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Abstract

The standard definition of a gauge transformation in the constrained Hamiltonian for-

malism traces back to Dirac (1964): a gauge transformation is a transformation generated

by an arbitrary combination of first-class constraints. On the basis of this definition, Dirac

argued that one should extend the form of the Hamiltonian in order to include all of the

gauge freedom. However, there have been some recent dissenters of Dirac’s view. Notably,

Pitts (2014) argues that a first-class constraint can generate “a bad physical change” and

therefore that extending the Hamiltonian in the way suggested by Dirac is unmotivated.

In this paper, I use a geometric formulation of the constrained Hamiltonian formalism to

argue that there is a flaw in the reasoning used by both sides of the debate, but that correct

reasoning supports the standard definition and the extension to the Hamiltonian. In doing

so, I clarify two conceptually different ways of understanding gauge transformations, and

I pinpoint what it would take to deny that the standard definition is correct.

1 Introduction

Gauge transformations represent local symmetries in physics that are often taken to indicate

arbitrariness in the mathematical formalism of a theory. How to interpret this arbitrariness

∗Draft of August 16, 2024.
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is widely disputed and is connected to a wider literature on “surplus structure” in physics.1

However, there is a different kind of dispute about gauge transformations that will be the focus

here: if gauge transformations are conceptualized as transformations that indicate arbitrariness,

what is the correct formal definition of a gauge transformation?

There is a longstanding tradition of using a formalism known as the “constrained Hamil-

tonian formalism” to establish the gauge transformations of a theory. The standard definition

arising from the formalism is attributed to Dirac (1964): a gauge transformation is a transfor-

mation generated by an arbitrary combination of the first-class constraints, where constraints

are relationships on the Hamiltonian variables that restrict the dynamically-allowed states and

first-class constraints are those that “commute” with each other.2 This definition is taken to

have important consequences for the formulation of a Hamiltonian theory. In particular, Dirac

argued on the basis of this definition that the Hamiltonian that generates the dynamics should

be understood as an equivalence class of Hamiltonians, called the “Extended Hamiltonian”, in

order to include all of the gauge freedom.

However, there have been several recent dissenters of Dirac’s view of gauge transformations.

For example, Pitts (2014b) argues, using the example of Electromagnetism, that a first-class

constraint does not generate a gauge transformation but rather “a bad physical change”. Sim-

ilarly, Pons (2005) argues that Dirac’s analysis of gauge transformations is “incomplete” since

it does not provide an accurate account of the symmetries between solutions to the equations

of motion. Both authors conclude that extending the Hamiltonian in the way suggested by

Dirac is unmotivated. If correct, these arguments could have implications for other issues in

the foundations of the constrained Hamiltonian formalism. Notably, there is a puzzle called the

“Problem of Time” that arises in the constrained Hamiltonian formalism for theories that are

time-reparameterization invariant when one adopts the standard definition of a gauge transfor-

mation. If gauge transformations are not given by the standard definition, then this could be

an avenue to avoiding the Problem of Time.3

More recently, Pooley & Wallace (2022) argue, contra Pitts (2014b), that the Extended

1For more on the notion of surplus structure and its connection to symmetries of a theory, see, for example,
Ismael & Van Fraassen (2003), Earman (2004), Baker (2010).

2This will be made more precise in Section 2.
3See Pitts (2014a) for a response of this kind. For an introduction to the Problem of Time and its philosophical

implications, see Thébault (2021).
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Hamiltonian formalism is empirically equivalent to the non-extended formalism for Electro-

magnetism, and therefore that Dirac’s orthodoxy is vindicated for this theory. In this paper,

I extend the observations of Pooley & Wallace (2022) by arguing that the Extended Hamilto-

nian formalism is motivated on theoretical grounds. In more detail, I use a standard geometric

formulation of the constrained Hamiltonian formalism to show that the extension to the Hamil-

tonian can be motivated independently from consideration of the gauge transformations, and,

under the dynamics generated by this extended Hamiltonian, the standard account of gauge

transformations as being generated by arbitrary first-class constraints is correct. In doing so, I

argue that there is a common assumption made about the relationship between gauge transfor-

mations and the form of the Hamiltonian that is part of the source of the debate, but that this

assumption is unnatural in the geometric framework. This leads to a revised account of the

definition of gauge transformations in the constrained Hamiltonian formalism that sheds light

on a particular source of contention: what the relationship is between gauge transformations

on states and gauge transformations on solutions.

