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Abstract: This paper provides an analysis of the possibility space concept in neuroscience and its 

role in understanding and explaining complex systems, such as the brain.  Our analysis merges 

neuroscience examples with recent work in philosophy of science to suggest that the notion of a 
system’s possibility space involves two essential types of constraints, which we call hard and soft 

constraints. Our analysis focuses on a domain-general notion of possibility space, present in manifold 

frameworks and representations, phase space diagrams in dynamical systems theory, and 
paradigmatic cases such as Waddington’s epigenetic landscape model. After building the framework 

with such cases, we apply it to three main examples in neuroscience: adaptability, resilience, and 

phenomenology.  We explore how this framework supports a philosophical toolkit for neuroscience 
and how it helps advance recent work in philosophy of science on constraints, scientific explanation, 

and impossibility explanations.  We show how fruitful connections between neuroscience and 

philosophy can support conceptual clarity, theoretical advances, and the identification of similar 
systems across different domains in neuroscience. 

  

 

1. Introduction. Neuroscience research is engaged in the study of complex systems, exemplified by 

its focus on the brain. In this research, there is interest in identifying various states and capacities of 

the brain, what produces these states, and how they change over time. While there is significant 

diversity across types of research with this focus, there are recurring and foundational concepts that 
are shared across this work and important for understanding behaviors of complex systems. One of 

these concepts is the notion of a system’s possibility space, which refers to its total set of available 
states given some outcome(s) of interest. Our analysis focuses on a domain-general notion of 

possibility space (Fig 1), present in manifold frameworks and representations, phase space diagrams 
in dynamical systems theory, and paradigmatic cases such as Waddington’s epigenetic landscape 
model. This paper examines the possibility space concept in complex systems, focusing on the brain 

and current methodology in neuroscience.  Our goal is to provide a philosophical toolkit that supports 
conceptual clarity around discussions of possibilities, impossibilities, and relevant constraints as 

they present in complex systems.  We explore how the possibility space framework captures different 

explanations of complex systems, different constraints on complex systems, and unique features 

these systems have that are more challenging to capture in alternative frameworks. 
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Figure 1.  Manifold of possibilities: (A) Representation of Waddington’s epigenetic landscape, in which a ball 

rolling along a landscape is analogized to an undifferentiated cell taking on different states.  The ball’s trajectory 
is guided by a landscape of valleys and hills, which constrain its trajectory.  Similarly, an undifferentiated cell 

can move through different states, which are also guided and constrained by various factors.  The landscape 
captures possibilities or possible states of the ball, states that are more (and less) likely, and also constraints 
that guide these sequences of states. (B) A network diagram captures similar features, as it involves a set of 

nodes that can be differentially engaged in a network.  There is a possible space dictated by connections among 

these nodes that determine which network states can be occupied and in what order.  

 

Our interest in this topic grew from the realization that many descriptions and explanations of 

brain capacities rely on characterizations of the brain’s possibility space and that the possibility space 
concept relates to other important notions in neuroscience and philosophy.   For example, in the 

neuroscience literature, recent accounts of hidden repertoires rely on characterizations of unrealized 

states, as they capture inaccessible pockets of possibility space in the context of brain dynamics 
(McIntosh & Jirsa, 2019). Such proposals are couched in the dynamical systems framework of 

Structured Flows on Manifolds, which links cognitive architectures and clinical conditions to 
possibility space. Additionally, notions of adaptability, resilience, and phenomenology often refer to 

brain states that are impossible or possible for a system, and more or less accessible to the system as 

a whole.  A further motivation for this analysis is the emergence of related work in the philosophy of 

science that examines different types of constraints and their relation to scientific explanation and 
the possibility space concept.1 Various analyses have explored other types of constraints in science, 

the role of these constraints in providing scientific explanations, and, in particular, their ability to 
provide “impossibility explanations’’ (Anderson, 2016; Lange, 2016; Ross, 2023).  Other work 

 
1This is seen in work by Silberstein (2021) on “global constraints’’ and “multiscale contextual constraints”, 
Lange on “constraint-based explanations” (2018), Anderson (2015) on “enabling constraints” and Ross (2023) 
on causal, mathematical, and physical-law constraints 
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examines the unique features of constraints and how they differ from standard mechanistic models 
of complex systems (Bolt et al., 2018; Raja & Anderson, 2021; Silberstein, 2021).   

 

In this work, we define the possibility space concept and then examine it in the context of three 
main topics in neuroscience---adaptability, resilience, and phenomenology.  We provide an account 
of how the possibility space concept figures in explaining and understanding the brain and other 

complex systems.  We also explore how the possibility space concept relates to other foundational 
notions in the study of complex systems, such as constraints on a system, impossible states of a 

system, and the idea of hidden repertoires.  In the following sections we examine two types of 

constraints—hard and soft constraints—and how they capture different limitations on complex 

systems.  We then show how possibility space representations involve various types of soft 
constraints, which capture trajectories through possible states, states that are more or less 

accessible, and even pockets that can be concealed, such as hidden repertoires.  We then apply this 
framework to gene regulatory network analyses and three main neuroscience cases, in particular, 

adaptability, resilience, and phenomenology. 

 

2. Possibility space.  Complex systems that evolve in time (aka dynamic) are described by a set of 
variables that unambiguously define the system’s state. In classical mechanics, a pendulum has the 

state variables position and velocity; in thermodynamics, a gas is fully described by the totality of the 
kinetic variables (position and velocity in 3D) of its molecules; and in neuroscience, a neuron’s 

electric activity is captured by its membrane potential and the kinetic variables associated with ion 

channel opening probabilities (Hodgkin Huxley equations). The more components a system has, the 
more state variables it has, and its dimension increases. As time evolves, the system traces out a 

trajectory in the state space spanned by its state variables. In general, complex systems will be 
nonlinear, which refers to the relationship between the state variables and its change of rate. Linear 

approximations work well only for certain conditions (e.g., the linear pendulum for small angles). 

