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1 Introduction

Decision theory seeks to define rational choice behavior. Given a collection of acts available to some
decision maker, decision theorists commonly identify the “rational” act as the act which maximizes
expected utility (where the expectation is taken with respect to some probability measure). As a
simple case, suppose P and Q are gambles—that is, probability distributions over some common
outcome space X . Suppose u : X → R is a utility function, a function that assigns a real
number (representing its “value” to the decision maker) to each possible outcome. A higher utility
corresponds to a more desirable outcome. Then the (standard) decision theorist claims that a
rational agent prefers P to Q just in case

EP [u] ≥ EQ[u].

In any standard reference text on expected utility theory one will find representation theorems
(for example, [27], [13], [35]). These theorems link expected utility maximization to a qualitative
description of an agent’s choice behavior. Typically an agent’s choice behavior is captured by a
preference relation ⪯ on the set of decisions they face (in our above example this is the set of
gambles, but preferences might instead be defined on acts which have no intrinsic probabilities).
We say that P ⪯ Q if and only if the agent deems Q to be at least as desirable as P . We then
prove something of the form: the preference relation satisfies a given set of axioms if and only
if there exists a utility function (and, in some cases, a probability measure) such that the agent
prefers gambles with greater expected utility ([32], [42]). The most prominent instances of such
representation theorems are due to von Neumann and Morgenstern ([38]), Anscombe and Aumann
([1]), and Savage ([35]).1

1One should also mention the work of Ramsey ([34]) as a predecessor to these theorems.
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This paper has two primary aims. First, we are interested in These theorems are generally taken
to be foundational to decision theory in some way. The kind of foundational role the theorems
play depends on how one interprets decision theory as a whole. In §2 we will consider two
dimensions: the normative/descriptive dimension and the mentalist/behaviorist dimension. These
two dimensions are orthogonal and one could in principle adopt any pair of views. Representation
theorems play different roles under each pair of views, as we will see.

2 The Role of Representation Theorems in Decision Theory

In this section we will distinguish a number of ways that one can approach the enterprise of decision
theory and the resulting roles of representation theorems.2 These distinctions are widespread in
the decision theory literature ([32], [10], [24], [42], [26]). I will not argue for or against the
philosophical fruitfulness of the distinctions; the goal of this section is to provide a common
language to understand the motivation for representation theorems and by extension the current
project.

Let’s begin by stating the von Neumann-Morgenstern representation theorem. This will allow
us to be more concrete in the ensuing discussion. Suppose we have a set X of outcomes and a set
P(X) of probability distributions on X . The elements of P(X) are “gambles” or “lotteries” on
X . Suppose also there is a relation ⪯ on P(X); this is the agent’s “preference relation”, and we
write P ⪯ Q to mean that the agent thinks Q is at least as good as P . We can write P ≺ Q to
mean that the agent thinks Q is strictly better than P , and P ∼ Q to mean that the agent thinks P
and Q are equally desirable.

von Neumann and Morgenstern assume the following axioms are true of ⪯:

(R1) ⪯ is reflexive, transitive and totally connected.

(R2) If P ⪯ Q and α ∈ [0, 1] then αP + (1− α)R ⪯ αQ+ (1− α)R for all R ∈P .

(R3) If P ⪯ Q ⪯ R then there exist α, β ∈ (0, 1) such that αP +(1−α)R ⪯ Q ⪯ βP +(1−β)R.

In other words, (R1) states that P ⪯ P for all gambles P , if P ⪯ Q and Q ⪯ R then P ⪯ R,
and for any two gambles P,Q either P ⪯ Q or Q ⪯ R. (R2) supposes that P ⪯ Q and that we flip
a coin with bias α toward heads. One gamble, αP + (1 − α)R, gives us gamble P if the coin is
heads and R if it is tails, whereas αQ+(1−α)R gives us gamble Q on heads and R on tails. Since
the agent thinks Q is at least as good as P and the odds of getting R are the same in both compound
gambles, the agent thinks the compound gamble involving Q is at least as good as that involving P .

2See also Bermúdez ([3], especially Chapter 2) for a discussion of the mentalist/behaviorist distinction and its
effects on the role of representation theorems.
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This is a sort of independence axiom; the only relevant difference between the two gambles is P
and Q, and R has no effect on their desirability. Finally, (R3) says that if P ⪯ Q ⪯ R then we can
make compound gambles of P and R that either (i) make P so likely that the gamble is no better
than Q, or (ii) make R so likely that the gamble is no worse than R. This is an “Archimedean”
axiom; it says that no gambles are infinitely better or worse than any others.

Assuming these axioms von Neumann and Morgenstern prove that an agent’s preferences satisfy
axioms (R1)–(R3) if and only if there is a function u : X → R such that

P ⪯ Q ⇐⇒ EP [u] ≤ EQ[u].

That is, if an agent’s preferences satisfy those axioms then there must be some utility function that
the agent maximizes in expectation.

To understand why this theorem (and similar theorems which came after it) are so important
in decision theory, we need to determine how we understand decision theory itself. In philosophy
it is common to treat expected utility theory as a normative theory, i.e., one that describes how
rational agents should behave. We think of expected utility maximization as constitutive of rational
behavior—one ought to maximize expected utility. If we are interested in a normative theory
then we must ask: where does this normative force come from? More specifically one might
wonder why rationality requires the maximization of expected utility and not some other quantity,
or some other operation besides maximization. Some philosophers have argued that expected
utility maximization is simply “rational bedrock” ([7]) which requires no further explanation. For
example Lewis says that decision theory “is not esoteric science, however unfamiliar it may seem
to an outsider. Rather, it is a systematic exposition of the consequences of certain well-chosen
platitudes about belief, desire, preference, and choice” ([28, 338]). Others have argued that one
should maximize something other than expected utility; for example, Buchak ([9]) has developed
an alternative to expected utility that includes an agent’s attitude toward risk. An agent who is
risk-averse, for example, might put more weight on unlikely but exceptionally bad outcomes than
would an agent who simply maximizes expected utility, resulting in different recommendations for
the “rational” act.3

One might instead try to justify, rather than merely stipulate, the claim that rational acts are
exactly the acts which maximize expected utility. One prominent justification strategy is to appeal
to a representation theorem. On this strategy one takes the axioms of the representation theorem
to ground the normative force of expected utility theory by arguing that the axioms themselves
are intuitively rational ([35, 97], [10], [32, 414]). For example, von Neumann and Morgenstern’s
axioms stipulate requirements such as transitivity (R1): if an agent prefers P to Q, and prefers Q to

3See [8] for a comprehensive overview of other alternatives to expected utility theory.
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R, then they prefer P to R. This axiom strikes many as intuitively rational. Since any agent whose
preferences satisfy such axioms is thereby representable as maximizing expected utility, it follows
that, to the extent that one finds the axioms to be intuitively rational, maximizing expected utility
is itself rational.

