent on the cho-
sen prior. The existence of decision contexts with p- and (p,A)-inaccessible decisions
thus displays another aspect of the crucial role of the priors in Bayesian taming of
epistemic uncertainties.
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M. Rédei acknowledges support from the Hungarian National Research, Development
and Innovation Office, contract number: K-134275.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content
of this article.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Data availability

Not applicable

Materials availability

Not applicable

Code availability

Not applicable

Author contribution

Not applicable

15



References

Billingsley P (1995) Probability and Measure, 2nd edn. John Wiley & Sons, New York,
Chichester, Brisbane, Toronto, Singapore

Bradley R (2017) Decision Theory with a Human Face. Cambridge University Press,
Cambridge

Briggs R (2023) Normative Theories of Rational Choice: Expected Utility. In: Zalta
EN, Nodelman U (eds) The Stanford Encyclopedia of Philosophy, Winter 2023 edn.
Metaphysics Research Lab, Stanford University
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Gyenis Z, Rédei M (2017) General properties of Bayesian learning as statistical
inference determined by conditional expectations. The Review of Symbolic Logic
10:719–755. https://doi.org/10.1017/S1755020316000502

Jeffrey R (1983) The Logic of Decision, 2nd edn. The University of Chicago Press,
Chicago

Jeffrey R (1992) Probability and the Art of Judgment. Cambridge University Press,
Cambridge
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