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Abstract

I expound and defend the “bare probabilism” reading of Gibbsian
(i.e. mainstream) statistical mechanics, responding to Frigg and Werndl’s
recent (BJPS 72 (2021), 105-129) plea: “can somebody please say what
Gibbsian statistical mechanics says?”

1 Introduction

Mainstream statistical physics proceeds by assigning probability functions to
classical systems, and mixed quantum states to quantum systems, and then
calculating synchronic and diachronic properties of those functions. Recent
philosophy of physics refers to this mainstream approach as “Gibbsian statistical
mechanics” (henceforth GSM) and contrasts it, usually unfavorably, to (so-
called) “Boltzmannian statistical mechanics”, in which the role of probability is
lessened and in some versions eliminated altogether.

Recent philosophy of physics, however, has seen increasing interest in engag-
ing with rather than simply dismissing GSM (see, e. g. , Luczak 2016, Robert-
son 2020, 2022, Myrvold 2021, Wallace 2015, 2020), and this has led to con-
troversy about its actual content. The issue has been raised in a recent (and
characteristically clear) paper by Frigg and Werndl (2021) (henceforth FW),
titled “Can somebody please say what Gibbsian statistical mechanics says?” In
their introduction, they say

GSM is widely used and considered by many to be the theory of
statistical mechanics. Yet a closer look at GSM reveals that it is
unclear what the theory says and how it bears on experimental prac-
tice. . . . Hence our plea: can somebody please says what GSM says?
(p.105; emphasis theirs)
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This paper is an attempt to answer their plea (building on a previous, less ex-
plicit answer in (Wallace 2015)), as well as a critique of the alternative answer
that FW themselves develop. I defend the claim that GSM should be inter-
preted — and is interpreted by working physicists — via what FW call bare
probabilism, the view that there is nothing to GSM beyond the probabilistic
claims that it makes about systems. FW regard this as unacceptable in large
part because it fails to provide an adequate basis for thermodynamics; I will ar-
gue that this follows only because FW fail to recognize that in modern physics,
thermodynamics is interpreted statistically just as statistical mechanics is.

In section 2 I review the formalism of GSM, and in section 3 I summarize
FW’s criticisms and their eventual position. In section 4 I defend the view that
contemporary thermodynamics should itself be understood statistically, and in
sections 5–6 I discuss fluctuations in GSM, which FW regard as a major issue
for its interpretation. Section 7 is the conclusion.

A disclaimer about terminology: the philosophy literature can easily give
the impression that (1) the “Gibbs-vs-Boltzmann” debate is a genuine schism
within modern physics, and (2) what is called “Gibbsian” or “Boltzmannian”
statistical mechanics is an accurate description of the historical views of (re-
spectively) Gibbs and Boltzmann. I reject both claims. As to the first: I agree
with FW that “Gibbsian statistical mechanics” is simply what modern physi-
cists call statistical mechanics; “Boltzmannian statistical mechanics” can be
understood varyingly as a historically held position, as the view of a heterodox
minority (Lebowitz 1993; Goldstein 2001), or as a special case of mainstream
statistical mechanics (Wallace 2020). As to the second: Wayne Myrvold (2021,
ch.7) persuasively argues that the historical Gibbs and Boltzmann held signif-
icantly more nuanced, and more mutually compatible, views than the contem-
porary literature might suggest. I have stuck with the standard terminology for
ease of communication, but to be clear: by “GSM” I mean no more or less than
“statistical mechanics as it has in fact been practiced in mainstream physics
over the last seventy years or so”.

2 The Gibbsiam formalism

The formalism of GSM (leaving aside its interpretation for now) is as follows:

1. A system is characterized either classically by a phase space and a col-
lection of functions on that space representing the dynamical variables
(including the Hamiltonian H, which generates the system’s dynamics)
or quantum-mechanically by a Hilbert space and a collection of operators
on that space representing the dynamical variables (again including the
Hamiltonian H).

2. The statistical state ρ(t) of the system at time t is defined either classically
by a probability measure over the phase space, or quantum-mechanically
by a quantum state (pure or mixed) on the Hilbert space. (Notice an
important quantum/classical disanalogy: in classical mechanics there is a
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clear distinction between the statistical state and the microstates of the
system, which are represented by points in the phase space; in quantum
mechanics the distinction is elided).

3. The statistical state of an undisturbed system evolves over time under
Liouville’s equation, which classically is

d

dt
ρ(t) = {H, ρ}PB (1)

with {, }PB the Poisson bracket, and quantum-mechanically as

d

dt
ρ(t) = −i[H, ρ] (2)

with [, ] the commutator.