By contrast we may be interested in using decision theory in a descriptive capacity. Decision
theory plays a descriptive role when we treat it as a scientific theory that may or may not be true
of certain parts of the world (in this case, agents and their decisions). This is view of decision
theory is the norm in economics, psychology, cognitive science, and elsewhere. In economics
this approach is well-known in the form of the “expected utility hypothesis” (see [16] for a classic
discussion). This hypothesis states that agents maximize expected utility when faced with decisions
under uncertainty. As Savage and Friedman put it, expected utility theory

asserts that individuals behave as if they calculated and compared expected utility and
as if they knew the odds. . . the validity of this assertion does not depend on whether
individuals know the precise odds, much less on whether they say that they calculate
and compare expected utilities or think that they do, or whether psychologists can
uncover any evidence whether they do, but solely on whether it reveals sufficiently
accurate predictions about the class of decisions with which the hypothesis deals ([15,
282]).

In other words, it is an empirical hypothesis; we are interested in how well expected utility
maximization predicts the behavior of real agents. A large body of work in economics is devoted to
determining whether (i) agents do in fact maximize expected utility,4 and (ii) what sorts of utility
functions best describe real agents.5

The Savage and Friedman quote is explicitly descriptive—their interest is in whether the
expected utility representation “yields sufficiently accurate predictions” of an agent’s behavior. In
this case we are interested in testing the validity of the expected utility hypothesis. A representation
theorem allows us to test the hypothesis by checking whether an agent’s preferences satisfy the
axioms of the theorem. If the preferences do satisfy the axioms, then, since they are sufficient for
the representation, the agent does act as if they maximize expected utility; if the preferences do not
satisfy all the axioms, then, since they are necessary, the agent does not act as if they maximize
expected utility.

Note also that Friedman and Savage claim that the validity of the expected utility hypothesis
does not depend on the agent having explicit representations of probabilities or utilities, nor on them
calculating expected utility before acting. In other words these authors take a behaviorist stance

4See especially the field of behavioral economics, including the literature on prospect theory ([25]).
5See [2], [33].
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toward decision theory;6 the preference relation is considered as the primitive entity, and the agent
acts “as if” they maximize the corresponding utility function. The utility function need not be a
psychologically real entity, and the agent is not assumed to introspect on the utility of outcomes or
calculate the expected utility of gambles. Some philosophers take this stance too: Joyce writes that

No sensible person should ever propose expected utility maximization as a decision
procedure. nor should he suggest that rational agents must have the maximization of
utility as their goal. . . The expected utility hypothesis is a theory of “right-making
characteristics” rather than a guide to rational deliberation. It in no way requires an
agent consciously to assign probabilities to states of the world or utilities to outcomes,
or to actually calculate anything. The decision maker does not need to have a concept
of utility at all, and she certainly does not have to see herself as an expected utility
maximizer. The demand is merely that her desires and beliefs, however arrived at,
should be compatible with the expected utility hypothesis in the sense that it should be
possible for a third party who knows her preference ranking to represent it in the way
described ([24, 80]).

A representation theorem cashes out the precise sense in which an agent has preferences which a
third party could use to represent their behavior as rational.

This view stands in contrast to a mentalist conception of decision theory, on which probabil-
ities and utilities are psychologically real entities. These probabilities and utilities need not be
introspectible by the agent, however. If they are not introspectible then they must be discovered
indirectly, perhaps via a representation theorem or other measurement procedure.7 If they are
introspectible then expected utility theory prescribes that the agent actually calculate the expected
utility of their acts, and the fact that an agent prefers gamble P to Q can be explained by the
fact that P has greater expected utility (with respect to the agent’s personal utility and probability
functions). For example, Lewis takes as primitive the agent’s probabilities and utilities for his
discussion, and appears to think of them as mental entities when he says “it seems most unlikely
that any real person could store and process anything so rich in information as the C [probability]
and V [utility] functions envisaged. . . But it is plausible that someone who really did have these
functions to guide him would not be so very different from us in his conduct” ([29, 7]). So for Lewis
an agent’s probabilities and utilities are meant to guide the agent’s action, and so are presumably
introspectible. Moreover Lewis’ project, like many philosophers’, is normative rather than descrip-

6Note that I do not mean “behaviorist” to mean psychological behaviorism, but rather to mean anti-realism about
the derived utility or probability functions, as I explain below.

7Khan ([26]) calls this position “weak mentalism”, as distinguished from the “strong mentalist” position on which
probabilities and utilities are introspectible. Ramsey ([34]) may have been an early proponent of this sort of weak
mentalist view.
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tive. For a mentalist a representation theorem can play various roles. A representation theorem can
provide justification for the claim that one should maximize expected utility. Alternatively such
a theorem provides a simpler set of rules that an agent’s preferences must obey if they maximize
expected utility, so can serve as an additional check on an agent’s behavior.

A prominent contemporary strand of mentalist positions can be found in Bayesian cognitive
science and psychology (see e.g. [31], [30], [17], [12]). These projects are aimed at showing that
human behavior, especially cognitive processes such as planning, problem solving, vision, motor
control, etc., can be fruitfully modeled as some kind of (bounded) expected utility maximization.
In this case one assumes that there is some explicit representation of probability and utility that
the agent (or some cognitive subsystem of the agent) has access to in order to calculate the optimal
act. These projects are inherently descriptive, as their goal is to provide empirical models of actual
human cognition.

Thus the two dimensions we have discussed (normative/descriptive and behaviorist/mentalist)
are orthogonal and one could in principle hold any pair of views. Moreover representation theorems
have roles to play regardless of how one approaches decision theory. It is clear why representa-
tion theorems have formed part of the foundation of decision theory since von Neumann and
Morgenstern.

