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Abstract

The aim of this paper is to examine the extent to which the ‘privi-
leged coordinates’ of a physical theory provide a window into how much
structure it posits. We first isolate a problem for this idea. We show
that there are geometric spaces that admit the same privileged coordi-
nates, but have different amounts of structure. We then compare this
‘coordinate approach’ to comparing amounts of structure to the famil-
iar ‘automorphism approach,’ and we conclude with some brief remarks
about implicit definability.

1 Introduction

It is sometimes the case that one theory posits less structure than another.
For example, Newtonian spacetime posits all of the structure that Galilean
spacetime does, but in addition it comes equipped with absolute rest structure.
It allows one to distinguish between trajectories that are at rest and those
that are moving at a constant (non-zero) velocity. Galilean spacetime does not
have the conceptual resources to draw such a distinction, so the move from
the Newtonian to the Galilean theory represents a move to a less structured
spacetime.

The standard method of comparing amounts of structure has been called the
“automorphism approach” (Barrett, 2021b). It appeals to the automorphisms
or ‘symmetries’ of the object under consideration. In brief, an automorphism
of an object is a structure-preserving map from the object to itself. If an object
admits more automorphisms, that suggests that the object has less structure
that the automorphisms are being required to preserve. Conversely, fewer auto-
morphisms indicates that the object has more structure that they must preserve.
All symmetries of Newtonian spacetime are symmetries of Galilean spacetime,
but Galilean boosts are symmetries of the latter but not the former. This is
taken to be an indication that Newtonian spacetime has more structure than
Galilean spacetime.

∗Thanks to David Malament for much helpful discussion on this material.
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The automorphism approach goes back at least to Earman’s famous remark
that “as the space-time structure becomes richer, the symmetries become nar-
rower” (Earman, 1989, p. 36). North (2009, p. 87) echoes this thought when
she writes that “stronger structure [. . . ] admits a smaller group of symmetries”
and again when she says that one indication of more structure on an object
is that the “associated group of structure-preserving transformations becomes
narrower” (North, 2021, p. 50). The automorphism approach has been fruitfully
applied in many cases; for example, see Barrett (2015a,b), Bradley (2020), and
Barrett (2021b). But another way to compare amounts of structure has recently
been proposed. Instead of looking to symmetries, one looks to the ‘privileged
coordinates’ that the space admits. The idea is that the more privileged coordi-
nates a space admits, the less structure it must have. This is best illustrated by
an example (North, 2021, p. 17–26). Consider the smooth manifold R2. This
geometric space admits many global coordinate charts. But suppose that one
were to add to R2 the standard Euclidean metric gab. The metric gab ascribes
‘distance structure’ to R2; it determines the distances between points and the
angles between lines. Some global coordinate charts on R2 will not adequately
respect this new structure. Some, for example, will have coordinate axes that
are not orthogonal to one another. The ‘rectilinear coordinates’ — those ob-
tained by rotating, translating, and reflecting the standard x-y coordinates —
are the ones in which gab is most perspicuously presented. In this sense, lay-
ing down a metric on R2 reduces the class of ‘privileged coordinates’ on our
geometric space.

Cases like this give us reason to think that the privileged coordinates of
a geometric space provide a window into the amount of structure that it has.
When discussing the Euclidean plane, North (2021, p. 26) puts the idea as
follows:

the features or quantities that are agreed upon by all the differ-
ent [privileged] coordinate systems we can use for the plane, the
coordinate-independent, invariant features, correspond to the intrin-
sic nature of the plane, to aspects of the plane itself, apart from our
descriptions of it — that is, to what I have been calling its structure.

If this idea is right, then the privileged coordinates of a geometric space are a
good guide to its amount of structure. More privileged coordinates will mean
fewer “features or quantities that are agreed upon” by them, and hence less
structure. North (2021, Ch. 4) employs this reasoning in a concrete case. She
argues that standard Newtonian mechanics admits fewer privileged coordinates
than Lagrangian mechanics does. The former must therefore posit more struc-
ture, and hence the two theories must be inequivalent, a conclusion that dissents
from the standard view. (See Barrett (2022) and Jacobs (2024) for further dis-
cussion.) Others have also stressed the significance of ‘privileged coordinates’.
Fock (1964, p. 374) writes that “the existence of a preferred set of coordinates
[. . . ] reflects intrinsic properties of spacetime”. And Wallace (2019) shows
that one can present many geometric structures by singling out their privileged
coordinates.
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The aim of this paper is to investigate the coordinate approach to comparing
amounts of structure. We suggest that there are geometric spaces that admit the
same privileged coordinates, but have different amounts of structure, and hence
privileged coordinates do not provide a perfect guide to amounts of structure.
We will then step back and compare the coordinate approach to the automor-
phism approach. The coordinate approach to comparing amounts of structure
employs the same core mechanism — implicit definability — as the automor-
phism approach does. We will therefore conclude with a few brief remarks on
implicit definability.

2 What Are Privileged Coordinates?

In order to discuss the coordinate approach, we need to provide an account of
what the privileged coordinates of a geometric space might be. In order to do so,
we will employ the framework of locally G-structured spaces, which was recently
discussed at length by Wallace (2019). We will review this framework here, but
the reader is invited to consult Barrett and Manchak (2024) for technical details.

Locally G-structured spaces

We begin with some preliminaries. The automorphism group Aut(X) of a math-
ematical object X is the collection of bijective structure-preserving maps from X
to itself. For example, if M is a smooth manifold with tensor fields α1, . . . , αn

on it, the automorphism group of the geometric space (M,α1, . . . , αn) is the
collection of diffeomorphisms f : M → M such that f∗(αi) = αi for each
i = 1, . . . , n. A pseudogroup is the ‘local analogue’ of the automorphism group
of a geometric space. It is a collection of bijective structure-preserving maps
between open subsets of a topological space that satisfy some basic conditions
(Kobayashi and Nomizu, 1996, p. 1). The simplest example of a pseudogroup is
the diffeomorphism pseudogroup of a smooth manifold M , i.e. the class of
diffeomorphisms f : U → V between open sets U and V of M . Recall that a rel-
ativistic spacetime is a pair (M, gab) where M is a smooth, n-dimensional (for
n ≥ 2), connected, Hausdorff manifold without boundary and gab is a smooth
Lorentzian metric on M . The isometry pseudogroup of a relativistic space-
time (M, gab) is the class of diffeomorphisms f : U → V between open sets U
and V of M such that f∗(gab) = gab. In general, if M is a smooth manifold
with α1, . . . , αn smooth tensors of arbitrary index structure on M , then we will
call the collection of diffeomorphisms f : U → V between open sets U and V of
M such that f∗(αi) = αi for each i the automorphism pseudogroup of the
geometric space (M,α1, . . . , αn).

