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Abstract

This paper recovers an important, century-old debate regarding the methodologi-

cal and metaphysical foundations of dimensional analysis. Consideration of Richard

Tolman’s failed attempt to install the principle of similitude—the relativity of size—as

the founding principle of dimensional analysis both clarifies the method of dimensional

analysis and articulates two metaphysical positions regarding quantity dimensions.

Tolman’s position is quantity dimension fundamentalism. This is a commitment to

dimensional realism and a set of fundamental dimensions which ground all further

dimensions. The opposing position, developed primarily by Bridgman, is quantity

dimension conventionalism. Conventionalism is an anti-realism regarding dimensional

structure, holding our non-representational dimensional systems have basic quantity

dimensions fixed only by convention. This metaphysical dispute was left somewhat

unsettled. It is shown here that both of these positions face serious problems: fun-

damentalists are committed to surplus dimensional structure; conventionalists cannot

account for empirical constraints on our dimensional systems nor the empirical success

of dimensional analysis. It is shown that an alternative position is available which saves

what is right in both: quantity dimension functionalism.
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1 INTRODUCTION 2

1 Introduction

This paper studies a dispute about the methodological foundations of dimensional analysis in

order to clarify its metaphysical foundations. Consideration of the debate started by the failed

attempt of Richard Tolman to install the principle of similitude—the relativity of size—as the

founding principle of dimensional analysis both clarifies the method (and limits) of dimensional

analysis and articulates two metaphysical positions regarding quantity dimensions. One view,

which I call fundamentalism, holds that there is objective dimensional structure and that

there is a set of objectively basic (i.e. fundamental) quantity dimensions. Another view,

conventionalism, holds that dimensional systems do not represent any objective dimensional

structure and that basic quantity dimensions are determined by convention. Objections to

both positions presented in the historical debate are found to have (limited) validity, and a

third, alternative position, functionalism, is introduced. For the functionalist, the objective

aspect of dimensional structure is modal structure. Quantity dimension functionalism allows

for a synthesis of two methodological conceptions of dimensional analysis that prima facie

are in tension: that dimensional analysis is a logical method and that dimensional analysis

provides explanations.

The historical discussion will be restricted to the debate prior to Bridgman’s landmark

Dimensional Analysis and will focus primarily on an exchange between Bridgman and

Tolman.1 Other significant contributors to the debate, Edgar Buckingham and Tatiana

Ehrenfest-Afanassjewa, cannot be given their full due here.

In what remains of this introduction, I will introduce dimensional analysis as a method for

problem solving in physics, clarify its role as a logical method, and clarify an all important and

not often made distinction between unit systems and dimensional systems. This introduction

provides all the necessary background for the rest of the paper to follow.
1In this way it differs from the brief, but more comprehensive, account of the debates regarding dimensional
analysis in Walter (1990). Her account is more comprehensive in that it covers the debates before and after
Dimensional Analysis, but it is more myopic in its focus on Bridgman—Rightly so, as Walter’s book is a
biography of Bridgman.
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1.1 Dimensional Analysis in Action

Dimensional analysis is well known to even beginning students in physics, though explicit

instruction in the method is far from universal. Dimensional analysis finds use in (often

heuristic) arguments in fundamental physics and in technical engineering applications alike.

Let’s consider an example of dimensional analysis in action.

Say we are tasked with deriving the equation for the period of oscillation, t, of an

arbitrary pendulum. We assume that the system can be adequately described in terms of the

following quantities: the mass of the pendulum, m, the length of the pendulum, l, and the

constant acceleration of gravity, g.2 Next we assume that these quantities are all reducible to

mechanical dimensions such that:

[t] = T

[m] = M

[l] = L

[g] = LT−2.

The square brackets are a function from quantities to their dimensions, here given in terms of

the basic mechanical dimensions, mass, length, and time (capital un-italicized letters denote

dimensions).3

The problem is to find the form the of the function f such that t = f(m, l, g), and so

[t] = f([m], [l], [g]). This is the principle of dimensional homogeneity:

(The Principle of Dimensional Homogeneity) Every representationally adequate

physical equation is dimensionally homogeneous, and an equation is dimensional
2This condition of “adequate description” is often called “completeness” (e.g. Buckingham 1914). That
phrasing gives the wrong idea. Dimension analysis requires only that all of the relevant quantities are
considered, many quantities that are also descriptive of the system (indeed there is an infinity of them) are
excluded due to irrelevance or redundancy, etc.

3There is a slightly different convention, following Maxwell (2002), in which [L] represents the length dimension
rather than L, etc.
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homogeneous iff the quantity terms4 on each side have the same dimension.5

We assume that this function f takes the form of a monomial kmαlβgγ , with numerical scale

factor k.6 From this assumption and the principle of dimensional homogeneity, it follows that

there is a set of linear equations to be solved for the exponents of the relevant quantities such

that the monomial have the dimensions of t. The equations to be solved:

M : 1α + 0β + 0γ = 0

L : 0α + 1β + 1γ = 0

T : 0α + 0β − 2γ = 1,

where the Greek variables stand for the exponents of the variables in the monomial and each

coefficient is the exponent of the indicated basic quantity dimension had by the corresponding

quantity m, l, or g. By inspection α = 0. Now with two equations and two variables (β and

γ) we find the solution to be β = 1/2 and γ = −1/2, so

t = k

√
l

g

where k is some undetermined dimensionless constant. QED.7

4Each of these terms are monomials of quantity variables (or constants) and dimenisionless scale factors,
addition and subtraction distinguish terms. This captures the intuition that it makes no sense to add a
length to a mass or to subtract a force from a velocity, etc.

5This principle is first made explicit by Fourier in his Théorie Analytique de la Chaleur : “It must now be
remarked that every undetermined magnitude or constant has one dimension proper to itself, and that the
terms of one and the same equation could not be compared, if they had not the same exponent of dimension.”
(Fourier 1878, 128) For more on the geometrical roots of dimensional analysis see De Clark (2017) and Roche
(1998).

6This is due to Bridgman’s (1931) lemma, see Berberan-Santos and Pogliani (1999) and Jalloh (Forthcoming)
for discussion.

7Such derivations can be done more systematically by way of the Π-theorem, a fundamental result of
dimensional analysis, see discussion and references in §2.2.
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1.2 Dimensional Analysis as Logic

Dimensional analysis was commonly thought of as a logical method by those who developed

its foundations (see also Gibbings 1982). I’ve attempted, in the demonstration above, to make

the logical character of dimensional analysis evident by distinguishing assumptions which

draw upon our prior physical knowledge and the workings of dimensional analysis itself. In

discussing his foundational paper on dimensional analysis (Buckingham 1914), Buckingham

wrote:

Some three or four years ago, having occasion to occupy myself with practical

hydro- and aerodynamics, I at once found that I needed to know more about the

method in order to use it with confidence for my own purposes. . .

I had therefore, as it were, to write an elementary textbook on the subject for my

own education. My object has been to reduce the method to a mere algebraic

routine of general applicability, making it clear that Physics came in only at the

start in deciding what variables should be considered, and that the rest was a

necessary consequence of the physical knowledge used at the beginning; thus

distinguishing sharply between what was assumed, either hypothetically or from

observation, and what was mere logic and therefore certain. (Buckingham to

Rayleigh, November 15 1915)8

It is clear from this that Buckingham understood dimensional analysis as a logical method

insofar as it was certain and so did not depend on any further empirical claims, i.e. a priori.

Modeling dimensional analysis on deductive logic, we can say that it provides a form of

valid argument (more abstractly, transformation rules): if such-and-such quantities have

such-and-such dimensions, relative to a dimensional system (see §1.3), then they are related

by so-and-so functions.9 In our extended post-logical-empiricism hangover, such a distinction
8Courtesy of the American Institute of Physics, Niels Bohr Library and Archives, MP 2017-2296; 33.
9That the generation of Π-terms and so functional relations can be computed completely and without
arbitrariness is shown in Gibbings (2011). That does not mean, of course, that in ordinary practice there is
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between logic and experience may seem hopeless, and worse, old-fashioned—we cannot accept

Buckingham’s conception of dimensional analysis.10

Here I’d like to rehabilitate an idea of dimensional analysis as logic, by abandoning

Buckingham’s epistemic conception of logic, while accepting that it stands apart from ordinary

physics in an important way. The relations between dimensional analysis and experiment are

too complex to segregate dimensional analysis from empirical assumptions, but there is still a

sense in which dimensional analysis stands above (or below) the ordinary practice of physics

in a way similar to relative standing of logic and ordinary reasoning. For this rehabilitation,

I will draw on Gil Sagi’s (2021) recent defense of an exceptionalist conception of logic as a

methodological discipline—this contrasts with the usual exceptionalist conceptions of logic on

an epistemic basis, e.g. because it is a priori, that is now so unfashionable after Quine (1951).

In adding dimensional analysis to the roster of methodological disciplines, I am accepting

the invitation left open by Sagi that “[p]erhaps there are other methodological disciplines

targeting scientific practice” (2021, 9741). I offer the claim that dimensional analysis is the

methodological science peculiar to quantitative science, here narrowly considered as peculiar

to quantitative physical science, and so can synonymously be understood as the logic of

quantities.

What is a methodological discipline? We may do well to start with the characterization

given by Sagi:

As a start, by a methodological discipline, I mean a discipline that produces

tools, methods or a methodology for some practice. I take a method to be a

systematic procedure or system of rules for carrying out a practice. There may
not an art in determining which Π-terms (i.e. functional relations) are of interest for the relevant system.

10In a later letter to Rayleigh on January 7 1916, Buckingham already expresses his feeling that his
methodological strictures chafed against the zeitgeist: “It is evidently desirable that this subject should
receive a clear exposition. Tolman does not, I imagine, care much for the distinctions between known
facts, assumptions made for the sake of building up theories, and purely logical operations on these facts
or assumptions. And it seems that many of the very clever rising generation of physicists have much the
same feeling. I, on the other hand, regard these distinctions as very essential to clear thinking and sound
progress.” (p 6)
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be methods for very specific practices (measuring the distance between the earth

and the moon, solving differential equations) or general methods advising a whole

discipline (how to conduct a scientific experiment, how to prove a mathematical

theorem)[. . . ] A methodology, in general, is aimed at a higher level of scientific

practice, as it concerns the production and selection of scientific theories. A

methodology, I assume, may give rise to a method (for, e.g., theory choice) or

consist of a compendium of methods (for reasoning in science). (Sagi 2021, 9736)

A methodological discipline is defined relationally to what we may call a client discipline. The

methodological discipline aids practitioners in aligning their scientific practice to the aims

of their first-order client discipline. Put differently, the aims of a methodological discipline

are to ensure that the products of some client discipline (e.g. theories or models) meet the

internal aims of that client discipline (e.g. prediction, explanation). Here I am proposing

that dimensional analysis has physics (broadly construed) as a client discipline —dimensional

analysis provides principles and derivational techniques that allow physicists to check the

validity of their quantitative equations and to efficiently derive new ones.11

What is the relation between a methodological discipline and a client discipline? One

intriguing characterization of the relation between the two that Sagi gives involves an extension

of the use-mention distinction: client disciplines use tools, methods, and concepts that are

mentioned (e.g. criticized, constructed) by the corresponding methodological discipline. While

physics uses concepts of quantity, principles of homogeneity, and dimensional systems, it is

left for dimensional analysis to discuss the nature of quantities, justify and determine the

consequences of dimensional homogeneity (e.g. the Π-theorem), and elaborate and distinguish

dimensional systems.12 It is important that this exceptionalist, relational conception of
11A similar distinction between “framed” and “framing” inquiry has been articulated and defended by Henne

(2023).
12A closely related and analogous methodological discipline is metrology, which provides the (experimental)

physicist with units of measurement, values for constants, rules for error propagation, etc. Metrology is
an important case to consider as the divide between methodological discipline and client discipline(s) has
there become sociologically and institutionally regimented in a clarifying way.
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methodological disciplines does not lapse into a sort of epistemic foundationalism as attacked

by Quine. We can capture both the special position of a methodological discipline and its

revisability by distinguishing two phases of research:

(Business as Usual) The methodological discipline constructs, describes, and

regiments the techniques and concepts used by the client discipline. The rules

set by the methodological discipline exert normative force on the practitioners

of the client discipline, when there is a discrepancy, the principles set by the

methodological principle take precedence.