3 Computability in Decision Theory

In the previous section we saw that on all major interpretations of decision theory, representation
theorems provide some kind of foundation. That said, many have been critical of the assumptions
and scope of these theorems. Some have argued that certain axioms are unrealistically strong
and so the theorems do not apply to real agents. For example, the von Neumann-Morgenstern
theorem assumes that an agent’s preferences are connected, that is, that for any two gambles P,Q,
either P ⪯ Q or Q ≺ P . Some authors have argued that this is unrealistic, either because it
is too cognitively demanding for an agent to maintain preferences over all possible gambles, or
because some alternatives will simply be incommensurable. Alternative representation theorems
that discard various assumptions have been proved ([36]).

One intuition underlying these criticisms is that being fully rational—having rational preferences
or maximizing expected utility—is somehow “hard”, too hard for real finite agents like ourselves.
This point has been raise by philosophers ([19], [41], [11]) and scientists alike ([25]), and is
perhaps best represented in the traditions of bounded rationality ([37]) and modern Bayesian
cognitive science and psychology. These programs take standard decision theory as an ideal to
be approximated. The precise details of this approximation vary. One might designate some
threshold expected utility which is “good enough” (an approach called “satisficing”, due to Simon).
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Instead one might instead fix some set of “computational resources” that an agent must spend when
computing expected utility. In this latter case one determines how well an agent can perform given
the prescribed constraints. Again these resources can vary depending on the project. It is common
to assume a computational model such as a Turing machine; one then stipulates that the Turing
machine can only run in a bounded number of steps (a “time” constraint) or that it can only use
a certain number of cells on its work tape (a “space” constraint), or that its tape is of fixed finite
length (a “finite-state automoton”).

Proceeding in this manner brings decision theory into contact with computational complexity
theory, the mathematical study of problems which are solvable via Turing machine in a limited
amount of time or with a limited amount of space. This is distinguished from classical computability
theory, which studies the problems that are solvable given arbitrary (but still finite) time and space.
Complexity theory is valuable in the design and analysis of actual algorithms we use on a day to day
basis—including, in this case, our own cognitive processes. We require efficient algorithms that
can be performed on finite hardware such as processors or neurons and that return results in a timely
manner. Computability theory’s main philosophical interest lies in its ability to show that certain
problems are unsolvable even if we had arbitrarily powerful computational machines. Complexity
theory wins its usefulness in real-world application at the expense of immense difficulty—many
foundational questions remain open to this day. Computability theory, by contrast, is far better
understood in part because it idealizes away from time and space considerations.

Despite the fact that computational complexity plays an increasingly important role in empirical
applications of decision theory, this role has been little discussed by philosophers (though see [22],
[23]). This may be due to a number of factors. First, computational complexity in general does
not receive much attention from philosophers. Second, philosophical interest in decision theory
is quite general: philosophers tend to be interested in providing ideal norms that rational agents
should aspire to, regardless of their contingent limitations ([11]).

Given these considerations I argue that computability theory, rather than computational com-
plexity, is a principled middle ground that is capable of describing more realistic agents—thus
responding to concerns that expected utility maximization is “too hard” for real agents—while
also being sufficiently general that one can draw philosophical morals from the results.8 To my
knowledge there has not appeared any systematic discussion of computability in decision theory in
the philosophical literature. My goal is to initiate this study. I will begin with the foundations: a
representation theorem. The remainder of this section explains why a computable representation
theorem is of interest for a decision theory of realistic agents.

First, most real systems we would be willing to call “agents” in the decision-theoretic sense—

8I also believe that computational complexity theory contains overlooked philosophical morals, but that argument
must wait for another paper.
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humans, nonhuman animals, possibly some algorithms—are most likely computable agents. If the
above programs in Bayesian cognitive science are correct then we can make the stronger claim
that humans (and hence nonhuman animals) are bounded by efficient computability, not mere
computability simpliciter. The same is obviously true of any reasoning or inference algorithms
in current use, e.g. machine learning models. So assuming that our intended agent’s reasoning
capacities are bounded by Turing computability is a realistic and quite permissive assumption.

What would it mean for an agent to be computable? Since we are interested in decision theory,
this would mean that the agent’s probability and utility functions must be computable functions.
We defer a precise definition for later in the paper, but the intuitive idea is that a probability
function is computable if there is an algorithm which takes a coded description of some event and
returns (a code for) the probability of that event; likewise a utility function is computable if there
is an algorithm that takes codes for gambles or events and returns a code for the utility of that
gamble/event.

The classical von Neumann-Morgenstern theorem answers the question “When can an agent be
represented as maximizing expected utility?” If we are interested in computable agents we might
similarly ask “When can an agent be represented as maximizing a computable utility function, in
expectation?” In other words, when can we safely represent an agent as computable? What are
the most general conditions under which this is possible? This question will be answered by a
computable version of the von Neumann-Morgenstern representation theorem.

But we can give a distinct motivation, which is surprisingly resolved by the same theorem.
Suppose you are a scientist who wishes to use expected utility theory in a descriptive capacity. That
is, you wish to use the calculation of expected utility to predict agents’ future choice behavior.9 A
representation theorem such as von Neumann and Morgenstern’s tells us that this can be done if an
agent’s preferences satisfy the axioms. In that case, the theorem says, there is a utility function that
you can use to calculate what an agent values. If one assumes that the outcome space X and the
space of probabilities P(X) is finite, then one can also write an explicit definition of a suitable
utility function.

While in philosophy decision theorists often work in finite spaces in order to make their
arguments more transparent, it is common practice in economics to define utility functions on
infinite spaces—for example, one often defines utilities on intervals of the real line, or real-valued
random variables representing uncertain commodities. Moreover when X is infinite it is often
desirable to consider the infinite set P(X) of all gambles on X . Examples of gambles found
in textbooks often employ so-called “simple” probability measures with finite support that assign

9Friedman and Savage again: “Given a utility function obtained [via the vNM representation theorem], it is possible,
if the [expected utility] hypothesis is correct, to compute the utility attached to (that is, the expected utility of) any set
or sets of possible incomes and associated probabilities and thereby to predict which of a number of such sets will be
chosen” ([15, 292]).
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rational numbers to each point in their support. One might think we could therefore ignore other
probability measures and work with the simpler set of simple measures. This would, however, rule
out very natural probability distributions for our gambles. The expected utility of lotteries with
normal distributions, which are commonly used in practice, would not be defined in that case. So
there is good reason to work with the entire set of probability measures on X .