Outside of these ranges, complex systems—from artifacts to living organisms— can express their 

nonlinear behavior, of which the coexistence and multistability of behaviors is one fundamental 
property. Importantly, they display this repertoire of states for the same system configuration, that 

is the setting of the system’s parameters (such as the pendulum's length in the previous example). 
As the system’s configuration changes, the system’s repertoire of states may also change. For 

example, a dimmer light bulb can be in many different states, including ‘off’ or in the states of emitting 

light at ‘low,’ ‘medium,’ or ‘high’ levels, depending on the system parameter’s setting (the dimmer’s 
position). Human auditory systems can detect the presence and absence of sound, in addition to 

varying pitches within a given range. A neuron’s firing frequency and response speed can take on 
value within a range of states specific to the neuron. The possibility space is the set of available states 

for a system, defined by the nonlinear properties of the system itself (establishing its dynamic 

repertoire) and its configuration (its parameter settings). It depends on many factors, including the 

particular property or behavior in question (such as light emission, sound detection, firing frequency, 
and so on), how this property is defined or characterized, and features in the environment, 

background, or context of the system of interest, to name a few.  Strictly speaking, the states do not 
have to be static in terms of “having no change of rate” in terms of time evolution, thus representing 
characteristic behaviors captured by different domains in state space. The system may occupy such 

domains for a finite time and then reorganize and evolve somewhere else. For instance, an oscillatory 

behavior may be shown until the system fatigues or runs out of energy, then changes its behavior (or 

state) and transits into rest. We will use the term “state” in this more general sense of behavior.  
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3. Hard constraints. One implication of the fact that systems have properties that can present in a 

range of available states is that they also have states that are impossible as they cannot realized 

physically or are off-limits. Many of these impossible states are not just uncommon or rarely 
realized—they are strictly impossible and unavailable to the system. For example, it is impossible for 

a household oven to heat itself to 2,000 degrees Celsius, it is impossible for the human auditory 
system to detect sound below 10Hz or above 25 kHz, and it is impossible for human neurons to 

transmit signals at 500 meters per second (or faster). It might be possible for other systems to exhibit 
these states, but for the system in question, these states are unavailable. This limit on a system’s 

states, particularly the border between states that are impossible versus possible for a system is 
captured by what we call hard constraints. In this sense, hard constraints capture limits on the 

system’s behaviors that are hard in that they specify what is strictly unavailable. In the context of 
brain behaviors, clear examples of hard constraints are differences in anatomical connectivity (or 
macroscale wiring), limits when it comes to signal speed and processing, and limits on the 

environmental conditions under which brains can perform (such as temperature, energy resources, 

etc.).2   

An ordinary life example that helps capture hard constraints and impossible states—and one that 

is often used to capture complex systems—is the game of chess (Holland, 2014). At any point in a 
game of chess there are available moves that the player can make, but there are also strict limits to 

these moves. For example, in the game’s opening, the Queen cannot move diagonal six spaces and at 

no point in the game can the knight move just a single space forward. The rules of chess are similar 

to what we call hard constraints—these rules constrain local moves and how the game can evolve 
(Holland, 2014; McIntosh & Jirsa, 2019). Examples of hard constraints from scientific contexts include 

various laws of nature and mathematical properties that constrain living systems and, in so doing, 
explain outcomes that they can and cannot produce (Lange, 2016; Ross, 2023; Silberstein, 2021).3  

For example, both (a) physical laws (such as gravity) and (b) mathematical relationships (such as the 

square cube law) together explain why there are limits on the sizes and types of bodies of living 
systems on planet Earth, a finding identified as early as the work of Galileo.  Both (a) and (b) clarify 

why some large body frames are structurally impossible (they would collapse under their own 
weight) and why small body frames are metabolically impossible (as they could not retain sufficient 

heat given to support metabolism).  The role of hard constraints in these cases always depends on 

specified properties of interest, including the system, environment, timescale, and traits in question.  

This notion of hard constraints is similar to Maynard-Smith et al.’s (1985) discussion of the 
“inescapability” and “bindingness” of constraints—essentially, how fixed, strict, and unbreakable 

constraints are for a system.4  While the rules of chess and the law of gravity are ‘’inescapable’’ for 
the systems above, the following section considers constraints that are less `”binding’’ and that 

operate as suggesting, guiding, and channelling—we call these soft constraints, discussed in the next 

section.   

 

 
2 In this manner, structural connectivity “establishes a deterministic architecture” that captures spatial and 
temporal constraints. We discuss these and other brain-related cases in more detail shortly. 
3 In fact, the rules of chess are often analogized to laws of nature---both play a constraining role on systems of 
interest, what they can and cannot exhibit, and how they can evolve over time. 
4 Maynard-Smith et al. (1985) consider constraints in the context of organism development and identify various 
distinctions across constraint types, including how binding they are and how universal or local their 
constraining influence is. 
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 Constraints have received significant attention in recent philosophical work.  One reason is that 
constraints appear to provide important types of scientific explanation, but they differ from standard 

explanatory factors (Raja & Anderson, 2021; Ross, 2023; Silberstein, 2021).  Many accounts of 

scientific explanation focus on explanations of why a system exhibits one possible outcome over 

another.  This is seen in explanatory why-questions that ask why an organism shows a particular eye 
color (from some available range), a particular height (from some set of possibilities), or some 

diseased state versus a non-diseased state.  In these cases, the explanatory target consists of a range 
of possible outcomes, while the explanatory factors (often causes or mechanisms) explain why one 

possible outcome was produced instead of another.  In contrast to this picture, one explanatory role 

of constraints—particularly the hard constraints discussed in this section—is to explain why some 

outcomes are strictly unavailable or off-limits to a system.  As we will see soon, this is related to claims 
that constraints provide “impossibility explanations,” which differ from explanations of why one 
possible outcome (over other possibilities) is produced (Lange, 2016). 

To examine this further, consider a framework suggested by Ross (Ross, 2024) for capturing 

constraints and their role in scientific explanation.5 On this account, constraints are factors that are: 

(i) external to a system of interest, (ii) viewed as relatively fixed compared to other explanatory 

factors, and (iii) structure or guide the system as opposed to triggering or determining its behavior 
(Ross).  Notice how these three features are present in our chess example—the rules of chess are 

external to the moves of the game, these rules are fixed relative to players choices about which next 
move to make, and these rules limit or guide plays in the game, without determining which exact play 

will occur next.6   

However, while many generic constraints have these three features, hard constraints have the 
additional feature of (iv) specifying states that are strictly off-limits and impossible for the system.  

To see that some constraints lack (iv), consider that some constraints (such as a lack of resources, 
types of peer pressure, and imposed speeding laws) can make various behaviors less likely, without 

strictly outlawing them.  A unique feature of hard constraints is that they capture and explain why 

some behaviors are strictly off-limits.  This helps capture how hard constraints provide explanations 
and understanding of complex systems.  First, (2.1) hard constraints can be used to provide 

“impossibility explanations,” which explain why particular outcomes are impossible or off-limits for 
a system (Lange, 2016; Ross, 2021b).  In order to see this, consider the seven bridges of Königsberg 

example, in which a graphical or network model captures “topological constraints” that explain.  In 

this case, the question was posed whether it was possible to walk a single path across each of the 

seven bridges of Königsberg exactly and only once.  After much interest in the question, Euler 
provided a proof demonstrating that bridge systems with such a path (what we now call an Eulerian 

path) need to meet two criteria. When the bridge system is represented graphically, all nodes need 
to have at least one connection, and there need to be either zero or two nodes of odd degree (Euler, 