4. Given a dynamical variable X, its expectation value with respect to sta-
tistical state ρ is given classically1 by

⟨X⟩ρ =

∫
dx ρ(x)X(x) (3)

and quantum-mechanically by

⟨X⟩ρ = Tr(ρX). (4)

A system is in exact statistical equilibrium if its statistical state is invariant under
time, dρ/dt = 0. One important class of states in exact statistical equilibrium
are the canonical states, which have form

ρ(β) =
1

Z(β)
e−βH (5)

(interpreted either classically or quantum-mechanically; Z(β) is in either case
a normalization factor), and a system is in exact canonical equilibrium if its
statistical state is one of the canonical states. Exact canonical equilibrium is
thus a special case of exact statistical equilibrium. The notion of canonical state
generalizes naturally to include dependence on other conserved quantities such
as N , the number of particles; for this case, we have

ρ(β, µ) =
1

Z(β, µ)
e−β(H+µN). (6)

(States like this are sometimes called grand canonical states.)

1Technical note: the integral in (3) is with respect to the Liouville measure, and I am
assuming the probability measure is represented by a (possibly improper) function ρ(x) defin-
ing its local ratio to the Liouville measure. I adopt this notation throughout, following FW;
readers who prefer a more explicitly measure-theoretic notation should be able to translate
straightforwardly.
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It is common2 to introduce a weaker notion of statistical equilibrium. We fix
some set of macrovariables, which are a small subset of the degrees of freedom
intended to represent collective, large-scale degrees of freedom and/or degrees
of freedom which are realistically measureable. Common choices include: for
a spatially extended system the microvariables averaged over some lengthscale
L large compared to intermolecular spacing but small compared to the system
scale (or, more practically, the Fourier components of the dynamical variables
with wavelengths > L), and for a system of N particles, the complete set of
M -particle dynamical variables for fixed M ≪ N . (These roughly correspond
to the choices of macrovariables generally made in the two main paradigms for
non-equilibrium statistical mechanics: the Langevin and BBGKY paradigms
(see, e. g. , (Calzetta and Hu 2008, ch.2) or (Wallace 2016). In the former
paradigm the macrovariables are sometimes called relevant variables.) A system
is then in statistical macroequilibrium at t if the expectation value ⟨M(t)⟩ ≡
⟨M⟩ρ(t) is time-invariant at t for all macrovariables M . And it is in canonical
macroequilibrium if the expectation values of all macrovariables match their
values on some canonical state.

As FW note, this formalism is related to thermodynamics by what they call
the averaging principle (AP): thermodynamic quantities like energy or particle
number are identified with the expectation values of the corresponding statis-
tical system, calculated at canonical equilibrium. To spell this out a little:3

consider a fluid, which in phenomenological thermodynamics is characterized
by its energy U , the number of particles n, and its volume V ; the fluid’s ther-
modynamic behavior is described by its equation of state S = S(U, n, V ), where
S is the system’s thermodynamic entropy. In Gibbsian statistical mechanics we
identify S(U,N, V ) with the Gibbs entropy of the unique canonical state that
has expected energy ⟨H(V )⟩ = U and expected number of particles ⟨N⟩ = n,
where the system volume V is interpreted as an external parameter for the
Hamiltonian H(V ) and where N is the classical function or quantum opera-
tor representing particle number. In (Wallace 2023, section 3) I call this fuller
recipe (which includes AP as a part of it) the canonical recipe: using it, in those
situations where it is calculationally tractable to do so, reliably recovers the
measured thermodynamic equation of state.

3 Frigg andWerndl on the interpretation of GSM

FW raise two, related, questions about GSM:

1. How is the formalism to be interpreted; that is, what if anything are we
saying about a physical system when we assign a statistical state to it?

2In the philosophy literature FW attribute this definition to van Lith (1999). It is very
widespread in the physics literature: notably, it is the central notion used by the various recent
programs to explain equilibration in quantum statistical mechanics (cf section 6).

3For a more detailed description, see (Wallace 2023, section 3) (or any good statistical
mechanics textbook).
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2. How is AP to be justified, given some interpretation of GSM?

(I have stated (2) as secondary to (1), as I think this is faithful to FW, but I
would myself be inclined to break it loose from any question of interpretation
and ask: why does AP (and, more generally, the canonical recipe) in fact give
empirically correct predictions for thermodynamic systems?)

