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Abstract

We show that the dynamical common core of the recently-discovered
non-relativistic geometric trinity of gravity is Maxwell gravitation. More-
over, we explain why no analogous distinct dynamical common core exists
in the case of the better-known relativistic geometric trinity of gravity.
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1 Introduction

Inter alia, the following questions surely count as mainstream in contemporary
philosophy of spacetime physics:
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1. What is the ‘correct’ spacetime setting for Newtonian gravity, especially
in light of Newton’s Corollary VI?1 (On this topic, see e.g. Dewar (2018),
Knox (2014), Teh (2018), Wallace (2020), and Weatherall (2016, 2018).)

2. Are there spacetime theories which are in some sense or other ‘equivalent’
to general relativity, and what would be the philosophical significance of
such theories, were they to exist? (On this topic, see e.g. Wolf, Sanchioni,
and Read (2023), Wolf and Read (2023), Knox (2011), Duerr and Read
(2023), Rosenstock, Barrett, and Weatherall (2015), and Bain (2006).)

3. How is one to take the non-relativistic limit of general relativity, and what
is the resulting theory? (On this topic, see e.g. Fletcher (2019), Malament
(1986), and H. P. Künzle (1976).)

Until now, discussions of these questions have, broadly speaking, been isolated
from one another. Our purpose in this article is to show that these questions
(and answers to said questions) are in fact related to one another in intimate
and significant ways.

To explain what we mean here, begin with question (1). (For the time being
a qualitative account will suffice; the mathematics to substantiate the claims
made here will follow later in this article.) Typically, Newtonian gravitation
theory (NGT) in its potential-based formulation chez Laplace and Poisson is
taken to be set in a flat spacetime; gravitational effects in this spacetime are
encoded in the gravitation potential which leads to test bodies not traversing
geodesics of the flat, compatible connection. This being said, NGT has a hidden
symmetry (sometimes referred to as ‘Trautman symmetry’ (Teh 2018)): if one
(a) subjects all material bodies to an additional constant gravitational field,
and (b) changes one’s standard of straightness (i.e., one’s derivative operator)
to compensate for this, then in fact no physical change ensues. (This is related
to Newton’s Corollary VI, as we will explain below; cf. Read and Nicholas J
Teh (2022).) When one moves to a new formalism purged of this additional
symmetry,2 one arrives at the structure of Newton-Cartan theory (NCT): a
non-relativistic spacetime theory in which gravitational effects are—just as in
the case of general relativity (GR)—manifestations of spacetime curvature.

This much is well-known. But there remains some ambiguity in the literature
as to how NGT relates to another spacetime theory known as ‘Maxwell gravita-
tion’ (MG), also developed in light of Newton’s Corollary VI. (On this theory,
see Saunders (2013), Dewar (2018), Chen (2023), and March (2023b, 2023a).)
Moreover, recently NGT has been shown to in fact admit of an interpretation
whereby it is a theory with a torsionful geometry (Read and Nicholas J. Teh
2018; Schwartz 2023), in the sense that the gravitational potential can be associ-
ated with the torsion of the ‘mass gauge field’ which arises when one gauges the

1. Recall that Newton’s Corollary VI reads as follows: “If bodies are moving in any way
whatsoever with respect to one another and are urged by equal accelerative forces along
parallel lines, they will all continue to move with respect to one another in the same way as
they would if they were not acted on by those forces.” (Newton 2014, p. 99).

2. Here, we set aside the differences between what are known as ‘reduction’ and ‘internal
sophistication’ about symmetries: see Dewar (2018) and Martens and Read (2021).
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Figure 1: Maxwell gravitation as the common core of the non-relativistic geo-
metric trinity of gravity.

Bargmann algebra (for more on the mass gauge field, see Andringa et al. (2011),
Teh (2018), Read and Nicholas J. Teh (2018), and Wolf, Read, and Teh (2023)).
We shall refer to this torsional interpretation of NGT as TENC, or the ‘teleparal-
lel equivalent of Newton-Cartan theory’, for reasons which will become apparent
shortly. Even less well-known (indeed, we might say, almost unknown!) is that
both TENC and NCT are equivalent to an alternative non-relativistic theory, re-
cently dubbed the ‘symmetric teleparallel equivalent of Newton-Cartan theory’
(STENC), in which gravitational effects are manifestations neither of curvature
(as in NCT) nor of torsion (as in TENC), but of spacetime non-metricity (Wolf,
Read, and Vigneron 2023).3 Here, we demonstrate that these pieces fit together
in the following way: NCT, TENC and STENC constitute a ‘non-relativistic ge-
ometry trinity’; the structure common to all said theories (the ‘common core’,
in the sense of Le Bihan and Read (2018)) just is the structure of MG (see
Figure 1).4

Already, this illuminates quite substantially the connections between these
four non-relativistic theories of spacetime and gravity. And yet, that is only
the beginning of the story. Taking now together questions (2) and (3) in our
above list, it is becoming increasingly well-known to philosophers of physics
that there exists a ‘geometric trinity’ of relativistic theories of gravitation, of
which GR constitutes but one node (see e.g. Jiménez, Heisenberg, and Koivisto
(2019) and Capozziello, De Falco, and Ferrara (2022) for recent reviews in the
physics literature). The other two nodes are ‘teleparallel gravity’ (TEGR), in
which gravitational effects are a manifestation of exclusively spacetime torsion,
and ‘symmetric telelparallel gravity’ (STEGR), in which gravitational effects are
a manifestation of exclusively spacetime non-metricity. Recently, Wolf, Read,
and Vigneron (2023) have shown that the above-discussed non-relativistic trinity

3. To remind the reader: ‘curvature’ quantifies the extent to which parallel transport of a
vector along a closed loop doesn’t preserved angles; ‘torsion’ quantifies the extent to which
parallel transport in two directions doesn’t commute; ‘non-metricity’ quantifies the extent to
which parallel transport of a vector along a closed loop doesn’t preserve the length of that
vector. For further background, see e.g. Hehl et al. (1995).

4. The same notion of a common core is also discussed in e.g. De Haro and Butterfield
(2021).
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Figure 2: The relativistic geometric trinity and the non-relativistic geometric
trinity as its non-relativistic limit.

(sans any mention of MG) is indeed the non-relativistic limit (in the sense of a
1/c2 expansion à la Schwartz (2023)) of this relativistic geometry trinity. More
specifically, the torsional non-relativistic theory TENC arises when one takes
the non-relativistic limit of the torsional relativistic theory TEGR, while the
non-metric non-relativistic theory STENC arises as the non-relativistic limit of
non-metric relativistic theory STEGR. The web of connections is, therefore, as
presented in Figure 2 (in that figure, for clarity, we omit MG).

What we add to this discussion in the present paper is an answer to the
following question: does there exist a ‘common core’ of the relativistic geometric
trinity in the same sense that MG is the common core of the non-relativistic
trinity, and if so is it the case that MG is the non-relativistic limit of said
relativistic common core? Although we address both parts of this question,
we should be clear that our answer to the first part is partly in the negative:
there is not a dynamically distinct common core of the relativistic geometric
trinity in the same sense that MG is the dynamically distinct common core of
the non-relativistic trinity.