1956; Ross, 2021b).  As the Königsberg bridges failed to meet these criteria, such a path was strictly 

impossible for this system.  In this case, the bridge topology is a constraint explaining why something 
is impossible for a system. These cases are viewed as “explanations by constraint,” which have the 

 
5 We do not argue that this is the only (or best) account of constraints relevant to explanation in 
neuroscience.  In fact, we connect this framework to other helpful analyses of constraints, found in the work of 
Lange (2018), Silberstein (2021), and Raja and Anderson (2021. 
6We should note that, there are some less common situations in which the rules of chess (and hard constraints) 
can determine the next play of a game.  This occurs when the rules dictate that there is only one available option 
(as all other options are unallowed).  In this manner, when hard constraints limit to such an extreme degree, 
they can actually explain why a particular outcome presents (or will present) (Ross, 2024).  
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feature of explaining impossibilities and being stronger or “inevitable to a stronger extent” than other 
scientific explanations (Lange, 2016). Similarly, the hard constraints on human audition and nerve 

signaling physiology explain why some outcomes are impossible for these systems. This explanatory 

pattern differs from standard causal or mechanistic explanations, as these explain why some actual 

state is produced among a set of possible outcomes. (as opposed to explaining why some states are 
strictly off limits). 

 

In addition to providing impossibility explanations, hard constraints can also explain (2.2) changes 

in a system over time and (2.3) comparative explanations across distinct systems.  With respect to 

(2.2), some systems acquire changes in their hard constraints, which explain changes in what is 

possible (and impossible) over time.  This is seen in various insults to the brain, such as strokes and 
trauma-induced lesions, where functional areas are irreversibly damaged in ways that prevent forms 

of cognitive functioning.  In these cases, reduced cognitive functioning is explained by changes in hard 
constraints, which further limit what is possible for the system.   This is also seen in developmental 

examples, where differentiation of neural crest/stem cells is genetically determined, forming the 

basis for sensory, motor, and autonomic functions. This genetic program is a hard constraint that 
explains the narrowing of cell type functionality through development.  The retina connects with 

visual thalamic and midbrain regions, while the cochlea connects with auditory brainstem regions. 
The strengths of these connections within pathways vary with development and experience, but the 

initial connections are hard constraints for the system architecture. 

Third and finally, (2.3) hard constraints also provide comparative explanations that capture 
variations across distinct systems.   Suppose we want to explain why dogs can hear higher-pitched 

sounds (at 30-47kHz) while humans cannot. This is explained by the fact that dogs and humans have 
different hard constraints on hearing possibilities. In other words, the difference in hard constraints 

across distinct systems explains the difference in impossible outcomes across them.  As Raja and 
Anderson state, “…if we have two similar systems but only one of them is constrained, the 

unconstrained one will exhibit more degrees of freedom in its behavior precisely because of the lack 
of constraints” (Raja & Anderson, 2021). This comparative explanation also has implications for 
phenomenology, wherein hard constraints bound the experience of the world. This may seem trivial, 

but consider the difference in perception of walking in a forest for a dog versus a human. The olfactory 
and auditory systems dominate the perception of the forest for the dog. This percept is impossible 

for humans to imagine because it lies outside the boundaries of hard constraints.  

This section highlights the main features of hard constraints, the ways they provide explanations, 
and how they capture important features of complex systems.  While hard constraints capture the 

border between impossible and possible outcomes, other constraints operate within a system’s 
possibility space. Next, we discuss possibility space considerations, types of constraints that figure in 

this space, and how such a framework captures further features of complex systems and the 

behaviors they produce. 

 

 

4. Soft constraints. In many domains, complex systems are represented as having many possible 

states and constraints that make these states more likely, accessible, or available. These features are 
represented with various possibility space concepts, frameworks, and representations.  Well-known 

and paradigmatic examples of the possibility space concept include Waddington’s epigenetic 
landscape, phase space diagrams in dynamical systems theory, manifold frameworks and 

representations, network or pathway “maps” of developmental, metabolic and other outcomes, and 
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decision-tree figures in various contexts (Huang, 2012; Izhikevich, 2007; Waddington, 1957). These 
cases rely on various representations that capture a system’s possible outcomes, how these 

possibilities have distinct features that can vary over time, and how a system flows through this space 

in exhibiting some outcomes over others.  For example, in Waddington’s epigenetic landscape, the 

changing state of a developing cell is represented by a ball rolling through a varied landscape, which 
contains valleys, hills, and varying slopes (Waddington, 1957). Different locations of the ball’s 

trajectory along the landscape represent different states of the cell, while landscape features 
constrain, enable, and channel which states are realized. Similar concepts are captured in phase 

space diagrams with attractors, detractors, and basins, which reveal possible states that are more or 

less likely than others. In other cases, network models, pathway diagrams, and decision trees capture 

how a system’s states change in sequence, represented by a trajectory through space (Ross, 2021a). 
These illustrations reflect how some routes through the space are more likely than others and how 
early “moves” change which downstream outcomes are available (or not), similar to the notion of 

path dependence.  Additionally, these possibility space landscapes can capture available states that 

the system can manifest but also states that are difficult to reach, less likely to occur, and less 

accessible than others. 

These possibility space examples typically contain three key elements: a total possibility space, 
constraints that capture guiding influences within the space, and trajectories through the space that 

capture changes in an entity’s state over time.  The guiding constraints within the possibility space 
differ from the hard constraints discussed in Section 3.  We suggest that these factors are well 

understood as “soft constraints’’ because they guide what states of the system are more (and less) 
likely to manifest, instead of specifying what outcomes are completely off-limits. In Waddington’s 

epigenetic landscape, examples of soft constraints are the valleys, hills, and slopes that channel the 
ball’s trajectory as it flows through the possibility space. While these constraints have some influence 
on the future state of the system, they do not capture impossible states, and they rarely determine 

which specific possible outcomes occur.  Other examples of such soft constraints are attractors, 

detractors, and basins in dynamical system theory frameworks and connections of available causal 

routes in pathway maps and networks. 

Many soft constraints operate as predisposing causes that guide, encourage, and influence a 
system to exhibit some states over others.7   For example, consider the different fates of a stem cell, 

the different routes blood flows through dense vasculature, and whether an individual moves into a 

state of experiencing a mood disorder.  In the stem cell case, examples of soft constraints include local 

concentrations of molecules (coenzymes, growth factors, etc.) and environmental conditions (pH, 
temperature, etc.) that selectively guide the developmental trajectory of a stem cell, encouraging it to 

mature along one developmental pathway over another.  Similarly, when blood flows through dense 
vasculature, differences in molecular, chemical, and physical factors (tissue damage factors, pH, 

vessel size, etc.) encourage more flow to areas recovering from exercise, injury, or other types of 

stress. Finally, whether an individual experiences a mood disorder (such as depression) is influenced 
by their genetic profile and environmental factors (such as stressful life events), which can each 

 
7 Our notion of soft constraints bears some similarity to the notion of “enabling constraints” discussed by 
Andersen (2016), Bolt, Anderson, and Uddin (2018) and Raja and Andersen (2021).  Main differences are that 
our notion of soft constraints does not rely on a notion of function, we adopt the three criteria in section 2 as 
capturing genetic constraints, and we distinguish soft from hard constraints (which meet these criteria, yet 
differ in other ways).  Other work in this area categorizes constraints differently (such as in terms of constraints 
that are structural, functional, strong, and weak) and a fruitful areas of future work involves identifying further 
types of constraints 



8 

encourage or discourage such conditions (without necessarily strongly determining them).  In all 
these cases, soft constraints made various states of the system more or less likely without strongly 

determining which states will present (and without dictating which states are impossible).  