They begin by considering, and fairly swiftly rejecting, two possibilities:
quietism (the view that AP is simply a posit in no need of further justification)
and the time average approach, which equates the Gibbsian probability measure
to a long-term time average. In both cases I agree with their assessment and
will not discuss these approaches further.4

FW’s main focus is probabilism: the view that GSM is to be interpreted in
the obvious way as making probabilistic statements about systems, so that in
classical mechanics, when we say ‘the statistical state of this system is ρ’, we
mean, the probability density of the system having microstate x is ρ(x). FW
do not discuss quantum mechanics explicitly, but the obvious quantum version
of probabilism is just that a system’s statistical state is its actual quantum
state. (What that means, and in particular whether it is itself a probabilistic
or categorical statement, of course depends on one’s preferred solution to the
measurement problem.)

FW consider several versions of probabilism (as well as a digression to discuss
a recent proposal by McCoy (2020), which they ultimately reject; I will not
discuss that proposal here). The first is bare probabilism: the view that all
there is to Gibbsian statistical mechanics is the probabilistic interpretation. As
FW say, “[o]n such a view GSM really is just a study of the statistical properties
of [the statistical state] with nothing else added.”5

To FW, the problem with bare probabilism is that — as they interpret it
— it abandons any hope of a statistical-mechanical grounding of thermody-
namics. (“Any attempt to read more into GSM, in particular any attempt to
read a notion of thermodynamic equilibrium into it, is misguided and should be
resisted.”) They go on to spell out the concern in more detail:

The fact that thermodynamic equilibrium and statistical equilibrium
are both equilibria does not mean that they are somehow similar,
or that statistical equilibrium can serve as a stand-in for thermo-
dynamic equilibrium when the latter is excised. In fact, statistical
and thermodynamic equilibrium are not only conceptually different,
they do not even have the same extension. An ensemble in statis-
tical equilibrium not only contains systems at thermodynamic equi-

4Interestingly, FW describe the time average approach as “the ‘standard’ textbook ap-
proach”; if so, I think that reflects badly on the writers of textbooks (or at least, reflects
those writers’ impatience to get through foundations as quickly as possible so as to discuss
applications), since severe criticisms of the approach go back at least as far as (Tolman 1938).
Penrose (1979) described this approach as “out of fashion now” over forty years ago.

5They cite my (2015) when they present bare probabilism, but say (fn. 16) that they have
been unable to find an explicit statement of bare probabilism in print. I had intended to give
one; obviously I was insufficiently clear!
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librium; it can also contain systems that are not at thermodynamic
equilibrium.

Here, FW are making substantive assumptions about thermodynamics that are
worth spelling out. Specifically, they are committed to the ‘neo-Boltzmannian’
view that thermodynamic properties like energy, entropy and being at equi-
librium are properties of microstates. For equilibrium in particular, and given
again a collection of macrovariables we can define a microstate of a classical
system as being at Boltzmannian equilibrium if the value of the macrovariables
is time-invariant, perhaps up to some small fluctuation term; FW (section 2)
define thermodynamic equilibrium as Boltzmannian equilibrium.

Under these assumptions about thermodynamics, FW are surely correct that
thermodynamics does not reduce to GSM given Bare Probabilism, that statis-
tical equilibrium is not thermodynamic equilibrium (it is certainly not Boltz-
mannian equilibrium), and that AP does not follow.

Given these issues, FW regard bare probabilism as unsatisfactory. They
consider two alternatives, both of which have as a starting point a consideration
of statistical fluctuations. Staying within classical mechanics, they define the
fluctuation of a system with microstate x(t) at time t (with respect to some
macrovariable f) as

∆(t) = f(x(t))− ⟨f⟩ρ (7)

where ρ is the equilibrium distribution (presumably the canonical or micro-
canonical distribution, though FW are not explicit here). Then they suggest
that AP would be justified as a good approximation for any system where the
probability of large ∆(t) is low (a condition that they call thermodynamic fluc-
tuations). How we could generalize this to quantum mechanics is unclear, but
FW restrict their attention to classical mechanics.

FW then suggest two modifications of probabilism. In qualified probabil-
ism, AP is added as a requirement of inter-theoretic reduction: ‘bare probabil-
ism must ensure that AP holds whenever GSM is used in tandem with [ther-
modynamics]’. In fluctuation probabilism, AP is a restriction on GSM itself:
‘[f]luctuation probabilism has to restrict dynamical laws and observables that
are allowable in GSM to those that produce thermodynamic fluctuations’.