But in this general case the classical von Neumann-Morgenstern theorem tells us only that there
is a suitable utility function, given an agent’s preferences over given probability distributions. It
does not, in general, explicitly tell us how to find this function. Put slightly differently, we are
not given an algorithm which, given the agent’s preferences, computes a utility function for that
agent. This is a problem for our scientist’s project. To predict an agent’s behavior (according to
the theory) we must calculate expected utility, and to calculate expected utility we must actually
possess a utility function. In other words, the von Neumann-Morgenstern utility function must
be computable from the agent’s preference relation.10 Conversely, if the utility function were not
computable from the preference relation, then there may be instances where we cannot actually
determine which utility function represents the agent. This inability would render the descriptive
project impossible in some cases; we would not be in a position to determine whether the agent
acts according to the principle of expected utility maximization, and would not be able to predict
their future behavior on this basis. We are therefore interested in the question: given access to an
agent’s preference behavior, can we compute a utility function that represents that behavior?

Surprisingly this second motivation will be answered by one and the same theorem. I provide
highly general sufficient conditions for the computability of a von Neumann-Morgenstern utility
function from a preference relation. To do so I use tools from the field of computable analysis.
In §5 I introduce the notion of a computable continuous preference relation in Definition 4. §6
builds up to the statement of the main theorem, Theorem 2, which proves that a computable utility
function exists if the preference relation ⪯ is computable continuous. The proof of this theorem
shows more generally that the agent’s preference relation, if treated as an oracle, is sufficient to
compute a von Neumann-Morgenstern utility. Most definitions and essential ideas are found in the
main body of the text, but all proofs have been moved to an appendix.

10One might argue that mere computability is not sufficient for our economist’s descriptive program. After all, a
working economist needs not only an algorithm that produces a utility function, but also an algorithm that does so
efficiently. So there is a further need to consider the computational complexity of any algorithm that produces a utility
function. This is certainly true, and promises interesting work. We can view the present project as providing general
conditions under which it is possible to ask for efficient algorithms for producing a utility function. Finding those
algorithms must be left for future work.
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4 Computability and Order on Countable Spaces

We begin with a few mathematical preliminaries. We say that a binary relation ⪯ is a preorder if
it is reflexive and transitive. We say that ⪯ is a total preorder if it is a preorder and is connected.
We call a set X together with a binary relation ⪯ an ordered set. From ⪯ we define

P ≺ Q ⇐⇒ P ⪯ Q ∧Q ̸⪯ P,

P ∼ Q ⇐⇒ P ⪯ Q ∧Q ⪯ P.

In what follows we will represent an agent’s preferences as a total preorder. Intuitively this means
that an agent has a preference between any two options—there are no gambles P,Q that are
incommensurable—but ties are allowed.

An ordered set (X,⪯) is dense if for any x, y ∈ X such that x ≺ y, there is z ∈ X such that
x ≺ z ≺ y. Further, (X,⪯) is unbounded if for any x ∈ X there are y, z ∈ X such that z ≺ x ≺ y.
For an ordered set (X,≺) we write (←, x) and (x,→) to denote the sets {y ∈ X | y ≺ x}
and {y ∈ X | x ≺ y}, respectively. Given two sets (X,≺X), (Y,≺Y ) equipped with binary
relations, a function h : X → Y is an order isomorphism if h is a bijection and for all x1, x2 ∈ X ,
x1 ≺X x2 ⇐⇒ h(x1) ≺Y h(x2).

For computability we use standard notation (see for example Soare). A function f : ω → ω

is computable if there is an index e ∈ ω such that φe(n) = m ⇐⇒ f(n) = m for all n ∈ ω.
Given a countable set X together with an enumeration of its elements α : ω → X and a relation
R ⊆ X × X , we say that R is a computable relation if {(i, j) ∈ ω × ω | (α(i), α(j)) ∈ R} is
computable. When working with computable relations we may equivocate between the element
x ∈ X and its index i ∈ ω such that α(i) = x, and frequently write xi. A pair (X,≺) where X is
a countable set and ≺ is a computable binary relation is called a computably ordered set.

5 Computable Analysis

In §3 I argued that it is commonplace in fields such as economics to define utility functions over
infinite outcome spaces.11 Thus I will choose to work in a highly general setting to accurately model
that practice. Specifically the outcome set X is usually uncountable in practice (e.g. whenever
a utility is defined on the real numbers). The traditional definition of Turing computability is
only well-defined on countable sets, so it no longer applies. Thus we must introduce ideas from
computable analysis to extend computability notions to these larger spaces. The most popular
foundation for computable analysis is Weihrauch’s Type-II Theory of Effectivity (TTE), as presented

11Indeed, standard textbooks such as [13], [27] spend significant time showing how this is done.
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in [40], [6].12 The most common setting for work in computable analysis is a computable Polish
space.

Definition 1 (Computable Polish space). A computable Polish space is a triple (X,D , d) such that

1. X is a separable complete metric space with metric d;

2. D is a countable dense subset of X with an enumeration {sn}n∈ω;

3. for all sn, sm ∈ D we have that d(sn, sm) is a computable real, uniformly in n,m.

Some natural examples of computable Polish spaces include R, 2ω, ωω, and Q. Importantly, if
X is a computable Polish space then one can show that the space P(X) of (Borel) probability
measures on X is a computable Polish space ([21]). In this case the countable dense set DP(X) is
the set of all simple measures on D , i.e., all probability measures µ of the form

µ =
∑
n∈I

qnδsn

where I ⊆ ω is finite and δsn is the probability measure that assigns measure 1 to the set {sn}. For
the metric of P(X) we use the Prokhorov metric given by

dP (µ, ν) = inf{ϵ > 0 | ν(B) ≤ µ(Bϵ) + ϵ ∧ µ(B) ≤ ν(Bϵ) + ϵ for all Borel sets B}

for all µ, ν ∈ P(X) ([4], [5]). Thus (P(X),DP(X), dP ) is a computable Polish space whenever
X is.

Since the members of DP(X) are finite mixtures we may represent them vian-tuples (q0, s0, q1, s2, . . . qn, sn)
of rational weights qn ∈ Q and points sn from D . Thus if ⟨·, ·⟩ : ω × ω → ω is a computable
pairing function we may take the enumeration {Dn}n∈ω of DP(X) to be given by

Di =
∑
in∈I

qinδsin ⇐⇒ ⟨qi1 , si1 , . . . qin , sin⟩ = i

with I ⊆ ω finite and ⟨·, ·, . . . , ·⟩ given by ⟨⟨⟨·, ·⟩, ·⟩, . . . , ·⟩. In this way we may take such n-tuples
as the indices on which a Turing machine operates.

