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Abstract. This paper designs and defends a conceptual framework for the dis-

ambiguation of scientific language regarding open and closed systems. We argue

that the open-closed distinction should always be precisifed by specifying a char-

acteristic quantity that is conserved if and only if the system is closed. Open

systems are those for which conservation of the characteristic quantity fails. This

precisification is in accord with much but not all existing practice. We show that

an open system can have well-posed autonomous dynamics and need not be em-

beddable in any larger system. We distinguish two kinds of autonomy and show

that they dissociate from the open-closed distinction. We argue that this frame-

work clears the path towards a new approach to the modelling of autonomous

open systems in quantum physics and cosmology.
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1. Introduction

The term ‘open system’ is widely used in science along with its contrary

‘closed system’. It is often taken to be of great importance whether a system is

‘closed’ or ‘open’, and this feature may even be thought to be definitive, or at least
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necessary, for a system to be studied by a particular science. Since Schrödinger

puzzled about how living things can maintain their order and structure out of

equilibrium, it has been observed that the Second Law of Thermodynamnics refers

to ‘isolated’ systems, while “organisms are open systems” (Olby 1971, p. 128). The

relevant sense of open here involves the exchange of both energy and matter with the

environment (Von Bertalanffy 1950). Order and self-organisation can also emerge in

nonliving systems that are open only in the sense of being driven by some force or

flow of energy without exchanging matter with the environment. This is the sense

it which complex systems are always open (Ladyman and Wiesner 2020).

Much of physics deals with closed systems (in various senses of the term

distinguished and precisified below), but there are many models of open systems in

physics, and open systems are of fundamental importance. For example, consider the

significance of Brownian motion for the development of current physics. There are

many such physical systems, including importantly stars, whose distinctive physical

behaviour is only possible because they are open (Phillips 2013). Of course, all

real physical systems are open in the sense that they interact or exchange matter

or energy with their environments to some, even if only to a negligible, extent.

However, the salient feature of the Brownian motion of a pollen grain, or the damped

oscillation of pendulum in the atmosphere of the Earth, is that interactions with

the environment non-negligibly affect the system’s dynamics. The ‘scale-relativity’

of the open-closed distinction as applied to concrete systems in scientific practice

is an important part of the analysis of this paper (and is the subject of Section 3).

There are absolute distinctions between open and closed systems in the context of

models and theories, however, these correspond to differences of degree in practice.

Differences of degree add up to give the dynamics at different scales studied by

physics. The difference of degree between a few particles and 1023 makes gases

and their emergent modal structure, for example, the gas laws, cf. Ladyman and

Lorenzetti (2023).

The notions of open and closed in physics are entwined with ideas of auton-

omy, conservativeness, embeddability in a larger system, and formal properties of

time evolution such as being completely positive, Markovian, unitary or measure-

conserving. While the concepts of open and closed systems are of widespread foun-

dational significance, the exact meaning of the terms ‘open’ and ‘closed’ varies

between different contexts even within physics. To complicate matters even more

sometimes the term ‘closed’ is used to mean ‘isolated’, and this proliferation of con-

cepts and language greatly complicates foundational and philosophical work. It is
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important to be clear about the relevant concepts and terminology so that falla-

cious reasoning based on conflation of the meanings of terms does not arise. Much

of this paper designs and defends a conceptual framework for the disambiguation

of scientific language regarding open and closed systems. Despite remaining very

close to scientific practice, we arrive at some rather surprising conclusions. Most

surprising of all, that the universe, which is usually taken to be a closed system,

may be open.

The next section analyses the open-closed distinction in more detail. We

find that although the distinction is made in different ways in different domains, its

conceptual core is the conservation or not of some characteristic quantity. Section 3

discusses the importance of scale-relativity for distinguishing whether concrete sys-

tems are modelled as open or closed. Section 4 introduces the key idea of autonomy

defined in terms of the feature of a model of a system whereby the model contains

well-posed equation of motion for the dynamical variables of the system alone. Au-

tonomous models may nonetheless encode the dependence of system’s evolution

on the environment, as with models of Brownian motion and many other models

of open systems in physics. Hence, we further distinguish ‘parameterised’ auton-

omy, which involves parameters that represent features of the environment, from

‘absolute autonomy which does not involve such parameters. Section 4 also shows

that autonomy of both types is independent of the open-closed distinctions of the

next section. Autonomous open systems models are an important part of science at

various scales. Section 5 considers the special case of open quantum systems and

argues, following Cartwright (1983) and Cuffaro and Hartmann (2021), that there

is no reason to take embeddability in a larger unitary system to be a fundamental

feature of open quantum systems. Section 6 draws on the previous sections to argue

that the argument that the universe as a whole must be subject to unitary time

evolution conflates different senses of closed, and that it is in fact an open question

whether we should model the universe as an open or closed quantum system.

2. Open and Closed

Two other foundational distinctions are required for our analysis. The first

distinction is motivated by the observation that the same concrete system, a par-

ticular pendulum in a laboratory for example, can be modelled as closed, if friction

is ignored, or as open if it is not. Hence, it is important to distinguish between

how the system is modelled and the system itself when discussing ideas of open

and closed. In general, concepts and terms can be applied in the material mode
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to concrete systems, and in the formal mode to models.1 Our usage of these terms

is as follows. To discuss a physical system X in the material mode is to make an

ontological claim about the properties of X. To discuss X in the formal mode is to

refer to the representations (linguistic or mathematical structures) of X.2 In what

follows we often clarify concepts and terms relating to open and closed systems by

drawing attention to the formal mode/material mode distinction. Of course, any

application of terms in material mode involves the conceptualisation of the system

in some way. However, since the same material system may be modelled as open or

a closed system the material/formal distinction is required to say unambiguously

whether the system is open or closed. More generally we can obviously model real

systems in many ways and consider many aspects of them while also idealising or

abstracting, and sometimes the questions we ask are about the system as modelled.