FW claim that it is an ‘aesthetic matter’ which of qualified or fluctuation
probabilism we accept, but it’s not clear why, unless we regard GSM as purely a
foundation for thermodynamics: according to qualified probabilism we can use
GSM outside the regimes where AP holds, so long as we don’t try to relate it
to thermodynamics; according to fluctuation probabilism we cannot use GSM
at all unless AP holds. But in any case, FW regard all forms of probabilism, in-
cluding bare probabilism, as committed to a position they call ‘ρ-universalism’
— literally, the view that ρ(t) at all times does after all give the correct ex-
pectation values for at least macroscopic observables — which they go on to
criticize.

Their criticism is based on a consideration of fluctuations, for which they
consider two possible interpretations. The first is that the fluctuations repre-
sent probabilistic expectations of how the same system’s macrovariables will
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fluctuate over time. As they correctly point out, this is impossible if there are
conserved quantities such that the distribution ρ assigns different probabilities
to different values of those quantities: in this situation, we would predict that
some conserved quantity C has nonzero probability of having value c at time
t, and also nonzero probability of having value c′ ̸= c at time t′, but (say FW)
these are incompatible claims.

On the second interpretation, the fluctuations represent probabilistic expec-
tations of how identically-prepared systems will differ in the measured values
of macrovariables. FW concede that in this case, analytically ρ-universalism
holds, but object that this is not the empirical situation we find ourselves in:
‘in laboratory measurements we observe the same system at consecutive times
rather than drawing different systems out of an urn at random’ (p.122; emphasis
theirs).

Exploring how probabilism can be saved from these objections, FW formu-
late two technical conditions (both expressed with respect to a set of macrovari-
ables). A system satisfies masking if the fluctuations for each macrovariable
are the same for any time-invariant statistical state ρ (so that unrecognized
conserved quantities do not affect macrovariable expectation values). A system
satisfies independence (tacitly, with respect to a given time-invariant statistical
state ρ) if for sufficiently large times t and for arbitrary initial statistical state
ρ′ the expectation value of any macrovariable with respect to the time-evolved
ρ′ and to ρ coincide to any desired degree of accuracy. FW’s conclusion is that
probabilism is only justified when one or other of these conditions holds, and
that it is non-trivial to establish that they do.

4 Statistical thermodynamics

The core claim of this paper is fairly simple: bare probabilism by itself suffices
as a reductive base for thermodynamics, because thermodynamics itself ought
to be interpreted as a statistical theory. That is: those quantities in thermo-
dynamics that have a direct microphysical interpretation, like energy, work, or
particle number, should be interpreted as expectation values; other quantities,
like thermodynamic entropy, should be interpreted as functions of the probabil-
ity distribution characterizing a thermodynamic system; the statement that a
system is in thermodynamic equilibrium should be interpreted as a probabilistic
statement about the system, something along the lines of the expected value of
any macrovariable being time-invariant.

In more detail, and more carefully: we can distinguish statistical thermo-
dynamics, whose parameters are interpreted probabilistically, from categorical
thermodynamics, whose parameters are interpreted as describing an actual sys-
tem. My claim is that statistical thermodynamics is derivable from GSM under
the bare probabilism interpretation of the latter. Categorical thermodynamics
then follows, approximately and with high probability, from statistical thermo-
dynamics for certain sufficiently large systems, basically via the law of large
numbers. (And in non-historical contexts, it’s not obvious that we benefit from

7



treating categorical thermodynamics as a theory rather than just the Law of
Large Numbers applied to statistical thermodynamics.)

The details of any such derivation are beyond the scope of this paper (I
discuss the technical details of such a derivation in (Wallace 2023) but the
important point here is that there can be no barrier of principle in deriving
statistical thermodynamics from the bare probabilism reading of GSM. If the
claims of thermodynamics are understood as categorical then something like
AP becomes a substantive extra assumption, in need of justification or explicit
posit. But if thermodynamics is itself statistical, there is no conceptual diffi-
culty in supposing (e.g.) that a claim about the average work extractable from a
system by cyclical processes might be calculable from a probabilistic description
of that system. Similarly, if a system is at thermodynamic equilibrium when
the expected values of its macrovariables are time-invariant, there is no obsta-
cle to identifying thermodynamic equilibrium with statistical macroequilibrium;
indeed, that identification is practically analytic.