The paper will go as follows. In Section 2, I present Dirac’s version of the constrained

Hamiltonian formalism and his argument that arbitrary combinations of first-class constraint

generate gauge transformations. In Section 3, I spell out the example that Pitts (2014b) gives as

a counterexample to Dirac’s view. In Section 4, I discuss where the disagreement lies between

Dirac and Pitts’ views, and I highlight a crucial assumption made on both sides of the debate.

In Section 5, I consider the response to Pitts (2014b) given by Pooley & Wallace (2022) and

pinpoint the way in which it fails to provide a complete response. In Section 6, I present the

geometric formulation of the constrained Hamiltonian formalism, and I use this formulation in

Section 7 to argue that the issue in the debate lies in the way that gauge transformations are

both understood and motivated. In Section 8, I consider two possible counterarguments, before

concluding.

2 Dirac’s Theory

Dirac’s version of the constrained Hamiltonian formalism is constructed by starting with the

Lagrangian formalism. In the Lagrangian framework, one has a finite N number of degrees
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of freedom qn, n = 1, ..., N , with corresponding velocities dqn
dt = q̇n, where we assume an

independent time variable t.4 The dynamics are given by specifying a Lagrangian L = L(qn, q̇n)

with corresponding action I =
∫
L(qn, q̇n)dt, from which one derives the equations of motion

called the Euler-Lagrange equations:

d

dt

∂L(qn, q̇n)

∂q̇n
=

∂L(qn, q̇n)

∂qn

To move to the Hamiltonian framework, one introduces “canonical momenta” variables

pn = ∂L
∂q̇n

. When these momenta are not independent of each other, there are constraints of the

form ϕm(qn, pn) ≈ 0 for m = 1, ...,M where M is the number of constraints and the meaning

of ≈ is that the relationship holds weakly : one can substitute the left hand side for the right

only on the subspace where the equation holds. This means in practical terms that one must

evaluate any expression involving ϕm(qn, pn) and its derivatives before setting ϕm(qn, pn) = 0.

Constraints of this kind are called the primary constraints.

The Hamiltonian is defined as H(qn, pn) = pnqn − L where we implicitly have a sum over

n. However, it is not uniquely defined when the system is constrained, since one can add a

linear combination of primary constraints and it will weakly be the same Hamiltonian. We call

the addition of this linear combination of primary constraints the Total Hamiltonian, HT =

H + umϕm where um are arbitrary functions of the canonical variables and again we implicitly

have a sum over m. Thus, the Total Hamiltonian should be thought of as an equivalence class

of Hamiltonians, differing over the choices of um. From the variation in HT , one can derive

Hamilton’s equations of motions with constraints:

q̇n =
∂H

∂pn
+ um ∂ϕm

∂pn

ṗn = −∂H

∂qn
− um ∂ϕm

∂qn

More generally, for any dynamical variable g, ġ ≈ {g,H}+ um{g, ϕm} = {g,HT } where {}

is the Poisson bracket, satisfying the following properties:

4In order to consider the Problem of Time, it is useful to drop this assumption and treat the time variable
as an additional dynamical variable, but we keep this assumption for the purposes here.
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1. Leibniz rule: for any functions f, g, h, {fg, h} = f{g, h}+ g{f, h}.

2. Jacobi identity: for any functions f, g, h, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

3. Constant function: If k is a constant, then for any function f , {k, f} = 0.

In order for the solutions to the equations of motion to be consistent with the primary

constraints, in the sense that the primary constraints hold at all times along a solution to the

equations of motion, it ought to be the case that ϕ̇m ≈ 0. In other words, it ought to be

the case that {ϕm, H} + um′{ϕm, ϕm′} ≈ 0. For each m, this equation either is identically

satisfied with the primary constraints, reduces to an equation independent of the u’s of the

form χk(qn, pn) ≈ 0, or it imposes conditions on the u’s.