Given a computable Polish space X , there is a collection of particularly nicely behaved sets
known as c.e. open sets.

12Other approaches to the foundations of computable analysis exist, some of which are equivalent to TTE and some
of which are not. These include domain theory (cite) and a “point-free” approach (). See also (Rute) for a nice
comparison of the various approaches.
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Definition 2 (C.e. open set). Let X be a computable Polish space. A set A ⊆ X is c.e. open if
there is a c.e. set I ⊆ ω ×Q such that

A =
⋃

(i,q)∈I

B(si, q)

where si ∈ D and B(si, q) is the basic open ball centered at si with radius q.

Clearly all c.e. open sets are open in X .13 We think of c.e. open sets as the “effectively
specifiable” open sets. Using them we can define a notion of computability of functions on
computable Polish spaces. It is a fundamental theorem of computable analysis that all computable
functions are continuous ([40]). If f : X → Y is a function between topological spaces X, Y , then
we say that f is continuous if for all open V ⊆ Y , f−1(V ) ⊆ X is open in X . In words, inverse
images of open sets are open. We can give an analogous definition of computable functions.

Definition 3. Let X, Y be computable Polish spaces. We say that a function f : X → Y is
computable continuous if inverse images of c.e. opens are uniformly c.e. open.

We motivated the idea of a computable function with the picture of an algorithm that takes codes
for its arguments and outputs codes for its values. Standard references on computable analysis (e.g.
[40], [6]) make this definition precise and prove that it is equivalent to Definition 3.

Computable continuous functions have many nice properties which we will use in subsequent
proofs. One particularly important property is that a real-valued function f : X → R with X

a computable Polish space is computable continuous if and only if for all q ∈ Q we have that
f−1(−∞, q) and f−1(q,∞) are c.e. open sets uniformly in q.14

We now introduce our notion of a computable continuous relation on computable Polish spaces.
We say that a relation⪯ on a topological space X is continuous if the sets (←, x), (x,→) are open
in X for all x ∈ X .

Definition 4. Given a computable Polish space X and a binary relation ⪯ on X , we say that ⪯ is
computable continuous if

1. ⪯ is continuous, and

2. for all d ∈ D , (←, d) and (d,→) are c.e. open uniformly in x.

Recall that D is the set of “simple” points of X . Intuitively, then, a relation is computable
continuous if whenever given a simple point d ∈ D , there is an algorithm that enumerates everything

13For those familiar with descriptive set theory, c.e. open sets are the analogues of (lightface) Σ0
1 subsets of ωω .

14This is because of the simple fact that the sets (−∞, q), (q,∞) generate the c.e. open subsets of R.
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above d and an algorithm that enumerates everything below d. For our intended use case this means
that an agent is capable of listing, in a procedural manner, everything they strictly prefer to some
simple gamble and everything they strictly prefer that simple gamble to.

When ⪯,≺,∼ are restricted to the countable dense set D we will write ⪯D ,≺D ,∼D , respec-
tively. If ⪯ is computable continuous then it follows quickly that for all d ∈ D the sets (←, d) and
(d,→) are c.e., and [d] = {x ∈ X | d ∼ x} is co-c.e.

6 Computable Expected Utility

We now turn to our main topic, the von Neumann-Morgenstern representation theorem. As we saw
in §2, the vNM theorem states that under certain conditions the existence of a total preorder ⪯ on
a set of probability measures P(X) on some space X is equivalent to the existence of a utility
function u : X → R such that for all P,Q ∈P(X),

P ⪯ Q ⇐⇒ EP [u] ≤ EQ[u]. (1)

In words, an agent prefers one gamble to another just in case the expected utility of the preferred
gamble is greater. To see how this theorem works we’ll first introduce an abstract structure called
a “mixture space”, originally due to Herstein and Milnor [20].

Definition 5. A mixture space is a set P such that for all α ∈ [0, 1] and P,Q ∈ P , there is an
element αP + (1− α)Q ∈P , which furthermore satisfies

(M1) 1P + 0Q = P ;

(M2) αP + (1− α)Q = (1− α)Q+ αP ;

(M3) α[βP + (1− α)Q] + (1− α)Q = αβP + (1− α)βQ.

If X is a computable Polish space then P(X), the space of Borel probability measures on X , is
a mixture space, as the reader can verify. Mixture spaces allow one to prove a very general precursor
of the vNM theorem, which we call the “Mixture Space Theorem”. This result is a halfway step to
the full vNM theorem; one can see that the function v is analogous to the expectation of a utility
function u.

Proposition 2 (Mixture Space Theorem). Suppose P is a mixture space and⪯ is a binary relation
on P . Then

(R1) ⪯ is a total preorder;
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(R2) if P ⪯ Q and α ∈ [0, 1] then αP + (1− α)R ⪯ αQ+ (1− α)R for all R ∈P; and

(R3) if P ⪯ Q ⪯ R then there exist α, β ∈ (0, 1) such that αP +(1−α)R ⪯ Q ⪯ βP +(1−β)R,

if and only if there exists a function v : P → R such that

P ⪯ Q ⇐⇒ v(P ) ≤ v(Q), and (2)

v(αP + (1− α)Q) = αv(P ) + (1− α)v(Q). (3)

Moreover, if v represents ⪯ in the sense of (4) and (5), v′ is another representation if and only if
v′ = αv + β for constants α > 0 and β.

Proof. See Appendix.

Our first theorem shows that one can derive a computable analogue to Proposition 2. In
particular, if we assume that the preference relation is computable continuous then we can show
that the resulting function v is itself computable continuous.

Theorem 1 (Computable Mixture Space Theorem). Let X be a computable Polish space, and let
P(X) be the space of Borel probability measures on X . Assume

(R1*) ⪯ is a computable continuous total preorder on P(X),

and assume (R2), (R3) hold. Then there exists a computable continuous function v : P → R that
satisfies (4) and (5).

Proof. See Appendix.

An important consequence of the classical vNM representation theorem is that the utility
function is not unique, but is unique up to positive linear transformation. That is, if u is a utility
function that represents an agent’s preferences, then so is u′ = au + b for real numbers a > 0, b.
This uniqueness already appears as a consequence of the mixture space theorem. We can prove a
computable analogue, namely that our computable continuous function v is unique up to computable
positive linear transformation.