Let G be a pseudogroup on Rn that is contained in the diffeomorphism
pseudogroup of Rn. A locally G-structured space is a pair (S,C), where
S is a set, C is a collection of injective partial functions c : S → Rn, and the
following hold:
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Cover condition. For every point p ∈ S there is a map c ∈ C such that
p ∈ dom(c).

Range condition. For every map c ∈ C there is a map g ∈ G such that
ran(c) = dom(g).

Compatibility condition. For any partial function f : S → Rn whose range
is the domain of an element of G, f ∈ C if and only if for every f ′ ∈ C
such that dom(f) ∩ dom(f ′) is non-empty, f ◦ f ′−1 ∈ G.

We can think of the maps in C as the ‘privileged local coordinates’ on our space
S.

There is a natural way to recover a geometric space from a locally G-
structured space (S,C). We begin by showing how (S,C) inherits smooth man-
ifold structure. It is easy to build an atlas on S. For each f ∈ C, (dom(f), f)
is an n-chart on S. Let C+ be the collection of all n-charts on S that are com-
patible with all these n-charts in C. One then shows that (S,C+) is a smooth
n-dimensional manifold (Barrett and Manchak, 2024, Proposition 2.2.1). Var-
ious levels of geometric structure are then recovered on the manifold (S,C+)
in the following manner. The maps in C suffice to induce a pseudogroup Γ
on (S,C+). Intuitively, this coordinate transformation pseudogroup con-
tains all of the maps between open subsets of S that ‘transform’ from one of our
privileged coordinate systems in C to another one of them. Γ contains those
homeomorphisms between open sets of S generated by functions of the form
f−1 ◦ g, where f and g are in C. (See Barrett and Manchak (2024, Definition
2.2.2) for a precise definition.) The coordinate transformation pseudogroup Γ
now allows one to recover geometric structures on (S,C+). We will say that a
smooth tensor field α (of arbitrary index structure) on a smooth manifold M is
implicitly defined by a pseudogroup G on M just in case h∗(α) = α for all
h : U → V in G. We now simply equip (S,C+) with those smooth tensor fields
α that are implicitly defined by the coordinate transformation pseudogroup Γ.
We can therefore recover a geometric space — in the form of a smooth manifold
with tensor fields on it — from a locally G-structured space.

It is important to say when two locally G-structured spaces are ‘the same’.
Let (S,C) and (S′, C ′) be locally G- and G′-structured spaces, respectively. An
isomorphism f : (S,C)→ (S′, C ′) is a bijection f : S → S′ such that

1. f is a diffeomorphism between (S,C+) and (S′, C ′+) and

2. the map s 7→ f ◦ s◦f−1 is a bijection between Γ and Γ′, the pseudogroups
associated with (S,C) and (S′, C ′).

This is a natural notion of isomorphism between locally G-structured spaces. It
requires that isomorphisms preserve the smooth manifold structure (condition
1) and the pseudogroups (condition 2) that the spaces inherit. One can verify
that if (S,C) and (S′, C ′) are isomorphic, then the geometric spaces recovered
from them are isomorphic too (Barrett and Manchak, 2024, Proposition 3.2.2).
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Privileged Coordinates

We will now present an account, due to Barrett and Manchak (2024), of what
the privileged coordinates of a relativistic spacetime (M, gab) are. We do this
by showing how one builds a locally G-structured space (S,C) from (M, gab);
the maps in C will then be the privileged coordinates on (M, gab).

The case of the Euclidean plane suggests a natural first attempt at defining
the privileged coordinates of a relativistic spacetime. In that case, it is natural
to say that the privileged coordinates are the ‘rectilinear coordinates’. If we let
(R2, gab) be the Euclidean plane, then one can verify that these are the coordi-
nate charts (R2, φ) such that φ : R2 → R2 is a diffeomorphism and φ∗(gab) = gab.
Now let (M, gab) be a relativistic spacetime, and consider the coordinate charts
(U, φ) on M such that φ : U → Rn satisfies φ∗(ηab) = gab, where here ηab is the
Minkowski metric on Rn. Recall that Minkowski spacetime is the pair (Rn, ηab),
where ηab is flat and geodesically complete. This proposal is perfectly analogous
to the rectilinear coordinates on the Euclidean plane, with the only differences
being that we are not requiring the coordinate charts to be global, and we are
considering the Minkowski metric instead of the Euclidean metric. The problem
with this proposal, as North (2021, p. 22) and Barrett (2022) suggest, is that
the existence of privileged coordinates of this kind implies that the spacetime is
flat. If there is a diffeomorphism φ : U → Rn such that φ∗(ηab) = gab, then gab
must be flat on U . Any spacetime that is nowhere flat will not admit privileged
coordinates in this sense.

This first proposal therefore does not define privileged coordinates for arbi-
trary spacetimes, but it suggests another proposal that will. Instead of restrict-
ing our attention to smooth maps to Rn that preserve the Minkowski metric, we
can strategically pick another spacetime with underlying manifold Rn that al-
lows the construction to work. We will say that a relativistic spacetime (Rn, g′ab)
is a representation of (M, gab) if for every point p ∈ M , there are open sets
O ⊂M and O′ ⊂ Rn such that p ∈ O and (O, gab) is isometric to (O′, g′ab). Intu-
itively, a representation of (M, gab) is just a spacetime with underlying manifold
Rn that ‘reflects’ the structure of (M, gab) in the sense that around each point
p ∈ M , there is an open set that is isometric to some open set in the repre-
sentation. One can show that every relativistic spacetime has a representation
(Barrett and Manchak, 2024, Lemma 3.2.2).

This fact provides us with a method of constructing a locally G-structured
space from a relativistic spacetime (M, gab). Let (M, gab) be a relativistic space-
time with (Rn, g′ab) a representation of it. We then define the following:

• Let S = M .

• Let G be the isometry pseudogroup of (Rn, g′ab).