In the second case, we say that χk(qn, pn) ≈ 0 are secondary constraints, since they arise

from applying the equations of motion to the primary constraints. If we have a secondary

constraint, then we get new consistency conditions by requiring χ̇k ≈ 0, which is again one of

the three kinds above. One can continue this process until one has found all of the secondary

constraints and one is left with the consistency conditions of the third kind. We can combine

the primary and secondary constraints, writing them as ϕj ≈ 0 for j = 1, ...,M +K where K

is the number of secondary constraints.

For the remaining consistency conditions that do not reduce, we can find solutions um =

Um(qn, pn) up to V m(qn, pn) where V m{ϕj , ϕm} ≈ 0, giving the general solution um = Um +

vaV m
a where va is arbitrary.

Substituting into the Total Hamiltonian, we get

HT = H ′ + vaϕa

where H ′ = H + Umϕm and ϕa = V m
a ϕm. Notice that we have satisfied all the consistency

conditions but still have coefficients va that are arbitrary functions of the canonical variables.

A dynamical variable R(qn, pn) is said to be first-class if {R,ϕj} ≈ 0. In other words,

a dynamical variable is first-class if the Poisson bracket with any constraint equals a linear

function of the constraints. If it is not first-class, it is called second-class. Importantly, H ′ and

ϕa are first-class. This means that HT is an equivalence class of Hamiltonians given by a sum
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of a first-class Hamiltonian and a linear combination of primary, first-class constraints.

Given some initial state (qn(t0), pn(t0)), the q’s and p’s at later times are underdetermined

because of the arbitrariness in the coefficients va. One might take this to be a mark of inde-

terminism in the theory: there are multiple possible evolutions from an initial state. However,

we might also think that this indeterminism is an artifact of our mathematical description, in

that it indicates that our theory contains “redundancy”. It is this direction of thought that led

Dirac to propose the following definition of a gauge transformation:

State Gauge Transformation: A gauge transformation relates any two states

that are possible evolutions from an initial state under the dynamics generated by

the Total Hamiltonian at some fixed (infinitesimal) interval δt.

In other words, Dirac proposes that physically equivalent states as precisely those that result

from the arbitrariness in va in evolving a system’s state. We can determine these transforma-

tions in the following way:

For a given dynamical variable g with initial value g0, its value after some infinitesimal δt

under a specified choice of coefficients va is:

g(δt) = g0 + ġδt = g0 + {g,HT }δt = g0 + δt[{g,H ′}+ va{g, ϕa}] (1)

However, one could have made different choices for va. Call another set of choices v′a. The

difference between the two values for g at δt under these two choices of coefficients is given by:

∆g(δt) = δt(va − v′a){g, ϕa} = εa{g, ϕa} (2)

where εa is an arbitrary small number. This change will describe the same physical state,

since it corresponds to a change from one state to another that arises merely from a different

choice of arbitrary coefficient in the evolution from some initial state. Since ϕa are just the

primary first-class constraints, Dirac concludes:

All primary first-class constraints generate gauge transformations.

However, this isn’t the end of the story. If we apply a second transformation generated by

κa′
ϕa′ for arbitrary coefficients κa′

, we get ∆g = εaκa′{g, {ϕa, ϕa′}}, which also won’t change
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the physical state since it is made up of transformations that don’t change the physical state.

Therefore, {ϕa, ϕa′} is another generating function of a gauge transformation. The ϕa’s are

first-class constraints, and the Poisson bracket of two first-class quantities is first-class, so this

generating function is a first-class constraint. However, it need not be a primary first-class

constraint; it could be a secondary first-class constraint. Observing this, Dirac presents the

following conjecture:

Dirac Conjecture: All secondary first-class constraints generate gauge transfor-

mations.

We therefore have the following criteria for a State Gauge Transformation:

Arbitrary combinations of first-class constraints generate a gauge transformation.