The second distinction is that between a system and its environment. In

material mode, unless the system is everything there is, the open-closed distinction

always concerns the relationship between the system and its environment. However,

in formal mode the environment may not be modelled at all and the system may be

treated as if it is everything there is. For example, it may stipulated that the system

conserves or does not conserve a characteristic quantity without the environment

or its effects on the system being considered at all. In scientific practice (except

in cosmology), the environment is always the local surroundings of the system not

the whole universe. The immediate environment of the system is taken to be all

that matters for the purposes of the modelling the evolution of the system. The

distinction between a system and its environment, surroundings or other systems is

usually predicated on there being some kind of boundary around the system so that

whether the system is open or closed depends on what happens at the boundary.

However, in some models there is no boundary just the distinction between the sys-

tem and its environment. Again, in formal mode there may be no environment since

it may not be modelled at all, but of course in material mode every system except

the whole universe has an environment. The local environment may be assumed to

screen off any effects that the rest of the universe has on the system because they

have to go through it, but of course if there is action at a distance this is not so.

1The idea of material and formal modes is used by Ladyman and Ross (2007) who draw upon a
similar though non-identical distinction due to Carnap (1934).
2This distinction is implicit in Cartwright’s discussion of open quantum systems when she says,
“to demand a physical correlate of unitarity is to misunderstand what functions it serves in the
quantum theory” (Cartwright 1983, p. 203). In our terms she is saying that the quantum open-
closed distinction, which just is the unitary-nonunitary distinction (as Section 5 discusses in more
detail) is made in formal mode and may not correspond to anything in material mode.
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The principal notions of open and closed systems applied in physical practice

can then be distinguished as follows:

Definition 1. Closed Systems in Material Mode.

1. In the most general and strongest sense a system is closed (and isolated) iff

it is not interacting with or affected by anything else.

2. In chemistry (and often in engineering) a system is closed iff it is contained

within a boundary that no matter crosses. Heat or light can cross the bound-

ary of chemically closed systems.3

3. In classical mechanics a system is closed iff it has no net (non-conservative)

forces acting upon it (while also not exchanging matter with its environ-

ment).

4. In thermodynamics a systems is closed iff it does not exchange heat or work

with its environment (while not exchanging matter with its environment).4

5. In statistical mechanics a system is closed if the number of particles is con-

stant (and the probability flow is ‘incompressible’).5

6. In quantum theory a system is closed iff its coherence does not change.

Obviously a system that is chemically closed need not be closed mechani-

cally or thermodynamically, and indeed most reactions are either endothermal or

exothermal. It is not true that a mechanically closed system must be isolated since

a mechanical system may be closed whilst being subject to conservative forces.

It is true, however, that a mechanically open system, which is acted on by non-

conservative forces, is thermally open in that there is net work done on the system

for any closed state space loop. In general, systems being isolated and systems being

closed must be distinguished. An isolated system is a system that is not interacting

with the environment or affected by anything else, so there is no exchange of mat-

ter, energy, information, or anything else across the boundary of the system. This

may or may not be connected to failure of conservation since, for example, a system

can be conservative whilst having boundary flows when these flows are net zero. In

practice neither being closed nor isolation are absolute, but both can be effectively

true (as noted in Section 1 and discussed in the next section).

3Ensuring that experiments were performed in a closed system in this sense, together with the
precise measurement of masses and volumes was critical to the Chemical Revolution, as was
quantifying the heat flow Ladyman et al. (2024).
4This is described in different ways with some authors using ‘closed’, and others using ‘isolated’
to mean not exchanging heat or work with the environment.
5Probability is here understood as a kind of modal structure in material mode. If probability is
purely epistemic then of course there is no correlate of the conservation of volume measure.
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Clearly, the open-closed distinction is related to conservation such that in

the context of particular physical theories there is typically a characteristic quantity

such that the system is closed iff the quantity is conserved by its time-evolution,

and otherwise open. A closed mechanical system is conservative with respect to

energy, which is equivalent to there being no net non-conservative force since systems

acted on by purely conservative forces are also energy conserving. A closed chemical

system is conservative with respect to mass. A closed statistical mechanical system

is conservative with respect to the number of particles and probability current. A

closed quantum system is conservative with respect to quantum coherence. Note

that simple-harmonic motion that is conservative with respect to energy, and so

mechanically closed, may be driven by an external conservative potential, and so

not isolated.

All the above definitions can be understood in material mode (but only

effectively unless they are applied to the whole universe), and when the conservation

of the characteristic quantity is encoded formally within a model, they all have

formal mode correlates as follows:

Definition 2. Closed Systems in Formal Mode.

1.* In the most general and strongest sense a model is closed (and isolated) iff

it conserves everything that matters to the dynamics.

2.* In a chemically closed model mass is conserved, and so is the number of

nuclei of each atomic species.

3.* In a model of a closed system in classical mechanics energy is conserved (the

Hamiltonian is a constant of the motion).

4.* In a model of a closed system in thermodynamics heat and work are con-

served.

5.* In statistical mechanics a model of a closed system has constant phase space

dimension and volume measure.

6.* In quantum theory closed systems are those that undergo unitary time evo-

lution.

The formal mode and material mode descriptions may come apart. For ex-

ample, a concrete engineering system may be modelled as conserving mass, and so

as closed in the relevant formal mode sense, even though it leaks and so is not closed

in the relevant material mode sense, and a concrete quantum system may be mod-

elled as evolving unitarily, and so as closed in the relevant sense, even though it is

subject to a small degree of decoherence and so is not closed in the relevant material
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mode sense. Systems that are not conservative are often assumed to be contained

within a larger system that is conservative, for example, if the particles that leak

out of a chemical system are present in the environment they are conserved in the

wider system. In the context of open quantum systems it is often assumed that they

are embedded in larger closed quantum systems (as noted above and discussed in

Section 6).