• Let C be the collection of isometries between open subsets of (M, gab) and
open subsets of (Rn, g′ab), i.e. diffeomorphisms c : U → V where U ⊂ M
and V ⊂ Rn are open and c∗(g′ab) = gab|O.
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This (S,C) is indeed a locally G-structured space (Barrett and Manchak, 2024,
Lemma 3.2.3). (In particular, the fact that (Rn, g′ab) is a representation of
(M, gab) guarantees that cover condition holds.) We will call (S,C) the locally
G-structured space determined by (M, gab). This terminology is justified,
for one can show that different choices of representation in our construction of
(S,C) result in isomorphic locally G-structured spaces (Barrett and Manchak,
2024, Proposition 3.2.3).

This locally G-structured space (S,C) provides one particularly natural way
of saying what the ‘privileged coordinates’ of (M, gab) are. The privileged co-
ordinates are just those maps in C. It is particularly natural because there is a
sense in which these coordinates allow one to recover the structure of (M, gab).
We require the following result to see this (Barrett and Manchak, 2024, Propo-
sition 3.2.1).

Theorem 1. Let (S,C) be a locally G-structured space determined by (M, gab).
Then both of the following hold:

1. The identity map 1M is a diffeomorphism between the manifold (S,C+)
and M .

2. The coordinate transformation pseudogroup Γ on S is the isometry pseu-
dogroup of (M, gab), i.e. the collection of diffeomorphisms f : U → V
between open subsets U, V ⊂M such that f∗(gab) = gab.

Theorem 1 captures a sense in which the locally G-structured space (S,C)
determined by (M, gab) recovers the relativistic spacetime (M, gab). The mani-
fold structure (S,C+) that (S,C) naturally inherits is the same as that of M ;
we know this since 1M is a diffeomorphism between the two manifolds. And
moreover, (S,C) recovers the metric structure gab, since its coordinate trans-
formation pseudogroup Γ implicitly defines gab. This is because Theorem 1
guarantees that Γ is the isometry pseudogroup of (M, gab). There is thus a
sensible way to make sense of the ‘privileged coordinates’ of a relativistic space-
time. And on this understanding, Theorem 1 implies that the “intrinsic nature”
of the spacetime — in the form of its underlying manifold and its metric — is
among “the coordinate-independent, invariant features” (North, 2021, p. 26).

3 Do privileged coordinates determine amounts
of structure?

This account of the privileged coordinates of relativistic spacetimes seems to
be the best one can do, and without such an account, the coordinate approach
to comparing amounts of structure will not get off the ground. Other accounts
might be possible (as Barrett and Manchak (2024, Revision 1) mention), but
on this account one can recover (in a weak sense) the structures of (M, gab)
from its privileged coordinates. This sense is weak for the following reason,
which is discussed in detail by Barrett and Manchak (2024). Some spacetimes
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will admit particularly small isometry pseudogroups, and in such cases more
than one metric on M will be implicitly defined by Γ. The locally G-structured
space (S,C) will then recover more than one metric. This means that it is not
perfectly clear what relativistic spacetime one recovers from (S,C), and hence
one cannot in general use (S,C) to present the entire structure of a relativistic
spacetime.

The privileged coordinates of a relativistic spacetime therefore do not com-
pletely determine its structure. One might wonder, however, whether the priv-
ileged coordinates of a geometric space tell us something weaker about the
space. In particular, one wonders whether they encode the space’s ‘amount of
structure’. We begin with a question posed by Barrett and Manchak (2024,
Reservation 1): Are there geometric spaces with different amounts of structure
that determine the same locally G-structured space? Barrett and Manchak
(2024) conjecture that the answer is “yes”. If so, this would mean that the
amount of structure that a geometric space has is not encoded by the locally
G-structured space that it determines. Our next aim is to capture a sense in
which this affirmative answer is correct.

One might be able to extend the account of privileged coordinates that we
provided for relativistic spacetimes to arbitrary geometric spaces. But we will
not pursue the details here. Rather, we will make some natural assumptions
about what such an account will look like. Let M be a smooth manifold with
α1, . . . , αn smooth tensors of arbitrary index structure on M . We consider the
geometric space (M,α1, . . . , αn) and make the following two assumptions about
the locally G-structured space (S,C) that it determines.

P1. (S,C+) and M are diffeomorphic.

P2. The coordinate transformation pseudogroup Γ on (S,C) is the same as the
automorphism pseudogroup of (M,α1, . . . , αn).

In order to get the coordinate approach off the ground one needs an account
of privileged coordinates that satisfies P1 and P2. This is tantamount to the
requirement that one be able to define the locally G-structured space (S,C)
determined by an arbitrary geometric space in such a way that (S,C) recovers
(M,α1, . . . , αn) in (at least) the weak sense described above. P1 guarantees that
(S,C) recovers the manifold structure of M . P2 guarantees that all of the tensor
fields αi on M are implicitly defined by Γ; this is because if h ∈ Γ, it must be
that h∗(αi) = αi since h is in the automorphism pseudogroup of (M,α1, . . . , αn).
Theorem 1 says that these two assumptions hold of the locally G-structured
space determined by a relativistic spacetime. P1 and P2 together comprise the
claim that analogues of Theorem 1 will go through for other geometric spaces.
We will show that even granting P1 and P2, the coordinate approach appears
unsatisfactory.

We will say that a pseudogroup on a manifold M is trivial if it only contains
identity maps. A relativistic spacetime (M, gab) is Heraclitus if, for any open
subsets U, V ⊂ M and any isometry ψ : U → V , it follows that (i) U = V
and (ii) ψ is the identity map. Manchak and Barrett (2024b) show that a
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Heraclitus spacetime exists. One can easily verify that the isometry pseudogroup
of (M, gab) is trivial if and only if (M, gab) is Heraclitus.

Let (M, gab) be a Heraclitus spacetime. The two geometric spaces that we
will consider are the relativistic spacetime (M, gab) with trivial automorphism
pseudogroup, and the geometric space (M, gab, λ), where λ is an arbitrary tensor
field on M that is not ‘constructible’ in terms of the metric gab. So, for example,
λ is not some scalar multiple of gab, the Riemannian curvature tensor associated
with gab, etc. Note that (M, gab, λ) has a trivial automorphism pseudogroup
since it must be contained the isometry pseudogroup of (M, gab). We now put
forward the following natural claim:

P3. (M, gab, λ) has more structure than (M, gab).

(M, gab, λ) results from adding the structure λ to (M, gab). Since λ is not con-
structible from gab it is a genuinely new level of structure on the space.There is
thus a compelling sense in which P3 holds.