However, we are now in a situation where the dynamics is given by the Total Hamiltonian,

which includes the arbitrariness associated with the primary first-class constraints, but we also

have arbitrariness associated with the secondary first-class constraints. This mismatch between

the dynamics and the arbitrariness led Dirac to suggest that one should also add the first-

class secondary constraints to the Total Hamiltonian, giving rise to the Extended Hamiltonian,

HE = HT + wbχb where χb are the first-class secondary constraints and wb are arbitrary

functions of the canonical variables. The equations of motion then read: ġ = {g,HE}.

Finally, we can define an observable as a function f that has the property that {f, γj} ≈ 0

for all first-class constraints γj . Observables are functions that are gauge-invariant, in the sense

that they take the same value under the transformations generated by the first-class constraints.

On the other hand, the gauge variables are the functions that are not observables.

The final picture of Dirac’s theory is:

1. The symmetries of the theory are “State Gauge Transformations” that are generated by

arbitrary combinations of first-class constraints.

2. The dynamics is generated by an equivalence class of Hamiltonians represented by the

Extended Hamiltonian.

Whether this picture is correct will be the subject of the rest of the paper.
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3 An Argument Against Dirac

Although Dirac’s formalism and the notion of a gauge transformation that arises from it have

been widely accepted as the standard framework, there have been several recent arguments in

the literature that Dirac’s picture is flawed.5 Here, I focus on a supposed counterexample to

Dirac’s picture argued for by Pitts (2014b) of classical Electromagnetism.

The Lagrangian for classical Electromagnetism can be written in observer-dependent form

as

L(A⃗, V ;
˙⃗
A, V̇ ) =

∫
1

2
(
˙⃗
A−∇V )2 − 1

2
(∇× A⃗)2 − (V ρ+ A⃗ · J⃗)

where A⃗ and V are time-dependent functions on R3 and the integral is over R3. The

conjugate momenta are pA⃗ = δL

δ
˙⃗
A

=
˙⃗
A −∇V and pV = δL

δV̇
= 0. This means that there is one

primary constraint, ϕ0 = pV . The Total Hamiltonian is:

HT =

∫
1

2
(p2

A⃗
+ B⃗2) + λpV + pA⃗ · ∇V + (V ρ+ A⃗ · J⃗) (3)

where the integral is over R3 and λ is an arbitrary function of the canonical coordinates. In-

tegrating by parts with appropriate boundary conditions, we can rewrite the Total Hamiltonian

as:

HT =

∫
1

2
(p2

A⃗
+ B⃗2) + A⃗ · J⃗ + λpV − V (∇ · pA⃗ − ρ) (4)

We can then find the evolution of the primary constraint:

{pV , HT } =
δH

δV
= ∇ · pA⃗ − ρ. (5)

So there is a secondary constraint given by ϕ1 = ∇ · pA⃗ − ρ. The evolution of the secondary

constraint is zero, so there are two constraints in total, and both constraints are first-class.

The equations of motion for A⃗ and V are given by:6

5See in particular Pitts (2014a,b) and Pons (2005) but also Pons et al. (1997) and Barbour & Foster (2008).
6We leave out the equations of motion for p

A⃗
and pV for convenience, since they aren’t important for the

argument.
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∂A⃗

∂t
= {A⃗,HT } =

∂HT

∂pA⃗
= pA⃗ +∇V

∂V

∂t
= {V,HT } =

∂HT

∂pV
= λ

(6)

The question that Pitts (2014b) asks is whether the arbitrary combinations of the primary

and secondary constraint generate gauge transformations for these equations. In other words,

we want to know whether, if (A⃗(t), V (t); pA⃗(t), pV (t)) satisfies these equations of motion, then

transforming this solution by an arbitrary combination of the first-class constraints,
∫
αϕ0+βϕ1,

also satisfies the equations of motion, where α and β are arbitrary functions of the canonical

coordinates and time.

We have that:

{A⃗,

∫
αϕ0 + βϕ1} = {A⃗,

∫
αpV + β(∇ · pA⃗ − ρ)}

= {A⃗,

∫
αpV }+ {A⃗,

∫
β(∇ · pA⃗ − ρ)}

(7)

The first term vanishes. Since
∫
β∇ · pA⃗ = −

∫
pA⃗ · ∇β by integration by parts (with

appropriate boundary conditions), the second term is equal to {A⃗,−
∫
pA⃗ · ∇β + βρ)} = ∇β.