(Negotiation) Problems or developments in the client discipline lead to a recon-

sideration of the principles of the methodological discipline and the relationship

between the two—neither discipline takes normative priority to the other. This

phase ends by the establishment of a new “business as usual” paradigm between

client and methodological discipline.

In the Business as Usual phase the client-provider relation is as expected, the methodological

discipline provides tools and method which hold normative force over the practices of the

client discipline (they are relatively a priori in the sense of Friedman 2001)—an equation of

physics found to violate dimensional homogeneity is an equation to be corrected (or at least

used with great care in special circumstances). In the Negotiation phase, usual business is

disrupted, internal pressures from the client discipline (e.g. empirical results, paradoxes) lead

to adjustments in the methodological principle and even shifts in what aspects of the relevant

scientific practice belong to which discipline. The historical episode to be considered here is

usefully described in these terms: In the early twentieth century, pragmatic matters (above

all the development of airplanes, see Sterrett 2005) led to a formalized business deal between

the nascent methodological discipline of dimensional analysis and the physical sciences. While

this deal quickly came to be “business as usual”, Tolman attempted in 1914 to renegotiate

the deal. Inspired by radical developments in the client discipline, physics, Tolman attempted
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to augment the foundations of the methodological discipline with a new relativity principle

and thereby provide new constraints on the client discipline. While Tolman’s negotiation

failed, it made explicit many implicit aspects of the initial deal between dimensional analysis

and physics, some which have still yet to be fully clarified. In the next subsection, I clarify an

important aspect of the usual deal. The rest of the paper raises and attempts to settle one

issue left to be negotiated: To what extent do features of our dimensional systems represent

objective structure?

1.3 Dimensional Systems and Unit Systems

Dimensional analysis depends on some assumptions regarding physical quantities. They

must form a complete dimensional system, meaning that the complete set of quantities are

reducible to products of powers of fundamental units multiplied by a numerical scale factor:13

Qi = kiu
α
a uβ

b uγ
c . . .

Qi is some arbitrary quantity. ki is some numerical factor. ux is some fundamental unit. The

Greek exponents are known as dimensions, following Fourier (1878).14 Each basic unit is

assigned a basic dimension. For example, in a mechanical dimensional system,

m = uM

l = uL

t = uT

13See Bridgman (1931) and Berberan-Santos and Pogliani (1999) for proofs.
14This sometimes leads to expressions like “has exponent d in dimension X” which are equivalent to expressions

like “has dimension Xd”.
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where l, m, and t are arbitrary mass, length, and time quantities set to be units by convention,

e.g. a kilogram, a meter, and second. Each of these units have a basic dimension,

[m] = M

[l] = L

[t] = T

which, in abstraction from the actual units, we can use to derive the dimensions of all other

mechanical quantities.15 Hence dimensional systems, which are determined by the basic

dimensions, are more coarse-grained than unit systems. For each dimensional system there is

an infinite set of logically possible coherent unit systems which are all inter-convertible and

hence form what I will call a “dimensional group”.16 For example, the dimensions of force, F ,

and the dimensions of velocity, V , are given so:

[F ] = MLT−2

[V ] = LT−1

These dimensional formulae correspond to definitions of mechanical units:

f = kfmlt−2

v = kvlt−1.

15Italicized capital letters are variables for quantities, I will, for the remainder of this section, retain lowercase
variables for units (excluding dimensionless constants ki). Unitalicized capital letters represent dimensions.

16There is some complexity in the nature of units that I am suppressing here. The important thing is that
dimensional groups consist of units defined by “similar scales” (Ellis 1964). The group structure of similar
unit systems is not to be confused with the group structure of dimensional systems (which unit systems
inherit), see de Boer (1995).
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For a coherent system of mechanical units kf = kv = 1.17 We can distinguish basic quantities,

which have dimensional exponent 1 in only one of the basic dimensions (and exponent

0 otherwise), and derived quantities, which have arbitrary dimension in any of the basic

dimensions. Basic quantities are measured by fundamental units and derived quantities are

measured by defined units. The dimensions of the derived quantities encode formal relations

between them and the basic quantities: these relations identify the transformation rules for

derived quantities upon changes in the fundamental units.

For any derived mechanical quantity, Q, its defined unit, q, will be a monomial function

of the fundamental units, just as described above:

q = mαlβtγ

The Greek dimensional exponents determine how the defined unit changes with arbitrary

scalar transformations of the fundamental units:

q′

q
=
(

m′

m

)α

·
(

l′

l

)β

·
(

t′

t

)γ

where the primed units are the new units. If we halve the fundamental time unit, 2t′ = t, and

leave the mass and length units unchanged, for example, the unit of force, f , will quadruple
17The usage of the terminology “complete” and “coherent” varies widely. I am also here making a distinction

between dimensional and unit systems that is not usually made, though see Abraham (1933). I reserve
“complete” for dimensional systems with a reduction base as I go on to describe. I reserve “coherent” for
any unit system of a complete dimensional system such that the derivative quantities are defined with
dimensionless scale factors ki = 1. Complete equations, which are interpreted according to a complete
dimensional system, are unit-invariant (in algebraic form) for any coherent unit system of that dimensional
system. This captures the lessons of Grozier (2020), though he does not make the distinctions I make,
as the mistakes he diagnoses could be avoided by the recognition of the distinction between dimensional
systems and the more fine-grained unit systems.
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because γf = −2 and the velocity unit, v, will double because γv = −1:

f ′

f
=
(

m′

m

)1

·
(

l′

l

)1

·
(

t′

t

)−2

=
(

t

2t

)−2
= 4

v′

v
=
(

m′

m

)0

·
(

l′

l

)1

·
(

t′

t

)−1

=
(

t

2t

)−1
= 2

The use and operation of these unit transformation rules and their duality with dimensional

formulae are uncontroversial. While much of the methods that dimensional analysis provides

to physics are uncontroversial, there remains controversy regarding the meaning of its subject

matter, quantity dimensions and dimensional formulae.

One interpretation of dimensional analysis harks back to Buckingham’s conception of

dimensional analysis as a formal logic concerned with conventionally decided transformation

rules on defined or stipulated “objects”. On this view, dimensional formulae are understood

to be formal rules for the use of units and numerical representations of quantities, which

are purely conventional. On this reading, representations of dimensions like M are purely

syntactic shorthand for change ratios like m′/m. The basis of a dimensional system and the

corresponding formulae for derived dimensions are therefore reducible to rules of translation

between ultimately conventional unit systems that regiment our practice of assigning numbers

to objects and systems.

There is a competing interpretation of dimensional analysis that holds quantity dimensions

to be entities in their own right, irreducible to mere convention and formal rules. On this

view dimensional formulae do not only represent unit transformation rules but also reveal

the metaphysical character of quantities. Not only is a unit of force defined, but a quantity

of force is constructed or constituted by the dimensions of mass, length, and time. On this

view it is as if the basic dimensions are the fundamental substances from which the more

complex derivative quantity dimensions are composed.18 On this interpretation, there is a
18This controversy dates back to the development of the dimensional calculus by Maxwell and others (see

Mitchell 2017) and continues to present day, with Skow (2017) arguing against the interpretation of
dimensional formulae as denoting constitution relations (but defending them as definitional relations).



1.4 METAPHYSICAL QUESTIONS AND ANSWERS 13

uniquely correct dimensional system which represents the objective dimensional structure of

quantities: its basic dimensions are fundamental dimensions, and its dimensional formulae

represent grounding relations between the fundamental and derivative dimensions.

In order to further explicate and critically examine these two interpretations of dimensional

analytic methods and objects, I will set them against questions regarding the objectivity of

the two main features of dimensional systems discussed here: basic quantity dimensions and

dimensional formulae.

1.4 Metaphysical Questions and Answers

A dimensional system is to be understood as a formal system that consists simply in a

set of basic, that is independent,19 quantity dimensions (a basis) and a rule that all other

(derivative) dimensions are products of powers of the basic dimensions.20 While dimensional

formulae are in a sense extraneous to the system—all derivative dimensions already “exist”

given a basis—in physics we care about particular derivative quantities like pressure or volume

and so we might also distinguish dimensional systems by the dimensional formulae for the

set of canonical physical dimensions. So then let’s distinguish two aspects of a dimensional

system that suffice to identify it: a basis and a set of dimensional formulae for derivative

dimensions.21

Metaphysical questions concern the relations between dimensional systems and dimensional

structure, if there is any. Dimensional structure would be the ontic analog of a dimensional

system—if there is objective dimensional structure then there is a dimensional system that
19Independence can be understood thus: two quantity dimensions are independent if neither depends on the

other, i.e. no product of powers of the one appears in the dimensional formula for the either and vice versa.
One might say, well I can define the dimensions of mass to be L−1ML so mass is not independent of length.
The response is that no exponents of like dimension in dimensional formulae are allowed to go unsummed
(in this case the two powers of length cancel out). A set of basic dimensions spans a dimensional system in
just the same way that a set of basis vectors span a vector space, see Corrsin (1951) and de Boer (1995).

20This rule is Bridgman’s lemma, see references in §1.1.
21We can alternatively represent a system just by dimensional formulae, that some quantity dimensions have

a single dimension of power 1 indicates that they are basic.
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correctly represents this aspect of the world. This brings us to the first ontological question,

the general question of realism:22

(Dimensional Realism) Is there objective dimensional structure that corresponds

to a dimensional system?

Alternatively this can be put: Is there an objectively correct dimensional system for the world?

There is a subsidiary question which further specifies some particular aspect of dimensional

systems which may be objectively determined:

(Fundamental Basis) Is there a fundamental dimensional structure that corre-

sponds to a dimensional basis?

Is it the case that the dimensions M, L, and T form a unique basis for mechanical dimensions

(with [F ] = MLT−2)? Or is there another set—e.g. F, L, and T (with [M ] = FL−1T2)—which

would serve just as well?23 The general ontological question can be understood as raising

the question of whether or not our dimensional systems represent anything at all. The

fundamental basis question further speciates forms of realism. If a dimensional realist believes

there is a set of objective basic quantity dimension they are a fundamentalist. If not, they

are a functionalist. A conventionalist rejects objective dimensional structure tout court and

so automatically rejects objective fundamental dimensional structure corresponding to the

basis of a dimensional system.24 The relationships between these metaphysical positions and

the answers they provide to the questions above are summarized in the following flowchart.
22This dimensional structure is supposed to be “joint-carving” in the sense of Sider (2011).
23An explication of “just as well” will come in §3.1.
24One might wonder if it may speciate forms of antirealism as well. One might think if an antirealist holds

that there is such objective basis set, they are an operationalist. The operationalist of course cannot hold
that this set is objectively basic in the metaphysical sense we are concerned with here, it must be an
epistemic fundamentality (the operationalist distinction is often between primary and secondary quantities,
see Ellis 1968). For this reason operationalism is not considered here, though this is closer to the view of
Bridgman (1931). See also Gibbings (2011).
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Quantity dimension realism?