Corollary 1. The function u : X → R constructed in Theorem 1 is unique up to computable
positive linear transformation; that is, u∗ : X → R satisfies (4) and (5) if and only if there exist
computable reals a > 0, b such that u∗ = au+ b.

Proof. See Appendix.
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From Theorem 1 one can derive the sufficient direction of a computable vNM representation
theorem. That is, we can show that if the agent’s preferences are computable continuous, then they
can be represented by a computable continuous utility function that they maximize in expectation.

Theorem 2 (Computable Expected Utility). Under the assumptions of Theorem 1, let v : P(X)→
R be a computable continuous function satisfying (4) and (5), and let u : X → R be defined
u(x) = v(δx) for all x ∈ X . Then u is a computable continuous function satisfying (1).

Proof. See Appendix.

Thus there exists a computable continuous von Neumann-Morgenstern utility function on a
computable Polish space X if the preference relation ⪯ is itself computable continuous. More
generally, the proof shows that given an agent’s preference relation we can compute a vNM utility
that represents that relation. In this sense we have proved a computable version of (the sufficient
direction of) the vNM representation theorem.

Of course, the classical theorem is in fact a biconditional, and the necessary direction is valuable
because it shows us that weaker axioms do not suffice. Here we can report only a partial converse
to Theorem 2, which relies on the following notion.

Definition 6. A set K ⊆ X is computably compact if there is a partial computable function which,
given an index for a computable sequence of c.e. open sets U0, U1, . . . in X which covers K, returns
a natural number n ≥ 0 such that U0, . . . , Un covers K.

Theorem 3. Let u : X → R be a computable continuous function on a computably compact set
X . Then the relation ⪯ defined

P ⪯ Q ⇐⇒ EP [u] ≤ EQ[u]

satisfies (R1∗), (R2), and (R3).

Proof. See Appendix.

It is an open question whether this result can be improved by dropping the assumption of
computable compactness.

7 Conclusion

We have seen that representations theorems are fundamentally important on any standard interpre-
tation of decision theory. Further, standard decision theory describes a highly idealized agent, one
who is not limited in time or space to perform their computations. Work in cognitive science and
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psychology, however, investigates the kind of reasoning that a highly bounded decision theoretic
agent is capable of. I have argued that there is a philosophically rich study lying at the midpoint of
these two enterprises: computable decision theory.

I proposed to initiate this study at its foundations via a computable version of the vNM repre-
sentation theorem. This theorem was motivated by the question: can we compute a vNM utility
function that represents an agent’s preference relation? Theorem 2 answers this question in the affir-
mative: the agent’s preference relation is sufficient to compute a utility, and if the agent’s preference
relation is itself computable continuous then the resulting utility is computable continuous. We
also proved a partial converse (Theorem 3), but it is an open question whether this can be improved
to a full converse of Theorem 2. That said, we have successfully shown that if we have access to an
agent’s preferences, and if that choice behavior satisfies the vNM axioms, then not only does there
exist a vNM utility representing that behavior, but also we can compute that utility function. We
are therefore able to use the vNM theorem in a descriptive capacity under very general conditions:
for example, we are able to compute a utility function for an agent whose preferences are defined
over all possible probability measures on the real numbers.

This project forms a natural starting point for a larger field of study. As was mentioned earlier,
there are other representation theorems in decision theory, some of which derive probability in
addition to utility. Their scope of application is also wider—the vNM theorem applies only to
choice behavior on gambles with known chance distributions. The theorem does not cover choice
behavior over options with unknown chances, such as presidential races or stock market predictions.
More sophisticated representation theorems such as Savage’s can accommodate these cases as well.
Thus we might ask whether the Savage representation theorem is similarly computable, in the sense
that both the utility and probability can be effectively computed from the agent’s choice behavior.
Future work may explore computable versions of these other representation theorems as well.

A Appendix

Our first step is to prove Theorem 1. To do so we present a sketch of the classical proof of
Proposition 2. The proof of our own Theorem 1 follows a parallel structure, so it is informative to
work through this proof. We require a few preliminary results. We first show that D is ⪯-order
dense in the sense that for any P ≺ Q there is D ∈ D such that P ≺ D ≺ Q.

Lemma 1. Let X be a computable Polish space that is moreover a mixture space, and let ⪯ be a
computable continuous total preorder on X . Then D is ⪯-order dense.

Proof. If for all P,Q ∈ X , P ∼ Q, then the lemma is trivial. So let P,Q ∈ X such that P ≺ Q.
Since⪯ is continuous onX , we have (P,→) and (←, Q) are open inX . Moreover (P,→)∩(←, Q)
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is nonempty, since for all α ∈ [0, 1], (αP + (1−α)Q) ∈ X , and P ≺ αP + (1−α)Q ≺ Q. Since
D is dense, there is D ∈ D such that D ∈ (P,→) ∩ (←, Q).

Proposition 1. Suppose P is a mixture space and ⪯ is a binary relation on P . Suppose

(R1) ⪯ is a total preorder;

(R2) if P ⪯ Q and α ∈ [0, 1] then αP + (1− α)R ⪯ αQ+ (1− α)R for all R ∈P; and

(R3) if P ⪯ Q ⪯ R then there exist α, β ∈ (0, 1) such that αP +(1−α)R ⪯ Q ⪯ βP +(1−β)R.

Then if P ⪯ Q, Q ⪯ R, and P ≺ R then Q ∼ αP + (1− α)R for exactly one α ∈ [0, 1];

Proof. See ([13], Theorem 8.3).

Proposition 2 (Mixture Space Theorem). Suppose P is a mixture space and⪯ is a binary relation
on P . Then

(R1) ⪯ is a total preorder;

(R2) if P ⪯ Q and α ∈ [0, 1] then αP + (1− α)R ⪯ αQ+ (1− α)R for all R ∈P; and

(R3) if P ⪯ Q ⪯ R then there exist α, β ∈ (0, 1) such that αP +(1−α)R ⪯ Q ⪯ βP +(1−β)R,

if and only if there exists a function v : P → R such that

P ⪯ Q ⇐⇒ v(P ) ≤ v(Q), and (4)

v(αP + (1− α)Q) = αv(P ) + (1− α)v(Q). (5)

Moreover, if v represents ⪯ in the sense of (4) and (5), v′ is another representation if and only if
v′ = αv + β for constants α > 0 and β.