We now have the following result.

Theorem 2. If P1, P2, and P3, then there are geometric spaces with different
amounts of structure that determine isomorphic locally G-structured spaces.

Proof. We consider the two geometric spaces (M, gab) and (M, gab, λ). P3 im-
plies that they have different amounts of structure. We need only show that
they determine isomorphic locally G-structured spaces. Let (S,C) be the locally
G-structured space determined by (M, gab) and (S′, C ′) the locally G-structure
space determined by (M, gab, λ). P1 and condition 1 of Theorem 1 together im-
ply that there is a diffeomorphism f : (S,C+) → (S′, C ′+), since both of those
manifolds must be diffeomorphic to M . Since the automorphism pseudogroups
of (M, gab) and (M, gab, λ) are trivial, P2 and condition 2 of Theorem 2 imply
that the coordinate transformation pseudogroups Γ and Γ′ are trivial too.

We now show that f : S → S′ must be an isomorphism between (S,C) and
(S′, C ′). We know immediately that f satisfies condition 1 of the definition of
an isomorphism. We show that f also satisfies condition 2, in that it preserves
the coordinate transformation pseudogroups on (S,C) and (S′, C ′). We need to
show that the map s 7→ f ◦ s ◦ f−1 is a bijection from Γ to Γ′. Let s, s′ ∈ Γ
and suppose that f ◦ s ◦ f−1 = f ◦ s′ ◦ f−1. Since f : S → S′ is a bijection,
it must be that s = s′. Hence our map s 7→ f ◦ s ◦ f−1 is injective. Now let
s′ ∈ Γ′, so s′ is the identity map 1O on some open set O ⊂ S′. We see that
f−1 ◦ 1O ◦ f = 1f−1[O]. Since f is a diffeomorphism, f−1[O] is an open subset
of S, and hence 1f−1[O] must be in Γ. (This is because a pseudogroup must
contain the identity map for every open subset (Kobayashi and Nomizu, 1996,
p. 1).) Since f ◦ 1f−1[O] ◦ f−1 = 1O, our map is bijective, f satisfies condition
2, and hence f is an isomorphism between (S,C) and (S′, C ′).

Theorem 2 tells us that there are geometric spaces with different amounts of
structure that nonetheless determine the same locally G-structured space, and
we have in this sense answered in the affirmative the question that Barrett and
Manchak (2024) ask. It seems that the privileged coordinates of a geometric
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space do not provide a perfect guide to its amount of structure. One can know
the privileged coordinates of a geometric space — in the form of the locally
G-structured space that it determines — but not be able to assess how much
structure it has. Insofar as P1, P2, and P3 are correct, the coordinate approach
to comparing amounts of structure does not always work. We note that the
problem isolated here for the coordinate approach parallels the one (mentioned
briefly above) that Barrett and Manchak (2024) isolate for attempts to present
a geometric space by appealing to its privileged coordinates. Both problems
are generated by Heraclitus spacetimes, and both point to a central issue with
implicit definability. We return to this point later.

4 Symmetries, Coordinates, and Definability

Our next aim is to compare the coordinate and the automorphism approaches.
Doing so will allow us to diagnose where the difficulties faced by the coordinate
approach come from, and it will allow us to make precise the close relationship
between the two approaches.

Coordinates or Automorphisms?

We begin by briefly reviewing the automorphism approach. The following cri-
terion is representative; see Barrett (2021b) and the references therein for dis-
cussion.

SYM∗. A mathematical object X at least as much structure as a mathematical
object Y if (and only if) Aut(X) ⊂ Aut(Y ).

The condition Aut(X) ⊂ Aut(Y ), that the automorphism group of X is
contained in that of Y , is one way to make precise the idea that X admits ‘no
more’ automorphisms than Y does. SYM∗ works well in easy cases. Newtonian
spacetime has more structure than Galilean spacetime according to SYM∗ (or
more precisely, Newtonian spacetime has at least as much structure as Galilean
spacetime, and not vice versa). An inner product space (V, 〈 , 〉) has more
structure than its underlying vector space V , a topological space (X, τ) has
more structure than its underlying set X, a relativistic spacetime (M, gab) has
more structure than its underlying smooth manifold M , and so on.

But it has been noticed that SYM∗ makes unsatisfactory verdicts in cases
where the objects under consideration admit few symmetries (Barrett, 2021b;
Barrett et al., 2023). While it is usually the case that adding structure to
a mathematical object results in fewer automorphisms, if the automorphism
group of the object is already trivial — that is, it only contains the identity
map and is thus as small as can be — adding structure cannot result in fewer
automorphisms. This point can be made precise by employing the same idea
from the proof of Theorem 2. Following Barrett et al. (2023) and Manchak and
Barrett (2024b), we will call a relativistic spacetime (M, gab) giraffe if it has
a trivial isometry group, i.e. the only diffeomorphism f : M → M such that
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f∗(gab) = gab is the identity map. Since every Heraclitus spacetime is giraffe,
it follows that a giraffe spacetime (M, gab) exists. Consider an arbitrary tensor
field λ on M that is not constructible in terms of gab. According to SYM∗, the
geometric space (M, gab) has at least as much structure as (M, gab, λ) because
the automorphism group of (M, gab) is already as small as can be. Indeed, the
automorphism group of (M, gab, λ) is the same trivial group. This again strikes
one as a bad verdict, and hence SYM∗ is not ideal.

We need to make the coordinate approach precise in order to see whether it
improves upon SYM∗. Recall that the coordinate approach is based upon the
idea that fewer privileged coordinates should indicate more structure. The most
natural first attempt at making this precise is to say that a locally G-structured
space (S,C) has at least as much structure as (S′, C ′) if (and only if) C ⊂ C ′.
If this is right, one could then compare the structure of two geometric spaces
by asking whether the locally G-structured spaces that they determine stand in
this relationship. But the following example illustrates that this first attempt
runs into difficulty.