Why think that statistical thermodynamics is how modern physics interprets
thermodynamics? I find the question somewhat difficult to answer: to me, it
seems transparent in practically all the modern literature, at least as far back
as (Tolman 1938):

[I]t is to be emphasized, in accordance with the viewpoint here cho-
sen, that the proposed methods are to be regarded as really statistical
in character, and that the results which they provide are to be re-
garded as true on the average for the systems in an appropriately
chosen ensemble, rather than as necessarily precisely true in any
individual case. (63-4, emphasis in original6).

FW read the physics literature differently, though: they survey thirty textbooks
and find most or all committed to AP, and hence (in their reading) to some-
thing beyond Bare Probabilism. I am not sure how substantive the difference
in our readings is: of course AP is true, indeed in many cases analytic, on the
statistical reading of thermodynamics, so in at least some cases the issue is not
whether a textbook asserts AP but whether it is committed to the categorical
reading of thermodynamics. But to explore this in all cases would be tedious
and in any case not decisive (a pretty clear lesson of 20th century philosophy
of science is that textbooks are not definitive guides to scientific practice), so
I will proceed differently, by identifying three major research programs in con-
temporary thermodynamics which clearly presume the statistical interpretation
of thermodynamics, and indeed would be unintelligible without it.

1. The protection of the Second Law from Maxwell’s demon via considera-
tions of the thermodynamic cost of erasure (“Landauer’s Principle”), as
inaugurated by Bennett (1982). The main focus of this literature has been
on very small thermodynamic systems (like the infamous ‘one-molecule

6I take Tolman’s reference to an ‘ensemble’ as being an artifact of a then-prevalent fre-
quentist reading of statistical probability, rather than as essential in the argument.
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gas’), for which of course there can be no prospect of a version of the Sec-
ond Law that holds for each individual case: fluctuations can always lead
to spontaneous generation of work. The form of the Second Law being
defended in this literature is very clearly and explicitly the expected-value
form: even with access to a Maxwell demon, one cannot in expectation
transform work to heat once erasure costs are considered. And this litera-
ture equally clearly relies on the identification of thermodynamic entropy
with Gibbs entropy, which as Bennett notes (p.936) ‘is an inherently sta-
tistical concept’ that cannot even be expressed as the expected value of
some microphysically statable quantity.

2. The revolution in classical thermodynamics begun by Jarzynski’s (1997)
celebrated inequality and Crooks’ (1998) closely related fluctuation theo-
rem. The Jarznyski equality takes as its starting point a statistical inter-
pretation of the Second Law for a system in contact with a heat reservoir:
that the expected work performed on a system is greater or equal to its
change in free energy,

⟨W ⟩ ≥ ∆F. (8)

Jarzynski then strengthens this result to an equality (i. e. , equation), again
statistical in nature:

⟨e−W/kBT ⟩ = e−∆F/kBT (9)

from which the classical inequality follows.

3. In quantum thermodynamics, the ‘one-shot’ program begun by Brandäo et
al (2015) again starts with the interpretation of the Second Law as a
statistical average, and asks what we can say about work extraction if we
instead consider individual approaches: a variety of inequalities have been
established that strengthen the Second Law in the quantum context.

These are not niche programs in modern physics. (Bennett 1982) has over
2500 citations7, and the Bennett-Landauer approach to Maxwell’s demon is (dis-
approvingly) acknowledged as the current orthodoxy in Earman and Norton’s
(1999) historical review of Maxwell’s Demon. (Jarzynski 1997) has over 5800
citations; (Crooks 1998) has over 2900; the Nobel Prize committee8 lists ‘the
first experimental test of Jarzynski’s equality’ as one of the major applications
of optical tweezers, for which Arthur Ashkin shared the 2018 Physics prize.
The single-shot program is much newer; still, (Brandäo et al 2015) has over 750
citations.

None of these programs make any sense without a statistical reading of
thermodynamics: in each case they quite explicitly make use of it. And in none
of the sources I cite above — or indeed, in any of the other work I’m familiar

7All citation counts from Google Scholar (scholar.google.com), accessed 6/14/2024.
8Advanced Information, NobelPrize.org. Nobel Prize Outreach AB 2024.

https://www.nobelprize.org/prizes/physics/2018/advanced-information/
Accessed 6/14/2024.
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with in any of these programs — is there any suggestion that the statistical
reading is in need of defending or indeed that it admits any alternative; in each
case, it is simply assumed without question. The authors of these sources cannot
be regarded as fringe figures; indeed, some of them are acknowledged leaders of
their field.9 It is reasonable to take their views as expressing orthodoxy in at
least some large part of the physics community.