In foundational contexts the terms ‘open’ and ‘closed’ must always be pre-

cisely specified because discussion often involves consideration of different theoret-

ical domains in which different ideas of open and closed are at issue, and hence

different quantities are conserved. Hence, it is fallacious to argue that a system

should be modelled as open in the formal mode sense of non-unitary time evolu-

tion, because it is interacting with another system, because that means only that

it is not closed in the general material mode sense, unless some grounds are given

to connect the different precisifications of the open-closed distinction. In fact, as

discussed in detail in Section 6, it is not true that systems being affected by their

environments cannot be modelled with unitary time evolution, so the general sense

of closed in material mode does not entail the formal mode sense of closed in quan-

tum physics.

In general, systems can be modelled by explicitly representing the environ-

ment in detail, or by only representing its effect on the system. Either way, the

whole environment is never really modelled, but only the immediate surroundings

of the system, so that together they can be thought of as a system that is effectively

isolated from the rest of the universe. In this way, the dynamics of the system that

depend on interactions with the environment can be modelled without modelling

the whole universe, for example, by treating the environment as a heat bath, or as

a source of random perturbations as in Brownian motion. The success of science

in finding descriptions of effectively isolated systems, and open systems with local

environments that are effectively isolated makes it seem like the only way to un-

derstand open systems is as part of bigger closed systems. Similarly, it might be

assumed that any open system can always be modelled as part of a bigger closed

system, and since there is nothing more than the universe it might seem obvious

that it must be a closed system in every sense. This assumption and the conclusion

drawn from it are challenged in Section 6.

Many models work by assuming that open systems can be embedded in

bigger closed systems, but in every such case it is always possible to make physical

measurements to estimate the variables or parameters that represent the effect of the
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environment on the system, for example, the temperature of a heat bath, or viscosity

of a liquid medium. In the case of the universe to embed it in anything bigger is

speculative. The embeddability of open systems in larger closed and isolated systems

is discussed further in Section 6. The next section considers how applying the open-

closed distinction in any of its forms to concrete systems is scale-relative.

3. Scale-Relativity

We start with a simple observation regarding gravitational interactions and

isolation that goes back at least to Russell (1903), cf. Barbour (2001). The point

is that gravitational interactions cannot be screened in Newtonian gravitation (and

in fact also general relativity). Thus, every massive body in the universe interacts

with every other massive body. Hence, in material mode strictly speaking there is

no such thing as an isolated system. Quantum field theory also implies that no

system is ever really isolated since the vacuum is constant source of fluctuations.

Furthermore, there is a fundamental ontological sense in which all systems studied

in science are ‘metaphysically open’ in the sense that they are always interacting to

some degree with other systems even non-gravitationally (unless the whole universe

is modelled as per the discussion of Section 6). As Nielsen and Chuang (2010) put

it ‘...in the real world there are no perfectly closed systems, except perhaps the

universe as a whole.’ (p.353).

In the light of this observation it might seem that the material mode at-

tribution of open in terms of non-isolation loses its conceptual purchase since it

is applies to everything. The reason it does not is because of the general feature

of scientific theorising, modelling and practice called ‘scale-relativity’ by Ladyman

and Ross (2007). The idea is that arguably all, and certainly most, of physical sci-

ence is concerned with effective rather than fundamental ontology. Chemical bonds,

fluids and quasi-particles are obviously not fundamental entities but they are part

of a domain, regime or scale that is spatial, temporal and energetic. For example,

when we say that a flask of liquid is in thermal equilibrium with its environment

this is implicitly relative to timescales that are short compared to the half-life of

the liquid (which is evaporating and will eventually be entirely gone). Clearly, as

Russell pointed out, all systems are materially open in the non-isolation sense be-

cause they are interacting gravitationally and otherwise to some degree. However,

in many situations these interactions have negligible effects on aspects of their state.

In such contexts they may be understood as isolated in the material mode since we
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can understand such statements in terms of effective isolation in accordance with

scale-relativity.

It is difficult to overemphasise the significance of this observation for the

interpretation of scientific language. In particular, when combined with the dis-

tinction between material and formal modes, the notion of scale-relativity renders

transparent various aspects of scientific practice, that appear ambiguous or confus-

ing otherwise. Most significantly, very often in science we find that properties are

represented as absolute in a model when applied to a concrete system in material

mode they are scale-relative. For example, the smoothness of a surface is broken

at small length scales, and the regularity of the oscillations of Newton’s cradle is

broken at long time scales. Being closed qua isolated (1. above) fits this pattern

because systems are represented as isolated in absolute terms in a model, since ex-

ogenous interactions are completely excluded, whereas in material mode the system

is effectively isolated in the sense that its dynamics are relatively unaffected by

anything else over relevant timescales. Newtonian mechanics allows us to consider

the solar system in just these terms: although it is subject to gravitational forces

from the rest of the universe we can assume that its acceleration can be modelled

as approximately uniform and linear and thus, via Corollary VI to the Laws (?,

p.423), treated as though it were not accelerating at all. This idealisation is justi-

fied precisely because effects arising from the non-uniformity of the gravitational

field can be ignored at the scale in question. Furthermore, as noted in the previous

section, even when systems are modelled as open, it is assumed that the system

and its environment can be studied as if they form a larger system that is itself

effectively isolated.

Scale relativity is also, of course, significant for the understanding of the

other sense of open and closed discussed above – that is, the sense based upon

conservation of a characteristic quality. When we talk of ‘closed systems’ in ma-

terial mode we are referring to systems in which some relevant physical feature or

quantity is conserved to some degree of approximation over the relevant timescale.