Fundamental (objectively basic) dimensions?

Fundamentalism Functionalism Conventionalism

Yes

Yes No

No

Figure 1: Flow chart through the logical space of quantity dimension metaphysics.

As I will show, both fundamentalism and conventionalism about quantity dimensions are

articulated and defended in the years 1914-1917. A third view, functionalism is presented

here as a synthesis of the two, responsive to problems to both historical positions.25

Tolman (1917) provides the first full articulation of quantity dimension fundamentalism.

Quantity dimension fundamentalism combines a dimensional realism with a commitment to

a fundamentality principle: there are fundamental quantity dimensions that metaphysically

ground the derivative quantity dimensions.

(Fundamentalism) There is only one correct dimensional system and it represents

the dimensional structure of the world. Dimensional formulae describe the natures

of quantity dimensions.

Tolman’s fundamentalism comes out of a debate concerning his proposed principle of similitude,

which was to replace the principle of dimensional homogeneity as the foundation of dimensional

analysis:
25Dialectically, this division of the logical space is similar to that in Skow (2017). The analogy would be

that Skow’s positivist stands in for my conventionalist, his contructivist for my fundamentalist, and his
definitional connectionist for my functionalist. There are some differences: Skow’s definitional connectionist
is also a fundamentalist as they are committed to non-relativity, the position that there is an objectively
determined basis for our dimensional system. That said, Skow’s definitional connectionist comes closer to my
functionalist due to an emphasis on the necessary connections between distinct quantity dimensions (Skow
2017, 194). An appreciation of the full force of conventionalist symmetries would lead Skow’s definitional
connectionist to drop the idea of unique real definitions of derivative dimensions, and so fundamental
dimensional structure, yielding a functionalist account.
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(The Principle of Similitude) The fundamental entities out of which the physical

universe is constructed are of such a nature that from them a miniature universe

could be constructed exactly similar in every respect to the present universe.

(Tolman 1914, 244, his emphasis)26

Tolman conceptualized his principle of similitude as a relativity principle, the relativity

of size (i.e. length scale). In the first instance this principle is to be understood and was

understood as a particular instance of quantity dimension fundamentalism. In this instance

Tolman held that there was only one fundamental mechanical dimension, length. With

the adoption of certain laws as providing dimensional formulae that grounded mass, time,

and other mechanical quantities in length, Tolman was able to recover the intuition behind

his relativity of size principle: a universal scale transformation of lengths ought to be an

empirical symmetry, e.g. a doubling of all the lengths overnight would not be empirically

detectable. First Tolman defends his principle by giving up the metaphysical, fundamentalist

reading of it. He ultimately recants and gives up the principle and defends a more tenable

fundamentalist picture.

As it turns out, Tolman’s principle of similitude is false, owing to its conflict with the

Newtonian Gravity and the relevant confirming evidence thereof—This was pointed out

almost immediately by Buckingham (1914) and amplified by Ehrenfest-Afanassjewa (1916b)

and Bridgman (1916). Tolman himself thought a new theory of gravity was imminent.27

The empirical disconfirmation of Tolman’s principle does not undermine the interest of the
26A major warning is to be heeded here. In this paper “the principle of similitude” or “the method of

similitude” refers to uses of Tolman’s principle. More generally “similarity methods” are just another
term for using traditional dimensional analysis based on the principle of dimensional homogeneity and
proportionality principles (see Sterrett 2017). At the risk of misunderstanding, I am sticking with the
terminology used by those in the debate—though it is relatively clear that Buckingham (1914) intended to
reclaim the terminology of similitude from Tolman. In the end Buckingham won out.

27The relationship between Tolman’s principle and the emergence of novel theories of gravity, let alone
questions about the nomological nature of the constants (see §2.3), is much too large a topic to be dealt
with here. I will only note that Nordström (1915) developed a version of his scalar gravitational theory (an
early competitor to Einstein’s general theory of relativity) that is consistent with Tolman’s principle. The
development and significance of such a theory is left for future work.
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methodological and metaphysical issues which were raised by the debate concerning his

principle. The positions outlined in the debate and the arguments given for them have

implications for the general study of dimensional systems.28

2 From Tolman’s Principle of Similitude to Arguments

Against Fundamentalism

In this section I discuss the debate surrounding Tolman’s principle of similitude in three parts,

roughly in historical order. Each subsection deals with a dialogue between Tolman and an

interlocutor: Edgar Buckingham, Tatiana Ehrenfest-Afanassjewa, and Percy Bridgman. Each

dialogue brings forward the metaphysical issues latent in the methodological debate, but

special attention is paid to the dialogue with Bridgman, which leads to explicit metaphysical

accounts of quantity dimensions.

First a brief note on the scientific context for this debate is necessary. The concern

with the foundations of dimensional analysis is connected to other radical changes in the

foundations of physics in general.

2.1 Contextualizing Dimensional Analysis in the Wake of Relativ-

ity

This debate regarding the foundations of dimensional analysis was not about relativity, nor

quantum mechanics.29 That said, it is important for understanding this debate to understand

some of the fundamental questions that were raised by relativity, which caused Tolman to

reconsider the very nature of physical quantities. Maila Walter situates the development

of dimensional analysis as part of a broader reckoning with the radical consequences of
28A reader with pure metaphysical interest may skip to §3
29See Semay and Willemyns (2021) for an initial look at the application of dimensional analysis to quantum

mechanics. See Porta Mana (2021) for a contemporary and systematic application of dimensional analysis
to general relativity.
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relativity theory: “[T]he dimensional analysis controversy revealed a generous amount of

confusion about the meaning of relativity and measurement[. . . ] Einstein’s abrogation of

the traditional meaning of measurement has demonstrated that the relationship between

mathematics and physical reality had to be reconsidered. The dispute over dimensions was

just one manifestation of a general concern that would be stated with more precision and

politicized by the logical positivists.” (Walter 1990, 84) The following description of this

broader context is based on Walter’s more thorough accounting of the relevant foundational

debates in the wake of relativity.30

The special theory of relativity was met with suspicion and disbelief when it was brought

to the attention of American physicists—the promulgation and acceptance of the theory in

America is due in no small part to the efforts of Gilbert N. Lewis and Richard C. Tolman in

1908.31 Lewis and Tolman (1909), in American pragmatist fashion, describe the principle of

relativity as grounded in the generalization of experimental facts (e.g. the Michelson-Morley

experiment). The principle is accordingly understood as a constraint on what is measurable

by Lewis and Tolman: “[Einstein] states as a law of nature that absolute uniform translatory

motion can be neither measured nor detected.” (Lewis and Tolman 1909, 712)

This is to say that only relative motion has “physical significance” or objectivity. This

principle, combined with the postulate of the frame invariance of the speed of light, leads to

the shocking consequences of relativity theory: time dilation and length contraction. Lewis

and Tolman’s grounding of relativity and its consequences in measurement lead them to an

antirealist interpretation of such consequences:
30One of the broader trends I will not discuss was the search for a natural and rationally determinable set of

fundamental units (see Walter 1990).
31They presented a paper “Non-Newtonian Mechanics and the Principle of Relativity” at the Christmas

meeting of the American Physical Society in 1908, as stated by Kevles (1995, 90). However, I can find no
trace of an article in Physical Review as he claims. The article (draft completed in May 1909) was published
both in Philosophical Magazine and The Proceedings of the American Academy of Arts and Sciences the
following year with an inverted title: “The Principle of Relativity, and Non–Newtonian Mechanics”. Here I
cite the latter, American publication, a citation for the former can be found in Walter (1990). See also
Goldberg (1984, 1987) on the American response to relativity.
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Let us emphasize once more, that these changes in the units of time and length, as

well as the changes in the units of mass, force, and energy which we are about to

discuss, possess in a certain sense a purely factitious significance; although, as we

shall show, this is equally true of other universally accepted physical conceptions.

We are only justified of speaking of a body in motion when we have in mind some

definite though arbitrarily chosen point as a point of rest. The distortion of a

moving body is not a physical change in the body itself, but is a scientific fiction.

(Lewis and Tolman 1909, 717)32

Lewis and Tolman describe these phenomena as changes in units and “in a certain sense

psychological”. They claim that the acceptance of these distortions is the cost of retaining our

fundamental conceptions of physics. The psychological unreality of these distortions owes to

the fact that their occurrence appears to depend on whether or not some observer considers

herself at rest, a judgment lacking in objectivity due to the relativity principle.

The more proper evaluation of the situation is given in Lewis and Tolman’s claim that

absolute motion has no significance—dilation and contraction are artifacts of an arbitrarily

chosen rest point, thereby retaining something of our “fundamental conceptions”. This is a

common feature of symmetry arguments, which occurs in Tolman’s argument for the principle

of similitude as well as recent debates on quantity symmetries:33 In arguing for the existence

of a symmetry transformation and thereby the unreality of the supposed features of reality

that vary under that symmetry, the basis for the symmetry argument seems to be undermined

as there is no such feature to be transformed. In Einstein’s case this is absolute velocities; In

Tolman’s case, with the principle of similitude, it is absolute lengths. This is only a matter
32The special theory of relativity was seen as upending our fundamental concepts of physical quantities—when

Lewis and Tolman refer to “units” they are conflating the functions of units as reference quantities
(i.e. standards) and as numerical fixed points. The terminology of units vs quantities vs magnitudes was
not to be standardized for decades.

33See Dasgupta (2013), Baker (2020), Wolff (2020), and Martens (2024) (and their citations) for more on the
absolutism-comparativism debate in the metaphysics of quantity. The supposed mass doubling symmetry
at the center of the debate is a direct analogue of Tolman’s miniature universe transformation.
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of charitable interpretation and convenience: any appearance of self-undermining can be

removed by restating these relativity principles as statements about what objective structure

there is. The theory of special relativity rejects any objective, frame-independent, velocity

structure. Tolman’s principle of similitude rejects any objective, absolute length magnitudes,

which become dependent on a choice of comparative standard, analogous to how length

quantity values are relative to a choice of unit standard.

2.2 Tolman v. Buckingham

The inciting event for the debate is Tolman’s (1914) publication of “The Principle of Similitude”

which puts forward a relativity principle—the relativity of size—as the founding principle of

dimensional analysis.

(Relativity of Size) A global transformation of the length scale is both a dynamical

and empirical symmetry—there is no objectively determined length scale.

I hope this is a useful updating of Tolman’s principle in conformity with how we now generally

understand the principle of relativity, as a symmetry principle. This gloss is good only insofar

as it has the same consequences as Tolman’s own statement of the principle of similitude:

“The fundamental entities out of which the physical universe is constructed are of such a

nature that from them a miniature universe could be constructed exactly similar in every

respect to the present universe.” (Tolman 1914, 244, his emphasis)

Tolman exhibits the consequences of this principle by way of a thought experiment:

• Consider an observer O with a meter stick that measures the length of some extension,

s, to be ls = 1 m.

• Now consider a counterpart world, a “miniature universe” such that there is a counterpart

of the original observer, O′, and both his “meterstick” and the extension s have been

shrunk in length by a factor of x.
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• Since both the length of the unit standard and the measured extension have changed

by the same factor, the assigned value of the length will be invariant: l′
s = 1 m′.

• The length quantity of the counterpart extension in the miniature universe of O′,

expressed in the units of O, will be l′
s = x · 1 m or, more generally, l′ = xl.