To elaborate: we concur with the recent verdict of Wolf, Sanchioni, and Read
(2023), who argue that the common core of all three of GR, TEGR, and STGR
simply is just GR. This is because one can always use the metric to build GR’s
defining affine structure, as the Levi-Civita connection is the unique torsion-
free, metric compatible derivative operator; using this derivative operator one
can then write down the Einstein equation as usual. In the non-relativistic
case there is again a common core—this time, its kinematics include what has
been dubbed in the recent philosophical literature a ‘standard of rotation’ (see
Weatherall (2018))—; however—and quite differently to the relativistic case!—
that common core leads to dynamics which are distinct from those of the the
geometric trinity from which they arise. Later in this article, we will explain
exactly how this asymmetry between the relativistic and non-relativistic cases.

To summarise, then, in this article we (a) identify MG as the dynamical com-
mon core of the recently-discovered non-relativistic geometric trinity of gravity,
and (b) explain how it can be that no analogous common core exists in the
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case of the relativistic geometric trinity of gravity. In so doing, we (i) clarify
questions in (1) regarding the ‘correct’ spacetime setting for Newtonian gravity,
(ii) connect that entire literature up to the geometric trinity of gravity and its
Newtonian limit, which has also aroused recent philosophical interest.

More specifically, the structure of the article is this. In §2, we remind the
reader of the mathematical details of both the relativistic geometric trinity and
the non-relativistic geometric trinity. In §3, we present MG as the common core
of the non-relativistic trinity, and connect our discussion to that of the ‘correct’
spacetime setting for Newtonian gravity. In §4, we address the matter of the
existence (or otherwise) of a relativistic common core. We close in §5.

2 Geometric trinities

In this section, we recall the mathematical details underlying the existence
of the relativistic geometric trinity of gravitation theories (§2.1) and the non-
relativistic geometric trinity of gravitation theories (§2.2).

2.1 The relativistic geometric trinity

The ‘geometric trinity’ of gravity refers to a family of three relativistic theories
of gravitation: general relativity (GR), the ‘teleparallel equivalent to general
relativity’ (TEGR), and the ‘symmetric teleparallel equivalent to general rela-
tivity’ (STEGR). These theories are all ‘equivalent’ to each other in the sense
that they share equivalent dynamical equations of motion, but distinct in the
sense that these shared dynamics result from entirely different geometric degrees
of freedom that manifest in each respective theory (see e.g. Jiménez, Heisenberg,
and Koivisto (2019), Capozziello, De Falco, and Ferrara (2022), and Heisenberg
(2019)).

Kinematical possibilities of general relativity are typically presented as tuples
of the form ⟨M, gab,Φ⟩, where M is a four-dimensional differentiable manifold,
gab is a Lorentzian metric field on M , and Φ represents material fields. The dy-
namical possibilities of the theory are encoded by the Einstein equation, which
governs the behavior of these spacetime and material fields. However, the geo-
metric degrees of freedom responsible for sourcing the dynamics of the respective
theories in the geometric trinity are properties of the affine connection. We will

thus take GR to be a theory given by models of the form ⟨M, gab,
c

∇,Φ⟩, where
c

∇ refers to the familiar Levi-Civita derivative operator with non-vanishing cur-

vature. Typically,
c

∇ is not included explicitly in the models of GR, for it is
fixed uniquely by gab.

Spacetime curvature is defined by

Ra
bcdξ

b := −2∇[c∇d]ξ
a, (1)

where ξa is a smooth vector field. However, curvature is not the only geometric
property that a connection can manifest. An affine connection can also possess
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torsion or non-metricity. The torsion tensor is given by

T c
ab∇cα := 2∇[a∇b]α, (2)

where α is a smooth scalar field; torsion thereby encodes the antisymmetry
of a connection. Non-metricity is given by the non-vanishing of the covariant
derivative of the metric tensor

Qabc := ∇agbc. (3)

Heuristically, curvature measures the rotation of a vector when it is parallel
transported along a closed curve, torsion measures of the non-closure of the
parallelogram formed by two vectors being parallel transported along each other,
and non-metricity measures how the length of a vector changes when parallel
transported (see e.g. Figure 1 in Jiménez, Heisenberg, and Koivisto (2019) or
Hehl et al. 1995). Note that while curvature and torsion are properties intrinsic
to a connection, non-metricity is a relational property between a connection and
a metric.

The Levi-Civita connection of GR is special in the sense that it is the
unique derivative operator which is both torsion-free (i.e. T a

bc = 0) and metric-
compatible (i.e. Qabc = 0), but with generically non-vanishing curvature (i.e.
Ra

bcd ̸= 0). However, in order to build a viable relativistic spacetime theory, it

is not necessary to use
c

∇. Indeed, one can decompose a general affine connection
as

∇ = (
c

∇,Ka
bc + La

bc), (4)

where Ka
bc is known as the ‘contorsion tensor’ and La

bc is known as the ‘dis-
torsion tensor’ (here, we use the notation of Malament (2012, p. 53)). The
contorsion tensor can be understood as the difference tensor between the Levi-
Civita connection and the torsionful (but flat and metric-compatible) connec-
tion of TEGR. The disorsion tensor can be understood as the difference tensor
between the Levi-Civita connection and non-metric (but flat and torsionless)
connection of STEGR.

If—as above—we take GR to be a theory with kinematical possibilities of

the form ⟨M, g,
c

∇,Φ⟩, then TEGR can be taken to be a theory with kinematical

possibilities given by ⟨M, g,
t

∇,Φ⟩, where
t

∇ = (
c

∇,Ka
bc ) refers to the TEGR con-

nection with vanishing curvature and non-metricity, but non-vanishing torsion.

Likewise, STEGR is a theory with kinematical possibilities given by ⟨M, g,
n

∇,Φ⟩,
where

n

∇ = (
c

∇, La
bc) refers to the STEGR connection with vanishing curvature

and torsion, but non-vanishing non-metricity.
One can use (4) as a dictionary by which to translate between these theories.

That is, one can rewrite the geometric objects of interest in one theory in terms
of the geometric objects of one of the other trinity theories, and thereby witness
their equivalence. For example, one can take the curvature tensor for a generic
affine connection and use (4) to relate the curvature of the Levi-Civita connec-
tion to that of the TEGR connection (and the associated contorsion tensor), or
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to that of the STEGR connection (and the associated distorsion tensor). One
then finds that the geometric scalar quantities have the following relationship:

−R = T +BT = Q+BQ, (5)

where R is the curvature scalar, T is the torsion scalar, Q is the non-metricity
scalar, and BT/Q refers to boundary terms of the respective theories (Jiménez,
Heisenberg, and Koivisto 2019). This also illustrates that these theories are
dynamically equivalent, as the Lagrangian expressions for all of these theories
can be written using the geometric scalars (in the case of GR, recall the Einstein-
Hilbert action). Upon utilizing standard variational procedures, the boundary
terms that arise in (5) vanish, resulting in the Einstein equation for all theories
(but of course expressed in their particular geometric languages).5

2.2 The non-relativistic geometric trinity

It was shown recently by Wolf, Read, and Vigneron (2023) that there is a
non-relativistic analogue of the geometric trinity, whereby standard Newtonian
gravity can likewise be reconceptualised and/or reformulated as a theory of
curvature, torsion, or non-metricity. This non-relativistic trinity is obtained by
taking the non-relativistic limit of the relativistic trinity. That is, the respective
relativistic theories are expanded in powers of λ := 1/c2. The three nodes
of the non-relativistic geometric trinity of gravity are ‘Newton-Cartan theory’
(NCT), the ‘teleparallel equivalent of Newton-Cartan theory’ (TENC), and the
‘symmetric teleparallel equivalent of Newton-Cartan theory’ (STENC).