To be sure, in philosophy of physics the statistical reading of thermodynamics
has been severely criticized; it is varyingly claimed to rely on an incoherent
notion of objective classical probability, to make objective thermodynamic facts
an epistemic and subject-relative matter, to improperly move our focus from
how actual individual systems behave, and more. (Variants of these criticisms
are made by, e. g. , Albert (2000), Goldstein (2001), Callender (1999, 2001). FW
cite (Callender 1999) approvingly.)

I find these complaints unpersuasive. Objective probability, however philo-
sophically confusing it might be, is manifestly required for the empirical appli-
cation of statistical mechanics and in any case looks much better once quantum
mechanics is taken into account. The epistemic reading of Gibbsian statis-
tical mechanics is in large part optional and in any case thermodynamics is
concerned with our capacities, which might reasonably be influenced by our
epistemic situation. And there is no difficulty understanding thermodynamics
as making claims about individual systems, provided those claims are under-
stood as probabilistic — something we are in any case used to from quantum
physics. (I expand on this defence in (Wallace 2020, 2023); for other defenses,
see (Maroney 2007, Myrvold 2021, Robertson 2022).)

But in any case, whether the statistical reading of thermodynamics is cor-
rect or even defensible is beside the point. The question that FW ask, and
that I am concerned with here, is ‘can somebody please say what GSM says?’
They, and I, are not concerned with the further question: ‘is what GSM says cor-
rect?’ I claim that there is overwhelming evidence that in contemporary physics
practice, thermodynamics is understood statistically in the first instance, with
categorical claims following, insofar as they do follow, only via large-number
statistics, and so if we want to understand how GSM is interpreted in contem-
porary physics, our understanding needs to take this into account. When it is
taken into account, there is no difficulty in bare probabilism for the reductive
project of deriving thermodynamics from statistical mechanics.

5 Fluctuations revisited

Let’s consider again FW’s question of how to interpret fluctuations in GSM.
Suppose that some system is initially at exact statistical equilibrium — that is,
its statistical state ρ is time-invariant. (The interpretation of the claim that the
system’s statistical state is ρ will depend on our account of statistical-mechanical

9For instance: Bennett received the Wolf Prize in 2018 and the Breakthrough Prize in
2023; Jarzynski received the Lars Onsager prize in 2019. These are among the highest honors
in physics.
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probabilities — it might mean that ρ is a quantum state, or a classical distri-
bution understood as the classical limit of a quantum state (Wallace 2016), or
ρ might be an objectified credence in the sense of (Myrvold 2021), or it might
describe the relative frequencies of microstates in a large collection of systems
from which our system has been randomly selected. Nothing in this section
hinges on this interpretative question.)

If X is a macrovariable for the system, and we measure X at some time t1,
the outcome will be somewhat random, with the probability of a given outcome
determined by ρ, and following FW we can express the outcome as a fluctuation:
that is, as a difference between the actually-obtained value and the mean value.
Since the distribution ρ is ex hypothesi time-invariant, the probability distri-
bution over these fluctuations is the same whenever the measurement is made,
and indeed if we measure the system at a large number of times t1, t2, . . . tN ,
the probability distribution over results of the nth measurement is the same for
all n.

Does it then follow that we should expect the statistics of that large number
of measurements to be given by the probability distribution over single mea-
surements? There is no general reason to assume so: it depends on whether the
outcomes of measurements at different times are correlated, and there are per-
fectly realistic cases where we would expect just this. FW give some examples
of this (p.124) but their discussion might give the impression that only exotic
systems have this feature. In fact it can readily be found in systems of interest
to mainstream statistical mechanics. I will give two examples.

The first is a single harmonic oscillator, previously in thermal contact with a
heat bath (so that its statistical state is initially canonical) but now isolated from
that bath. The canonical distribution will correctly describe the probability
distribution over (say) joint measurements of its position and momentum, at
any single time — but of course any such joint measurement at one time will
completely fix the values of any measurement at any other time, so that a
sequence of such measurements will not appear as if drawn randomly from an
ensemble described by ρ but will trace out a (randomly initialized) harmonic
trajectory. (And, since the oscillator is not a chaotic system, this will continue
to be true approximately even if the initial measurement has finite precision.)

The second is a macroscopically, but finitely, large ferromagnet, initially
heated to well above its ferromagnetic temperature and then allowed to cool.
The canonical distribution will predict that the magnetic field at some specified
point in the magnet has a non-zero magnitude and a random direction. But the
direction at one time will almost always coincide with the direction at another
time: the multi-time correlation between magnetic field values at any point in
the magnet is almost perfect.