Therefore, the transformed quantity is given by A′ = A+∇β.

Similarly:

{V,
∫

αϕ0 + βϕ1} = {V,
∫

αpV }+ {V,
∫

β(∇ · pA⃗ − ρ)} (8)

The second term here vanishes, and the first term is equal to α. Thus, the transformed

potential is given by V ′ = V + α.

We also have that {pA⃗,
∫
αpV + β(∇ · pA⃗ − ρ)} = {pV ,

∫
αpV + β(∇ · pA⃗ − ρ)} = 0 and

so the conjugate momenta do not change under the transformation generated by an arbitrary

combination of the constraints. We can therefore write the transformed equations of motion

for A⃗ and V as:
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∂A⃗′

∂t
=

∂A⃗

∂t
+

∂∇β

∂t
= pA⃗ +∇(V + α)

∂V ′

∂t
=

∂V

∂t
+

∂α

∂t
= λ

(9)

Since we assumed that ∂A⃗
∂t = pA⃗+∇V , the first equation is satisfied only when ∂∇β

∂t −∇α = 0.

In particular, in the case where either α or β is zero (where one considers the transformation

generated by only one of the primary or secondary constraints), the first equation is not satisfied.

On the basis of this argument, Pitts (2014b) concludes that arbitrary combinations of first-

class constraints do not generate gauge transformations. Rather, only a particular combination

of first-class constraints generates a gauge transformation. So, the argument goes, Dirac was

wrong about what the gauge transformations are.

Remember also that the motivation for Dirac to move to the “Extended Hamiltonian” was

precisely that secondary first-class constraints generate gauge transformations in addition to

primary first-class constraints. But the above argument shows that this is not strictly true:

in fact, there are only as many arbitrary functions of time as there are primary first-class

constraints. To see this, notice that since ∇α = ∂∇β
∂t , we can write the gauge transformations

as being generated by
∫
ϵ̇ϕ0 + ϵϕ1. In other words, we only need one arbitrary function (and

its time derivative) to specify the gauge transformations. Therefore, one might also take this

argument to show that the Extended Hamiltonian is not motivated, or more strongly, that the

Extended Hamiltonian is the wrong equivalence class of Hamiltonians, since it suggests that

there is “more” arbitrariness in the dynamics than there in fact is.

4 Where The Disagreement Lies

There is an immediate sense in which the above argument fails on its own to show that Dirac

was wrong. In Section 2, we interpreted Dirac as giving an account of what I called “State

Gauge Transformation”: transformations relating two states that are possible evolutions from

some initial state. However, the argument I just ran, following Pitts (2014b), doesn’t consider

whether two states are equivalent; it considers whether two solutions are equivalent. That is,
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it considers whether arbitrary combinations of first-class constraints generate a transformation

that takes one from a solution to the equations of motion to another solution. We might

alternatively call this notion of a gauge transformation “Solution Gauge Transformation”:

Solution Gauge Transformation: A gauge transformation relates any two states

that are possible evolutions from an initial state under the dynamics generated by

the Total Hamiltonian at any time t.

What Pitts’ argument demonstrates is that the Solution Gauge Transformations are not

generated by arbitrary combinations of first-class constraints in the context of classical Electro-

magnetism. Indeed, arbitrary combinations of first-class constraints do generate State Gauge

Transformations in classical Electromagnetism. To see this, recall that we can write the Solution

Gauge Transformations as
∫
ϵ̇ϕ0+ ϵϕ1. At a particular fixed time, ϵ and ϵ̇ become independent

of each other. And so, we can write the State Gauge Transformations as
∫
αϕ0+βϕ1, as would

be the case if arbitrary combinations of first-class constraints generate gauge transformations.

So what Pitts (2014b) shows is that Solution Gauge Transformations do not always match the

State Gauge Transformations.