Following the presentation of the relativistic theories above, we take NCT

to be a theory with kinematical possibilities of the form ⟨M, ta, h
ab,

c

∇,Φ⟩. As
is by now well known, this theory emerges as the non-relativistic limit of GR
(H. P. Künzle 1976). As before, M is a four-dimensional differentiable manifold,

Φ represents material fields, and
c

∇ is a torsion-free and compatible (now in the
sense that ∇atb = ∇ah

bc = 0) derivative operator with non-vanishing curvature.
Some important features of NCT are as follows:

1. The metrical structure of non-relativistic theories is notably different from
that of relativistic theories, because ta and hab refer to degenerate tem-
poral and spatial metrics on M : see Malament (2012, Ch. 4).6 Metric
compatibility applies separately to both metrics; in addition, ta and hab

are orthogonal to each other, so that tah
ab = 0. Loosely speaking, ta is

supposed to represent Newtonian absolute time, and hbc is supposed to
represent Newtonian absolute space.

5. For more on the significance of these boundary terms, see Wolf and Read (2023) for
philosophical discussion on concerning their implications for theory equivalence and theory
structure, and see Oshita and Wu (2017) for further physics discussion.

6. Through this article, we assume temporal orientability, in the sense of Malament (2012,
ch. 4).
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2. This NCT connection is given by the following:7

Γ̂a
bc = ξa∂(btc) + has

(
∂(bĥc)s −

1

2
∂sĥbc

)
+ hant(bfc)n, (6)

Here, h is the spatial metric, t is the temporal metric, ĥ is the spatial
projector orthogonal to a choice of timelike vector field ξ (i.e., ξaĥab := 0),
ϕ is a scalar field defined from the so-called Newton-Coriolis two-form
fab = t[aϕb] (i.e., the compatibility conditions do not uniquely single out a
connection in contrast with the relativistic connection and this represents a
further freedom in choice of connection). See, e.g., Malament (2012), Wolf,
Read, and Vigneron (2023), Schwartz (2023), and H. P. Künzle (1976) for
some further discussion of Newton-Cartan connections and these objects.

3. The dynamical possibilities for NCT are encoded in the ‘geometrised Pois-
son equation’:

Rab = 4πρtatb, (7)

where Rab is the Ricci curvature of the NCT connection
c

∇; moreover,
one typically includes the following curvature conditions in one’s presen-
tation of NCT (we will discuss these curvature conditions more later in
the article8):

Ra c
b d = Rc a

d b, (8)

Rab
cd = 0. (9)

Moving beyond curvature-based theories, we are now interested in investi-
gating the torsion and non-metricity based analogues of NCT. One can shift
between the theories by introducing a change in connection just as is done in
the relativistic trinity. One helpful way of seeing this is to consider the gen-
eral non-relativistic limit of (4), which gives the difference tensor between the
standard NCT connection Γ̂a

bc (which is the non-relativistic limit of the GR
Levi-Civita connection (H. P. Künzle 1976)) and a general affine connection
Γ̃a

bc (Wolf, Read, and Vigneron 2023, Eq. 32):

Γ̂a
bc − Γ̃a

bc = hsa

(
∇(bĥc)s −

1

2
∇sĥbc

)
+ ξa∇(btc)

− 1

2
T a

bc − hasT g
s(bĥc)g + 2hant(bfc)n +O(λ), (10)

where∇atb = Qab and∇aĥbc = Qabc refer to the temporal non-metricity and the
non-metricity of the spatial projector (the other non-metric degrees of freedom
are given by ∇ah

bc = Q bc
a and ∇aξ

b = Q b
a but do not explicitly appear in this

7. In abstract indices, ‘∂a’ denotes a coordinate derivative operator, in the sense of Mala-
ment (2012, Ch. 1).

8. See also Malament (2012) and Teh (2018) for further discussion of the physical signifi-
cance and meaning of these conditions.
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version of the expression—see Wolf, Read, and Vigneron (2023, Sect. 3.4)), T
is the torsion, and fab is a two-form (restricted to satisfy fab = t[a∇b]ϕ from
the non-relativistic limit—see Wolf, Read, and Vigneron (2023)). In order to
obtain the fully generic version of TENC obtained in Schwartz (2023), one sets
the non-metricities in the above formula to zero, thereby obtaining a contorsion
tensor:

Ka
bc = −1

2
T a

bc − hasT g
s(bĥc)g + 2hant(bfc)n. (11)

Similarly, in order to obtain the fully generic version of STENC in Wolf, Read,
and Vigneron (2023), one sets all the torsions to zero to obtain the distortion
tensor:

La
bc = hsa

(
∇(bĥc)s −

1

2
∇sĥbc

)
+ ξa∇(btc) + 2hant(bfc)n. (12)

TENC is then a theory given by models of the form ⟨M, ta, h
ab,

t

∇,Φ⟩, where
t

∇ is a flat, metric-compatible derivative operator with non-vanishing torsion.
As discussed above, one can translate between NCT and TENC is given by the

following shift of connection
t

∇ = (
c

∇,Ka
bc ). It has been well-known since the

work of Trautman (1965) that one can translation between NCT and NGT (in
the form of the the famous ‘geometrisation’ and ‘recovery’ theorems—(see also
Malament (2012, Ch. 4)); however, it was much more recently shown by Read
and Nicholas J. Teh (2018) that standard Newtonian gravity can be understood
as the ‘teleparallel equivalent’ of NCT in much the same way that TEGR is
the teleparallel equivalent of GR. In order to see this, one can ‘fix’ the various
torsional degrees of freedom. In particular, there are torsional degrees of freedom
in temporal torsion, spatial torsion, and ‘mass’ torsion (i.e., the ‘mass gauge
field’ ma is obtained by gauging the Bargmann algebra (Andringa et al. 2011)).
As discussed by Schwartz (2023, Sect. 4.1), one can ‘fix’ purely spatial torsion to
vanish, while imposing some additional constraints on the temporal and mass

torsions (i.e., tnT
n
bc = 0 and T (M) = fab = t[a

t

∇b]ϕ). After doing so, we
formally recover the dynamics of NGT from TENC:

t

∇a

t

∇aϕ = 4πρ. (13)

In other words, TENC interprets Newtonian gravity as a result of a torsional
connection.

Even more recently, STENC has been constructed by Wolf, Read, and Vi-

gneron (2023). This theory is then given by models of the form ⟨M, ta, h
ab,

n

∇,Φ⟩,
where

n

∇ is flat and torsion-free, but possesses non-vanishing non-metricity. Sim-
ilarly, one can translate between NCT and STENC by introducing the difference

tensor
n

∇ = (
c

∇, La
bc). As with NCT and TENC above, one can obtain an equa-

tion formally equivalent to NGT, but with the gravitational field resulting from
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a connection that is flat and torsionless, but that encodes non-metricity. In
STENC, there are non-metricity degrees of freedom in the non-metricities of
the temporal metric t, spatial metric h, the spatial projector ĥ, and the velocity
vector field v. As discussed by Wolf, Read, and Vigneron (2023, Sect. 4.3), one
can ‘fix’ the non-metricities of the spatial projector and velocity vector field to

vanish (i.e.,
n

∇aĥbc = Qabc =
n

∇aξ
b = Q b

a = 0), which as before recovers the
familiar dynamics:

n

∇a

n

∇aϕ = 4πρ. (14)

As promised, this is formally equivalent to NGT, but results from a connection
with non-metricity.