Other examples of soft constraints are various cognitive limitations that restrict the capacity for 
optimal human decision-making in various contexts.  This relates to Herbert Simon’s notion of 

“bounded rationality,” in which humans engage in decision-making with “universal cognitive 
limitations” that prevent selection of perfectly optimized outcomes or decisions (Bendor, 2001; 

Simon, 1996).  For example, when selecting moves in chess, our cognitive abilities are a “binding 
constraint” that can explain why many of our decisions are suboptimal (otherwise, both players 

would choose the most optimal moves every time, and the game would be rote).  Interestingly, 
because of these limitations, humans rely on various heuristics and strategies to enhance 

performance in these cases.  Other examples of soft constraints are various cognitive limitations and 
“information-processing constraints”---these channel, guide, and limit behavioral outcomes without 
strongly dictating what is impossible or off-limits, as seen in hard constraints (Bendor, 2001). 

Possibility space representations---complete with information about soft constraints and 

trajectories driven by the nonlinear flow in state space---capture a more nuanced, dynamic picture 
of complex systems compared to models of static, fixed systems with a limited number of variables 

or causal factors.8 Furthermore, the possibility space framework captures states that are available 
but unrealized, together with different biases on which states are more likely and how such 

likelihoods change as early decisions are made and as the system evolves.  These possibility space 

models capture an additional layer of complexity in cases where the possibility space itself—in 

particular, its soft constraints and trajectories—changes over time. These changing possibility space 
models capture systems that adapt, evolve, and vary in ways that produce highly diverse and 

seemingly disrupted landscapes with residual features. Another advantage of this possibility space 
framework is that it captures systems that contain a massive number of possibilities but where the 

system only implements some of these possible outcomes for purposes of adaptation, evolvability, or 

response to insult.  An example of this from immunology is clonal selection, in which a huge diversity 
of pre-existing lymphocytes exists in the human body (Rajewsky, 1996).  This diversity covers the 

range of possible antigen types, such that the presence of a given antigen binds an existing 
lymphocyte to create specific antibodies.  The possibility space framework can help capture the 

extensive range of potential antibody responses that the immune system can have and, on the other 

hand, the particular response that the system manifests. 

 

Before we discuss neuroscience cases in more detail, it will help illustrate the applicability of 

these concepts with an expansion of the Waddington Epigenetic landscape metaphor.  In a recent 
review paper, Huang (2012) connects the epigenetic landscape metaphor with dynamical systems 

theory to show how the evolution of gene regulatory networks can be linked to the epigenetic 

landscape. A link between manifolds and flows occurs when gene expression patterns are couched in 

network expressions. Here, the manifold contains all potential gene expressions. The network 
architecture per se is a hard constraint, while the specific network state determines the gene 

expression, i.e., the soft constraints. As these networks develop, either across evolutionary time or in 
the organism's development, the broader manifold (the epigenetic landscape) is formed, containing 
all attractor basins consistent with gene expression capacity.  The manifold also contains attractors 

 
8 For an excellent account of various type of constraints in the life sciences and ways in which constraints 
provide non-mechanistic explanations, see Silberstein (2021, p. 380). 
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consistent with the architecture – possible – but unoccupied, unused, and sometimes hidden.  In 
Huang’s consideration, these unused attractors are: “inevitable mathematical by‐products of the 

network that has evolved to produce the set of ‘useful’ attractors” (Huang, 2012, supp text, p. 3). In 

other words, as an adaptive system, the gene regulatory networks can form attractors that are 

potential configurations.  Huang (2012) makes two more assertions about the unused attractors. 
First, on the negative side, these are ordinarily difficult to access, but if occupied, they could lead to 

tumorigenesis when cells, facilitated by somatic mutations that make them accessible, are trapped in 
such attractors and remain immature. Second, the unused attractors could also convey the potential 

for evolution, where adaptive pressures distort the manifold to make the attractor accessible and 

open sets of gene expression programs for exploration.  

 

 

 

 

 
Figure 2. Revised epigenetic landscape: gene regulatory networks can be linked to the epigenetic landscape 
Modified from Huang (2012). 

 

The relevance for our discourse is the link between hard and soft constraints that define 

impossible and possible spaces from the dynamical systems perspective. Insofar as the brain is a 

dynamic system, the updated epigenetic landscape analogy would be equally applicable to the brain. 
The possibility framework makes the connection between attractors in the manifold that support 

resilience and adaptability. This can be realized within the lifetime of the brain as the pressure for 

adaptation will change with development. How the developmental pressure is addressed will impart 

resilience to the system. 

Moreover, as the attractor space develops, unused attractors will also form, making the 

connection to the hidden repertoires noted earlier. As we elaborate below, the hidden repertoires 
have the same dual consequence: one that leads to pathology and another that supports a new 

adaptation. Because a brain's manifold(s) contain the entire space for possible function, we can link 

that architecture to phenomenology, where our personal experience of a situation is a consequence 

of what happened and what did not happen but was possible. Our current experience exists in the 
context of what is possible. 



10 

The dynamical systems framework, Structured Flows on Manifolds, provides a mathematical 

expression that complements the updated epigenetic landscape. Pillai & Jirsa (2017) introduced this 
framework, which was then linked to system configuration changes in neuroscience displaying 

resilience and adaptability (Jirsa, 2020). The Structured Flows on Manifolds framework emphasizes 

spatiotemporal processes encapsulated in relatively low-dimensional manifolds. The manifolds set 
the boundary conditions for the available functional configuration. The functional configuration, or 

flow, that is enacted depends on the specific demands of the situation. Thus, the actual network used 

exists atop a space of possible networks that could have been enacted within a given manifold 
architecture.  