At this point one might want to say: what this shows is that we really have two distinct

notions of a gauge transformation, ‘State Gauge Transformation’ and ‘Solution Gauge Trans-

formation’, and it turns out that these notions do not coincide. This would suggest that there

is not really a debate here at all; different parties in the debate are just focusing on different

notions, and we can accept that both are right.

Although formally this thought seems correct, there is a conceptual issue with accepting

both notions of a gauge transformation, since it would mean accepting that individual states

along two curves can be gauge-equivalent without it being the case that if one curve is a

solution, then the other also is. The reason is that the transformations that generate Solution

Gauge Transformations are more restrictive than (are a subset of) those that generate State

Gauge Transformations. But if gauge equivalence is supposed to mean physical equivalence,

then this would be to say that two curves can be such that each individual state along one

curve is physically equivalent to a state along the other curve but the curves as a whole are not

physically equivalent to one another. Conceptually, this is not coherent: solutions just consist
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of a series of states, and so if all of these states are physically equivalent to some other series

of states, then the solutions ought to also be physically equivalent.

Therefore, it seems that if one wants to accept that “Solution Gauge Transformation”

is the right definition of gauge transformations on solutions and that gauge equivalence is a

notion of physical equivalence, one has to accept that there is no independent notion of a

gauge transformation on states. That is, any notion of a state gauge transformation must be

derivative to that of the solution gauge transformations: a state gauge transformation must be

the special case of the solution gauge transformations where the solutions are considered to be

infinitesimally short in terms of time.

This helps to set up the rest of the paper: I will argue that one can maintain separate

notions of state and solution gauge transformations as notions of physical equivalence, but it

means that one has to deny that “State Gauge Transformation” and “Solution Gauge Trans-

formation” as I defined them above are the right characterizations of gauge transformations on

states and solutions respectively. In particular, one common part of the definition “State Gauge

Transformation” and “Solution Gauge Transformation” is the commitment to gauge transfor-

mations being determined by considering curves that are generated by the Total Hamiltonian. I

will argue that 1. gauge transformations on states do not require a commitment to a particular

form of the Hamiltonian and 2. gauge transformations on solutions ought to be determined

by considering curves that are generated by the Extended Hamiltonian rather than the To-

tal Hamiltonian. This second argument bears close resemblance to a recent response to Pitts

(2014b) by Pooley & Wallace (2022), so it will be helpful to spell out their argument first and

pinpoint the way in which it falls short of providing a complete resolution to the debate before

detailing the two arguments.

5 Pooley and Wallace’s Response to Pitts

Pooley & Wallace (2022) show that in the example of classical Electromagnetism, if one starts

with the Extended Hamiltonian, arbitrary combinations of first class constraints generate gauge

transformations of solutions. Their argument can be summarised as follows. Consider the

Extended Hamiltonian for classical Electromagnetism, where we add to the Total Hamiltonian
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the secondary constraint multiplied by an arbitrary function µ:

HE =

∫
1

2
(p2

A⃗
+ B⃗2) + A⃗ · J⃗ + λpV − (V + µ)(∇ · pA⃗ − ρ) (10)

With this Hamiltonian, the equations of motion become:

∂A⃗

∂t
=

∂HE

∂pA⃗
= pA⃗ +∇(V + µ)

∂V

∂t
=

∂HE

∂pV
= λ

(11)

When we now consider the transformation generated by an arbitrary combination of primary

and secondary constraints,
∫
αϕ0 + βϕ1, we find:

∂A⃗′

∂t
=

∂A⃗

∂t
+

∂∇β

∂t
= pA⃗ +∇(V + µ+ α)

∂V ′

∂t
=

∂V

∂t
+

∂α

∂t
= λ

(12)

We can rewrite the first equation as ∂A⃗′

∂t = ∂A⃗
∂t = pA⃗ +∇(V + µ+ α− β̇). Notice that µ, α

and β̇ are all arbitrary functions, so we can write this equation as

∂A⃗′

∂t
=

∂A⃗

∂t
= pA⃗ +∇(V + µ′)

where µ′ is arbitrary. This is just the untransformed equation of motion, with µ′ in place

of µ. In other words, if (A⃗(t), V (t); pA⃗(t), pV (t)) is a solution to ∂A⃗
∂t = pA⃗ + ∇(V + µ), then

(A⃗(t)+∇β, V (t)+α; pA⃗(t), pV (t)) is also a solution. Therefore, arbitrary combinations of first-

class constraints generate gauge transformations on solutions, for the dynamics generated by

the Extended Hamiltonian.