This ‘non-relativistic geometric trinity’ mirrors the more familiar relativistic
geometric trinity in that one can present three gravitational theories that are
dynamically equivalent to familiar Newtonian gravitational theory, formulated
in the geometric languages of curvature, torsion, and non-metricity.9 While in
the relativistic case this is apparent at the level of the action, NCT, TENC,
and STENC by contrast cannot be formulated using an action principle (for
the reasons underlying this, see Hansen, Hartong, and Obers (2019)), so we
can only demonstrate their equivalence at the level of equations of motion.10

However, the non-relativistic trinity bears another important relationship to
the relativistic trinity. All of the theories in the non-relativistic trinity can be
obtained by taking an appropriate non-relativistic limit (typically in terms of
a 1/c2 expansion in the style of Schwartz (2023)). That is, NCT is the non-
relativistic limit of GR (H. P. Künzle 1976), TENC is the non-relativistic limit
of TEGR (Schwartz 2023), and STENC is the non-relativistic limit of STEGR
Wolf, Read, and Vigneron (2023). This completes all the legs of Figure 2.

3 Maxwell gravitation and the non-relativistic
trinity

As emphasised in the previous section, the three nodes of each of the relativis-
tic and non-relativistic geometric trinities are all empirically equivalent theo-
ries, which nevertheless appear to disagree fundamentally on the geometrical
structure which they attribute to the world. For instance, according to GR
the gravitational behaviour of matter is to be understood as a manifestation
of spacetime curvature, whereas according to TEGR and STEGR spacetime is
necessarily flat. This means that the relativistic and non-relativistic theories

9. To shore this up, one would like to see geometrisation/recovery theorems à la Trautman
for all three nodes of the non-relativistic trinity. This turns out to be a delicate business,
which we will address in a companion paper. The lack of explicit presentation of any such
theorems in this article does not detract from the technical or conceptual points which we
seek to make.
10. Off-shell non-relativistic equivalence would require recourse to the ‘type II’ versions of

these theories, which we discuss in §5.
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present a case of strong underdetermination—distinct theories between which
no possible evidence could be expected to decide.11

Faced with such cases of strong underdetermination, philosophers have sug-
gested several approaches to dealing with the problem (on this see e.g. Le Bihan
and Read (2018)). Famously, one of these is the common core approach. The
common core approach advocates identifying the invariant kinematical structure
of the theories, and then showing that this structure is sufficient to formulate
a distinct, ontologically viable theory in its own right; one which, moreover,
retains the empirical content of the original theories. Moving to this new inter-
pretative framework alongside a judicious invocation of Occamist reasoning (on
which see Dasgupta (2016)) then allows one to ‘break’ the underdetermination
by interpreting the theories in such a way that they completely agree on the
structure they attribute to the world. The aim of this section is to show that
in the case of the non-relativistic geometric trinity, such a common core theory
exists, and it is a theory known as ‘Maxwell gravitation’ (MG): a theory which
has quite independently attracted philosophical interest (for reasons to do with
(1) as presented in the introduction).

To do so, we begin by recalling some facts about Maxwellian spacetime.
This is a structure ⟨M, ta, h

ab,⟳⟩, where ta, h
ab are orthogonal temporal and

spatial metrics as introduced in the previous section, and ⟳ is a standard of rota-
tion compatible with ta and hab. This was introduced originally by Weatherall
(2018): if ta, h

ab are compatible temporal and spatial metrics on M , then a
standard of rotation ⟳ compatible with ta and hab is a map from smooth vector
fields ξa on M to smooth, antisymmetric rank-(2, 0) tensor fields ⟳b ξa on M ,
such that

1. ⟳ commutes with addition of smooth vector fields;

2. Given any smooth vector field ξa and smooth scalar field α, ⟳a (αξb) =
α ⟳a ξb + ξ[bda]α;

3. ⟳ commutes with index substitution;

4. Given any smooth vector field ξa, if da(ξ
ntn) = 0 then ⟳a ξb is spacelike

in both indices; and

5. Given any smooth spacelike vector field σa, ⟳aσb = D[aσb],

where D is the unique Levi-Civita connection induced by hab on each spacelike
hypersurface. We will say that a connection and a standard of rotation are
compatible iff ⟳a ηb = ∇[aηb] for all vector fields ηa on M . It follows that
any metric compatible, torsion-free connection ∇ on M determines a unique
compatible standard of rotation—namely, the map ⟳: ηa → ∇[aηb] (Weatherall
2018).

11. Knox (2011) argues that there is in fact no strong underdetermination here; see Mulder
and Read (2023) and Wolf, Sanchioni, and Read (2023) for responses, and §4 for further
discussion in this article.
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However, in light of the discussion of the previous section, this invites a nat-
ural further question: are there non-metric or torsionful connections which are
also associated with metric compatible standards of rotation in the above sense?
It turns out that the answer to this question is ‘yes’, and a characterisation of
such connections is given by the following two propositions:

Proposition 1. Let ⟨M, ta, h
ab,∇⟩ be a non-relativistic spacetime, where ta and

hab are compatible, ta is closed,12 and where ∇atb = Qab and ∇ah
bc = Q bc

a .
Then the map ⟳: ηa → ∇[aηb] is a standard of rotation compatible with ta and

hab iff hanQnb = hn[aQ
b]c

n = 0.

Proof. First, suppose that hanQnb = hn[aQ
b]c

n = 0. That ⟳ satisfies conditions
(1)–(3) is immediate from properties of derivative operators. For condition (4),
note that if da(η

ntn) = 0 we have

0 = ∇a(η
ntn) = tn∇aη

n + ηnQna, (15)

so that

tn(h
m[n∇mηa]) = −1

2
hmatn∇mηn

=
1

2
hmaηnQmn

= 0

= tn(h
m[a∇mηn])

and ⟳a ηb is spacelike in both indices. Finally, consider condition (5). We know

that ∇[ahb]c = hn[aQ
b]c

n = 0. So let ξa be a unit timelike vector field on M , ĥab

the spatial metric relative to ξa,13 and D the unique spatial derivative operator
such that Dah

bc = 0. Then for any spacelike vector field σa on M ,

hn[aDnσ
b] = hn[aĥnmĥb]

r∇mσr = hn[a∇nσ
b], (16)

where the first equality follows from the proof of (Weatherall 2018, Proposition
2), and we have used the fact that since hanQnb = 0, ∇a(tnη

n) = tn∇aηn for
any smooth vector field ηa on M .
Conversely, suppose that the map ⟳: ηa → ∇[aηb] is compatible with ta and hab.