Given that this transformation equation, l′ = xl is expressed in a single system of units (it is

true in either the units of O or O′)34 it must be understood as an equation of quantities—this

accounts for Tolman’s interpretation of the transformation to the miniature universe as

a metaphysical transformation. Accepting the speed of light postulate, their temporal

measurements must also stand in the same relation: t′ = xt. From assuming the invariance of

other laws (e.g. Coulomb’s law), Tolman derives a whole set of symmetry transformations:35

Quantity Kind Symmetry Transformation
Length l′ = xl

Time Duration t′ = xt
Velocity v′ = v

Acceleration a′ = x−1a
Mass m′ = x−1m
Force f ′ = x−2f

Energy U ′ = x−1U
Energy Density u′ = x−4u

Electrical Charge e′ = e
Entropy S ′ = S

Temperature T ′ = x−1T

Table 1: Induced transformations of quantity magnitudes under similitude transformations.

From these results Tolman determined the functional form of several physical equations de-

scribing important physical phenomena: ideal gases, blackbody radiation, the electromagnetic
34One might ask whether this equation necessarily involves expressions in both systems of units. That

would be to confuse however its role as a quantity equation with its role as a numerical equation. Both
interpretations are available, but, in Tolman’s argument, this is must be an equation of quantities as the
tranformation is ontic, not a mere formal translation. See de Courtenay (2015).

35Table selectively adapted from Tolman (1914), 226. Note the invariant quantities and the corresponding
theoretical commitments of Tolman’s principle: the constancy of the speed of light, electromagnetic theory,
and the laws of thermodynamics.
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field, and so on.

In the same year Buckingham’s landmark paper “On Physically Similar Systems” presents

the most influential proof of the Π-theorem. Buckingham argues that Tolman’s principle is

only a “particular case” of his result—this has some truth to it (see below and §2.3). I will not

here go through the full derivation of the theorem.36 Buckingham states the essential content

of the theorem in terms of absolute units (equivalent to “coherent unit system” defined above).

Using such a absolute/coherent system, the theorem shows that there is a duality between

active and passive interpretations of changes of the fundamental units, corresponding to the

distinction between transformations of formal and ontic dimensions (see §2.3):37

When absolute units are used, the validity of a complete physical equation is

unaffected by changes in the fundamental units. Hence in changing from a system

S to a similar system S ′ it is immaterial to the validity of the equation in question

whether we do or do not retain our original fundamental units. If we alter the sizes

of the fundamental units [Q1] . . . [Qk] in the same ratios as the kinds of quantity

Q1 . . . Qk which they measure, the numerical value of any quantity of one of these

kinds will be the same in both systems. And if we do not change the relations

of the derived and fundamental units of our absolute system, every derived unit

[P ] will change in the same ratio as every quantity P of that kind, so that the

numerical value of every quantity in the system S will be equal to the numerical

value of the corresponding quantity in the similar system S ′. (Buckingham 1914,

354)38

36See Gibbings (1982, 2011), Sterrett (2009, 2017, 2021), and Pobedrya and Georgievskii (2006).
37This active-passive transformation duality can be made intuitive by considering the double interpretation

of a fundamental unit in the case in which it is defined with respect to a material standard. A passive
transformation corresponds to switch from a material meter-long standard for a length unit to a distinct,
material foot-long standard for a length unit. An active transformation corresponds to the (metaphysical)
compression of a meter-long length standard to a length of one foot. The dual active-passive interpretation
of the Π-theorem is dealt with in more detail in Jalloh (Forthcoming).

38Walter’s discussion contains a claim which requires correction. Walter distinguishes similitude, “a simple
way to investigate the manner in which a change of scale affects the properties of physical systems”, from
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While Buckingham here follows the Maxwellian tradition of discussing dimensional analysis in

terms of invariance of “complete” equations under transformations of the fundamental units,

we can understand his claim here as a generalization of Tolman’s similitude principle—insofar

as the principle of dimensional homogeneity is agnostic with respect to particular dimensional

systems.39 It is important to emphasize that the Π-theorem follows (almost) directly from

the principle of dimensional homogeneity. Therefore, for all involved, the results of the

Π-theorem, assuming an orthodox dimensional system,40 are results of the approach that I

am calling “the principle of dimensional homogeneity”. There is a logical distinction between

the principle and the principle plus a dimensional system, but the principle has no function

independent of the adoption of a dimensional system (hence the “almost”).

In a coherent unit system, the relations between basic and derived quantities are defined

such that arbitrary changes in the magnitudes of the basic quantities induce changes in the

derivative quantities such that representationally adequate and dimensionally homogeneous

equations remain true. This is done without stipulating a particular invariance with respect

to transformations of the length quantities. In brief the theorem states thus: All physical

equations are dimensional homogeneous and so can be put in the form:

A1 + A2 + · · · + AN = 0,

where each A-term is a product of powers of the fundamental Q-terms (the basic quantities

of the dimensional system, e.g. masses, lengths, and times) and each term has the same

dimension: [Ai] = [Aj ]. Therefore, subtracting AN and then dividing through by −AN yields

dimensional homogeneity, which requires that “the operation of addition and the relationship of equality
are valid only for objects [i.e. quantities] of the same kind [i.e. dimension]” (Walter 1990, 86–87). The claim
to be criticized is that “Buckingham, like everyone else” conflated these two bits of dimensional reasoning.
This claim is false: Buckingham (1914) clearly distinguishes similitude and dimensional homogeneity as he
uses the principle of dimensional homogeneity to provide a proof of the Π-theorem, which in turn defines a
criterion for physical similarity. One follows from the other, but there is no indication that these are to be
equated.

39For more on the Maxwellian prehistory of this debate see Mitchell (2017).
40Where mass, length, and time are the basic mechanical quantity dimensions, etc.
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an equation with dimensionless Π-terms:41

Π1 + Π2 + · · · + ΠN−1 = 1.

These dimensionless Π-terms will be invariant under any change of numerical value (passive

transformation) or magnitude (active transformation) of the basic dimensions.42 An example:

Let an arbitrary Π-term be the ratio between two masses ma = 2000 g and mb = 1000 g, so

Πa
b

= 2. If we actively transform the dimension by doubling the masses then ma = 4000 g,

mb = 2000 g, then Πa
b

= 2. If we passively transform the dimension by a different choice of

scale, a change to kilogram units, then ma = 2 kg, mb = 1 kg, then Πa
b

= 2.

Buckingham notes that Tolman’s principle requires an assumption of speed, charge, and

entropy as the invariants of its symmetries—see the table above. For Buckingham this is

merely a specific realization of the general Π-theorem, i.e. dimensional homogeneity. This

specification is merely an unorthodox choice of dimensional system. Buckingham raises

three objections to adopting this dimensional system and therefore Tolman’s principle. For

one, it moves what are thought of as empirical laws from the client discipline of physics to

the relatively a priori methodological discipline of dimensional analysis: “The unnecessary

introduction of new postulates into physics is of doubtful advantage, and it seems to me

decidedly better, from the physicist’s standpoint, not to drag in either electrons or relativity

when we can get on just as well without them.” (Buckingham 1914, 356)43

Secondly, it makes this move unnecessarily: Buckingham goes on to show that the principle

of dimensional homogeneity with the ordinary dimensional system can derive equations that

Tolman credits the principle of similitude with. Thirdly, Buckingham shows that the essential

inconsistency of Tolman’s system and Newtonian gravity, due to variance of the gravitational
41The dimensionless quantities and the theorem get their name from the fact that the dimensionless terms of

the equation have the form of product-functions: Π =
∏N

i Qxi
i .

42Where a basic dimension is understood as the set of all the quantities of that kind with an ordering that
allows for the mapping by a choice of scale to a set of numbers, see Ellis (1964).

43Ehrenfest-Afanassjewa (1916b) makes this same complaint.
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constant across the supposed similitude transformation. While Tolman himself derives the

inconsistency of his approach with Newtonian gravity (see Tolman 1914, 254), Buckingham

is the first to note this as a problem (see Buckingham 1914, 375). Ehrenfest-Afanassjewa is

then the first to locate this discrepancy in the gravitational constant and makes much of this

in her criticism of Tolman (see §2.3).

Tolman (1915) responds to Buckingham and argues that the principle of similitude is

superior to the principle of dimensional homogeneity on grounds of the latter’s inability to

constrain the functional form of equations with dimensional constants of unknown dimensions.

These are cases in which dimensional homogeneity necessitates the introduction of dimensional

constants: Consider Stefan’s law, u = aT 4. By the lights of the dimensional analyst, in

advance of the establishment of the dimensions of a, the equation could have a different

algebraic form, e.g. u = aT 3.

In this case, the dimensional analyst is tasked with determining a function that relates the

energy density of a blackbody, u, and its absolute temperature, T . Their respective dimensions,

ML−1T−2 and Θ, are incommensurable, so the principle of dimensional homogeneity is of no

help. Without either the dimensions of the mediating constant or the form of the function

relating the two inhomogeneous quantities, the dimensional analyst armed only with the

principle of dimensional homogeneity can make no derivations.

In contrast, the principle of similitude tells us that u must be numerically equivalent to

its scale counterpart, u′:

u = F (T ) = u′ = F (T ′) = x4F (x−1T ).

Referring to the table above we see that u scales with x4 and T with x−1, so the solution for

this equation requires taking temperature to the fourth power, and the equation is only fixed
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up to a scalar factor, a,44 yielding Stefan’s law:

u = aT 4.

Now considerations of dimensional analysis non-arbitrarily yield the dimensions of the

constant. As the dimensional analyst starts with neither the form of the equation nor the

dimension of the constant, the principle of dimensional homogeneity is not determinative. If

the dimensional analyst had the form of the law, the constraint of dimensional homogeneity

would immediately yield the dimensions of the constant. If the dimensional analyst has the

dimensions of the constant, the constraint of dimensional homogeneity would determine the

functional, algebraic form of the equation.

Tolman puts the relation of the two principles thus:

Where dimensional constants enter, the principle of dimensional homogeneity is

of no avail in predicting the form of a relation, since we cannot tell beforehand

what the dimensions of the constant are going to be. For such problems we must

have recourse to the principle of similitude. On the other hand, when dimensional

constants do not enter into the relation, although we may apply either principle,

the principle of similitude is usually the less powerful since it merely prescribes

invariance when the different measurements are multiplied by powers of a single

arbitrary multiplier x, while the principle of dimensional homogeneity prescribes

the more drastic requirement of invariance when the multiplications are carried

out with a different arbitrary multiplier for each fundamental property. (Tolman

1915, 232)

Understanding Tolman’s claim relies on distinguishing two ways in which a principle may be
44One way to think about the nature of the functional results yielded by either form of dimensional analysis

is that the results give the family of curves that corresponds to the function, but doesn’t give you the value
of the coefficients. Those are found by experiment (see Gibbings 1974; Gibbings 2011 on the relation of
dimensional analysis to experiment).
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“stronger”. The first way is that a principle may be logically stronger than another: in this case,

the principle of similitude is the stronger principle as it provides more determinate derivations

than the principle of dimensional homogeneity does, particularly in the cases in which there

is a dimensional constant of unknown dimension.45 The second is that is that one principle

may be more robust than another: in this case the principle of dimensional homogeneity is

more robust principle as it is commutes with more supposed symmetry transformations—in

particular, arbitrary transformations of the mass, length, and time that do not conform to the

similitude transformations given in the table. With some irony, the Euclidean standard is the

guide to fundamentality that physicists adopt—the standard of logical strength. In contrast,

for mathematicians, robustness seems to be the guide to fundamentality with respect to

principles.46 The question with respect to the operative, logical standard is one of efficiency:

how much am I getting for what cost? On this standard the principle of similitude would

win out—if it wasn’t false.