Example 1. Consider Minkowski spacetime (R4, ηab) and let (S,C) be the
locally G-structured space that it determines. Let f : R4 → R4 be a diffeomor-
phism such that f∗(ηab) 6= ηab. We define a locally G-structured space (S,C ′),
where C ′ is the collection of isometries between open subsets of (R4, ηab) and
open subsets of (R4, f∗(ηab)), i.e. diffeomorphisms c : U → V where U ⊂ R4

and V ⊂ R4 are open and c∗(f∗(ηab)) = ηab. It is now easy to see that neither
C nor C ′ is a subset of the other. The identity map is contained in C (but not
C ′), and f is contained in C ′ (but not C). One can, on the other hand, verify
that Γ = Γ′. For if c, d ∈ C ′ then

(c−1 ◦ d)∗(ηab) = d∗ ◦ c∗(ηab) = ηab

The first equality follows from properties of the pullback, and the second from
the fact that c∗(f∗(ηab)) = ηab and hence f∗(ηab) = c∗(ηab). Hence c−1 ◦ d ∈ Γ,
since Γ is the isometry pseudogroup of Minkowski spacetime, and so Γ′ ⊂ Γ.
Conversely, if g ∈ Γ, this means that g∗(ηab) = ηab. One can now verify that
c ◦ g ∈ C ′ for every c ∈ C, since (c ◦ g)∗(f∗(ηab)) = ηab. That means that
c−1 ◦ c ◦ g ∈ Γ′, which implies that g ∈ Γ′, and so Γ ⊂ Γ′. Since Γ = Γ′, both
(S,C) and (S,C ′) recover all of the same the same tensor fields. One therefore
wants to say that (S,C) and (S,C ′) have the same amount of structure, despite
the fact that neither C nor C ′ is a subset of the other. y

This example shows that there can be collections of privileged coordinates C
and C ′ that induce the same coordinate transformation group — and therefore
recover precisely the same structures — despite neither being a subset of the
other. So while this first attempt fails, it suggests another promising way to
make the coordinate approach precise. The amount of structure that a geomet-
ric space has is correlated with the size of the coordinate transformation group
Γ that its privileged coordinates determine. After all, the coordinate transfor-
mation group is what one uses to recover tensor fields on the geometric space.
The following criterion makes this idea precise.
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COORD. X has at least as much structure as Y if (and only if) the coordi-
nate transformation pseudogroup Γ that X determines is a subset of the
coordinate transformation pseudogroup Γ′ that Y determines.

COORD satisfies the basic idea behind the coordinate approach; more priv-
ileged coordinates will mean a larger coordinate transformation group, and that
will mean less structure. And the motivation for COORD is closely related to
the motivation for SYM∗. If Γ is contained in Γ′, then all of the tensor fields
invariant under the maps in Γ′ will also be invariant under the maps in Γ, and
hence — insofar as we equip X and Y with those tensor fields ‘invariant under
coordinate transformations’ — X will have at least as much structure as Y .
There is a sense in which COORD is worse than SYM∗, and another sense in
which it is better. It is worse because it is only applicable to geometric spaces,
not arbitrary mathematical objects that one might use to formulate a physical
theory. It makes sense to discuss the automorphisms of any mathematical ob-
ject; it does not always make sense to discuss an object’s privileged coordinates
or its coordinate transformation group. At best, that will only make sense for
geometric spaces. And even then, we do not yet have a full account of what
the privileged coordinates of a geometric space in general are; recall the two
assumptions P1 and P2 that we made to get the coordinate approach off the
ground.

On the other hand, COORD is better than SYM∗ because it does not run
into difficulty with mere giraffe spacetimes. Compare again the giraffe space-
time (M, gab) with (M, gab, λ). Crucially, the fact that (M, gab) and (M, gab, λ)
have the same trivial automorphism group does not imply that they have the
same coordinate transformation pseudogroups. Coordinate transformation pseu-
dogroups do not merely admit diffeomorphisms from the entire space to itself.
They also admit diffeomorphisms between open subsets of the space, and hence
they contain more information than mere automorphism groups do. For this
reason, COORD does not necessarily run into problems with giraffe spacetimes.
Not every giraffe spacetime is Heraclitus (Manchak and Barrett, 2024b). And
so if (M, gab) is giraffe but not Heraclitus, then while its automorphism group
is ‘as small as can be’, its isometry pseudogroup is not. This implies that the
addition of the tensor field λ may further reduce the isometry pseudogroup, and
hence Γ′ can be properly contained in Γ. Thus it might be that (M, gab) does
not have at least as much structure as (M, gab, λ) according to COORD. Of
course, Theorem 2 shows that Heraclitus spacetimes — since their coordinate
transformation pseudgroups are trivial — generate problems for COORD. But
giraffe spacetimes do not, and in this sense COORD represents an improvement
upon SYM∗.

Altogether, these considerations actually suggest a way to improve the au-
tomorphism approach:

SYM∗2. A mathematical object X has at least as much structure as a math-
ematical object Y if and only the automorphism pseudogroup of X is
contained in the automorphism pseudogroup of Y .
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This kind of revision of SYM∗ is a step toward what Barrett (2021b) calls the
“category approach” to comparing amounts of structure, which is motivated by
the idea that when comparing structure one should take into account all of the
structure-preserving maps between objects of the same type as X, not merely
the automorphisms ofX. In particular, SYM∗2 takes into account maps between
objects that can be ‘embedded in’ X. For if X1 and X2 can be embedded in X,
in the sense that there is a structure-preserving map between X1 and some open
subset of X and likewise for X2, then the more (or conversely, fewer) structure-
preserving maps there are between X1 and X2, the more (or fewer) maps there
will be in the automorphism pseudogroup of X.

Heraclitus spacetimes pose a difficulty for SYM∗2 in the same manner as
they do for COORD (Manchak and Barrett, 2024b). For if (M, gab) is Heracli-
tus, then it will have the same trivial automorphism pseudogroup as (M, gab, λ)
for any tensor field λ on M , and hence the former will have at least as much
structure as the latter according to SYM∗2. Moreover, SYM∗2 is less widely
applicable than SYM∗. Not all mathematical objects have automorphism pseu-
dogroups. One can only define a pseudogroup on objects that have at least
topological structure, and so SYM∗2 does not allow one to compare arbitrary
mathematical objects X and Y ; it only works for geometric spaces. But SYM∗2
also has benefits over both SYM∗ and COORD. Mere giraffe spacetimes do not
pose a problem for SYM∗2 as they did for SYM∗; this is for the same reason
that they do not pose a problem for COORD. And in order to apply COORD
in cases of interest, one needs P1 and P2. Without assuming P2, in particular,
one has no idea what the coordinate transformation pseudogroup of an arbitrary
geometric space is. SYM∗2 dodges this worry. Indeed, one can define (as we
did above) the automorphism pseudogroup of an arbitrary geometric space.