For example, in practice the principle of conservation of mass is not exactly true

of a chemical reaction, but in a large well-engineered chemical system any egress

or ingress of matter is negligible compared to the size of the system and has no

effect on the evolution of its overall properties such as, for example, the half-life

of the reagents or the time when the reaction will effectively be over. Similarly, we

talk about concrete mechanical systems being closed in the material mode we are

referring to the approximate conservation of the total energy of the system over the
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relevant timescale. A closed mechanical system has energy-conservative dynamical

evolution, while an open mechanical system has dissipative dynamical evolution

where in each case the conservation and non-conservation is indexed to a time-scale

(or spatial scale). For example, the earth-moon-sun system is understood as a closed

mechanical system on the basis that the loss of energy is negligible on the relevant

scales.

Conservation of the characteristic quantity may imply that interactions with

the rest of the universe are not important to the systems dynamics at the relevant

scale, as in a closed mechanical system, but it may not as in the chemical case,

where the exogenous application of heat to the system is relevant to its evolution.

In general, interactions with their environment can be crucial to the dynamics of

closed systems at the relevant scale, because there are situations where there is

an exogenous driving force or a net zero flux that is dynamically relevant even

though the characteristic quantity is conserved. However, it is also often the case

that a system can be understood as isolated on a given scale just because it can be

understood as conservative of some quantity at that scale. It is appropriate to talk

of ‘open systems’ in physics in material mode when referring to concrete systems in

which the relevant physical feature or quantity is not conserved over the relevant

timescale.

As noted above, isolation and non-isolation, and conservation and non-

conversation are typically represented as absolute in a model when in material mode

they are scale-relative. That is, a system is represented as isolated or as conservative

of the relevant quantity for the purpose of modelling, because at the scale picked

out by the modelling context the evolution of the system is as if it was isolated,

or the property is approximately conserved. Typically the scales in question are

timescales, but spatial and numerical scales, and macro and coarse-grained states

may also be relevant. For example, the individual particles in a gas are affected

by the motions of atoms in other solar systems, but the evolution of the aggregate

properties of the gas such as its pressure and temperature are not.

For mechanical systems the formal mode correlate of being closed qua con-

serving energy is typically found in terms of a Hamiltonian representation with both

a privileged conserved function, the Hamiltonian, and a conserved phase space mea-

sure, the Liouville measure. For mechanical systems the formal mode correlate of

being an open qua non-conservative system is typically found in terms of a con-

tact Hamiltonian representation with non-conservation of the Hamiltonian, and a

non-conserved phase space measure (Bravetti and Tapias 2015; Bravetti et al. 2017,
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2020). A vivid analogy can be made between conservation of the phase space mea-

sure and the flow of an incompressible fluid and, in turn, between non-conservation

of the phase space measure and compression of a phase space fluid, hence the term

‘measure compression’ is used to talk in formal mode about open systems.

In experimental contexts it is often the case that scientists select and prepare

physical target systems such that they can be represented as isolated and conser-

vative on the scale relevant for the experimental inferences we wish to draw. Thus,

experimental scientists often select and prepare physical target systems with scale

relative ontological features that make them closed or isolated in the relevant sense.6

The important point is that such a target-model relationship is only one part of

scientific practice. There are also, however, examples where scientists model systems

they select and prepare as open as in experiments on decoherence or cooling. For

real systems, the criterion for being open or closed is always whether the quantities

in question, are conserved or not conserved. Conservation is scale-dependent be-

cause in real systems it is always approximate, and because the system is studied at

a particular scale or scales. Interactions may be ignored in an effective description

because they have a negligible effect or because they are irrelevant to some aspects

of the system and their dynamics.

Scale-relativity applies to other features of systems too. For example, in

quantum information theory it is possible to have a model of the effect of noise

in a channel at one scale that is Markovian, even though at another scale the

evolution is not Markovian (Preskill 2018). The next section considers general ways

the dynamics of both open and closed systems can be modelled with a focus on

autonomy as a feature of the representation of dynamics within the model.

4. Autonomy

The concept of autonomy traces back to its original ancient Greek coinage

in the play Antigone by Sophicles.7 The eponymous heroine is about to be led away

to be buried alive for transgressing a law laid down by Kreon, King of Thebes,

forbidding the burial of her brother. By way of a rather odd consolation, the chorus

sing to her:

Is it not with fame and praise that you depart to the corpses’ depths?

You were not struck down by wasting sicknesses, nor did you pay

6This selection is closely related to Cartwright’s idea of a nomological machine (Cartwright 1999)
7Here we are following McNeill (2011).
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the wages of the sword, but autonomous [αu̇τ óνoµoς] you alone of

mortals go living into Hades.8

The implication is that Antigone is ‘autonomous’ in the sense that she, rather than

the King or the gods, is the author of the laws of behaviour that she obeys in the

act of burning her brother. Thus to be autonomous, in the Sophoclean sense, is to

be the creator of your own laws: auto-nomos.

In science and the philosophy of science the word autonomy is used such

that the laws in question are natural rather than civic or supernatural. That which

is understood to be autonomous is then a system or level of description rather than

an individual. Thus we have that an autonomous system or level of description is

one which in some sense has its own laws.

Most prominently, we find discussions of the autonomy of higher level laws

from lower-level laws in the context of the reduction emergence debate. For exam-

ple, we might understand the autonomy of higher-level laws as criterion of genuine

emergence and explicitly characterise autonomy in terms of the coarse-grained dy-

namics being independent of microdynamics (Franklin 2020; Robertson 2020; Pala-

cios 2022). Paradigmatically, in continuum fluid mechanics we find autonomous laws

for macro-scale variables independent of molecular scales dynamics (Darrigol 2013;

Batterman 2018).

The sense of autonomy we are interested in here is related but more basic.