12. The temporal metric being closed is a standard assumption in much of the non-relativistic
gravity literature. This is due to a technical fact that it is only the zeroth order in the
expansion of the Levi-Civita connection that transforms as a connection. One can then impose
that dt = 0 so that the minus-first order vanishes; the zeroth order of the expansion then
becomes the leading order and can serve as a proper connection for the Galilean theory (see
e.g. H.-P. Künzle (1972) and Van den Bleeken (2017)). While this is not the only option,
the choice of dt = 0 is the most straightforward way of taking the non-relativistic limit of
GR. Furthermore, this choice preserves a notion of absolute time, which will be the case with
theories of non-relativistic gravity that can be understood to geometrise standard Newtonian
gravity, which are precisely the kinds of theories with which the present work is concerned.

13. That is, the unique symmetric tensor field on M such that ĥanξn = 0 and hanĥnb =
δab − tbξ

a.

12



Then we must have for all smooth vector fields ηa on M that if da(η
ntn) = 0,

⟳a ηb is spacelike in both indices. If da(η
ntn) = 0 then (15) holds with respect to

ηa so that tn(h
m[n∇mηa]) = 1/2hmaQmnη

n = 0. But this can only be the case
for arbitrary ηa if hanQnm = 0. Moreover, given condition (5) we must then
also have that the equality (16) holds with respect to ∇. Now, we know that
the action of D on spacelike vector fields σa is defined as follows: hn[aDnσ

b] =

hn[aĥnmĥ
b]
r∇′mσr for any ∇′ such that ∇′ahbc = 0.14 In particular, this is the

case for ∇′ = (∇,−1/2ĥbnĥcm(harQ nm
r − hnrQ am

r − hmrQ na
r )). Thus

0 = hn[aĥnmĥb]
rh

msĥstĥvu(h
rwQ tu

w − htwQ ru
w − huwQ tr

w )σv

= ĥ
[a
tĥ

b]
rĥvu(h

rwQ tu
w − htwQ ru

w − huwQ tr
w )σv

= 2δ
[a
tδ

b]
r ĥvuh

w[rQ t]u
w σv

= hw[bQ a]u
w σu

for any covector σa, where we have used that the metrics are orthogonal (so
that tnQ

anb vanishes if Qa
b does) and that Q bc

a is symmetric in the upper two

indices. But this can only be the case for arbitrary σa if hn[aQ
b]c

n = 0.

Proposition 2. Let ⟨M, ta, h
ab,∇⟩ be a non-relativistic spacetime, where ta

and hab are compatible, ta is closed, and ∇ is compatible with the metrics but
possibly torsionful. Then the map ⟳: ηa → ∇[aηb] is a standard of rotation
compatible with ta and hab iff T abc = 0.

Proof. First, note that since ∇ is compatible with ta and ta is closed, tnT
n
ab =

0. That the map ⟳: ηa → ∇[aηb] satisfies conditions (1)-(3) is again immediate
from properties of derivative operators. (4) follows from the fact that ∇ is
compatible with ta, using that daα = ∇aα for any 0-form field α. Finally,
consider (5). Let ξa be a unit timelike vector field on M , and ĥab the spatial
metric relative to ξa. We know that the action of D on spacelike vector fields is
defined as follows: Daσ

b = ĥanĥ
b
m∇′nσm, where ∇′ is an arbitrary torsion-free

derivative operator such that ∇′ahbc = 0. Moreover, we know (equation (11))
that ∇ = (∇′,Ka

bc) for some such ∇′. Hence

D[aσb] = ĥ[a
nĥ

b]
m∇′nσm

= ĥ[a
nĥ

b]
m(∇nσm − hnrKm

rsσ
s)

= ∇[aσb] −K [ab]
nσ

n

= ∇[aσb] − 1

2
Tnabσn

for some covector σn, where we have used the fact that σa is spacelike and
tnT

n
ab = 0. Thus if T abc = 0, then (5) is satisfied. Conversely, if the map

⟳: ηa → ∇[aηb] satisfies (5), it follows that T abc = 0.

14. This follows from the proof of proposition 2 of Weatherall (2018).
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Propositions 1 and 2 are tantalising, because they show that non-relativistic
affine connections which exhibit either torsion or non-metricity may—under
certain conditions—be associated with a compatible standard of rotation, just
as with curvature based connections. This raises the prospect that Maxwellian
spacetime might be the invariant kinematic structure of the non-relativistic
geometric trinity. We isolate the sense in which this is so in the following
proposition:

Proposition 3. Let ⟨M, ta, h
ab⟩ be a non-relativistic spacetime, with ta and hab

defined as above, and consider three connections: a curvature based connection
c

∇, a non-metricity based connection
n

∇ with
n

∇atb = Qab and
n

∇ah
bc = Q bc

a ,

and a torsion based connection
t

∇. Let
c

∇ = (
n

∇, La
bc) = (

t

∇,Ka
bc), where

La
bc and Ka

bc are given in (12) and (11) respectively. Suppose that hanQnb =

hn[aQ
b]c

n = 0 and T abc = 0. Let ξa be the unit timelike vector field with respect

to which La
bc and Ka

bc are defined. Then if ξa is twist-free with respect to
c

∇,

ξa is twist-free with respect to
n

∇ and
t

∇ iff fab = t[aϕb] for some covector ϕa.

Proof. First, we note that the expression (12) for La
bc can equivalently be

rewritten as (see §A for details):

La
bc = −1

2
ĥbnĥcm(harQ nm

r − hnrQ am
r − hmrQ na

r ) + ξnt(bĥc)mQ ma
n

− ξaξnt(bQc)n + 2t(bfc)nh
na + 2t(bgc)nh

na,

where gab = ĥn[b

n

∇a]ξ
n. Thus

L[ab]
c = −1

2
(ĥnch

r[aQ b]n
r − ξntcĥ

[b
mQ a]m

n + ξnξ[atcQ
b]
n − 2tcf

[ab] − 2tcg
[ab])

= −1

2
(ξnξ[btctmQ a]m

n − ξntcQ
[ab]

n − 2tcf
ab + 2tcĥ

[a
n

n

∇b]ξn)

= −tc(
n

∇[aξb] − ξnξ[aQb]
n − fab)

= −tc(
n

∇[aξb] − fab),

where we have used in the second equality that hanQnb = hn[aQ
b]c

n = 0 and that

fab is antisymmetric, in the third equality that Q
[bc]

a = 0 and that hanQnb = 0
implies tnh

amQ bn
m = 0, and in the fourth equality again that hanQnb = 0.

But if
c

∇[aξb] = 0, then
n

∇[aξb] = L
[ab]

nξn = −(
n

∇[aξb] − fab) and hence
n

∇[aξb] = 1
2f

ab. It follows that
n

∇[aξb] = 0 iff fab = 0. But this is equivalent to
the requirement that fab = t[aϕb] for some covector ϕa.
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Next, note that

K [ab]
c =

1

2
(Tc

ab + 2tcf
[ab])

=
1

2
(ĥcmTmab + 2tcf

ab)

= tcf
ab,

where we have used again that fab is antisymmetric in the second equality and

that T abc = 0 in the third. So if
c

∇[aξb] = 0,
t

∇[aξb] = K
[ab]

nξn = fab, which
completes the proof by the same reasoning as above.