If one assumes P2, then SYM∗2 and COORD are actually the same criterion.
This is because P2 implies that the coordinate transformation pseudogroups of
the spaces X and Y are equal to the automorphism pseudogroups of X and Y ,
respectively. Recall that P2 represents a best case scenario for the coordinate
approach. It will hold if one can define privileged coordinates for arbitrary geo-
metric spaces and prove analogues of Theorem 1. While assuming P2 does allow
one to apply COORD to various geometric spaces, it seems infelicitous to apply
that criterion before having a precise account of what the privileged coordinates
of an arbitrary geometric space are. We have given an account for relativistic
spacetimes, but in order to put the coordinate approach on firm footing, one
would need to extend this treatment to arbitrary geometric spaces. Altogether,
this means that the best case scenario for the coordinate approach (as repre-
sented by COORD) is just a manifestation of the automorphism approach (as
represented by SYM∗2).

In brief, the automorphism and coordinate approaches are so closely related
to one another because singling out a collection of privileged coordinates is just
another way of singling out a collection of symmetries. So at best, the privileged
coordinates of a space tell us the same information about its underlying structure
as its automorphism pseudogroup does. And it seems that this is not everything.
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The Argument from Definability

It is worth dwelling on this point. The automorphism approach and the coor-
dinate approach both rely upon implicit definability. Suppose that we have an
object X and a collection of maps from X to itself. A structure is implicitly
defined on X by this collection of maps if they all ‘preserve’ that structure.
There are a number of ways to make this precise (Barrett, 2018; Winnie, 1986).
We will here discuss two and show how they lead to these criteria for comparing
amounts of structure that we have been discussing.

One natural understanding of implicit definability looks to those structures
that are preserved by all of the maps in the automorphism group of X. In
the context of geometric spaces, one can make this precise as follows. Let M
be a smooth manifold with G a group of diffeomorphisms f : M → M . We
will say that a smooth tensor field λ on M is globally implicitly defined
by G if f∗(λ) = λ for every f ∈ G. And following our discussion in section
2, if Γ is a pseudogroup on M , we will say that a smooth tensor field λ on
M is locally implicitly defined by Γ if f∗(λ) = λ for every f ∈ Γ. If
(M,α1, . . . , αn) is a smooth manifold with tensor fields on it, then there are two
natural choices of G and Γ. If G is the automorphism group of (M,α1, . . . , αn)
andG globally implicitly defines λ, we will say simply that λ is globally implicitly
defined by (M,α1, . . . , αn). Similarly, if Γ is the automorphism pseudogroup of
(M,α1, . . . , αn) and Γ locally implicitly defines λ, we will say simply that λ is
locally implicitly defined by (M,α1, . . . , αn).

These two varieties of implicit definability are related to one another ex-
actly as one would expect. Because local implicit definability is requiring
that λ be preserved by strictly more maps than global implicit definability
requires, local implicit definability is a strictly stronger variety of definability.
Let (M,α1, . . . , αn) be a geometric space.

Proposition 1. If λ is locally implicitly defined by (M,α1, . . . , αn), then it is
globally implicitly defined by (M,α1, . . . , αn); the converse does not hold.

Proof. It follows easily from definitions that if λ is locally implicitly defined by
(M,α1, . . . , αn), then it is globally implicitly defined by (M,α1, . . . , αn). Let
(R2, ηab) be Minkowski spacetime, and consider the spacetime (M,ηab) where
M = {(t, x) : 0 < t < 1, 0 < x, x2 < t2}. Manchak and Barrett (2024b, Example
6) show that this spacetime is giraffe but not Heraclitus. Since (M,ηab) is giraffe,
every tensor field λ on M is globally implicitly defined by (M,ηab). But consider
the smooth vector field ( ∂

∂t )
a on M . Let O = {(t, x) ∈ M : t + x < 1} and

consider the diffeomorphism ψ : O → O defined by ψ(t, x) = (−t + 1, x). Now
one can easily verify that ψ∗(ηab) = ηab, but ψ∗( ∂

∂t )
a 6= ( ∂

∂t )
a. Hence ( ∂

∂t )
a

is not locally implicitly defined on (M,ηab), despite the fact that it is globally
implicitly defined by (M,ηab).

The basic idea behind this result is easy to appreciate. There are geometric
spaces with trivial automorphism groups that do not have trivial automorphism
pseudogroups. Every tensor field on such a space will be globally implicitly
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defined, despite some of those fields not being preserved by the richer collection
of maps in the automorphism pseudogroup.

Now that we have these two varieties of implicit definability, we can show
how they provide the core mechanism by which COORD, SYM∗, and SYM∗2
function. These criteria are all tracking facts about implicit definability. The
following results are simply rehearsing the idea behind what Barrett et al. (2023)
call ‘the implicit definability conception’ and Barrett (2018, 2021b) calls the
‘argument from definability’.

We begin the cases for SYM∗ and SYM∗2.

Proposition 2. Let (M,α1, . . . , αm) and (M,β1, . . . , βn) be geometric spaces.
The following are equivalent.

1. The automorphism group of (M,α1, . . . , αm) is a subset of the automor-
phism group of (M,β1, . . . , βn).

2. The space (M,α1, . . . , αm) globally implicitly defines all of the tensors that
(M,β1, . . . , βn) globally implicitly defines.

Proof. Assume 1 and let λ be a tensor that (M,β1, . . . , βn) globally implicitly
defines. Since the automorphism group of (M,α1, . . . , αm) is contained in the
automorphism group of (M,β1, . . . , βn), the former globally implicitly defines λ
too. Now assume 2 and suppose for contradiction that f is in the automorphism
group of (M,α1, . . . , αm) but not in the automorphism group of (M,β1, . . . , βn).
This means that f : M →M is a diffeomorphism but that there is some βj such
that f∗(βj) 6= βj . This means that (M,α1, . . . , αm) does not globally implic-
itly define βj . This contradicts 2 since (M,β1, . . . , βn) clearly does globally
implicitly define βj .

An analogous result holds about SYM∗2. We leave the proof to the reader
since it is essentially the same as that of Proposition 2.

Proposition 3. Let (M,α1, . . . , αm) and (M,β1, . . . , βn) be geometric spaces.
The following are equivalent.

1. The automorphism pseudogroup of (M,α1, . . . , αm) is a subset of the au-
tomorphism pseudogroup of (M,β1, . . . , βn).