We are interested in autonomy defined as a formal feature of a model that amounts

to the models capacity to produce independent and suitably behaved solutions to

the equations of motion. We will understand autonomy in formal mode and defined

it as follows:

Definition 3. Autonomy: a model of a physical system is autonomous iff it includes

no explicit dynamical variables that encode degrees of freedom other than those of

the system, and there are well-posed dynamical equations for these variables.

Our definition of autonomy allows that a model of a system can be au-

tonomous even when boundary or initial conditions must be specified, c.f. Sloan

(2023). This seems sensible since boundary or initial conditions are always needed

in practice. It also allows us to dismiss putative failures of autonomy that result

purely from improperly specified boundary conditions.

In material mode a concrete system is autonomous to the extent that its

dynamics can be modelled as effectively autonomous. We thus have that when we

8Quotation is form McNeill (2011) p. 412.
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talk about a system being autonomous we are making scale-relative statements

about that typically relate to how a system can be modelled to a given degree of

accuracy for a given purpose.

There are three ways for a model not to be autonomous. First, and most ob-

viously, the model may include dynamical variables that encode degrees of freedom

other than those of the system. For example, a model of the earth-moon system

that also includes the sun is not an autonomous model of that system both in a

trivial sense that it includes a dynamical variables corresponding to the sun and

in the non-trivial sense that there is no well-posed sub-equation within the model

for the earth-moon variables on their own. The second way for a model to be

non-autonomous is if there are only variables for the system’s degrees of freedom,

but the equations of motion are not well-posed due to the presence of underspec-

ified functions leading to an underdetermined system of equations. For example,

a model of a banknote being dropped off a building can be written in terms of

variables for the banknote together with a conservative gravitational force and a

non-conservative damping force. However, the damping force term will involve a

underspecified function varying over space and time, and this means the equation

of motion are underdetermined.9 The third way in which a model may fail to be

autonomous is via the failure of the system of equations to be well-posed due to

a formal breakdown of integrability such as a collision singularity in gravitational

n-body dynamics (Saari 1973).

Lack of autonomy might sometimes be due to openness but in general open-

ness is compatible with autonomy because there are entire frameworks for con-

structing autonomous models of open classical and quantum systems (Breuer and

Petruccione 2002; Sloan 2018). Autonomy and being closed or isolated dissociate,

and there is good reason to keep them separate in discussion of open systems (there

are examples to illustrate this point below). It is thus not always the case that

autonomy can be restored by simply enlarging the boundaries of the ‘system’ being

represented. Autonomy is an analytic property of a system of equations relating

to the generation of determinate evolution of the variables describing a system. Its

failure may or may not be related to the model ‘missing out’ couplings to other

9This is the Neurath’s banknote example famously discussed by Cartwright (1999). Here we take
a more modest view of the power of the example as showing merely that a model can fail to be
autonomous rather than fail to be law-like at all. Indeed, although the underspecified model fails
to produce well-posed dynamical equations of motion it clearly does have nomic representational
capacity that tracks features of its material mode counterpart. For example, time translation
invariance.
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systems. A model of a system with the dynamics including parameters that repre-

sent the effects on the system of an environment or bath is autonomous in the sense

above. Hence, as mentioned above, autonomy is compatible with the system being

open in various senses.

If autonomy is defined in this way there are two substantively different ways

models can be autonomous:

Definition 4. Two Types of Autonomy.

Absolute Autonomy (A-Autonomy) : There are well-posed dynamical equa-

tions in the model that are completely independent of any further systems.

Parameterized Autonomy (P-Autonomy): There are well-posed dynamical

equations for the system but the dynamics depends on parameters or non-

dynamical variables that encode features of other systems.

If the trinary distinction between non-autonomy, parameterized autonomy,

and absolute autonomy is combined with the binary distinction between open (qua

non-conservative of some characteristic quantity) and closed (qua-conservative of

some characteristic quantity), we get six possible categories:

Non-Autonomous P-Autonomy A-Autonomy

Open Open Non-Autonomous Open P-Autonomy Open A-Autonomy

Closed Closed Non-Autonomous Closed P-Autonomy Closed A-Autonomy

Each category can be explicitly defined and illustrated with an example from clas-

sical mechanics as per below.

Definition 5. Six Categories of Dynamical Model.

Open, Non-Autonomous: The characteristic quantity is not conserved and

there are not well-posed dynamical equations for the dynamical variables of

the model. Classical Mechanics: banknote system modelled mechanically by

a point particle in a Newtonian gravitational potential field with an under-

specified damping function.

Closed, Non-Autonomous: The characteristic quantity is conserved and there

are not well-posed dynamical equations for the dynamical variables of the

model. Classical Mechanics: n-body Newtonian gravitational system with col-

lision singularities.
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Open, Parameterized Autonomy: The characteristic quantity is not con-

served and there are well-posed dynamical equations for the dynamical vari-

ables of the model such that the dynamics depends on parameters or non-

dynamical variables that encode the effect of other systems. Classical Me-

chanics: damped oscillator model in Newtonian mechanics with external po-

tential (pendulum).

Closed, Parameterized Autonomy: The characteristic quantity is conserved

and there are well-posed dynamical equations for the dynamical variables

such that the dynamics depends on parameters or non-dynamical variables

that encode the effect of other systems. Classical Mechanics: undamped os-

cillator model in Newtonian mechanics with external potential (pendulum).

Open, Absolute Autonomy: The characteristic quantity is not conserved and

there are well-posed dynamical equations for the dynamical variables of the

model that are completely independent of any further systems. Classical Me-

chanics: damped oscillator in Newtonian mechanics with internal potential

(spring).

Closed, Absolute Autonomy: The characteristic quantity is conserved and

there are well-posed dynamical equations for the dynamical variables of the

model that are completely independent of any further systems. Classical Me-

chanics: undamped oscillator in Newtonian mechanics with internal potential

(spring).