In each case, the existence of multi-time correlations is not something addi-
tional to GSM, but something that can be, and routinely is, calculated within
GSM. Given a macrovariable O, let O(t) be the macrovariable describing the
value of O after the system has evolved under its Hamiltonian dynamics for
time t. Formally,

O(t) = exp([·, H]t)O (10)
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where [, ] is the Poisson bracket or −i times the commutator, as appropriate.(In
QM this can be rewritten as

O(t) = eiHtOe−iHt (11)

and we can recognize it as the Heisenberg-picture version of O.) Then the
two-time correlation function

⟨O(t)O(0)⟩ρ − ⟨O(t)⟩ρ⟨O⟩ρ (12)

calculated on the equilibrium distribution ρ is just one more equilibrium ex-
pectation value. If it decreases to ∼ 0 in a time τ , then measurements of O
separated by time τ can be expected to be uncorrelated and their statistical
distribution will match the single-time probability distribution of O. If it re-
mains large at time τ , those measurements will be correlated and their statistics
will not match that distribution.

There is another, equivalent, way to look at this. Suppose we do measure
O at time 0 and get result o. The correct probability distribution to use to
describe the system with respect to subsequent measurements is no longer ρ
but ρ conditionalized on O = o: that is, we should update the distribution to

ρ′(x) = Nρ(x)δ(O(x)− o) (13)

withN a normalization constant. This will in general not be a macroequilibrium
distribution; that is, the measurement has moved the system out of statistical
equilibrium. The condition for a measurement at a later time τ to have proba-
bilities given by the equilibrium distribution ρ is that the system has returned
to macroequilibrium: that is, it needs to have an equilibration timescale small
compared to τ . And we can identify the two-time correlation function’s behav-
ior as telling us exactly this equilibration timescale, at least with respect to that
macrovariable.

(It is striking that a multi-time correlation function evaluated at equilibrium
tells us about the rate at which a non-equilibrium system equilibrates. This
observation is one of the foundational principles of non-equilibrium statistical
mechanics, encoded in the Onsager regression hypothesis and the fluctuation-
dissipation theorem. See, e. g. , (Kubo, Toda, and Hashitsume 1991) for further
discussion.)

When a system does not equilibrate (or at any rate does not do so quickly
enough) the probability distribution over an observable is not measurable by
repeated measurements of that same observable on a single system. To measure
that distribution, we would instead need to carry out single measurements on a
number of identically prepared systems.

FW consider this possibility, but raise two objections. Firstly, they say,
“[t]he systems produced in this way would approximate the Gibbsian ensemble
only if the process of equilibrium preparation was such that the systems ended
up being produced according to the measure of the ensemble”, and, they claim,
“there is not reason to believe” that this will be true. Secondly, they describe
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the approach as “of questionable legitimacy because in doing so one gives up
the aim of describing the evolution of single systems”.

Neither objection is persuasive. In the first place, of course it is true that
we can only measure the equilibrium probability distribution ρ through mea-
surements of many systems if those systems have been prepared such that their
statistics are given by that distribution. But that is just to say that we can only
do so if the systems really are correctly described by ρ, and whoever thought
otherwise? When systems equilibrate quickly, of course more or less any prepa-
ration process will do, but if they don’t, we need to pay attention to the way
the system is prepared, to make sure it actually has been prepared in statis-
tical equilibrium. In the two cases I described above (the single particle and
the ferromagnet) I was careful to describe their preparation to ensure this: the
single particle was extracted from an equilibrated collection of many particles;
the ferromagnet was cooled from a temperature at which it would have quickly
equilibrated. Alternative preparation processes might not produce systems in
statistical equilibrium and in this case the equilibrium distribution will not give
the right answers. If I prepared a collection of ferromagnets by magnetizing
them all and then giving them to a toddler to play with, probably this will not
produce a collection of systems at statistical equilibrium (maybe she likes lining
things up).

As for FW’s second concern: there is no need to give up on describing the
evolution of single systems, only on the idea that the statistics of repeated
measurements of non-equilibrating systems measure the single-time equilibrium
distribution. If we want to study systems that don’t quickly equilibrate —
including their time evolution — we need to study lots of copies of those systems,
and to make sure that they start off at statistical equilibrium.