Corollary 3.1. Let ⟨M, ta, h
ab⟩ be a non-relativistic spacetime, with ta and hab

defined as above, and consider three connections: a curvature based connection
c

∇, a non-metricity based connection
n

∇ with
n

∇atb = Qab and
n

∇ah
bc = Q bc

a ,

and a torsion based connection
t

∇. Let
c

∇ = (
n

∇, La
bc) = (

t

∇,Ka
bc), where

La
bc and Ka

bc are given in (12) and (11) respectively. Suppose that hanQnb =

hn[aQ
b]c

n = 0, T abc = 0, and fab = t[aϕb] for some covector ϕa. Let ξa be the
unit timelike vector field with respect to which La

bc and Ka
bc are defined, and

suppose that
c

∇[aξb] = £ξh
ab = 0. Further suppose that hab is flat.15 Then

c
⟳,

n
⟳,

t
⟳ are standards of rotation compatible with the metrics and

n
⟳=

c
⟳=

t
⟳.

Proof. This follows immediately from propositions 1, 2, 3 and proposition 1 of
(Weatherall 2018), using that flat, compatible, torsion-free connections always
determine the same standard of rotation.

Our claim that Maxwellian spacetime is the invariant kinematic structure of
the non-relativistic geometric trinity then rests on the status of four conditions:
(i) that hab is flat, (ii) that fab = t[aϕb], (iii) that the unit timelike vector field ξa

with respect to which the contorsion and distortion tensors are defined satisfies
c

∇[aξb] = £ξh
ab = 0, and (iv) that hanQnb = hn[aQ

b]c
n = 0, T abc = 0. We will

now remark on each of these conditions in turn.
Beginning with (i), this is entailed by the geometrised Poisson equation of

NCT (Malament 2012, proposition 4.1.5), and so holds automatically in all
three nodes of the non-relativistic geometric trinity. For (ii), we have already
noted in 2.2 that the tensor fab is restricted to take this form from the non-
relativistic limit; thus, restricting to the versions of TENC and STENC that can
be understood as the non-relativistic limits of TEGR and STEGR (respectively)
is sufficient to ensure that this condition is satisfied.

For (iii), the fact that there exists a unit timelike vector field such that
c

∇[aξb] = £ξh
ab = 0 follows from the second Trautman condition (9) of NCT,

so (iii) can always consistently be imposed. As justification for (iii), note

15. In the sense that for all spacelike hypersurfaces S, D commutes on spacelike vector fields,
where D is the unique spatial derivative operator such that Dahbc = 0.
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that the unit timelike vector field with respect to which the contorsion and
distorsion tensors are defined receives (roughly) an interpretation as an ‘iner-

tial’ observer, which experiences a four-acceleration ξn
c

∇nξ
a − ĥa

mξn
n

∇nξ
m =

ξn
c

∇nξ
a−ξn

t

∇nξ
a = 2ξnfnmhma = ϕa due to gravitational interactions in NCT.

So insofar as (iii) is supposed to define what we mean by an inertial observer
in NCT (see, e.g. Wolf, Read, and Vigneron (2023), Teh (2018), and Schwartz
(2023)), this restriction is well-motivated.

Finally, consider the condition (iv). One can show (see appendix B) that

necessary and sufficient for
t

∇ and
n

∇ to agree with the unique compatible
torsion-free spatial derivative operator D when projected onto each spacelike
hypersurface S are the conditions hanQnb = hnaQ bc

n = 0, T abc = 0. In turn,
this agreement with D is necessary for the recovery of the Poisson equation in
TENC or STENC. So insofar as one understands TENC and STENC as theo-
ries in which one can derive the Poisson equation, (iv) must be included as an
additional assumption.

To summarise the results of this section so far, then: we’ve isolated a
Maxwellian spacetime structure as the common core of the non-relativistic ge-
ometric trinity. The next point to note is that this structure is sufficient to
formulate the dynamics of Newtonian gravity. This was first shown by De-
war (2018), and recently given an ‘intrinsic’ formulation by March (2023b) and
Chen (2023); the resulting theory—‘Maxwell gravitation’—has models of the
form ⟨M, ta, h

ab,⟳,Φ⟩. Together with propositions 1, 2, and 3, and corollary
3.1 this substantiates our earlier claim that MG constitutes the dynamical com-
mon core of the non-relativistic geometric trinity. It also paves the way for an
interpretation of Newtonian gravity on which the structure it attributes to the
world is strictly less than that of a connection.

This takes us to the connection with Corollary VI and the Trautman sym-
metry, to which we alluded in Section 1. As articulated by Jacobs (2023), the
‘dynamic shift’ symmetry of potential-based Newtonian gravity à la Corollary
VI and the Trautman symmetry in which the connection and gravitational po-
tential are altered simultaneously can be understood as being two sides of the
same coin: both consequences of the invariance of the Newtonian dynamics
under the Maxwell group. But Maxwell transformations produce a linear, time-
dependent acceleration of the matter content of the original solution. Prima
facie, one might think that purging the theory of this symmetry would involve
excising the structure needed to make sense of such linear accelerations—to wit,
a connection—leaving only the standard of rotation.

In that sense, that MG should be the dynamical common core of the non-
relativistic geometric trinity was already suggested by the dynamical symmetries
of Newtonian gravity. On the one hand, the irrotational degrees of freedom of
the connection were already known to be superfluous to the internal dynamics of
the matter distribution. On the other hand, agreement on the rotation standard
is necessary for empirical equivalence to standard Newtonian gravity.

What, then, to make of the fact that one can also use Trautman symmetry
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to motivate the move to NCT? One way to think about this is that while we
are always free to define a connection from the standard of rotation and matter
distribution by coupling the degrees of freedom of the connection to the matter
distribution, there is necessarily a certain amount of slack in how this connec-
tion is constructed. This is because the projective degrees of freedom of an
affine connection far outstrip the degrees of freedom of the matter distribution.
Taking up this slack in different places allows us to express Newtonian gravity
as a theory of curvature, or torsion, or non-metricity—in some cases, we can
even specify the connection uniquely! That we can specify the curvature-based
connection uniquely under certain weak conditions on the mass density field is

what ensures that
c

∇, as well as the rotation standard, is also an invariant of
Trautman gauge symmetry. But the fact remains viz-à-viz Corollary VI that
the full structure of an affine connection is not needed to support the dynamics,
and so, if one introduces such a connection, one has to reckon with the fact
that—again, necessarily—there are multiple distinct ways of doing so.

4 GR as the relativistic common core

Recall that the projective structure of a spacetime theory identifies a certain
subset of worldlines as the (unparameterised) geodesics; the conformal structure
of a given relativistic spacetime theory specifies a lightcone at every spacetime
point (see e.g. Matveev and Scholz (2020)). Famously—a result going back to
Weyl (1921)—a Lorentzian spacetime is fixed by its associated projective and
conformal structure: see Malament (2012, ch. 2); the corresponding existence
result was proved by Ehlers, Pirani, and Schild (2012), and is discussed further
by Adlam, Linnemann, and Read (2024). Wolf, Sanchioni, and Read (2023)
identify that one can move between nodes of the relativistic geometric trinity
by modifying projective structure while leaving conformal structure unchanged
(for all three theories leave lightcone structure unmodified); in a similar manner
(one ultimately irrelevant to our purposes here, but perhaps nevertheless worth
pointing out) one can move to non-relativistic theories by ‘widening the light-
cone’, thereby changing conformal structure (this constitutes a geometrical way
of thinking about taking the non-relativistic limit: see Malament (1986)).