The proposal of hidden repertoires came from the Structured Flows on Manifolds framework 
(McIntosh & Jirsa, 2019). An example, which is consistent with the negative impact of unused 

attractors, is epilepsy, where the expression of seizure activity is not commonly seen but is a capacity 
present in the system. The hidden repertoire was further elaborated to suggest that another 

pathological state, status epilepticus, was a potential that could be realized with the appropriate shift 

in a slow variable that governs seizure expression. Key to this is that the attractor space for epilepsy 

exists in ostensibly healthy manifolds but is not expressed. The second and positive, aspect of hidden 
repertoires is less definitive but can be inferred from manifold dynamics that support healthy 

behavior but with different attractor dynamics. We explore this possibility in the next section.  These 
considerations show how the possibility space concept emerges in various modeling contexts—from 

epigenetic landscape models to dynamical systems frameworks and suggest a way to understand 

multiple shared components and features across these contexts.  We examine these frameworks in 
more detail in the next section, focusing on concrete neuroscience cases.  

5. Neuroscience Examples. The possibility space framework—complete with trajectories and soft 

constraints—has several advantages in capturing complex brain behaviors, dispositions, and 

capacities. One clear advantage, articulated earlier, is the ability of this framework to capture a 

broader set of possibilities for a system, regardless of whether they have been observed by 
researchers or realized by the system. A second main advantage, discussed in more detail 

subsequently, is the ability of this framework to capture changes in the possibility space over time 
and, in particular, unique pockets of possibility space that result from changes to the brain.  Changes 
to the brain due to adaptation or evolution can create residual, hard-to-access zones and lead to 

remaining areas that are unused by enabling frequently occupied zones.  Many of these less-used 
pockets of possibility space are “hidden repertoires,” which are a type of hidden state space and 

harder to access and “invisible to other approaches,” many of which focus on actual, realized 
outcomes and more static representations of brain capacity (McIntosh & Jirsa, 2019).  A third main 

advantage is the ability of this framework to capture different explanatory patterns, such as 

explaining impossibilities, biases in states that are more (or less) likely to manifest, and ways in 

which systems evolve and change over time.  

A word about plasticity. Many features that support the possibility space in the brain can be linked to 

the notion of “plasticity.”  Insofar as the brain is a complex adaptive system, plasticity can be 
considered as the means to adapt and change. This may not be the same for all complex adaptive 

systems, such as socioeconomic systems, where adaptation comes through other mechanisms. 
However, as the behavior of complex adaptive systems can be characterized as reflecting hard and 

soft constraints, it is essential to note that the adaptive aspects of possibility space may not all come 
from plasticity in the case of the brain. To be clear, possibility space can be modified, changed, and 
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driven by plasticity, but this is not the only factor influencing adaptation and change in neural 
systems and the brain. 

In modern network neuroscience, particularly neuroimaging, there is a focus on defining 

structural and functional networks and relating their architectures to cognition and behavior. Some 
contemporary work emphasizes particular spatiotemporal scales, such as that accessible by resting-
state fMRI, which provides a partial picture of what is supported by brain networks as characterized 

by measures of statistical dependency between regions or Functional Connectivity (FC). For example, 

FC measured over long-time scales on the order of minute (static-FC) may characterize a capacity 

that enables the differentiation between persons but misses the potential faster time scale dynamics 
(seconds or shorter) that represent what each person actually does (dynamic FC). Dynamic FC may 

capture the flow of mental processes. Static FC, by the calculation, will smooth over that flow and 
provide only a glimpse of the landscape that was traversed. For instance, Khambhati and colleagues 

(2018) proposed that linear models best describe resting state dynamics after evaluating their 

predictive power using second-order derived metrics (same as static FC), biasing the analyses 

towards such smoothened behaviors. Indeed, static FC could indicate hard constraints that define the 
boundaries of the functional configuration in a brain. Dynamic FC, on the other hand, exploits the 
dynamic repertoire within the soft constraints of the system.  They may not relate to impossibility 

per se, which is better aligned to structural and biophysical constraints. Hard constraints in the 
functional space could define the collection of available network configurations but not how those 

configurations are related across time. Dynamic FC would be more sensitive to time dependence and 
give an estimate of space possibilities. The key distinction here is that the trajectories a person 

engages to flow through this space embody the flow of cognition. This flow can be quantified, and the 
paths taken are related to cognitive status.  

We discuss applications of this possibility space framework (and the hidden repertoire 
concept) in the context of three examples: adaptability, resilience, and phenomenology. Adaptability 

and resilience are related concepts, but we will consider them separately. 

4.1 Adaptability. Adaptability refers to the ability of a system to evolve and develop over time. In 

the context of the brain, this involves the capacity for various functional configurations to form, 

dissolve, and reform, supported by the brain’s inherent plasticity. Throughout development, the 
brain can adopt multiple configurations, enabling it to adapt to changing circumstances.  
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Figure 3. Symbolic depiction of an adaptive system (e.g., brain, immune system) which contains several 

network motifs that support possible function capacity (pre-existing motifs). A specific external challenge 
requires a specific motif configuration. Though the configuration does not exactly map to pre-existing motifs, 

the system’s adaptive capacity modifies an existing motif to match the challenge. The system may also replicate 
the optimal motif to impart additional resilience.   

 

Learning relates to adaptability, representing the emergence of more effective behavior for a 

given context. As a reflection of possibility space, there may be several brain configurations that are 

appropriate for a given behavior (i.e., many-to-one mapping), but some configurations will be 

reinforced as optimal for that behavior. Figure 3 shows a schematic wherein a given behavioral 
challenge is addressed optimally by a particular motif of neural interactions. For the organism, that 

precise motif is not available, but pre-existing configurations that closely resemble it are. By small 

adaptations to existing motifs, the organism adapts its behavior and that motif becomes part of the 
dynamic repertoire. 

 

Some recent work has suggested that potential configurations pre-exist in brain circuitry, 
which can be engaged for a given task and selected if the configuration is adaptive. For example, 

foundational research suggested that hippocampal ensembles “replayed” experiences, especially 

during sleep, which was thought to help reinforce memory traces (Wilson & McNaughton, 1994). 
More recent work has now show “pre-play” where ensemble activity related to learning seems to 

exist prior to the experience (Dragoi & Tonegawa, 2011). A study by Mocle et al (2024) provides an 
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interpretation for the pre-play that is similar to adaptive immunity. Some ensemble activity prior to 

training showed similar patterns to the ensemble activity engendered by learning.9 Thus, the brain 
establishes a possibility space that captures potentially useful configurations that can be reinforced 

if engaged for a given behavior.  

 
This adaptation using pre-existing motifs is similar to “adaptive immunity” in the immune 

system (Rajewsky, 1996; Rees, 2020). As noted earlier, the immune system produces an astonishing 

diversity of antibodies that do not necessarily match any antigen the organism has encountered. 
However, when a new antigen is encountered, the immune system can mobilize the collection of pre-

existing possible antibodies, adapting the configuration to best match the given antigen. Thus, the 

broad possibility space for the immune system enables rapid response (or adaptation) to a particular 
event (Rees, 2020).   