And indeed this is exactly what is done in modern nanoscale thermodynam-
ics. Microscopic systems — individual strands of DNA, say — are allowed to
equilibrate with a thermal environment; then the experimenter intervenes on
them, and the statistics of their responses are measured and compared with
the probabilistic predictions. This has become a major area of experimental
thermodynamics in the 21st century, driven by theoretical advances like the
Jarzynski equality and technological developments like optical tweezers. Put
bluntly: if this approach is of questionable legitimacy, someone needs to tell the
2018 Nobel Physics Prize committee.

Nonetheless FW are clearly correct that a large part of statistical thermo-
dynamics is concerned with situations where a single system is repeatedly mea-
sured; I turn now to this case.

6 Gibbsian equilibration

In FW’s discussion of repeated measurements of the same system, they worry
that there are no general reasons to expect those repeated measurements to
give statistics matching the synchronic probability distribution. We have seen
that this worry is well-founded for some physically-realistic systems, including
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microscopic and broken-symmetry systems. Still, we can ask (and FW do ask):
why expect any system to display these statistics on repeated measurement? As
they correctly note: any system with conserved quantities other than energy will
display multi-time correlations in repeated measurements of those quantities;
if any macrovariable’s probability distribution conditional on one value of the
conserved quantity differs from its distribution conditional on another variable,
then inevitably there will be persistent multi-time correlations in measurements
of that quantity.

One class of such conserved quantities can be set aside as harmless. If there
are macrovariables other than energy that are conserved, it is well known that
(as I noted in my presentation of GSM in section 2) the appropriate choice
of equilibrium distribution must take that into account. Particle number, for
instance, is normally conserved; allowing for this fact leads us to use either a
generalization of the canonical ensemble which is determined by the expectation
values of both energy and particle number, or a generalized microcanonical
ensemble that is uniform on a thin shell of states around a given energy and
particle number. In general, the space of systems at equilibrium is parameterized
by energy and any other conserved macrovariables, both in statistical mechanics
and in thermodynamics.

But what if there is a conserved quantity that is not a macrovariable, and
yet which is such that some macrovariables’ values are correlated with it? Then,
by definition, the system will not equilibrate: its statistical state will not evolve
into a macroequilibrium state. In other words, the problem FW identify is just
the problem of establishing that systems which we think ‘ought’ to equilibrate
actually do. The properties of masking and independence which they discuss
are just aspects of the definition of macro-equilibration.

Proving equilibration is notoriously difficult, and for a century the standard
approach has been to provide heuristic arguments as to why equilibration should
be expected and then to proceed with statistical mechanics as if it were correct.
One could dispute that strategy, but that dispute does not seem particularly
relevant to the interpretation of GSM. (Nor is a Boltzmannian approach to
statistical mechanics any better off here. On the Boltzmannian conception of
equilibration, a “macrostate” is a region of phase space where the macrovariables
are approximately constant, and the “equilibrium macrostate” is the largest
such macrostate. Microscopic conserved quantities, if there are any, can cause a
system to get stuck in the “wrong” macrostate just as easily as they can cause
a system to display the “wrong” statistics.)

That said, the last 30 years have seen very substantial progress in our under-
standing of equilibration, mostly in the quantum rather than classical regime.
A full review would be far beyond the scope of this paper (see, e. g. , (d’Alessio
et al 2016) and references therein), but to give one important example: the
“eigenstate thermalization hypothesis” (Deutsch 1991; Srednicki 1994) relates
equilibration to certain statistical features of the distribution of a large sys-
tem’s energy eigenstates — statistical features which provably characterize ‘typ-
ical’ Hamiltonians (for an appropriate definition of ‘typical’) and which can be
checked for specific systems via numerical simulation. Equilibration is a difficult
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problem, but it is not an intractable one.

7 Conclusion

Gibbsian statistical mechanics assigns a probability distribution ρ(t) to a system
at time t, and its interpretation is nothing more or less than that this probability
distribution is, indeed, the statistical state of the system: that is, it determines
the probability distribution over, and so the expectation value of, any variable
for the system. But a great deal follows from this. GSM determines the multi-
time correlation functions that describe both fluctuations at equilibrium and
the approach to equilibrium. It determines the control theory of interventions
on a statistical-mechanical system that is statistical thermodynamics: a theory
which establishes limits on the expectation values of he work extractable from
a system through various control operations. It provides the foundation for
the remarkable recent work in thermodynamics that goes beyond these limits
and actually provides sharp predictions of expectation values in thermodynamic
change. And, through the law of large numbers, it provides a microphysical
grounding for the categorical thermodynamics of large systems.

That’s what Gibbsian statistical mechanics says.
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