The three nodes of the relativistic geometric trinity then all agree on confor-
mal structure. But the reason for this is that they all agree on metric structure
(see §2.1). This means that the invariant kinematical structure of the relativis-
tic geometric trinity is ⟨M, gab,Φ⟩. Is this structure sufficient to formulate the
dynamics of the relativistic trinity—i.e. a dynamical common core?

We claim that the answer to this is ‘yes’, on at least one plausible way of un-
derstanding what the ‘structure’ associated to a theory is. For this, recall that
the Levi-Civita connection of GR is definable from the metric. So if one under-
stands the ‘structure’ of a theory to include (a) all those structures to which
the theory is explicitly committed—i.e. which show up between the angle brack-
ets of its models—and (b) any structures which are definable therefrom, then
the relativistic geometric trinity does indeed have a dynamical common core,
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which is just GR—unlike the non-relativistic geometric trinity (the dynamical
common core of which is MG), the common core is not a distinct theory.

Several points are in order here. First one might question whether the above
claim about the structural commitments of theories is correct. Second, given
that ⟨M, gab,Φ⟩ is the invariant kinematical structure of the relativistic geo-
metric trinity, one might quite reasonably ask whether it is the case that the
structure of MG can be, in some sense, seen to arise as the non-relativistic limit
of this. (This is especially pressing given that in §2.2 we identified NCT, rather
than MG, as the non-relativistic limit of GR.) Third, if the dynamical common
core of the relativistic trinity is GR, then one might wonder about the connec-
tion to Knox’s apparently similar claim that in TEGR, “the old entities from
GR appear to be waiting in the wings” (Knox 2011, p. 273). We’ll now address
each of these in turn.

Beginning with the first, we claim that the above characterisation of ‘struc-
ture’ (which follows the lead of Barrett (2017)) is indeed a natural and plausible
one, and one which, moreover, is assumed throughout philosophical discourse
on the structure of theories. To expand on what we mean here, consider the
following representative statements:

(i) A cotangent bundle T ∗M comes canonically equipped with a symplectic
form, so a cotangent bundle has the structure of a symplectic manifold.

(ii) From the electromagnetic 1-form Aa on ⟨M,ηab⟩ we can define the Faraday
tensor Fab but not vice versa, therefore this 1-form has more structure than
the Faraday tensor.

(iii) Full Newtonian spacetime ⟨M, ta, h
ab, ξa⟩ has more structure than Galilean

spacetime ⟨M, ta, h
ab,∇⟩; it has all the structure that Galilean spacetime

does, but also has a standard of rest.

These statements are intuitively compelling, and moreover, strike us as true.
But unless our claim about what one should take the structure of a theory to
include is correct, it is difficult to make sense of this. E.g., on (i), nowhere
in writing down ‘T ∗M ’ did we explicitly write down a symplectic form ω on
T ∗M ! On the other hand, our claim about the structure of theories offers an
elegant explanation of why we should think these statements are true. E.g., on
(iii), the fact that full Newtonian spacetime has all the structure that Galilean
spacetime has (despite the connection not showing up explicitly in its models)
can be seen by noting that the Galilean connection is definable from the metrics
and standard of rest (see Malament (2012, Proposition 4.2.4)).

Turning now to the second, consider the non-relativistic limit of ⟨M, gab,Φ⟩.
In the non-relativistic limit, the metric degenerates (see Malament (1986)), leav-
ing us with ⟨M, ta, h

ab,Φ⟩. This structure is certainly not sufficient to formulate
the dynamics of Newtonian gravitation theory—hence it is standard to take the
non-relativistic limit of the formulation of GR presented in §2.1 which explic-
itly includes the connection, which gives us NCT. However, once we have taken
this limit—which gives us the geometrised Poisson equation and (8)—we still
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need to impose (9) for full empirical equivalence with Newtonian gravity. What
happens if we also impose (9) on the spacetime ⟨M, ta, h

ab,Φ⟩?
The basic point here is that for it even to make sense to talk of imposing

(9), we still need to introduce some extra structure to ⟨M, ta, h
ab,Φ⟩. But since

(9) is equivalent to the condition that (a) hab is flat, and (b) there exists a
unit timelike vector field on M which is twist-free and rigid (Malament 2012,
Proposition 4.2.4), this structure is strictly less than that of a connection—we
only need the standard of rotation. So by taking the non-relativistic limit of
⟨M, gab,Φ⟩, and then imposing the most minimal structure needed to make sense
of the conditions for empirical equivalence to Newtonian gravity, one arrives
naturally at the structure of Maxwellian spacetime. It is in this sense that
the invariant kinematical structure of non-relativistic trinity—i.e. Maxwellian
spacetime—can be seen as the non-relativistic limit of the invariant kinematical
structure of the relativistic trinity ⟨M, gab,Φ⟩.

Finally, we move to our third point—viz., the connection with Knox (2011).
On this, it is worth emphasising that Knox’s aims are somewhat different to
ours—Knox is primarily concerned with whether GR and TEGR are in some
sense equivalent theories, rather than with identifying their common mathe-
matical structure. Nevertheless, there is a close relationship between Knox’s
argument and our own. For example, whereas Knox takes the fact that the
metric and Levi-Civita connection are still definable in TEGR (and moreover,
that matter still couples to the Levi-Civita connection) to suggest that TEGR
is a mere notational variant of GR, we have argued that this means that GR
can be seen as the dynamical common core of the relativistic trinity—in which
case, the dynamics of GR are indeed somehow ‘contained’ in the dynamics of
TEGR, which is very much in the spirit of Knox’s point. Yet, contra Knox, and
as argued by Mulder and Read (2023) and Wolf, Sanchioni, and Read (2023),
there are still important reasons to regard GR, TEGR, and STEGR as distinct
theories and not merely notational variants of each other—the ‘surplus’ struc-
ture that is present in TEGR and STEGR is seen by many as important for
theoretical and physical reasons that lead them to be actively pursued as viable
gravitational theories.

5 Conclusions

In this article, we’ve shown that Maxwell gravitation constitutes the mathemat-
ical common core of the recently-discovered non-relativistic geometric trinity of
gravity (first presented by Wolf, Read, and Vigneron (2023)); we’ve also ex-
plained why the common core of the relativistic geometric trinity is GR, but
this common core interpretation is less compelling than in the case of the non-
relativistic trinity. In undertaking this work, we take ourselves to have made
good on the exhortation of Lehmkuhl (2017) to explore and chart the ‘space of
spacetime theories’—at least with respect to this small (albeit philosophically
important!) corner of the landscape.