 

Numerous examples illustrate brain adaptation, often linked to neural plasticity. For instance, 

changes in neural firing patterns in response to the varying significance of stimuli are some of the 

earliest examples of adaptability (Galambos et al., 1956; McGann, 2015; Recanzone et al., 1992; 

Weinberger & Diamond, 1987). This adaptability extends to neural circuits and networks, where 
within-session learning can lead to shifts in network responses (Buchel et al., 1999; Buchel & Friston, 

1997; McIntosh & Gonzalez-Lima, 1994, 1998; McIntosh et al., 2001)     cite]. These shifts can be 

modeled as changes in the possibility space landscape (Roy et al., 2014). These changes can introduce 

new repertoires within the possibility space or alter the accessibility of existing possibilities, 

sometimes making previously accessible possibilities less reachable. Both theoretical and empirical 

work suggest this dynamic is represented by changing soft constraints and the available trajectories 
within the possibility space landscape. Moreover, work on the robustness and variability of neural 

circuits shows how neural systems can maintain function and adapt despite changes in their 

components (Marder & Goaillard, 2006). 

 

Given that neural plasticity is a fundamental property, adaptability plays a crucial role in 

maintaining desirable behavioral outcomes across the lifespan, even though the capacity for change 
diminishes with age. Neuroimaging studies have shown that older adults often use different neural 

networks to perform behaviors comparable to those of younger adults (Grady, 2012; Park & Reuter-

Lorenz, 2009). For instance, research indicates that older adults may engage different brain regions 
than younger adults to support similar behaviors (McIntosh et al., 1999). Older adults who do not 

shift to new networks often exhibit memory deficits compared to their peers (Cabeza, 2002). 

Additionally, studies on network dynamics have shown that network topology and network flows 
change in healthy aging (Cabral et al., 2017). These changes can be linked to exploring and mobilizing 

possibility space to support optimal behavior. A lack of exploration of possibility space is often 

associated with poorer cognitive function (McIntosh, 2019). 
 

Adaptability, aimed at achieving functional outcomes, is a multidimensional process well-

suited to the possibility space framework. This framework captures potential but unrealized 
outcomes, changes in capacity over time, and alterations in the landscape that are not evident in 

simpler models that assume a one-to-one mapping between brain configurations and function. 

 
9 Interestingly, this pre-existing pattern was only present in the waking period that encompassed the training, 
suggesting that new arrays of possible motifs may be generated daily.  
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Possibility space frameworks are particularly useful for modeling how neural systems adapt 
and change over time. This can be achieved by modeling changes in a system’s soft constraints over 

time, which capture states that are more or less likely to manifest, such as newly uncovered states 

and hidden states. This approach provides a comprehensive picture of a system’s new (adapted) 
capacity and possible manifestations. Further research can identify various factors that act as soft 

constraints and explore the influences that hard and soft constraints have on adaptability. 

 
 

 

4.2 Resilience. While brain resilience is defined in various ways, many of these definitions 
characterize it as the ability of the brain to produce positive, constructive outcomes in response to 

damaging or negative insults. This can involve a response to adversity that involves “bending and not 
breaking” or simply direct resistance through coping processes (McEwen et al., 2015). The possibility 

space framework helps model resilience for a few reasons. First, this framework helpfully represents 

potential backup responses or capacities when an insult strikes.  Additionally, this framework can 
represent eliminated possibilities and situations where an insult triggers a new, unique response. 

Second, the possibility space model can capture how insults result in reconfigurations of the space 
that open hidden repertoires or previously isolated pockets of space. These opened spaces can 

include pathological states (c.f., epilepsy) or functional repertoires. As Raja and Anderson state, 

“changing constraints in different ways can result in positive new capacities, but dysfunctional ones’’ 

(p. 212). 

 

Figure 4.  Schematic of degenerate manifolds in parameter space that support different behaviors in state 

space.  The parameter space is spanned by P1,  P2, and P3, wherein manifolds of parameter values that support 
the same state behaviors are contained: in (A), the singing and in (B) walking. The distribution of parameters 

in the degenerate manifold imparts a degree of resilience in that a loss of a given parameter combination, 
indicated by point in the manifold, will have minimal effect on the state space behavior. 
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Resilience per se is hard to assess empirically prior to an event. For example, there is little to 
no data on the premorbid state in persons with a stroke, making it hard to link characteristics of the 

hard and soft constraints that relate to better resilience. Most work has compared equivalent lesions 

or disease states (e.g., neurodegeneration) across an extensive demographic range to identify factors 

that relate to better recovery or reduce disease burden.  

Jirsa (2020) has proposed a mathematical formalism for resilience in dynamical systems wherein the 

concept of “degeneracy,” or more formally “neural degeneracy,” is captured in the mapping between 

state variables that drive flows on manifolds (e.g., excitatory and inhibitory currents), versus 

parameter space that captures the distribution of parameter values for the state variables. Figure 5 
illustrates two degeneracy manifolds in parameter space, one supporting state variables for singing 

and the other supporting state variables walking. The collection of parameters within the degenerate 
manifolds lead qualitatively to the same flows in state space.  

Any complex system with multiple scales and nonlinear properties will ultimately show degeneracy 
as a fundamental characteristic of its system behavior. The system can exploit the degeneracy 

manifolds to respond to altered conditions (such as injury) but within the hard constraints by moving 
along the degeneracy manifold and realizing different parametrizations of the system to accomplish 

the same behavior. The possibility space can thus be preserved. If a perturbation eliminates some 

aspects of the parameter distribution, the behavior in state space is relatively preserved.  

The parameter distribution defines the possibility space, but here, in the case of resilience, the 
possibility space supports resilience in a somewhat paradoxical way. For adaptability, a broader 

possibility space would facilitate adaptations in an enhanced capacity to create new configurations 
or modify existing ones to enhance adaptation. One could envision the opposite for resilience, where 

too broad a possibility space would result in less resilience because there are too many options. This 
apparent paradox can be resolved by considering the configurations of systems like the brain, which 
occupy an intermediate position between strong resilience and strong adaptability. Others have used 

graph theory to capture the features of the brain from the perspective of a small world, etc. Some 
have linked the brain feature to complexity, where the brain maximizes complexity through the 

intermediate position, which maximizes segregation and integration (Tononi et al., 1994).  

The hard and soft constraints factor here in that hard constraints establish the boundaries of 

possibilities. The broader the possibility space, the more opportunities there are for adaptation. The 
hard constraints also provide the boundaries for redundancy, defining the possibility space that 

imparts resilience. This balance between adaptability and resilience is central to the brain as a 

complex adaptive system. 