2. The space (M,α1, . . . , αm) locally implicitly defines all of the tensors that
(M,β1, . . . , βn) locally implicitly defines.

Propositions 2 and 3 illustrate that SYM∗ and SYM∗2 are tracking implicit
definability. The first condition of Proposition 2 says that (M,α1, . . . , αm) has
at least as much structure as (M,β1, . . . , βn) according to SYM∗. Hence SYM∗

says that X has at least as much structure as Y just in case X globally implicitly
defines all of the structures of Y . The first condition of Proposition 3 says that
(M,α1, . . . , αm) has at least as much structure as (M,β1, . . . , βn) according to
SYM∗2. Hence SYM∗2 says that X has at least as much structure as Y just in
case X locally implicitly defines all of the structures of Y .
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The case of COORD is analogous. The reason why ‘more privileged coor-
dinates’ indicates less structure is that more privileged coordinates leads to a
larger coordinate transformation pseudogroup, which then locally implicitly de-
fines fewer structures on our space. We again leave the straightforward proof to
the reader.

Proposition 4. Let (M,α1, . . . , αm) and (M,β1, . . . , βn) be geometric spaces
with coordinate transformation pseudogroups Γ and Γ′, respectively. If A2 holds,
then the following are equivalent.

1. Γ ⊂ Γ′.

2. The space (M,α1, . . . , αm) locally implicitly defines all of the tensors that
(M,β1, . . . , βn) locally implicitly defines.

Since the first condition says that (M,α1, . . . , αm) has at least as much
structure as (M,β1, . . . , βn) according to COORD, we see that COORD is also
tracking facts about implicit definability. (We note that a version of the result
would still go through without assuming P2, so long as one replaces the second
condition with the claim that Γ locally implicitly defines all of the tensors that
Γ′ locally implicitly defines.)

It is simple to now parlay these results into arguments for these criteria. In
order to do so, we need to isolate one further thought about implicit definability.
The basic idea is that a mathematical object comes equipped with all and only
the structures that it implicitly defines. In other words, it is common to take
those structures that are ‘invariant under symmetries’ of a mathematical object
to be part of the genuine structure of that object. This is often taken to indicate
that, in some sense, the structure ‘comes for free’ given the basic structures on
the object. For example, a metric space (X, d) comes equipped with its metric
topology τ , despite the fact that τ is not explicitly mentioned in the notation
we use to present (X, d). One way of accounting for this is to notice that every
symmetry of (X, d) — that is, every distance-preserving bijection from X to
itself — preserves τ in the sense that it is a homeomorphism with respect to τ .
Hence τ is invariant under the symmetries of (X, d); (X, d) ‘implicitly defines’ τ .
If implicit definability tracks which structures an object comes equipped with,
then we have an account of why (X, d) comes equipped with its metric topology.

This basic idea about implicit definability is often employed in discussions of
the significance of symmetry. For example, the ‘Kleinian method’ of presenting
a geometric space turns on exactly this idea. Norton (2002, p. 259) describes this
method as one in which a “geometric theory would be associated with a class
of admissible coordinate systems and a group of transformations that would
carry us between them. The cardinal rule was that physical significance can be
assigned just to those features that were invariants of this group.” Similarly,
North (2021, p. 48) writes that “Klein suggested that any geometry can be
identified by means of the transformations that preserve the structure, likewise
by the quantities that are invariant under the group of those transformations.”
The Kleinian method therefore employs exactly this basic idea about implicit
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definability, invariance under symmetry, and structure. (See Barrett (2018) and
the references therein for discussion and additional examples.)

For our purposes, there are two ways of making this idea about implicit
definability precise in the context of geometric spaces. Each corresponds to one
of our varieties of implicit definability and hence a different understanding of
‘invariance under symmetry’.

Global P4. A geometric space (M,α1, . . . , αn) comes equipped with all and
only the structures that it globally implicitly defines.

Local P4. A geometric space (M,α1, . . . , αn) comes equipped with all and only
the structures that it locally implicitly defines.

Local P4 implies that a geometric space will (in general) come equipped with
fewer structures than Global P4 implies it will. This is because by Proposi-
tion 1 fewer tensor fields will be locally implicitly defined than will be globally
implicitly defined.

In conjunction with Propositions 2, 3, and 4, these principles allow one to
provide arguments for SYM∗, SYM∗2, and COORD. Global P4 implies that the
second condition of Proposition 2 is saying that (M,α1, . . . , αm) comes equipped
with all of the structures that (M,β1, . . . , βn) comes equipped with. This is
a particularly natural way in which the former might have at least as much
structure as the latter. Similarly, Local P4 implies that the second conditions
of Propositions 3 and 4 are saying that (M,α1, . . . , αm) comes equipped with all
of the structures that (M,β1, . . . , βn) comes equipped with. We have therefore
seen how a basic idea about implicit definability, captured by Global P4 or Local
P4, leads to these criteria for comparing amounts of structure.

The triviality problem

All of these criteria for comparing amounts of structure rely upon the idea
that an object comes equipped with those structures it implicitly defines, and
the problems they face stem from precisely this. In brief, the issue is that
both Global P4 and Local P4 seem false. The problem that Global P4 faces
is just what Barrett (2021b) has called the ‘triviality problem’ for SYM∗; it is
discussed in detail by Barrett et al. (2023). North (2021, p. 117) points to it
when she writes that there are geometric spaces that “lie beyond the scope of
Klein’s program,” and Torretti (2016) explicitly mentions the problem of trivial
isometry groups faced by Kleinian methods. The problem that Local P4 faces
is the ‘local analogue’ of this triviality problem; it has been briefly discussed
by Manchak and Barrett (2024b). Unsurprisingly, these arguments perfectly
parallel the problems faced by COORD, SYM∗, and SYM∗2 that have already
been discussed.

The case of Global P4 is straightforward. Let (M, gab) be a giraffe spacetime.
Since it is giraffe, every smooth tensor field λ on M is globally implicitly defined
by (M, gab). But most of these fields are not in any sense ‘constructible’ from
gab; they are simply arbitrary tensor fields on M . So one does not want to say
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that (M, gab) comes equipped with them. Indeed, in many cases they will not
even be locally implicitly definable by (M, gab). To put the point acutely, an
arbitrary metric on M is globally implicitly defined by (M, gab), and since most
of these metrics will not be related to gab in any interesting sense, one certainly
does not want to say that (M, gab) comes equipped with them in the same sense
as it comes equipped with gab. It therefore seems that Global P4 cannot be
right.