The six categories based on the open-closed distinction and the two types

of autonomy should not distract from the simple main point of this section namely

that open systems can be and often are modelled as autonomous. Hence, we must

not conflate a system being closed with it being modelled as autonomous.

We might still, however, expect that autonomous open system models must

always ultimately be reinterpretable in terms of parameterized autonomy. That is,

while there may be open system models with have well-posed dynamical equations

of their own and no explicit parameterized dependence on other systems, these

models should always be understood as implicitly representing further systems via

a parameter. Such a claim would amount to insisting that our example of a damped

oscillator in Newtonian mechanics with internal potential is only apparently abso-

lutely autonomous because we should really take the spring potential to have as its

origin micro-physical degrees of freedom, whose inclusion would ‘close’ the model

leading to energy conservation or else at least allow us to understand the model as
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only autonomous in the parameterised sense. We return to the status of absolute

autonomy in open system models in the context of cosmology in Section 6.

The next section considers the interrelation between openness and the dif-

ferent forms of autonomy in the context of open quantum systems, and considers

properties of dynamical maps that further constrain the terms of our investigation.

5. Open Quantum Systems

In the context of quantum physics it is very important to distinguish

quantum-open from other notions of open in Section 2. Many authors move back

and forth between the formal mode notion of quantum-open, and material mode

notions of closed systems having to do with being isolated or not interacting with

the environment. For example, Nielsen and Chuang (2010) say that “the dynamics

of a closed system are described by a unitary transform” (p. 357), but they frame

this statement with reference to whether or not the system is interacting with the

outside world. However, as noted above, there are many unitary quantum models

of systems that are subject to effects from the outside world, as when particles are

confined in a potential well, and there are many unitary models of systems that

lose energy (and so have a time-dependent Hamiltonian) cf. (Breuer and Petruc-

cione 2002, p. 110). Furthermore, it is possible to coherently drive quantum systems

so that they move over macroscopic distances (Alberti et al. 2009). In general, any

application of quantum mechanics in which the effects of electromagnetism are en-

coded in a potential cannot describe a system that is isolated in the material mode

since the potential comes from the environment of the system, and this is orthogonal

to the question of whether or not the model of the system has a unitary dynamics.

It is also possible to model isolated systems with non-unitary dynamics in contexts

where the Hamiltonian is not essentially-self adjoint. Furthermore, there can be de-

coherence without dissipation (Unruh 2012). Hence, quantum-open is not necessary

or sufficient for openness in the other senses of Section 2. Note as well that it is

not the strength of interaction that determines whether it requires a quantum-open

model.10

Let us consider some important formal properties of unitarity in relation

probability, purity, entropy and well-posedness. First, most straightforwardly, uni-

tarity is sufficient but not necessary for probability conservation since there are

non-unitary dynamical equations that preserve probability. Unitary time evolution

10If collapse is taken to be a real physical process then it may violate energy conservation (Carroll
and Lodman 2021). We consider quantum mechanics without collapse.
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conserves the norm induced by the inner product. In particular, it can be shown

that unitary time evolution is sufficient (although not necessary) for the preserva-

tion of the purity of a quantum state when represented as a density operator, ρ,

which is a positive semi-definite operator of unit trace. Explicitly, the purity of a

state is given by γ = Tr(ρ2). Pure states are such that γ = 1. The quantum op-

eration Λ(ρ) = UρU † preserves the purity of ρ if U is a unitary operator (Jaeger

2007). Purity preservation is equivalent to the conservation of linear entropy since

SL = 1−γ. There is also a connection between unitarity and the conservation of the

informational or von Neumann entropy S = −tr(ρlnρ)). In particular, the von Neu-

mann entropy is also invariant with respect to the quantum operation Λ(ρ) = UρU †

since we have that S(UρU †) = S(ρ) (Breuer and Petruccione 2002, §2.3). Hence,

unitary dynamics conserves both the linear and von Neumann entropies, and in so

far as this is taken to be genuinely thermodynamic property, the connection be-

tween unitary dynamics and being closed is the thermodynamic sense is a natural

one.

There are strong results connecting unitarity with well-posedness. In partic-

ular, even for time dependent Hamiltonians a general condition on the boundedness

of the Hamiltonian implies the existence of a unitary propagator, which in turn is

implies that a quantum model will necessarily have well-posed equations of motion.

The results are somewhat technical but in essence amount to restriction that the

Hamiltonian is a strongly continuous map from the real numbers into bounded self-

adjoint operators on a Hilbert space. This then allows the definition of a Dyson

expansion which in turn allows one to prove the existence of a unitary propagator.

The continuity properties of the propagator are then sufficient to prove the existence

of well-posed equations of motion (Reed and Simon 1975, Theorem X.69). There

is thus a strong formal connection allowing one to infer well-posed dynamics from

unitarity. The implication does not run the other way round, however, and we can

model non-unitary dynamics via master equations that lead to well-posed systems

of dynamical equations.

To understand the contrast between open and closed quantum system models

let us first consider the paradigmatic equation for a unitary quantum dynamics of

density operators, the von Neumann equation:

(1) ρ̇ = −i[H, ρ]

where the evolution of density operator ρ will be unitary provided the Hamilton-

ian H is self-adjoint. The paradigmatic equation for open quantum systems is the
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Lindblad equation which can be written:

ρ̇ = −i[H, ρ] +
∑
i,j

aij(FiρF
†
j −

1

2
{F †

j Fi, ρ})(2)

= −i[H, ρ] +Dγ(ρ)(3)

where the Fi are bounded operators, {, } is the anti-commutator, and the matrix

aij is positive semi-definite (Breuer and Petruccione 2002, Eq. 3.63). The Lindblad

equation is made up of a unitary part identical to the von Neumann equation

together with a non-unitary part. For an initial pure state the unitary part reduces

to the Schrödinger equation (hence, the Lindblad equation may be regarded as

more general). In physical models the non-unitary part of the dynamics, encoded

in the super-operator Dγ(ρ), corresponds to a dissipator term that encodes the

parameterized effects of decoherence, thermal damping and noise.