Proof. We sketch the proof due to ([13], Theorem 8.4). Fix R, S ∈ P(X). Let f(R) = 0,
f(S) = 1. Then by Proposition 1, for all P ∈ (R, S), there is a unique f(P ) ∈ [0, 1] such that

P ∼ [1− f(P )]R + f(P )S.

[13] Theorem 8.4, Part I then shows that for all P,Q ∈ (R, S) and α ∈ [0, 1],

P ≺ Q ⇐⇒ f(P ) < f(Q)

and
f(αP + (a− α)Q) = αf(P ) + (1− α)f(Q).
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(Fishburn, Theorem 8.4 Part II) shows that f can be extended to all of P(X) as follows. Let
R1, R2, S1, S2 ∈ P(X) be such that (R, S) ⊆ (Ri, Si) for i = 1, 2. By the above argument there
exist functions f ∗

i on (Ri, Si) satisfying (4) and (5). Moreover they can be linearly transformed
into functions fi such that fi(R) = 0 and fi(S) = 1 for i = 1, 2, and this transformation preserves
(4) and (5). We then argue that in fact f1 and f2 must agree on the intersection of their domains.
Given P ∈ (R1, S1) ∩ (R2, S2) there are three possibilities:

P ≺ R ≺ S, R ∼ (1− α)P + αS

R ≺ P ≺ S, P ∼ (1− β)R + βS

R ≺ S ≺ P, S ∼ (1− γ)R + γP

for some α, β, γ ∈ [0, 1]. It then follows that

0 = (1− α)fi(P ) + α

fi(P ) = β

1 = γfi(P )

for i = 1, 2, so f1(P ) = f2(P ). We let v(P ) = fi(P ) for any such function defined on an interval
(Ri, Si) containing (R, S). Then since for any P ∈P(X) there exist R, S such that P ∈ (R, S),
v is defined on all of P(X) and satisfies (4) and (5).

One might wonder whether the above proof is already computable—after all, the proof gives a
construction of v by fixing a zero and unit and then calibrating v(P ) for all other P in terms of the
chosen scale. However, the proof relies essentially on Proposition 1, which states only that there
exists a unique real α which determines the “calibration” of P in terms of the zero and unit. It does
not show that this α can be explicitly computed, so we do not know that v(P ) can be computed.
Indeed the proof of Proposition 1 relies on a continuity argument to show that such a real must exist
but does not explicit construct α.

Further, Proposition 2 isn’t yet an expected utility representation because v is defined on P(X),
not X , and we have not shown that there is a u such that P ⪯ Q ⇐⇒ EP [u] ≤ EQ[u]. The
remaining steps are actually quite simple; see e.g. [13], Theorem 10.1.

Fortunately we are able to skip a few steps. We will assume that ⪯ is computable continuous;
by definition ⪯ is continuous. Then the continuity of ⪯, (R2), and (R3), by the results of [18]
and [14], imply not only that such a utility function u : X → R exists, but that it is continuous.
Thus our assumptions imply that such a utility function exists, and we need only show that u is
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computable continuous. To do so we require one final preliminary lemma. It states that, given a
function u satisfying (4) and (5), we can compute the members of the countable dense set whose
value under u is above or below any given rational.

Lemma 2. Let X be a computable Polish space, and let ⪯ be a computable continuous total
preorder on P(X). Let u be a function satisfying (4) and (5) as given by Proposition 2, with
u(R) = 0 and u(S) = 1 for some R, S ∈ DP(X). Let q ∈ Q. Then the sets

∆<q = {D ∈ D | u(D) < q}

and
∆>q = {D ∈ D | u(D) > q}

are c.e.

Proof. There are three cases: q < 0, 0 ≤ q ≤ 1, or 1 < q. Suppose 0 ≤ q ≤ 1. First note that
u[(1− q)R+ qS] = q, and since R, S ∈ D , (1− q)R+ qS ∈ D . Search for all Di ∈ D such that
Di ≺ (1 − q)R + qS using the preferred enumeration. This process is c.e. since ≺D is c.e. This
shows that the set

∆<q = {Di ∈ D | u(Di) < q} = {Di ∈ D | Di ≺ (1− q)R + qS}

is c.e. Similarly the set

∆>q = {Di ∈ D | u(Di) > q} = {Di ∈ D | (1− q)R + qS ≺ Di}

is c.e.
Suppose q < 0. Search for α ∈ Q ∩ [0, 1] such that −α

(1−α)
= q, which is computable since

equality is computable on rationals. In particular if q = −a
b

with a, b ∈ ω then α = a
a−b

. If for any
P ∈P(X), (1− α)P + αS ∼ R, then u(P ) = q. Then we may search for all Di ∈ D such that

(1− α)Di + αS ≺ R.

This process is c.e. since ≺D is c.e. We thus define the c.e. sets

∆<q = {Di ∈ D | (1− α)Di + αS ≺ R]}.

and
∆>q = {Di ∈ D | R ≺ (1− α)Di + αS}
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the latter of which is c.e. by a parallel argument.
Finally assume q > 1. Let α = 1/q. Then define the c.e. sets

∆>q = {Di ∈ D | S ≺ (1− α)R + αDi}

and
∆<q = {Di ∈ D | (1− α)R + αDi ≺ S}.

Theorem 1 (Computable Mixture Space Theorem). Let X be a computable Polish space, and let
P(X) be the space of Borel probability measures on X . Assume

(R1*) ⪯ is a computable continuous total preorder on P(X),

and assume (R2), (R3) hold. Then there exists a computable continuous function v : P → R that
satisfies (4) and (5).

Proof. Let R, S ∈ D such that R, S are not endpoints, and let v be such that v(R) = 0, v(S) = 1,
and v satisfies (4) and (5), as assured by Proposition 2. To show that v is computable continuous it
suffices to show that for all rational q, v−1(−∞, q), v−1(q,∞) are c.e. open uniformly in q.

We saw above that v must be bounded. Thus note that for any q ≤ inf v[P(X)], v−1(−∞, q) =

∅ and v−1(q,∞) = P(X), both of which are c.e. open. Similarly for any q ≥ sup v[P(X)],
v−1(−∞, q) = P(X) and v−1(q,∞) = ∅.