This balance represents flexibility captured by possibility space containing alternative repertoires or 
trajectories that serve similar functions, which could support a positive outcome following stress or 

insult. This not only allows us to explain why one individual cannot maintain resilience (and 

overcome the insult), but it also helps capture comparative differences across individuals because of 

having different capacities in their possibility spaces. Suppose one individual has some or many 
backup options, whereas another has fewer or none. In that case, this helps explain why the first 

individual will be more resilient to ensuing threats, stresses, or insults. This is important because 
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much of this explanation cites capacity, possibility, and potential spaces—this is a main advantage of 
this framework that many models cannot capture. 

A notable exception is the conceptual model of “cognitive reserve” (Stern, 2003). Especially in 

neurodegeneration, cognitive reserve has been used to convey an enhanced capacity for resilience in 
aging, where a person maintains cognitive function in the face of age-related decline in brain network 
integrity. Cognitive reserve imparts more resilience and is related to biological and lifestyle factors. 

The link to possibility space is clear, wherein a broader and more navigable possibility space would 

engender greater resilience and, hence cognitive reserve. The two constructs can provide 

complementary views of resilience, but possibility space extends beyond cognition to cover any brain 
operations.  

The intersection of adaptability and resilience relates to the notion of hidden repertoires. While the 
notion of degeneracy mapping from Jirsa covers resilience for one possible state space configuration, 

configurations may produce behavioral equivalents from different state variables (e.g., different 
regions that interact). With adaptation and experience, some configurations will likely be used more 

frequently, but as with the epigenetic landscape, the configurations that are less used still exist. If the 
system is faced with a challenge from disease or trauma, the preferred configurations may be 

compromised, which would provide an avenue to access the less used “hidden” repertoires to 

maintain function. It may very well be that the decline in performance seen in aging may relate to the 

mobilization of configurations that produce behavioral equivalents qualitatively but not 
quantitatively.  

4.3 Phenomenology. 

 

A final implication we address is that possibility space and hidden repertoires may be helpful in 
capturing notions of phenomenology. The possibility space defined by adaptive evolution relates to 

immediate experience, which is colored by what has happened and what could have happened—i.e., 
what is possible. 

 

Here, we can use the analogy Tononi (2004) developed about a photodiode and a human in a dark 

room. A small light comes on in the room. The photodiode registers the change, as does the human. 
If we express this detection as a landscape with an attractor configuration for “light on,” one can place 

this attractor in the broader landscape of possibility space. For the photodiode, its possibility space 
is only light-on vs. light-off (this is even more impoverished as there would be no concept of “light” 
either). For the human, the possibility space has a light on versus off but also has myriad other 

possibilities: red light, green light, etc. The photodiode would only register “light-on” if the light were 
red. If there was a “click” when the light came on, corresponding to the pull cord on the light, the 

human would register both the light and the sound of a click and note the red hue of the light. The 
photodiode would register light on. The click and “red” do not exist for the photodiode – these are 

impossibility explanations.   
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Figure 5. Representation of the experiences a photodiode (left) and human (right) would have to a red light, 

turned on with a pull-chain. The photodiode can only detect the presence of light, while the human, with a 
broader possibility space, has more capacity. The binary space for the photodiode registers only on vs. off. The 

more elaborate space for the human, encompassing brain networks that link inputs, captures light, and that it 
is a red light, and registers the click from the chain. The broad possibility for the human also captures other 

features of the light, embedded in the space of other possibilities that did not happen. 

 

 

Tononi further elaborates on this analogy by suggesting that our possibility provides both the 
experience of what did happen and what did not. The light was red and accompanied by a click – it 

was not green, it was not multicolor, it was a light, not a smell, etc. This richness of what did and did 

not happen influences our phenomenology. The poor photodiode will never know anything but 
“light-on” versus “light-off”. It would not even know that it does not know that – such experiences 

are impossible for this system due to its various hard constraints. For the photodiode, it would be 
unfathomable. 

 

We can further concretize this by connecting to clinical conditions that follow brain damage, which 

impairs access to possibility space and changes the person’s phenomenology. One of the most 
profound examples is anosognosia from hemispatial neglect that follows damage to the right parietal 

lobe (Parton et al., 2004). For that patient, the left hemispace no longer exists as dictated by hard 
constraints resulting from brain damage. It is not a matter of a sensory deficit but rather that half of 

their world no longer exists. The symptoms can be so extreme that some patients will not 

acknowledge the possibility of a world to the left. For them, such spatial experiences are impossible 

– it would be ludicrous to suggest otherwise.  

 

This example has further connections to the underlying brain dynamics. A study by Schirner et al. 
(2023) constructed large-scale brain network models integrating a “decision” module. The models 

were built from Human Connectome Project data, covering healthy young adults with individual 

variations in cognitive function as measured by fluid intelligence. The models showed differences in 

the exploration of attractor space/landscape in relation to both the task and fluid intelligence. 

Specifically, those with higher fluid intelligence measures explored the attractor space longer when 
task difficulty increased, leading to more accurate behavior. While a complete characterization of the 
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manifolds across variations in cognition was not done, one could infer that the manifold architecture 
changes with cognitive capacity, rendering more possibilities to be considered.  

 

Like most complex adaptive systems, we consider the idea of an expansive manifold that 
encapsulates possibility space as an optimization target. To narrow a possibility space would 
engender rapid behavior for a range of tasks (e.g., the photodiode responds very rapidly to luminance 

change) but would falter as demands changed (red vs green light). Broadening a space could lead to 
decision paralysis or engagement of attractors that may not be optimal for a behavioral demand. In 

this manner, possibility space frameworks have the potential to capture the richness, depth, and 

degree of phenomenology and experience. This is seen in comparing distinct systems (photodiode 

and human) and how particular systems change over time.   

 

 

5 What’s next?  

 

Accounts of constraints, possibility space, and impossibility explanation have received significant 
attention in philosophy but have received less formal attention in the neuroscience literature. These 

notions can support discussions around brain adaptation, resilience, and phenomenology by 
providing a framework to connect complex systems with similar properties.  Such a framework 

provides conceptual clarity, a toolbox of principled distinctions, and supports the identification of 

different processes that support function.  

 

For neuroscience, in particular, the notion of impossibility explanations and possibility space open 

new avenues of question. If we consider brain dynamics as an expression of possibility space, how 
do we study it? Methods already exist that give us glimpses. Indeed, some of the work on network 

synchrony measured with electrophysiology can be considered a means to characterize possibility 

space. Buzsaki (2006), for example, considers oscillatory activity as supporting the coordination and 

integration of neural processes, which can be linked to exploring possibility space, as these dynamics 
reflect the brain’s capacity to transition between different states. The perspective of Varela and 

colleagues (2001) underscores the importance of temporal coordination in brain function, which is 
a crucial aspect of navigating possibility space.  In functional MRI, Functional connectivity dynamics 

(FCD), for example, would express possibility space. Quantification of FCD is vital here, as one would 

expect the nature of possibility space to vary. As we mentioned earlier, the features of FCD change 
with age, and the nature of the change relates to cognitive measures.  