The non-unitary dynamics of a system having the Lindblad form is a suffi-

cient (but not necessary) condition for probability to be conserved.11 Furthermore,

there are general results suggesting Lindblad type equations lead to well-posed par-

tial differential equations in physical contexts (Azouit et al. 2016). The connection

between the form of the dynamical map and the modelling of autonomous sys-

tems and their environments runs even deeper than the conservation of probability

and well-posed differential equations. To see this we need to consider a selection of

important results from the theory of open quantum systems.

A Markov process is a generalization of a deterministic process for which

the probabilistic state of a given system at some time is wholly determined by

the dynamics together with the probabilistic state at some other time. Markovian

systems are thus memoryless in a specific, non-time directed, sense. For any Markov

process the dynamical maps uniquely map each state in its state space to another

state in the same space and can be composed, that is:

(4) Λt+sρ = ΛtΛsρ

Recall from above that a density operator, ρ, is defined to be a positive semi-definite

operator of unit trace. For Λt to map density operators to density operators it must

be a trace-preserving positive map. Trace-preservation is a necessary and sufficient

condition for a dynamical map to be probability preserving. A completely positive

trace-preserving map is then such that Λt

⊗
In is also a positive map for all n,

where In is the identity map on the state space of some arbitrary further system of

dimension n.

11See Cuffaro and Hartmann (2021) for discussion and a short proof.
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The Stinespring’s dilation theorem (Stinespring 1955) shows that if the dy-

namics of a system S is given by a completely positive trace-preserving map, then

corresponding to ρ, there is a unique pure state of a larger system S + E with uni-

tary dynamics from which we can derive the non-unitary dynamics of S. Following

Cuffaro and Hartmann (2021), we can interpret the theorem as implying that if the

map Λt is Completely Positive (CP), then the open system model of S is embed-

dable into a larger closed system model of S+E . Thus, if an ‘embeddable system’ is

defined to be an open-quantum system that can be embedded into a larger model

of a closed quantum system, then the Stinespring’s dilation theorem implies that

open-quantum systems with CP dynamics are embeddable.12

There is then a natural connection between open quantum systems and pa-

rameterized autonomy as follows. The semi-classical limit of an open quantum sys-

tem model is a dissipative classical model as is indicated by the interpretation of

the non-unitary part of the Lindblad equation as a dissipator. Most vividly, we can

show that the Caldeira-Leggett master equation recovers the equations of motion

for a damped Brownian particle when the Ehrenfest-type relations are used to de-

rive the equations of motion for the first and second order moments (Breuer and

Petruccione 2002, p. 175). As such, we typically think of an open quantum model

as the quantum analogue of a open classical model.

We would therefore expect to be able to derive open quantum models from

the quantization of open classical models. However, there is a severe formal challenge

to understanding open quantum models as the quantization of classical open models.

Even in the simplest case of an open classical model with a linear, velocity dependent

friction term the quantization operation is not well defined since such systems are

not symplectic. That is, such models do not fit with the usual canonical approach to

quantization built upon the symplectic structure encoded in the Poisson bracket and

Hamilton’s equations. The response to this challenge follows one of two approaches:

The first one employs new quantization schemes, while the second

one (the so-called system-reservoir approach) treats the particle as

part of a larger quantum system which is quantized according to the

12It is worth considering in this context the view expressed by Cartwright (1983) that it is “mis-
taken” to adopt an understanding of open quantum systems (such as that of Davies) that is
based upon the assumption that open quantum systems can always be assumed to be part of a
larger system that is subject to unitary time evolution (p. 205). Clearly, Cartwright’s judgement
is consistent with the Stinespring theorem in so far as there are representations of open system
dynamics that can fail to be CP. For more details see Cuffaro and Myrvold (2013) and Cuffaro
and Hartmann (2021).
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usual rules. Of course, only the second approach can be considered

as fundamental. (Joos 2013, p. 80)

This final line is telling. In the system-reservoir approach one starts with a classical

closed system model which is such that the spatially contiguous environment (the

reservoir) is given a fine-grained representation and we have absolutely autonomous

and closed dynamics. We then apply canonical quantization and derive a full quan-

tum description for the system and reservoir. Through a combination of limits and

tracing out, we derive a model for the system degrees of freedom that encodes the

quantum effects of friction but does not represent the reservoir in the quantum dy-

namics. Thus we derive an open system (conservation fails) which has parameterized

autonomy. The most famous example of such a procedure is the derivation of the

Caldeira-Leggett model, mentioned above, where the system-reservoir approach is

deployed with the environment explicitly modelled as a set of non-interacting har-

monic oscillators which are linearly coupled to the system (Breuer and Petruccione

2002; Joos 2013).

This is to follow the logic of the Stinespring’s dilation theorem the other way

round. Rather than starting with an open system quantum master equation that

we show to embeddable in a larger closed system dynamics, we first establish the

larger closed system dynamics based upon the classical model, and then construct

the reduced open system quantum dynamics by reducing a closed system quantum

model. Is there an alternative? Must all open systems – both classical and quantum –

be understood as embeddable and, moreover, autonomous only in the parameterised

sense? The final section considers these questions in the context of cosmology.

6. The Universe as an Open Quantum System

The different senses of openness discussed in Section 2 leave open the ques-

tion of whether the universe is a closed system. That is, the way we answer the

question depends on how ‘the universe’ and ‘closed’ are understood. If the universe

is taken to be everything that there is, then it is not interacting with or affected

by anything else. Thus, it is closed in the material sense of 1. above. However, that

does not tell us anything about whether it is closed in any other sense, unless it

is assumed that all that there is conserves every physical property (so that the

universe is closed in every sense in the material mode, and should be modelled as

closed in every sense in the formal mode 1.*).