Thus let q ∈ ran(v). By Lemma 2 the sets

∆<q = {Di ∈ D | v(D) < q}

and
∆>q = {Di ∈ D | v(D) > q}

are both c.e. uniformly in q.
Given q, let qn → q be a uniformly computable fast Cauchy sequence of rationals such that for

all n, qn < q. Note that the set

∆qn<d<qn+1 = {Di ∈ D | qn < v(D) < qn+1}

is an intersection of c.e. sets and hence is c.e. Define a total computable function m : ω → ω by
letting m(n) be the index i of the first Di ∈ D enumerated into the set ∆qn<d<qn+1 . For any q and
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any Dm(n) we have (←, Dm(n)) ⊆ v−1(−∞, q); thus⋃
n∈ω

(←, Dm(n)) ⊆ v−1(−∞, q).

Furthermore
⋃

n∈ω(←, Dm(n)) is a computable union of c.e. open sets and hence is c.e. open.
We now show that v−1(−∞, q) ⊆

⋃
n∈ω(←, Dm(n)). Let Q ∈ P(X) with v(Q) < q. There

is n such that 2−n ≤ |v(Q)− q|, in which case Q ∈ (←, Dm(n)) by definition of m. Therefore
v−1(−∞, q) =

⋃
n∈ω(←, Dm(n)), a c.e. open set uniformly in q. A parallel argument establishes

that there is a total computable function m′ such that v−1(q,∞) =
⋃

n∈ω(Dm′(n),→).

Corollary 2. The function u : X → R constructed in Theorem 1 is unique up to computable
positive linear transformation; that is, u∗ : X → R satisfies (4) and (5) if and only if there exist
computable reals a > 0, b such that u∗ = au+ b.

Proof. The necessary direction is obvious. For the sufficient direction there are two cases. If u is
constant then so is u∗, and so u∗ = u+ (c− c′) where u(P ) = c, u∗(P ) = c′ for all P ∈P . Since
u and u∗ are computable continuous, c and c′ are computable reals. Otherwise let R, S ∈ D with
R ≺ S. Then since u and u∗ are computable continuous, we have that u(R), u(S), u∗(R), u∗(S)

are computable reals. By the classical proof of uniqueness (see [13], Theorem 8.4) we have for all
P ∈P ,

u∗(P ) =
u∗(S)− u∗(R)

u(S)− u(R)
u(P ) + u∗(R)− u(R)

u∗(S)− u∗(R)

u(S)− u(R)
.

Then let

a =
u∗(S)− u∗(R)

u(S)− u(R)

b = u∗(R)− u(R)
u∗(S)− u∗(R)

u(S)− u(R)

which are computable reals.

If in addition to satisfying axioms (R1), (R2), and (R3), the relation ⪯ is required to be
continuous, then there is a utility function u′ that both satisfies (1) and is continuous (see [39]
Theorem IV.2.7). Therefore the assumptions of Theorem 1 also imply the existence of such a
u. The standard trick to move from the function u : P(X) → R as given in Theorem 1 to the
desired function u′ : X → R satisfying (1) is to set u′(x) = u(δx), where δx is the Dirac measure
concentrated on the point x; see ([13], Theorem 10.1). Our main theorem shows that u′, so defined,
is a computable continuous function satisfying (1).
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Theorem 2 (Computable Expected Utility). Under the assumptions of Theorem 1, let v : P(X)→
R be a computable continuous function satisfying (4) and (5), and let u : X → R be defined
u(x) = v(δx) for all x ∈ X . Then u is a computable continuous function satisfying (1).

Proof. By [13], Theorem 10.1, u satisfies (1), so it suffices to show that u is computable continuous.
Thus we want to show that the sets u−1(−∞, q) and u−1(q,∞) are c.e. open uniformly in q ∈ Q.
By definition of u we have

x ∈ u−1(−∞, q) ⇐⇒ v(δx) < q.

Now, for any Dirac measures δx, δy for x, y ∈ X , the Prokhorov metric dP (δx, δy) satisfies

dP (δx, δy) < ϵ ⇐⇒ δx(U)− ϵ < δy(U
ϵ)

for all U ∈ supp(δx). But since X is a separable metric space we have that supp(δx) = {x}. Thus
we have

dP (δx, δy) < ϵ ⇐⇒ δx({x})− ϵ < δy(BX(x, ϵ)),

where BX(x, ϵ) ⊆ X . The right-hand inequality holds iff either y ∈ BX(x, ϵ) or d(x, y) ≥ 1, in
which case dP (δx, δy) = 1. In other words,

δy ∈ BP(X)(δx, ϵ) ⇐⇒ y ∈ BX(x, ϵ) (6)

for all x, y ∈ X with d(x, y) < 1.
Consider the set v−1(−∞, q). Since v is computable continuous, there is a partial computable

function that takes q ∈ Q and returns an index for a c.e. set I such that

v−1(−∞, q) =
⋃

(i,r)∈I

BP(X)(δsi , r) (7)

where si ∈ D . In particular v−1(−∞, q) can be written so that r is uniformly less than 1 for all
(i, r) ∈ I . Therefore by (6) and (7),

u−1(−∞, q) =
⋃

(i,r)∈I

BX(si, r),

a c.e. open set uniformly in q. A similar argument shows that u−1(q,∞) is c.e. open uniformly in
q.

We now turn to proving the partial converse to Theorem 2. We introduced computable com-
pactness because it is known that the suprema and infima of computable continuous functions are

22



themselves computable on computably compact domains.

Proposition 3. If X is computably compact and f : X → R is computable continuous, then both
supx∈X f(x) and infx∈X f(x) are computable reals.

As a final preliminary step we present a result due to Hoyrup and Rojas ([21]) on the com-
putability of the integral.

Proposition 4. Let f : X → R be a computable continuous function with a computable bound M .
Then the integral µ 7→

∫
f dµ is a computable continuous map.

Proof. See [21], Corollary 4.3.2.

Theorem 3. Let u : X → R be a computable continuous function on a computably compact set
X . Then the relation ⪯ defined

P ⪯ Q ⇐⇒ EP [u] ≤ EQ[u]

satisfies (R1∗), (R2), and (R3).

Proof. (R2) and (R3) follow from the classic proof. To see (R1∗), note that by Proposition 3, u
has a computable bound M = max{supx∈X u, infx∈X u}. Therefore by Proposition 4, the integral
v : P 7→

∫
u dP is a computable continuous function. Fix D ∈ D , and note that ED[u] = αD

is a computable real. Then the sets (←, D) = v−1(−∞, αD) and (D,→) = v−1(αD,∞) are c.e.
open, establishing (R1∗).
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