One might expect that the prospects are better for Local P4. Indeed, by
Proposition 1, Local P4 will imply that (M, gab) comes equipped with fewer
structures than Global P4 implies it does, and so perhaps the triviality problem
can be avoided. Unfortunately, an analogous argument can be put forward
against Local P4. We now let (M, gab) be a Heraclitus spacetime. Every smooth
tensor field λ on M — including, of course, all of the metrics on M , most of
which one conjectures will be unrelated to gab — is locally implicitly defined
by (M, gab) since it has a trivial automorphism pseudogroup. One again has
the strong feeling that the vast majority of these fields are not in any sense
‘constructible’ from gab, and so one does not want to say that (M, gab) comes
equipped with them. This means that Local P4 also cannot be right.

5 Conclusion

We conclude with a meditation on definability and some suggestions for future
work. In particular, there is one subtlety concerning Local P4 that is worth
examining. One might ask the following question (Barrett and Manchak, 2024,
Revision 2).

Q1. Is there an interesting account of ‘explicit definability’ in the context of
geometric spaces?

Small steps in the direction of investigating explicit definability in spacetime the-
ories have been taken. See, for example, the ‘maximally structured’ spacetimes
of Manchak and Barrett (2024a), the suggestive concept of ‘covariant definabil-
ity’ of Glymour (1977), the category theoretic methods discussed by Halvorson
(2019) and Weatherall (2019), and the formulations of spacetime theories pro-
vided by Andréka and Németi (2014) and Cocco and Babic (2020). It is easy
to discuss explicit definability when one has a clear understanding of what the
‘language’ of the objects under consideration is. But the geometric spaces that
we are considering are not usually formulated within a formal language, and so
challenges remain for answering Q1 in the affirmative.

Suppose that one could answer Q1 in the affirmative and formulate an in-
teresting variety of explicit definability. Such an account would come to bear
on the issues discussed here. It would be natural to then consider the following
revision of Global P4 and Local P4.

P5. A geometric space (M,α1, . . . , αn) comes equipped with all and only the
structures that it explicitly defines.

17



The same kinds of examples that motivated Global P4 and Local P4 could be
used to motivate P5. Suppose, for example, that one has a vector space with
inner product (V, 〈, 〉). It is natural to think that this object comes equipped
with a norm || · ||, which assigns to a vector v ∈ V its ‘length’ ||v||. Not only
is the norm invariant under the symmetries of V , it is directly constructible
from the inner product. One ‘explicitly defines’ the norm in terms of the inner
product by letting ||v|| = 〈v, v〉. So P5 would provide us with an account of why
we are inclined to say that (V, 〈, 〉) comes equipped with a norm || · ||. One can
tell the same kind of story in the case of the metric space and metric topology,
along with other examples (Barrett, 2018).

One might, however, have better conceptual reasons to adopt P5 than Local
P4 or Global P4. In particular, if some structure is explicitly definable on
X, that would capture a sense in which the basic structures of X suffice to
‘construct’ or ‘build’ that new structure. And this would perhaps provide a
more compelling reason to think this new structure ‘comes for free’ given the
basic structures on X that mere implicit definability provides.

We will assume that if an interesting variety of explicit definability for ge-
ometric spaces could be made precise, then it would entail local implicit defin-
ability. (This parallels the state of affairs in first-order logic where these notions
are well understood (Barrett, 2018; Winnie, 1986).) It is then natural to ask
the following question.

Q2. Does local implicit definability entail explicit definability?

It is well known that in the first-order context, there are some (particularly
strong) varieties of implicit definability that entail explicit definability (Barrett,
2018). Beth’s Theorem, for example, is a particularly famous example of this.
An affirmative answer to Q2 would therefore not be entirely without precedent.

If the answer to Q2 is “yes” and P5 holds, then one would have an argument
for Local P4 and against P3. The argument for Local P4 would be precisely
the same as the argument that one provides for P5. Indeed, the principles P5
and Local P4 would be equivalent, since local implicit definability and explicit
definability would themselves be equivalent. The argument against P3 would
then note that since (M, gab) is Heraclitus, it locally implicitly defines every
tensor field λ on M . The affirmative answer to Q2 would then imply that λ is
explicitly definable by (M, gab). P5 would entail that (M, gab) comes equipped
with λ, and hence (M, gab, λ) would not have more structure than (M, gab).

On the other hand, if the answer to Q2 is “no”, then insofar as P5 holds,
Local P4 would be false. The negative answer to Q2 would imply that local
implicit definability and explicit definability are inequivalent, and hence one
cannot both adopt P5 and Local P4. In particular, there would be some ge-
ometric space (M,α1, . . . , αn) and tensor λ on M such that (M,α1, . . . , αn)
locally implicitly defines λ but does not explicitly define λ. P5 would imply
that (M,α1, . . . , αn) does not come equipped with λ, contradicting Local P4.
And moreover, one would have a correspondingly more robust argument for P3.
The addition of a tensor field λ to a geometric space that does not explicitly
define λ will result in a space that comes equipped with more structure.
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It is therefore important to examine Q2 and P5 further. We will leave careful
investigation to another time, but it is worth mentioning one suggestive example
here. Suppose that (M, gab) is a Heraclitus spacetime. We know that every
derivative operator ∇ on M is locally implicitly defined by (M, gab). (Of course,
strictly speaking ∇ is not a tensor field on M , but by slightly extending our
terminology, we can still speak of it being locally implicitly defined by (M, gab),
in the sense that all maps in the isometry pseudogroup of (M, gab) preserve ∇.
See Weatherall (2016) or Barrett (2015b, 2021a) for a precise account.) Despite
the fact that all of these derivative operators are locally implicitly defined by
(M, gab), one is tempted to say that (M, gab) only genuinely comes equipped with
one of them: the unique derivative operator that is compatible with gab, i.e. the
Levi-Civita derivative operator of (M, gab). If this is right, then the answer
to Q2 will be “no” for any variety of explicit definability for which P5 holds.
For if P5 holds and explicit definability entails local implicit definability, then
a Heraclitus spacetime (M, gab) will come equipped with all of the derivative
operators on M .

The central question at play here concerns what kind of definability (if any)
in the context of geometric spaces best captures which structures the space
comes equipped with. We have seen reasons to think that this is neither global
nor local implicit definability. It remains to be seen whether there is a better
candidate.
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