2.3 Tolman v. Ehrenfest-Afanassjewa

There is an interpretative issue that will bring us back to the metaphysical considerations at

hand. Tatiana Ehrenfest-Afanassjewa47 most clearly states an objection to Tolman’s principle
45As the principle of dimensional homogeneity provides no constraint on the functional structure of such

equations, one might like to say that these are cases in which the principle of dimensional homogeneity is
inapplicable and that the principle of similitude enjoys a wider range of applicability.

46The reason for the discrepancy between the standards of mathematics and physics comes from different
standards of modality. From the physicist’s perspective many mathematical models are just that and the
robustness criterion is of no relevance when a class of possible worlds is fixed. So another way to put the
debate between Tolman and his critics is that they disagree about the class of physically possible models
(given the empirical data).

47Walter’s (1990) account of this historical debate is overly dismissive of Ehrenfest-Afanassjewa’s contribu-
tions, especially her later, post-Dimensional Analysis, mathematical intervention (Ehrenfest-Afanassjewa
1926), which is only described as “extensive and confusing” (Walter 1990, 101). This dismissal is unfor-
tunately mirrored in responses by Bridgman (1926) and Campbell (1926)—though Bridgman includes
Ehrenfest-Afanassjewa (1926) in the list of important references which have appeared in-between editions of
Dimensional Analysis. (The list can be found in the preface to the revised edition.) A major reconsideration
of her work in dimensional analysis is under development, but see also San Juan (1947), Palacios (1964),
and Johnson (2018) for developments of her approach to dimensional analysis. See Uffink et al. (2021) for
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shared by the other respondents: The principle of similitude is merely an application of the

principle of dimensional homogeneity to a special dimensional system, and if the assumption

of this dimensional system is unfounded, the principle is specious. From the first paragraph

of her response:

An accurate analysis shows that Tolman’s considerations possess at least a close

connection with the reduction to a definite hypothesis of the conviction of the

homogeneity [unit invariance]48 of all the equations of physics, a conviction which

is commonly used without any foundation. This is not the intention of the author,

as appears from his third paper on the same subject, yet he really does nothing

else but construct a system of dimensions of his own (indeed one that in some

respects deviates from the C.G.S. system), and he examines all equations with a

view to homogeneity as regards this system of dimensions. (Ehrenfest-Afanassjewa

1916b, 1, her emphasis)

While Tolman (1916) rejects the presentation of his principle as determining a system of

dimensions, he accepts the presentation of the relationship between the two principles: The

principle of similitude involves a further empirical ansatz which is to be settled by the

investigations into the nature of gravity, and the principle is to be given methodological

priority due to its usefulness. His disagreement with Ehrenfest-Afanassjewa can be clarified

by way of a distinction made in §1.3. When Ehrenfest-Afanassjewa states that Tolman is

establishing a principle of homogeneity restricted to a special set of dimensions she is referring

to formal dimensions—dimensions considered only as change-ratios for a group of unit systems.

When Tolman claims that this is not the case, he is considering ontic dimensions—dimensions

a more general reevaluation of her work in mathematics and physics.
48Homogeneity, i.e. unit invariance, is sometimes treated as the fundamental principle of dimensional analysis

in lieu of dimensional homogeneity. Authors vary on which is to be taken as axiomatic and which is
to be derived, but the cases in which unit invariance and dimensional homogeneity come apart are so
few and spurious as to be dismissed for our purposes (cf. Bridgman 1931). I treat both approaches as
the “dimensional homogeneity” approach. For more on the mathematical definition of homogeneity, see
Ehrenfest-Afanassjewa (1926), San Juan (1947), and Palacios (1964).



2.3 TOLMAN V. EHRENFEST-AFANASSJEWA 29

considered as descriptions of the nature of quantities via their dimensional formulae.

(Formal Dimensions) Dimensions encode the transformations of numerical repre-

sentations of quantities due to changes in unit systems.

(Ontic Dimensions) Dimensions are properties of quantities in physical systems;

they encode similarity relations that are invariant between scaled systems.49

We could just as well distinguish these as unit-dimensions and quantity-dimensions.50 Formal

dimensions are merely formal devices translating between unit conventions. Ontic quantity

dimensions, according to the fundamentalist at least, correspond to objective dimensional

structure.

Ehrenfest-Afanassjewa argues that Tolman’s similitude transformations should only be

understood as formal transformations, i.e. unit changes.51 She places conditions on Tolman’s

ontic interpretation of these transformations as indicating actual changes in size, e.g. a

miniature universe:

(1) that a model universe in the sense defined above is possible,

(2) that we possess all equations which are wanted for a full description of the

whole universe,

(3) that the latter condition is especially fulfilled by those equations which in

the C.G.S. system serve to fix the dimensions of the different quantities.

(Ehrenfest-Afanassjewa 1916b, 4)
49This distinction is given by Johnson (2018), 105-112. A similar distinction between dimension-first and

unit-first attempts to provide a mathematical model for the quantity calculus is noted by Raposo (2018).
See also Sterrett (2009) for the connection between similarity relations and ontic quantity dimensions.

50This distinction became clearer in the 1930s, see Abraham (1933).
51“The transition from the numbers xi to x′

i may also be thought of in another way: instead of imagining
measurements to be made with the same units in two different worlds, we may conceive the measurements
to be carried out applying two different sets of units to the same objects (‘in the same world’).” (Ehrenfest-
Afanassjewa 1916b, 3)
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To these conditions she raises three objections. First, the unit transformation coefficients

(or scale factors) for time, length, and mass (and so on) are fixed independently of any

investigation into the possibility of such model universes. Second, the full description

condition necessitates that the transformation coefficients52 of the derived quantities are

fixed by the similitude transformation in a way that unnecessarily minimizes the number of

basic dimensions, by disallowing the introduction of novel (non-mechanical) basic dimensions

(reducing “the number of degrees of freedom of the transformation”). Third, there is no

reason to think that the current fundamental dimensions are sufficient to capture all of nature

(“which should give a necessary reduction of the degrees of freedom” in the dimensional

system), and Tolman’s reduced mechanical basis (consisting of just length) is insufficient to

capture Newtonian gravity.53

Tolman objects to Ehrenfest-Afanassjewa’s characterization of his principle as determining

another “system of dimensions” distinct from that corresponding to the then standard

centimeter-gram-second unit system54—at least insofar as dimensions are understood in the

ontic sense. Tolman gives an initial statement of the fundamentalist conception of a ontic

system of dimensions:

The dimensions of a quantity may be best regarded, I believe, as a shorthand

statement of the definition of that kind of quantity in terms of certain fundamental

kinds of quantity, and hence also as an expression of the essential physical nature
52She also says, in quotes, the “dimensions”.
53Ehrenfest-Afanassjewa suggests a strategy for saving the ontic interpretation of the dimensional symmetries:

the scaling of dimensional constants so as to guarantee quantity symmetries (see Roberts 2016; Jacobs
2022; Jalloh Forthcoming; Martens 2024 for contemporary arguments about this strategy). The introduced
constant can be understood two ways: either as some real quantity, like a postulated constant of matter, or
else “denote it as a product of special values of the active variables occurring in the equation” (Ehrenfest-
Afanassjewa 1916b, 5). She develops this more thoroughly as the introduction of “formal variables”
in Ehrenfest-Afanassjewa (1916a). The upshot: such an extension of the “ ‘physical’ meaning of the
constants” trivializes the possibility of active scale transformations and the invariance of equations under
such transformations, and so “ceases to afford a criterion for distinguishing between equations which are
‘physically allowable’ and arbitrary equations”(Ehrenfest-Afanassjewa 1916b, 6).

54The dimensional system for which C.G.S. is a coherent unit system (see §1.3). In this respect there is no
difference between the C.G.S. system and a M.K.S. system.
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of the quantity in question. If, for example, we define force as mass times

acceleration, the dimensions of force will be [mlt−2] and this may be regarded as

a shorthand recapitulation of the definition of force in terms of mass, length and

time, and also as an expression of the essential physical nature of force.

The reason, now, why certain physical equations have to be dimensionally homo-

geneous is because in the cases under consideration the physical nature of the

quantities equated has to be the same. (Tolman 1916, 9)

Tolman argues that the second principle invoked, that the dimensions of a quantity expresses

the essential nature of that quantity grounds the principle of dimensional homogeneity. That

an equation must have terms of equal exponent in each basic dimension on either side

follows if equations are taken not only to describe numerical equalities, but also quantity

identities. Here Tolman assimilates the definition of derived quantity dimensions and their

metaphysical constitution. That the nature of physical quantities does not unproblematically

follow from their dimensional formulae is discussed in the literature (e.g. Johnson 2018;

Skow 2017)—Tolman’s conflation of definition and constitution is a target of Bridgman’s

conventionalist critique.

The ontic interpretation of dimensional systems makes clear Tolman’s reason for denying

that the principle of similitude provides one. According to the principle of dimensional

homogeneity force is defined and constituted by mass, length, and time, according to the

formula: [f ] = MLT−2. Under the system of dimensions that would be given by the principle

of similitude, force is a function only of length, [f ] = L−2. If Tolman were committed to a

system of dimensions given by the principle of similitude, he would say the principle attributes

force the nature of an inverse area. For this reason Tolman retreats to treating his principle

as an empirical ansatz regarding the possibility of miniature, indistinguishable universes that

is available for (dis)confirmation, via the implied theory of gravity. This is a retreat from his

original ontic interpretation of his similitude transformations.
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2.4 Tolman v. Bridgman

Tolman’s principle qua empirical ansatz is the target of Bridgman’s critique: “If the exact

form of the equations and their mode of application should turn out to be exactly identifiable

with the corresponding manipulations of the theory of dimensions, then the principle of

similitude must be judged not to be new[. . . ] I shall try to show in this note that such an

identification is possible; that in so far as the principle of similitude is correct it gives no

results not attainable by dimensional reasoning, and that in its universal form as stated

above it cannot be correct.” (Bridgman 1916, 424)55 Bridgman’s aim is to show that Tolman’s

principle of similitude is more determinative than the principle of dimensional homogeneity

at the cost of reliability.

Bridgman diagnoses Tolman’s apparent examples of the greater determinativity of the

principle of similitude by drawing attention to a special feature of the dimensional constants

involved; in particular, that, “[t]he principle of similitude may be applied with correct results

to all those cases in which the dimensional constants have such a special form that they

are not changed in numerical magnitude by the restricted change of units allowed by the

principle.” (Bridgman 1916, 425)

The dimensions of Stefan’s constant, a, are ML−1T−2Θ−4, so we can express a as

Naml−1t−2θ4, where Na is some dimensionless number and m, l, t, and θ are units of

mass, length, time, and temperature, respectively. Now apply the principle of similitude:

a = a′ = Naxm′xl′−1
x2t′−2

x−4θ′−4 = Nam′l′−1
t′−2

θ′−4
.

The x factors cancel and the numerical value of Stefan’s constant is invariably Na. That

only some such constants are invariant under dimensional scale transformations is evident in

Tolman’s failure to capture Newtonian Gravitation: G = NGM−1L3T−2 scales with factor

x−2. The conclusion of Bridgman’s argument is that the method of similitude requires an
55Where “the universal form” is the statement that the materials which constitute the universe could be used

to create an empirically indistinguishable universe which differed only in size.
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assumption regarding the dimensionality of the relevant constant(s) just as the method

of dimensional homogeneity does: a user of the principle of similitude must assume that

the dimensional constants which figure in the fundamental equations are such that their

dimensional transformation coefficients cancel out. This assumption bears out surprisingly

often: In addition to a, Bridgman cites the gas constant, the velocity of light, and the constant

of quantum action. Is there some metaphysical significance to this seeming conspiracy of the

dimensional constants?