There are many future prospects; here we mention just two. First: one
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might be interested in whether (a) there exists an extended non-relativistic
geometric trinity for the off-shell Newtonian limit presented by Hansen, Hartong,
and Obers (2020) (this question was also raised by Wolf, Read, and Vigneron
(2023)), and (b) if so, whether there exists a dynamical common core to this
non-relativistic trinity. And second: one might wonder whether (a) there exists
an ultra-relativistic geometric trinity obtained by taking the ultra-relativistic
(i.e. roughly speaking, c → 0) limit of the relativistic geometric trinity, and (b)
again whether there exists a dynamical common core to that trinity also.
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A Alternative expressions for the non-relativistic
distorsion

In this appendix, we show that the non-relativistic distorsion tensor can be
written in a couple of different ways. First, note that

1

2
ĥbnĥcm(harQ nm

r − hnrQ am
r − hmrQ na

r )

=
1

2
(ĥbnĥcmharQ nm

r − (δ r
b − tbξ

r)ĥcmQ am
r − (δ r

c − tcξ
r)ĥbnQ

na
r )

=
1

2
(ĥbnĥcmharQ nm

r − 2ĥn(bQ
na

c) + 2ξrt(bĥc)mQ ma
r ).

But

La
bc = hsa

(
∇(bĥc)s −

1

2
∇sĥbc

)
+ ξa∇(btc) + 2hant(bfc)n

= −1

2
hanĥbmĥcrQ

mr
n + ĥn(bQ

na
c) − ξaξnt(bQc)n + 2hant(bfc)n + hant(bgc)n

(see Appendix B of Wolf, Read, and Vigneron (2023) for derivation), so that

La
bc = −1

2
ĥbnĥcm(harQ nm

r − hnrQ am
r − hmrQ na

r ) + ξnt(bĥc)mQ ma
n

− ξaξnt(bQc)n + 2t(bfc)nh
na + 2t(bgc)nh

na.
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B Restriction of torsionful and non-metric con-
nections to spacelike hypersurfaces

In this appendix, we prove two propositions regarding the restriction of torsion-
ful and non-metric connections to spacelike hypersurfaces. The first is this:

Proposition 4. Let ∇ be a torsionful connection on ⟨M, ta, h
ab⟩, and let D

denote the induced spatial derivative operator on each spacelike hypersurface S.
Then D is torsion-free iff T abc = 0.

Proof. Let α be an arbitrary scalar field. We have that

2D[aDb]α = 2ĥn
[aĥ

m
b]∇n∇mα

= Tn
ab∇nα− 2t[aξ

n∇|n|∇b]α− 2t[bξ
n∇a]∇nα,

so that D[aDb]α = 0 iff Tn
ab∇nα− 2t[aξ

n∇|n|∇b]α− 2t[bξ
n∇a]∇nα = 0. But

ξrξs(Tn
rs∇nα− 2t[rξ

n∇|n|∇s]α− 2t[sξ
n∇r]∇nα) = 0

and

hraξs(Tn
rs∇nα− 2t[rξ

n∇|n|∇s]α− 2t[sξ
n∇r]∇nα)

= ξsTna
s∇nα+ harξn∇n∇rα− ξnhar∇r∇nα

= ξsTna
s∇nα− ξnharTm

rn∇mα

= ξsTna
s∇nα− ξnTma

n∇mα

= 0,

so this is equivalent to the requirement that hrahsb(Tn
rs∇nα−2t[rξ

n∇|n|∇s]α−
2t[sξ

n∇r]∇nα) = Tnab∇nα = 0 for all α. But this will be true just in case

T abc = 0.

The second proposition is this:

Proposition 5. Let ∇ be a non-metric connection on ⟨M, ta, h
ab⟩, and let D

denote the induced spatial derivative operator on each spacelike hypersurface S.
Then D is metric compatible iff Qa

b = Qabc = 0.

Proof. First, we have

Dah
bc = ĥn

a∇nh
bc = ĥn

aQ
bc

n = Q bc
a − taξ

nQ bc
n ,

so that Dah
bc = 0 iff Q bc

a −taξ
nQ bc

n = 0. Since ξm(Q bc
m −tmξnQ bc

n ) = 0, this
latter condition is equivalent to the requirement that ham(Q bc

m − tmξnQ bc
n ) =

Qabc = 0.
Next, we have

Datb = ĥn
aĥ

m
b∇ntm = ∇atb − ξnta∇ntb − ξmtb∇atm + tatbξ

nξm∇ntm,
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so that Datb = 0 iff ∇atb − ξnta∇ntb − ξmtb∇atm + tatbξ
nξm∇ntm = 0. But

ξr(∇rtb − ξntr∇ntb − ξmtb∇rtm + trtbξ
nξm∇ntm)

= ξr∇rtb − ξn∇ntb − ξrξmtb∇rtm + tbξ
nξm∇ntm

= 0

so this is equivalent to the requirement that hra(∇rtb− ξntr∇ntb− ξmtb∇rtm+

trtbξ
nξm∇ntm) = ∇atb − ξmtb∇atm = ĥm

bQ
a
m = 0. Since ĥa

b is nowhere
vanishing, this will hold just in case Qa

b = 0.
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Jiménez, Jose Beltrán, Lavinia Heisenberg, and Tomi S. Koivisto. 2019. “The
Geometrical Trinity of Gravity.” Universe 5 (7). issn: 2218-1997. https:
/ /doi . org / 10 . 3390 /universe5070173. https : / /www .mdpi . com/2218 -
1997/5/7/173.

Knox, Eleanor. 2011. “Newton–Cartan Theory and Teleparallel Gravity: The
Force of a Formulation.” Studies in History and Philosophy of Science Part
B: Studies in History and Philosophy of Modern Physics 42 (4): 264–275.
https://doi.org/10.1016/j.shpsb.2011.09.003.

Knox, Eleanor. 2014. “Newtonian Spacetime Structure in Light of the Equiva-
lence Principle.” British Journal for the Philosophy of Science 65 (4): 863–
880. https://doi.org/10.1093/bjps/axt037.

Künzle, H. P. 1976. “Covariant Newtonian limit of Lorentz space-times.” Gen-
eral Relativity and Gravitation 7 (5): 445–457. https://doi.org/10.1007/
BF00766139.

23

https://doi.org/10.1016/j.shpsb.2019.04.005
https://doi.org/10.1016/j.shpsb.2019.04.005
https://doi.org/10.1103/PhysRevLett.122.061106
https://doi.org/10.1103/PhysRevLett.122.061106
https://link.aps.org/doi/10.1103/PhysRevLett.122.061106
https://link.aps.org/doi/10.1103/PhysRevLett.122.061106
https://doi.org/10.1007/JHEP06(2020)145
https://doi.org/10.1007/JHEP06(2020)145
https://doi.org/10.1007/JHEP06(2020)145
https://doi.org/https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/https://doi.org/10.1016/0370-1573(94)00111-F
https://www.sciencedirect.com/science/article/pii/037015739400111F
https://www.sciencedirect.com/science/article/pii/037015739400111F
https://doi.org/10.1016/j.physrep.2018.11.006
https://doi.org/10.1016/j.physrep.2018.11.006
https://arxiv.org/abs/1807.01725
https://doi.org/10.1017/psa.2023.13
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://www.mdpi.com/2218-1997/5/7/173
https://www.mdpi.com/2218-1997/5/7/173
https://doi.org/10.1016/j.shpsb.2011.09.003
https://doi.org/10.1093/bjps/axt037
https://doi.org/10.1007/BF00766139
https://doi.org/10.1007/BF00766139


Künzle, Hans-Peter. 1972. “Galilei and Lorentz Structures on Space-Time: Com-
parison of the Corresponding Geometry and Physics.” Annales Institute
Henri Poincaré 17:337–362.
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