A specific form of this argument can be made in the context of quantum cos-

mology, that is, the application of quantum theory to the universe. It is standardly
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assumed that the universe must be modelled as evolving unitarily, because there is

no other system for it to interact with, and isolated quantum systems are assumed

to be subject to unitary time evolution. Thus, isolation is taken to imply closed in

all senses and conservation of all the relevant characteristic quantities and unitary

time evolution. The universe cannot be quantum-open. Case closed.

Against this argument we offer the following response. First, as the system of

study in cosmology, the universe is not in fact all there is. Even in the material mode,

the universe in the context of cosmology is not everything there is but only the large

scale physical structure of the universe. Second, as discussed in the previous section,

quantum mechanical systems that are interacting with an environment can also be

modelled with unitary time evolution, thus the relationship between isolation and

unitarity is complicated. As discussed in the previous section, in quantum mechanics

‘closed’ is a term of art that means ‘subject to unitary time-evolution’, and it does

not mean what is meant by ‘closed’ when it is said that the universe as a whole is

closed because it is all there is in the sense of being isolated. If what we mean when

we ask if the universe is a closed quantum system is whether quantum cosmological

models are required to implement unitary time evolution, then the question turns

out to be open for two reasons. The universe might be quantum-open since we

might doubt that the model should be describing an isolated system since we may

wish to include endogenous interactions and these may (or may not) require non-

unitary time evolution. Then, even neglecting the question of non-isolation and

endogenous interactions, the universe might be quantum-open since there is no

formal or physical necessity binding us to connect absence of interactions to unitary

evolution. Indeed, models exist of classical cosmology in which measure compression,

a close cousin of non-unitarity, obtains (Sloan 2018, 2023; Bravetti et al. 2023).

Hence, whether the universe is quantum-closed is an open question.

The discussion of the previous section allows us to frame two more precise

arguments that the universe must be modelled as quantum-closed. First, if open

quantum systems are always embedded in larger closed quantum systems then the

universe must be a closed quantum system, since there is nothing to embed it within.

Secondly, if the derivation of a open quantum model is, fundamentally speaking,

always via the system-reservoir approach then such models cannot describe the

universe as the system in question, since there is no exogenous system to act as a

reservoir. We conclude by rebutting each of these arguments.

We start with the embeddability argument. The most straightforward re-

sponse is just to note that embeddability does not imply embeddedness. That is,



22 Open Systems and Autonomy

although the fact that the dynamical map is completely positive may imply that

formally we can embed an open quantum system model in a larger closed quantum

system model, it may still be the case that no such larger system exists. A more fur-

ther response is that it remains to be seen whether a quantum model of the universe

will correspond to a master equation with completely positive dynamics. There ex-

ist physically important master equations like the Caldera-Leggett equation that

are not completely positive.13 Furthermore, the standard argument that we should

treat complete positivity as a physically motivated necessary condition on consis-

tent master equations comes precisely from the assumption that quantum dynamics

must always be understood as fundamentally unitary. In general terms, there are

reasons to doubt such an assumption coming from what Cuffaro and Hartmann

(2021) call the open systems view. Moreover, in the cosmological context, whether

the universe is an open or closed system was precisely the question we started with

– thus compete positivity and embeddability does not not give us an independent

reason to expect the universe to be a closed system but rather a more sophisticated

way of encoding what such a closed systems perspective amounts to.

Let us then turn to the quantization argument. The most obvious response is

to simply doubt the fundamentally assumption. Since there are alternative quantiza-

tion schemes for classical open systems that do not proceed via the system-reservoir

approach (Dekker 1981), it may just prove the case that they are more fundamen-

tal, in the cosmological context. Moreover, as argued by Bondar et al. (2012, 2016)

there is also a methodological justification for quantizations that proceed via the

more direct route. In particular, the idea is to derive master equations based upon

observed data recast in the form of Ehrenfest relations together with a a specified

mathematical structure of the equations of motion. The virtue of this approach,

according to Bondar et al. (2016), is that it guarantees that the resulting equations

of motion have the desired physical structure to reproduce the supplied dynamical

observations (p. 1633). By contrast, the system-reservoir approach to the deriva-

tion of a master equation need not lead to a master equation that can reproduce

the observations nor that the equations have a desired mathematical structure (p.

1633).

The second response to the quantization argument is that the universe need

not be taken to be all that there is. We might understand the ‘system’ described by

a cosmological model as being given by coarse grained large scale degrees of freedom

13We can see this straightforwardly by manipulating the equation as far as we can towards the
Lindblad form (2) and finding that the matrix aij cannot be made positive semi-definite without
the addition of extra terms. See (Breuer and Petruccione 2002, pp. 172-3) and Ferialdi (2017).
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and thus leave open the possibility for endogenous environmental interactions that

lead to dissipative effects. Thus we might be able to apply the system-reservoir to

derive an open quantum cosmology model, whether or not there is a more funda-

mental fine-scale dynamics that is unitary.

Finally, and most excitingly, we can respond to the quantization argument by

considering the possibility, noted above, of classical open systems cosmology models.

In particular, classical cosmological models can be provided in the framework of

contact geometry (Sloan 2018, 2023; Bravetti et al. 2023). Such models feature

compression of the Liouville measure and they are thus open systems in the relevant

classical sense. Moreover, they are absolutely autonomous in our terminology. The

quantization of such models, should it prove possible, should be expected to lead to

models in which the universe is described as an open quantum system. Such models

can also be expected to be absolutely autonomous. As such, the universe may turn

out to be an open quantum system after all.
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