Bridgman answers in the negative, the apparent conspiracy can be explained by the

dimensional structure of our conventionally defined unit systems. By limiting valid unit

transformations to those that leave that some choice of constants invariant, e.g. c and e in

Tolman’s system, a number of consistent systems of dimensions can be defined. Bridgman

amplifies Buckingham’s observation that the number of independent basic dimensions or

units can be determined by the number of unit-invariant quantity relations, i.e. laws, we chose

to accept as axiomatic (i.e. relatively a priori as indicated in §1.2). Apparently, then, the

number of basic quantity dimensions (and number of dimensional constants) is conventional.

For example, if force was to be set as an additional fundamental quantity, there would be

a new dimensional constant in Newton’s second law. Instead we take the law, with this

would-be constant set to unity, as a unit-invariant axiom. Bridgman argues that we accept

dimensional definitions not owing to some metaphysical identity but due to the frequency of

the corresponding experimental fact.

Bridgman provides a helpful demonstration of the conventionality involved. I will modify

his convention of using the square brackets [x] to using curly brackets {x} to denote the unitless

numerical value of x [in line with contemporary standards, see JCGM (2012)]. Bridgman

provides a description of each of the constants of nature in terms of the fundamental units (5
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constants and 5 basic units):56

G = {G}m−1l3t−2 = {G′}m′−1
l′3t′−2

c = {c}lt−1 = {c′}l′t′−1

k = {k}ml2t−2θ−1 = {k′}m′l′2t′−2
θ′−1

h = {h}ml−2t−1 = {h′}m′l′−2
t′−1

E = {E}e−2ml−3t−2 = {E ′}e′−2
m′l′−3

t−2

These equations can be used to determine the value of the constants under changes of

fundamental units. Or instead they can be reformulated in order to determine the unit

transformations that keep the values of the constants fixed:

l′2 = {h}
{h′}

(
{c}
{c′}

)−3 {G}
{G′}

l2

t′2 = {h}
{h′}

(
{c}
{c′}

)−5 {G}
{G′}

t2

m′2 = {h}
{h′}

{c}
{c′}

(
{G}
{G′}

)−1

m2

θ′2 = {h}
{h′}

(
{c}
{c′}

)5 ( {k}
{k′}

)−2 {G}
{G′}

θ2

e′2 = {h}
{h′}

{c}
{c′}

(
{E}
{E ′}

)−1

e2

Tolman’s transformation equations can be derived by holding all constants fixed except for

G. However, different transformation equations can be defined by varying other constants

and holding G fixed. In each of these systems some constant or other is the odd man out,

i.e. is variant under similitude transformations. Generally speaking, if we wish to freely vary

some number of the fundamental units (like Tolman does for length), we will have to vary
56G is the gravitational constant; c is the light constant; k is the (Boltzmann) thermodynamic constant; h is

the quantum constant; E is the (Coulomb) electric force constant. The following two sets of equations are
adapted from Bridgman (1916), 429.
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the same number of universal constants. The indeterminancy of which constants are varied

due to the conventional choice of which fundamental unit (i.e. basic dimension) to ground

our dimensional system in (i.e. a choice of alternative similitude principles) was taken by

Bridgman to undermine Tolman’s characterization of his principle as an empirical ansatz

to guide the development of a novel theory of gravity. There is no more reason to hope

for a new theory of gravity guided by this principle than a new theory of electricity. The

constant or physical theory that “the” principle of similitude is in tension with is a matter of

arbitrary choice. This arbitrariness—reducing time to length rather than reducing length to

time—is unavoidable for Tolman in the absence of an ontic conception of his dimensional

system. In other words, the choice of dimensional system associated with the principle of

dimensional homogeneity is arbitrary and a generalized principle of similitude does not yield

unique empirical predictions—which is to be expected given Tolman’s retreat to presenting

the principle as only defining a formal system of dimensions (see §2.3).

Tolman presents a full-fledged metaphysical account of “measurable quantities” in his

final response regarding the principle of similitude. This account is in no way reactionary—it

does not constitute an argument in favor of the principle of similitude—but rather is to serve

a foundational purpose:

The time is already ripe for a much more comprehensive and systematic treatment

of the field of mathematical physics than has hitherto been attempted, and the

completion of this task would make it possible to derive all the equations of

mathematical physics from a few consistent and independent postulates, and

to define all the quantities occurring in these equations in terms of a small

number of indefinables. The purpose of this article is to discuss from a somewhat

general point of view the nature of the quantities which occur in the equations of

mathematical physics and to consider a set of indefinables for their definition. We

shall thus hope to help in the preparation for that more complete systematization

of mathematical physics which is undoubtedly coming. (Tolman 1917, 237)
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Tolman aims to prepare the way for a generally axiomatic treatment of physics as a whole.57

Tolman reintroduces his metaphysical posit by way of discussing the relation that holds

between fundamental and derived quantities, which is represented by dimensional formulae:

“The dimensional formula of a quantity may be regarded as a shorthand statement of the

definition of that kind of quantity in terms of the kinds of quantity chosen as fundamental,

and hence also as a partial statement of the “physical nature” of the quantity in question.”

(Tolman 1917, 242, his emphasis)58 Tolman holds that the apparent necessity of five funda-

mental quantity dimensions (three mechanical ones, one for electromagnetism, another for

thermodynamics) is due to there being “five fundamentally different kinds of ‘thing’ ”: space,

time, matter, electricity, and entropy.

Beyond being sufficient to account for all known physical quantities, Tolman puts forth two

further conditions on a set of fundamental quantity dimensions. The fundamental quantities

must be extensive—this allows for extensive methods of measurement for all derived quantities

even those that are themselves intensive (consider the role of a thermometer in measuring

the temperature).59 The set of fundamental quantity dimensions must also be such that they

provide an optimal level of simplicity to the system of quantities.

With all this on the table, Tolman argues that Bridgman’s conventionalism is due to a

confusion of quantity-dimension and unit-dimension:

The fact that it has become usual to pick out the units for derived quantities in

the way indicated has sometimes led to an unfortunate confusion as to the real

significance of dimensional formulae. Thus there has grown up the practice of

speaking of the dimensions of a unit when what is really intended is the dimensions
57Appropriate to the generality of his aims, Tolman takes Russell’s (1903) distinction of magnitude and

quantity as his starting point. Tolman’s system, including his fundamental distinction of intensive and
extensive quantities cannot be dealt with here in full.

58That dimension can at most only be a partial description of the nature of a quantity is here set aside, see
Lodge (1888) and Mari (2009).

59“In case the derived quantity has intensive rather than extensive magnitude some more or less artificial
correlation of the magnitude in question with quantities having extensive magnitude will then have to be
used, as has been done in the case of our ordinary temperature scale.” (Tolman 1917, 248)
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of the quantity involved. It certainly seems best, however, to use the dimensional

formula of a quantity as a shorthand restatement of its definition in terms of the

fundamental kinds of quantity. The dimensional formula is thus a symbol for

the physical nature of the derived quantity and a recapitulation of the necessary

relation between different kinds of quantity rather than the statement of a relation

between units which we find convenient. (Tolman 1917, 249)

The dimensional relations between quantities are necessary, not conventional. This distin-

guishes quantity-dimensions from unit-dimensions, or dimensional systems from unit systems

(see §1.3). Generally speaking, a dimensional system or a unit system can be used to fix the

other, by defining a coherent system of units. Non-standard dimensional systems are often

defined in this way by setting a constant equal to one and eliminating one kind of unit for

another, e.g. the spatialization of time units in relativity theory upon the adoption of the

light postulate; If one takes this to be a true elimination of the constant c then one adopts

a dimensional system in which time and length quantities are equivalent.60 Tolman rejects

any such conventionalism regarding the basic quantity dimensions. For him the reduction

of the time dimension to the space dimension would be the same as reducing pressure to

volume on account of using them to form a two dimensional graph—a well founded corre-

lation is insufficient for a dimensional reduction, let alone the reduction of a fundamental

quantity dimension.61 By distinguishing the necessary dimensional relations of quantities

from the conventional “dimensional” relations of units, Tolman takes himself to be reiterating

what I am calling the ontic-formal dimension distinction he made in Tolman (1916). This

confusion between the “dimensions of quantity” and “dimensions of unit” he claims may be
60Physicists often talk in this manner, but it is apparent that they usually take this to only be a change

in unit systems and not in dimensional systems. The “suppressed” constants return when it is time for
physical interpretation (compare Rücker 1888).

61Though Tolman is a metaphysical realist about dimension, he thinks what we take to be the number of
dimensions is a manner of empirical inquiry. The special sciences, following the example of thermodynamics,
may introduce new kinds of measurable quantities (e.g. economics). The reduction of the number of
dimensions seemed to him impossible, but not logically so.
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“a contributory cause for a number of criticisms which have been made on the principle of

similitude.” (Tolman 1917, 251) That said, Tolman stops short of an explicit defense of his

principle and, as far as I’ve seen, never defends or makes use of it again. As I will argue in the

next section, the points he makes against Bridgman’s libertine conventionalism do point the

way to a metaphysics of quantity dimensions, but one weaker than the quantity dimension

fundamentalism that he develops over the course the debate concerning his principle of

similitude.

2.5 Verdicts

As mentioned above, the failure of Tolman’s principle of similitude was overdetermined. There

is, however, much to learn about the foundations of dimensional analysis from the debate

concerning its relation to the principle of dimensional homogeneity. Here are the results we

may take from each of the criticisms discussed above.

Buckingham correctly shows that the principle of dimensional homogeneity can generate a

broad class of symmetry transformations, of which Tolman’s “relativity of size” is only a special

case corresponding to the adoption of an unorthodox dimensional system. Tolman is right to

claim that the principle of similitude is the more determinative principle because it can be

used to derive functional equations for systems with unknown dimensional constants—whereas

the principle of dimensional homogeneity is useless.

Ehrenfest-Afanassjewa sharpens the criticism that Tolman’s principle is merely setting up

a peculiar dimensional system. She argues that Tolman’s dimensional system is allowable, qua

formal system, but Tolman has not met the conditions needed to give it an ontic interpretation.

In particular, the ontic interpretation of the dimensional system will require the variability of

the magnitude of the gravitational constant across the similitude transformation, a trans-

formation she takes to be nomologically impossible.62 Tolman capitulates that his principle

only works as setting up a formal system of units—though he thinks this may still constrain
62See Jalloh (Forthcoming) on “constant necessitism”.
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the form of future theories of gravity—and puts forward a fundamentalist metaphysics of

dimensions, independent of the form of fundamentalism (length fundamentalism) apparently

adopted in his initial 1914 paper.

Bridgman shows the apparent extra domain of determinativity to not be an argument in

favor of the methodological priority of Tolman’s principle of similitude, contrary to Tolman.

For one, the epistemic benefit of the principle is limited as it depends on an assumption

about the dimensions of the relevant constant, though not its exact dimensional formula: its

dimensions must be such that it is invariant under the similitude transformation. While this

turns out to generally be the case (with the notable exception of G), Bridgman shows that

given the number of constants and the number of basic dimensions any principle of similitude

based on the scaling of a single such basic dimension would lead to some constant or another

being left out. The similitude transformations follow from this conventional choice and

dimensional homogeneity, and Tolman’s chosen unit system fails to be empirically adequate

in the case of gravity. Tolman, systematizing his response to Ehrenfest-Afanassjewa, does not

defend the principle of similitude but rather aims to clarify a confusion. Tolman distinguishes

between ontic quantity dimensions and formal unit dimensions and claims that Bridgman’s

conventionalist argument depends on a confusion between the two. While unit systems are

indeed conventional, dimensional systems, constituted by dimensional formulae, are supposed

to be representative of the intrinsic metaphysical nature of the quantities they describe: We

cannot chose the basic quantity dimensions. Tolman’s retreat to an understanding of the

principle of similitude as merely showing the convenience and viability of a particular kind

of unit system marks a complete rejection of the ontic interpretation of the principle of

similitude, but it also marks the beginning of a debate regarding the metaphysics of quantity

dimensions.
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3 Recovering Dimensional Realism: Arguments

Against Conventionalism

In this section I summarize the two metaphysical accounts of quantity dimensions which

emerge from the early methodological debate and propose a synthesis which overcomes

difficulties with both positions. As described in §1.4, fundamentalism, the metaphysics of

dimensions espoused by Tolman, and conventionalism, the anti-metaphysics espoused by

Bridgman, can be understood as opposite positions regarding two theses:

(Dimensional Realism) There is objective dimensional structure that corresponds

to a dimensional system.