 

Spatial determinants of possibility space need also be considered. Some recent intriguing work 

suggests that rudimentary features in the brain's spatial architecture constrain how information is 

represented at different spatial scales (Munn, et al, 2024). Local scales carry more unique 

information with minimal redundancy between elements at the same scale, while larger scales show 
more redundancy, which enhances resilience (c.f. Section 4.2). This would imply that possibility 

space would differ by spatial scale. Moreover, this has some profound implications for how 
possibility space transcends spatial scales and interacts with temporal scales.  

 

One can also consider the topology of possibility space as another feature to target. For example, the 

dimensions identified by principal components analysis would be a straightforward expression of 
the topology, though mainly in the sense of the number of dimensions that capture the functional 
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space for a brain.  Graph theory applications are ideal for defining hard and soft constraints that arise 
from anatomical and functional connections (Bullmore & Sporns, 2009). More sophisticated 

approaches that derive more geometric characterizations, such as Topological Data Analysis (Saggar 

et al., 2018), have provided more detail relating metrics like modularity to cognitive status. The 

application of control theory to brain networks further illuminates how control principles can be 
used to understand and potentially guide brain dynamics, making it a compelling addition to the 

study of possibility space (Bassett & Khambhati, 2017). 

 

A challenge with the study of possibility space is that most empirical work will capture only part of a 

person’s possibility space. At first glance, to really characterize possibility space (over an individual’s 

life) would involve measuring the brain from birth to death, 24 hours a day, seven days a week. This 
is obviously impractical. There are recent trends in “precision neuroimaging” that aspire to better 

characterize individual variation in functional brain networks by performing several sessions of data 
acquisition at longer durations. These data have demonstrated reliable stationary FC patterns across 

sessions, suggesting some proof of the concept of increased precision.  More recently, FCD has been 

explored across data sets with precision scanning, suggesting that a core set of network hubs appears 
common across individuals, but the exploration around those hubs, where different regions are 

engaged and disengaged, appears unique to each person. How this relates to cognitive function 
remains to be explored (Saggar et al., 2022). 

 

Precision neuroimaging gets us closer to characterizing a possibility space. However, we are still left 

with the challenge that all we can see is what happened during those scans – not the broader realm 
of possibilities. This is where computational modeling can help. The connectome-based brain 

simulation platform, The Virtual Brain (TVB), integrates structural and functional neuroimaging data 
into a generative network model, which can be personalized with an individual’s brain imaging data. 

The virtual brain model for that person then becomes the vehicle to derive explanations for observed 

behavior. In the Schirner et al. paper, the dynamics were characterized in relation to manifold 

exploration. Explaining how each person’s manifold is traversed is an expression of possibility space. 
Within the virtual brain model, parameter adjustments expand the characterization to express the 

potential better, or possibility, of using different trajectories. The multitude of options in this range 
follows from the soft constraints of the system.   

 

Identifying hidden repertoires would also benefit from combining empirical and modeling work. The 

idea of a hidden repertoire first came from the modeling work of El-Houssaini et al. (2015) on the 
Epileptor model. A detailed bifurcation analysis showed that the model could move from seizure 
activity to refractory status epilepticus. This latter capacity of shift between seizure states in the 

repertoire was not evident during the initial creation of the model but was, in fact a consequence of 

the modeling of the system’s seizure activity. The existence of the state of refractory status 

epilepticus necessarily followed from properties of the seizure state. In other words, it was a “hidden 
repertoire,” akin to the behaviors that are a mathematical consequence of dynamical systems, as 

phrased by Huang (2020). It stands to reason that parameter explorations done in other modeled 
systems may also reveal hidden repertoires. The modeled dynamics that arise from attractor 

navigation in these repertoires may provide clues as to whether they represent pathological 

configurations or potential for beneficial adaptation that reflects resilience. 
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Theoretical approaches to further characterizing (im)possibility constraints from a brain perspective 
could be fruitful. The Structured Flows on Manifolds framework provides a formidable foundation in 

dynamical systems theory, emphasizing the emergence of networks that guide the evolution of 

behavior (Huys et al., 2014; Jirsa, 2020; Pillai & Jirsa, 2017). Manifolds move from simple forms to 

more complicated landscapes as connections become more heterogeneous/asymmetric. The 
attractors forming on these manifolds begin to define possibility space, further constrained by how 

sequential flows and manifolds are organized. What needs to be added to this formulation is why 
such architectures arise. A provocative complement to Structured Flows on Manifolds is the Free 

Energy Principle (Friston, 2010), which provides optimization criteria to direct certain architectures 

over others. The principle reflects the assertion that the brain operates as a predictive machine, 

constantly updating its internal models to minimize free energy or surprise. The brain continuously 
adapts and optimizes its internal generative models (c.f., Fig 3) by reducing prediction errors and 
guiding perception and action. 

 

Integrating Structured Flows on Manifolds and the Free Energy Principle can illustrate how the 

brain’s possibility space evolves as it learns and adapts. Structured Flows on Manifolds provide the 
paths and attractors, while Free Energy minimization drives the navigation and optimization of these 

paths. Over time,10 this dynamic interplay can show how new paths and attractors emerge 
(representing adaptation and resilience) and how certain areas of the possibility space become more 

or less accessible depending on the brain’s current state and experiences. 

 

This paper has introduced a framework that provides conceptual clarity about possibility space in 
the context of complex systems in general and neuroscience in particular.  This project has paid 

particular attention to capturing a complex system’s impossible states, possible states, and different 
types of possible states, including those that are more (or less) likely, more (or less) available, and 

hidden repertoires.  This framework has further developed existing analytic philosophical work on 

constraints and scientific explanation in order to bridge philosophical and neuroscientific 

discussions of the possibility space concept. 
  

An advantage of this work is that it captures challenging aspects of complex systems, such as different 
types of states that are “unrealized” for a system.  For any system, there is a large range of possible 

yet unactualized states distinct from states that are strictly impossible for a system.  These points can 

be hard to appreciate because the range of possible states is extensive. Fewer concepts exist to clarify 
actual impossibilities for systems and the principled rationale for why they are impossible.  Mere lack 

of realization is not impossibility, and lack of realization can be difficult to model, represent, and 
conceptually appreciate. The importance of these points is only further magnified by the fact that 

when we consider systems that change, adapt, and evolve, these possible and impossible state 

landscapes change as well. Capturing these features are important steps in advancing theoretical 

frameworks for and understanding of complex systems. 
 

 
10 Time in this context can be either developmental or evolutionary. In the former, the initial architectures, 
established through genetic programming, are modified through environmental experience. In the latter, 
similar to epigenetic landscapes, certain configurations are selected as more adaptive and maintained but with 
allowable variation within. Evolutionary pressures force the emergence of new possibilities, perhaps through 
the mobilization of hidden repertoires, that support the emergence of new architectures. 
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