Although this argument shows that when we start with the Extended Hamiltonian, the gauge

transformations are generated by arbitrary combinations of first-class constraints, it leaves open

the question of what the justification is for starting with the Extended Hamiltonian. Indeed,

it seems that the proponents of “Solution Gauge Transformation” will deny that this is the
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right starting point; they would say that it is the Total Hamiltonian that one should use to

determine the gauge transformations.

Pooley & Wallace (2022) do provide one kind of response: the dynamics generated by

the Extended Hamiltonian is empirically equivalent to the dynamics generated by the Total

Hamiltonian: the predictions regarding invariant quantities are the same. In particular, what

they notice is that the difference between the solutions of the Total and Extended Hamiltonian

lies in what quantity plays the role of the electric field: when the Total Hamiltonian is used

to generate the dynamics, it is
˙⃗
A − ∇V that plays the role of the electric field, but when the

Extended Hamiltonian is used, it is pA⃗. And so, given that our access to these quantities is

through the role they play in the equations of motion, there is no empirical difference between

these choices of Hamiltonian.

Although I take this response to be both convincing and informative, I will argue that we

can go further: the Extended Hamiltonian can be motivated purely on mathematical grounds,

and therefore there are theoretical reasons for using the Extended Hamiltonian to determine

the gauge transformations. When combined with Pooley and Wallace’s argument, I think this

provides a strong case in favour of the claim that arbitrary combinations of first-class constraints

generate gauge transformations for solutions.

To make this argument, I will use a standard geometric way of expressing the constrained

Hamiltonian formalism since it provides a neutral framework for illuminating the issues of

concern. In particular, the geometric framework allows us to see clearly what the role of the

first-class constraints is within the structure of the formalism. This will help to make clear

the sense in which there are theoretical motivations for definitions of state and solution gauge

transformations.

6 Geometric Formulation

The constrained Hamiltonian formalism can be expressed naturally in a geometric way using

the theory of symplectic manifolds.7 A symplectic manifold consists of a pair (M,ω) where M

is a smooth manifold and ω is a symplectic form: it is a two-form (a smooth, anti-symmetric

7This formalism is widely used to express the constrained Hamiltonian formalism. For further details of this
formalism, see Henneaux & Teitelboim (1994), Butterfield (2006).
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tensor field of rank (0,2)), that satisfies the following conditions:

1. ω is non-degenerate, i.e. if ω(Xi, Xj) = 0 for all Xj ∈ TM and some Xi ∈ TM , then

Xi = 0.

2. ω is closed, i.e., dω = 0, where d is the exterior derivative operator, which is such

that df = df , the differential of a function f , d(dα) = 0 where α is a k-form, and

d(fα) = df ∧ α+ fdα.

There is a sense in which every symplectic manifold comes equipped with “Poisson struc-

ture”: Let (M,ω) be a symplectic manifold and C∞(M) the space of smooth maps on M .

In addition, let ω′ be the inverse of ω (a smooth, anti-symmetric tensor field of rank (2, 0)).8

Then the map {·, ·} : C∞(M)× C∞(M) → C∞(M) defined by f, g 7→ {f, g} = ω′(df)(dg) is a

Poisson bracket on M .

A constrained Hamiltonian theory can be defined as a symplectic manifold in the following

way. The manifold is phase space, consisting of the points {(qi, pi), i = 1, ..., N}, which can

be understood as the cotangent bundle of configuration space, T ∗Q, where Q consists of the

points qi. T ∗Q comes equipped with a one-form, the Poincaré one-form, given by θ = pidq
i.

The corresponding two-form is given by ω = dθ = dpi ∧ dqi, which is symplectic.