(Fundamental Basis) There is a fundamental dimensional structure that corre-

sponds to a dimensional basis.

The fundamentalist accepts both theses, and the conventionalist rejects both theses. The

conventionalist case against Fundamental Basis relies on the symmetry in defining equations:

we can just as well take f = ma to define the force dimension in terms of the dimensions of

mass and acceleration as we can take it to define the mass dimension in terms of the dimensions

of force and acceleration. The conventionalist case against Dimensional Realism therefore

follows: If there exist a multiplicity of acceptable bases, then there is no unique dimensional

system that represents objective dimensional structure. The conventionalist takes the existence

of such symmetry transformations and the following lack of a unique dimensional system,

to provide evidence for the further antirealist claim that there is no objective dimensional

structure. Such an argumentative strategy is familiar from the spacetime literature: if

some putatively objective structure varies under transformation that is a symmetry of the

laws (dynamical symmetry) and leads to an empirically indistinguishable system (empirical

symmetry) then that structure is not in fact objective. For example, Leibniz famously argued
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against the existence of absolute spacetime positions by showing that a universal translation

of positions 5 miles to the west would be both a dynamical and empirical symmetry.63

I will here make the case that there is a dimensional realism that can be recovered in light

of the conventionalist symmetry argument. The conventionalist would be too rash if they were

to take their symmetry argument to show that there is no dimensional structure whatsoever:

Earlier I distinguished dimensional systems by their basis dimensions (see §1.4); however, I

will now show that the objective dimensional structure that is represented by such dimensional

systems is more coarse-grained. Here, I will not attempt to give a new model of dimensional

systems that is “reduced” so that there is nothing in a dimensional system that does not

correspond to objective dimensional structure. I will rather present a “sophisticated” account

of dimensional systems such that equivalent dimensional systems related by an isomorphism

(a change of basis) are taken to represent the same objective dimensional structure.64 In

order to recover some form of dimensional realism some distinctions regarding the relations

between dimensional systems and dimensional structure must be made. To do this I divide

each realist thesis into two sub-theses, yielding four fundamentalist commitments:

(Dimensional Representation) Dimensional systems represent objective dimen-

sional structure.

(Dimensional Uniqueness) There is a uniquely correct dimensional system that

represents the objective dimensional structure of the world.

(Fundamental Basis Size) The size of the set of basic quantity dimensions is

objectively determined.
63See Ismael and van Fraassen (2003) and Dasgupta (2016) for developments of such symmetry arguments. I

leave here undetermined what is to be done with the “surplus structure”, whether it is to be straightforwardly
eliminated from our ontology or else if it is to be shown to be reducible to a fundamental, objective structure
interacting with some subjective aspect. See Earman (1989) for a classic exposition of the analogous
spacetime debate.

64On the difference between reduced and sophisticated theories see Dewar (2019) and Martens and Read
(2020). I will not make a stand here on whether a reduced theory is preferable to a sophisticated one or if a
reduced one is in this case possible; It is just the case that a sophisticated theory of dimensional systems is
readily available to me while a reduced one is not.
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(Fundamental Basis Identity) The individual identities of basic quantity dimensions

are objectively determined.

Dimensional Representation and Dimensional Uniqueness make up Dimensional Realism.

This analysis is to be understood similarly to van Fraassen’s (1989) analysis of scientific

realism. Dimensional Representation is a statement that dimensional systems are to be taken

literally: they purport to represent something objective, and so can be judged to do so more

or less adequately; Dimensional Uniqueness says that only one such dimensional system

is ultimately correct. Similarly, Fundamental Basis Size and Fundamental Basis Identity

make up Fundamental Basis. There are two possibly objective aspects of the fundamental

dimensional structure. I will argue that we can be realist about one aspect of the basis of

dimensional systems (size) without being realist about the other (identity).

The conventionalist argument against Fundamental Basis is only partially successful:

conventionalist transformations of the identities but not the number of basic quantity

dimensions are consistent with the empirical success of dimensional analysis. A dimensional

system for mechanics which treats force as a basic quantity (and mass as derived) is as

empirically adequate as a dimensional system which treats instead mass as a basic quantity

instead. However, while there appears to be no natural constraint on which quantity

dimensions appear as basic, there is a natural lower limit on the number of quantity dimensions

that can adequately represent a physical system. In fact, in Tolman’s rebuttal to Bridgman’s

conventionalism, he puts forward the essential argument in favor of the objectivity of the

number of basic quantity dimensions: the problem of insufficient bases. The problem is that the

reduction of the number of basic quantity dimensions reduces the determinative power of the

principle of dimensional homogeneity—therefore it seems that the reduced dimensional system

misrepresents some dimensional structure necessary to have a determinative dimensional

analysis of physical systems. For example, Tolman (1917, 250) shows that the dimensional
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analytic derivation of the equation for the centripetal force,

f = k
mv2

r
,

becomes much more indeterminate when the dimensions of length and time are equated

(reducing the basic mechanical dimensions to two by making velocity dimensionless):65

f = k
mvn

r
.

This is evidence that a dimensional system which collapses the length and time dimensions

lacks the representational capacity to adequately describe the centripetal force—Palacios

(1964) calls such violations of this natural constraint the problem of insufficient bases. However,

Tolman went too far in holding that this shows that the the identities of the basic quantity

dimensions are objectively determined by nature; it is in fact the number of basic dimensions

that are so determined.

When Dimensional Realism is taken as a package deal, the conventionalist attack on

Objective Basis Identity is enough to justify an antirealism about quantity dimensions.

However, we can divide Dimensional Realism into Dimensional Uniqueness and Dimensional

Representation. If conventionalist critique requires the rejection of Fundamental Basis

Identity, then Dimensional Uniqueness must be rejected as well. Dimensional Realism can be

salvaged as the conjunct of just Dimensional Representation and Objective Basis Size: the

form and ramifications of this moderated dimensional realism is discussed in §3.3, but first

the case against a thoroughgoing conventionalism needs to be given. In what follows I give

two arguments against an antirealist conventionalism; the first is the problem of insufficient

bases, which is revealed by the Rayleigh-Riabouchinsky paradox; the second is the inability of

the conventionalist to account for the explanatory nature of dimensional analysis altogether.
65This is even worse when you consider that vn could be folded into k, hiding any dependence on velocity.
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3.1 The Generalized Rayleigh-Riabouchinsky Paradox and the

Problem of Insufficient Bases

In an early exposé of dimensional analysis, Rayleigh (1915) uses dimensional analysis to

derive equations for a number of systems, including a case of heat transfer between a rigid

rod and a stream of fluid (Boussinesq’s problem). Riabouchinsky (1915) showed that by

reducing the number of dimensions involved in describing the system from four to three—by

eliminating the independent dimension of temperature via adoption of the mechanical theory

of heat—dimensional analysis results in a less determinate result. This appears to be a

paradox: more knowledge about the system—that temperature has equivalent dimension to

energy—yields a less informative result! This surprising result shows that not all laws can be

taken to give reductive dimensional formulae—on pain of inadequate representation. This

means that the multiplicity of a dimensional system is not fully conventional but rather is

restricted on one side by nature.

We can better understand this so-called paradox and the problem it raises by consideration

of a simpler case—the Rayleigh-Riabouchinsky paradox can be generalized to an observation

regarding the determinancy of dimensional systems in general. The case of dimensional

reduction I wish to consider here in fact appears in Buckingham’s (1914, 372–75) response to

Tolman: the reduction of the mechanical dimensional system’s basis from three to two basic

dimensions by using Newton’s force laws to define a dimensional formula for mass in terms

of length and time.66 First I will show how such a dimensional reduction is done and then

show how it leads to lower specificity in the derivation of the period of a pendulum when

compared to the treatment in §1.1.

First we set Newton’s two force laws equal to each other,

G
mm′

r2 = m′a,

66The choice of which dimension is reduced to the other two is arbitrary, though this kinematic reduction
recalls a “Laplacian” reduction of mass (see Martens 2018).
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simplifying the expression we get:

G
m

r2 = a.

Now we make G into a dimensionless number and, for convenience, assume we’re working in

a coherent set of units such that G = 1. The resulting equation,

m = ar2,

will define the unit mass, with dimensions,

[m] = [a][r2] = LT−2L2 = L3T−2.

We make the same assumption regarding the quantities which may be involved in modeling a

simple pendulum, in our reduced kinematic dimensional system:

[t] = T

[m] = L3T−2

[l] = L

[g] = LT−2.

Now it is not clear from inspection that mass is irrelevant to the pendulum period. We will

have to be more systematic and apply the algorithmic method supplied from the Π-theorem;

this will also provide us with the concepts needed to understand in full generality the problem

of insufficient bases.

Importantly, the Π-theorem informs us that for any system the number of quantities that

describe the system, N , and number of basic dimensions which derive the dimensions of those

quantities, B, determine the number of dimensionless Π-terms which are sufficient to describe

the system: N − B. In this case N = 4 and B = 2, so we should expect there to be two
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Π-terms sufficient to describe the pendulum. To determine the forms of the Π-terms, we must

solve two sets of equations for the dimensional exponents of the component terms. Each set

is composed of equations for each basic dimension. Two equations and four variables means

that the exponents of two variables must be arbitrarily determined. We choose the simplest

case for each Π-term: Π1 ∝ t1l0 and Π2 ∝ t0l1. So the Π-terms will each have the form:

Π1 = tmα1gβ1

Π2 = lmα2gβ2 .

Now we set up the two sets of linear equations to determine exponents of zero in each basic

dimension for the two Π-terms:

T : − 2α1 − 2β1 + 1 = 0 −2α2 − 2β2 + 0 = 0

L : 3α1 + 1β1 + 0 = 0 3α2 + 1β2 + 1 = 0.

These equations yield the solutions:

α1 = −1
2 α2 = −1

4
β1 = 1

2 β2 = 3
4 ,

so

Π1 = tm− 1
2 g

1
2

Π2 = lm− 1
4 g

3
4 .

Solving for t we get the equation t = km
1
2 g− 1

2 Ψ(lm− 1
4 g

3
4 ), where Ψ is some power function.

This compares unfavorably with the more specific equation derived in the full mechanical

dimensional system, t = k

√
l

g
. The move to a reduced basis generates spurious Π-terms. On
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the other hand, at some point an increase in the number of basic dimensions will not reduce

the number of Π-terms that describe a system. Palacios uses these conditions to provide

criteria for insufficient and superabundant bases: “[I]f it happens that in augmenting in some

way a given basis, the number of independent π monomials decreases, then the original basis

was incomplete, whilst if the same system of such monomials is always obtained then, the

original basis is complete and the augmented one is superabundant.” (Palacios 1964, 67,

his emphasis) I dub a dimensional system that is neither insufficient (or incomplete) nor

superabundant with respect to a physical system to be a well-tuned dimensional system.

That a dimensional system can be more or less well-tuned, that there is an objective

standard (maximally efficient dimensional analysis) for how well a dimensional system

describes physical systems belies the conventionalist position. The conventionalist cannot

account for the differences between an insufficient, a well-tuned, and a superabundant

dimensional system, while the dimensional realist has an easy answer: the well-tuned system

accurately represents the dimensional structure of the physical system in question, the

insufficient system lacks certain representational capacities, and the superabundant system

has unnecessary resources. Nature constrains the number of bases from below; a general

Occamist norm constrains the number of bases from above.

3.2 Accounting for Dimensional Explanations

Recently, philosophers of science have provided accounts of how dimensional analysis provides

explanations and in doing so have attempted to eliminate any sense of “paradox” from

the Rayleigh-Riabouchinsky phenomena discussed above. Lange (2009) has argued that

dimensional analysis provides explanations of derived laws which screen off the fundamental

laws. Dimensional analysis explains certain similarity features of systems that are independent

of various aspects of their constitution (and so the sometimes distinct sets of fundamental laws
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that govern the phenomena in question).67 I want to emphasize something about how Lange’s

account of dimensional explanations applies to the generalized Rayleigh-Riabouchinsky

paradox. Dimensional explanations using dimensional systems with more basic quantity

dimensions (particularly ones considered derivative in conventional systems) apply to a

larger set of counterfactual cases; they apply to systems independently of the values and

the dimensions of the (in this system, dimensional) constants that link the additional basic

dimensions into the laws.68 Bridgman considers a case69 where volume is treated as an

additional basic mechanical dimension independent of length, which allows for the derived

equation to apply even in non-Euclidean geometries where v = l3 may not hold.70 This

would introduce a dimensional volume constant ω, where v = ωl3 and [ω] = VL−3, which

could have a non-trivial value (i.e. not 1). In the thermodynamic case, it could be that

the value of Boltzmann’s constant or the gas constant was different, such that a unit of

temperature would not be equivalent, in neither value nor in dimension, to a unit of energy,

invalidating any mechanical reduction of thermodynamics. In both cases, the derivation

that allows for the possibility of the variations in constants, i.e. does not treat the relevant

laws as a priori, is the more explanatorily powerful in the sense that it is more general.71

Pexton (2014) gives a different, though consistent account of how dimensional analysis

explains: dimensional analysis provides models of systems that make apparent patterns of
67Lange considers the dimensional similarities of waves in a fluid and standing waves in a string (Lange 2009,

4.)
68Lange (2009) holds that this is a counterlegal. This depends on the somewhat controversial though

underappreciated thesis that the values of the constants are part of the laws, e.g. nomologically necessary.
See Jacobs (2022) and Jalloh (Forthcoming) for reasons why this may not be the case.

69See the discussion beginning at Bridgman (1931), 59.
70This fails to hold in a very mundane case: A liter of volume was defined (by the CGPM in 1901, until

1964) as the volume occupied by a kilogram of pure water in standard conditions, rather than as a cubic
decimeter, as it is currently. While the two definitions aim to define the same quantity, the correspondence
is not exact, meaning the former definition requires a constant to relate the volume and length unit, and
the conceptual independence of volume from length in this this defintiion requires that this constant be
dimensional. See Petley (1983), 137.

71The explanation is powerful because it applies to more possible (or impossible) worlds; the derivation has
greater modal robustness.
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modal dependence (i.e. counterfactual). On Pexton’s modal-model theory of dimensional

explanations, Rayleigh-Riabouchinsky phenomena can be accounted for by the fact that for

some systems such dimensional reductions, like that of temperature to energy, are simply

irrelevant. It is no surprise that irrelevant factors can introduce noise (in the form of extra

degrees of freedom) that interfere with the power of an explanation given by the model. As

seen with Lange’s account, there is a tradeoff between abstraction and explanatory power.

The conventionalist makes both the general explanatory power and also the dependence of

explanatory power on dimensional system mysterious. Surely if some choice of convention is

better than another, not as a matter of what is convenient to deal with, but in its explanatory

capacities, we ought question whether dimensional systems are indeed a matter of convention

after all. The dimensional realist has a nicer story to tell about the explanatory power of

dimensional analysis: dimensions exist and some dimensional systems better describe (some

aspects of) their natures than others.72 However, the conventionalist critique still has some

bite. Generally, the Rayleigh-Riabouchinsky paradox only shows that the number of basic

quantity dimensions, the degrees of freedom in the dimensional system, is constrained by

nature. Both practice and mathematical theory73 give reason to believe that the basis of

a dimensional system is not unique. This conventionalist constraint on our metaphysics of

quantity dimensions can be seen by considering the symmetric nature of defining equations:

the relation between volume and length is equally well expressed by the formulae V = L3

and L = V 1
3 . What is needed is a metaphysics of dimensions that captures the objective

structure of dimensional systems while leaving open for convention a choice of basis. Further,

this structure needs to be such that it provides a foundation for the representational and

explanatory success of dimensional analysis. In the next section I introduce such a metaphysics
72An extended argument for dimensional realism from dimensional explanations has been provided by Jacobs

(2024).
73Mathematical models of dimensional systems are legion. Often, dimensional systems are modeled as vector

spaces or groups. A full account of the metaphysics of dimensional systems in light of these models must
be postponed. See San Juan (1947); Corrsin (1951); Palacios (1964); Whitney (1968a); Whitney (1968b);
Johnson (2018); de Boer (1995); Tao (2012); Raposo (2018); Raposo (2019) for mathematical models of
quantity dimensions and some of their physical and metaphysical implications.
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of quantity, a moderate realism, quantity dimension functionalism.

3.3 Functionalism: The Best of Both Worlds?

If the empirical adequacy of our dimensional systems is to serve a guide to our metaphysics of

dimensions then it seems that we must give up Fundamental Basis Identity and its corollary

Dimensional Uniqueness, as the empirical success of our quantitative representations of

systems are insensitive to some changes in our dimensional formulae. Sensitivity to other

changes in our dimensional formulae, i.e. the problem of insufficient bases and the dependence

of explanatory on dimensional systems, drive us to be committed to Fundamental Basis Size

and Dimensional Representation. As neither position articulated last century provide an

adequate metaphysics of dimensions according to these criteria, both fundamentalism and

conventionalism are to be rejected.

In their stead I offer quantity dimension functionalism. Here I repeat the basic formulation

of the view given in §1.4:

(Functionalism) There is an objectively correct set of dimensional systems—each

system describing the dimensional structure of the world equally well. While

there is no unique basis for these dimensional systems, the number of quantity

dimensions that are fundamental is objectively determined.

This position is indeed a form of structural or sophisticated realism, wherein quantity

dimensions are without fundamental intrinsic natures or quiddities, but rather have their

natures as a matter of their relative positions in the (quotient) dimensional system.74

Quantity dimension functionalism is most closely related to the sense of functionalism in the

spacetime literature, wherein “spacetime is as spacetime does” (Lam and Wüthrich 2018;
74For simplicity’s sake I will collapse the set of objectively correct dimensional systems into a single dimensional

system. In group theory this operation is called “quotienting” and the resultant quotient dimensional
system can be understood as that invariant under all of the transformations between different dimensional
bases. A similar structuralist defense of dimensional realism can be found in Jacobs (2024), though he does
not take on the historical orientation I have here.
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Knox 2013, 2019). However, as a role functionalism, rather than a realizer functionalism,

there is no commitment to underlying primitives that “realize” particular dimensional roles,

functionalists can be thoroughgoing structuralists regarding quantity dimensions.75 The

relative positions in dimensional structure are the invariant objects described by different

dimensional formulae given a choice of basis—no quantity dimensions is reducible to any

particular dimensional formula but only to an ensemble of them related by the (conventionalist)

symmetry transformations of the dimensional system. Ultimately, these positions are to be

understood as nomic roles.76

Though these dimensional nomic roles are not reducible to the dimensional formulae which

describe them, we can learn about the structure of these nomic roles from considerations of

the structure of dimensional formulae. As mentioned above, dimensional formulae, and so

the dimensional dependence relations they describe, are symmetric, some quantity dimen-

sions cannot be said to ground others, except relative to a basis, and quantity dimension

symmetries77 will be tightly constrained as they will involve the transformations of all the

quantity dimensions with relevant mutual dependency relations.78 Such quantity dimensions

symmetries define a class of dynamical symmetries—dimensional analysis is used to determine

similarity relations, transformations under which two systems can be used as (dynamic) mod-

els of each other (see Sterrett 2009; Sterrett 2017 for details). These dimensional dependence

relations therefore play a double role of identifying the quantity dimensions relative to each

other and of constraining the forms of the laws.79

75On the role functionalism – realizer functionalism distinction see McLaughlin (2006). I invoke the distinction
to defend my “functionalist” label from the complaint that it surreptiously commits me to quiddities, the
realizers of dimensional roles. In fact, the existence of realizers or quiddities is of no importance: It is only
important that the role is more fundamental than the realizer.

76I cannot give a general treatment of nomic essentialism/structuralism here, see Wang (2016) for a survey.
It is worth noting that dimensional structure seems to be an additional “high-order mathematical feature”
which tells in favor of a nomological rather than a causal structuralist account of physical properties, see
Berenstain (2016).

77In other words, active dimension scale symmetries. See Roberts (2016), Martens (2021), and Jalloh
(Forthcoming) for discussion.

78On the viability symmetric dependency relations see Barnes (2018).
79One might quibble here with my “constraining” language. With Campbell (1924) and Palacios (1964),
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On this functionalism view, we can say something about the nature of the dimensional

structure of the world as a whole. Dimensional structure is an order of modal structure that is

more coarse-grained than that of the nomological modal structure of the laws as traditionally

conceived. If the laws are considered as strict equalities between quantities, then dimensional

structure captures the more coarse-grained proportionality relations between quantities that

hold with natural necessity. These dependence relations are central to the nature of the laws,

though they undetermine their “strengths”—their relative strengths being captured by the

relative values of their characteristic constants.80 Much more is to be said to explicate the

version of nomic essentialism to which the quantity dimension functionalist is committed

to and to defend it from various objections in the metaphysics literature.81 My aim here is

only to introduce the view, which is hopefully sufficiently motivated by consideration of the

alternatives with which the history of dimensional analysis has furnished us.

4 Conclusion

This paper has exposited an unduly neglected debate regarding the methodological and

metaphysical foundations of dimensional analysis and has evaluated the merits of the two

major positions, conventionalism and fundamentalism. Both positions are found lacking:

conventionalism regarding quantity dimensions fails to account for the explanatory success of

dimensional analysis and representational constraints on dimensional systems; fundamentalism

fails to fit with the conventionality found in scientific practice and fails to give reason to

privilege any basis over others for a dimensional system. I’ve set forth the basic outline

of a functionalist account of quantity dimensions, wherein the empirical constraints on

one may argue that the laws constrain dimensional analysis by defining the relations between dimensional
quantities. I here do not want to establish any sort of priority claim regarding the structure of the physical
dimensions or the forms of the laws; they are mutually constraining and I will only claim one takes
precedence over the other depending on the epistemic context.

80This last point was made clear to me by Bryan Roberts. See also Dahan (2020) on the idea of constants
characterizing the laws.

81Most notably by Sider (2020).
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the number of basic quantity dimensions and the conventionality regarding which quantity

dimensions are treated as basic are respected. The metaphysical residue that the functionalist

is realist about are the symmetric, nomologically necessary dependency relations between

quantity dimensions, which correspond to the dimensional forms of the laws and so encode

metaphysically robust proportionality relations.
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