Given a function f , one can uniquely define a smooth tangent vector field Xf through:

ω(Xf , ·) = df (13)

where {·} represents any vector field tangent to T ∗Q. In particular, one can uniquely define a

vector field corresponding to the Hamiltonian H = piqi −L through ω(XH , ·) = dH. This pro-

vides an alternative way to write Hamilton’s equations. In particular, {f,H} = ω(Xf , XH) =

df(XH) = LXH
(f). If we define the flow parameter of XH to be time, then this says that

{f,H} = df
dt , which is Hamilton’s equation.

We can understand the constraints φi(q, p) = 0 for j = 1, ..,M where M is the total number

of constraints as giving rise to a smooth, embedded sub-manifold of phase space of dimension

N −M , which we call the constraint surface, given by Σ = {(q, p) ∈ Γ|∀i : φi(q, p) = 0}. The

8This is well-defined because ω is non-degenerate.
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first-class constraints are those constraints whose associated vector field is tangent to Σ, while

the second-class constraints are those constraints whose associated vector field is not tangent to

Σ.9 For our purposes, we only consider the case where all the constraints are first-class, since

these are the gauge-generating constraints.

We can define an induced two-form on the constraint surface ω̃ as the pullback along the

embedding i : Σ → Γ of ω. This induced two-form is in general degenerate i.e. it is not

invertible. In particular, it possesses M linearly independent null vector fields that form the

null space of ω̃. These are the vector fields that satisfy ω̃(Xj , ·) = 0 where {·} is any vector field

tangent to Σ. But these are precisely the vector fields that off the constraint surface satisfy

ω(Xj , ·) = dγj where γj are the first-class constraints, since dγj |Σ = 0. Thus, we will write Xγj

for these null vector fields to indicate that they are the tangent vector fields associated with

the first-class constraints.

This means that one cannot associate a unique vector field with any smooth function on

the constraint surface through the equation ω̃(Xf , ·) = df , since if Xf satisfies this equation,

so does Xf +Xγj
. We call the geometry of such a surface presymplectic. The integral curves of

the null vector fields are called the gauge orbits. Equivalently, the gauge orbits consist of the

set of points that can be joined by a curve with null tangent vectors. They are M -dimensional

surfaces on the constraint surface spanned by the null vectors.

The gauge orbits coincide with the notion of a gauge transformation in the Dirac formalism

in the following sense: it is the null vector fields that generate the gauge orbits on the constraint

surface, and these coincide with the vector fieldsXγj
corresponding to the first-class constraints.

And so, arbitrary combinations of first-class constraints effectively generate a transformation

that takes one ‘along’ a gauge orbit.

We can also understand the observables in the geometric formulation as the functions that

are constant along the gauge orbit. In other words, the observables are the functions for which

ω(Xf , Xγj
) = 0 on Σ, since ω(Xf , Xγj

) = LXγj
(f) i.e. it is the flow of f along the gauge orbit.

9This coincides with the definition of first-class and second-class given in Section 2.
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7 Geometric Resolution

To setup the argument in this section, recall that at issue is the question of how to reconcile the

notion of gauge transformations of states and gauge transformations of solutions. Both Dirac

(1964) and Pitts (2014b) take gauge transformations to be determined through the dynamics

generated by the Total Hamiltonian, but this leads to different definitions in the case of states

and of solutions, and consequently different opinions about whether one should extend the

Hamiltonian or not. We can summarize the reasoning common to both sides of the debate as

follows:

1. First, one determines the gauge transformations using the Total Hamiltonian.

2. Then, one uses the gauge transformations to say whether one should extend the Hamil-

tonian or not.

I will argue that this reasoning is flawed in three parts. First, I argue that Extended Hamil-

tonian is motivated independently from consideration of the gauge transformations, and so (2)

is wrong: the gauge transformations do not determine the correct form of the Hamiltonian.

Second, I argue that the gauge transformations on states arise naturally from the structure

of the constraint surface, without considering the solutions to the equations of motion, and

so (1) is wrong: the gauge transformations on states are not simply a special case of the

gauge transformations on solutions. Finally, I use these two arguments to show that the gauge

transformations on solutions (properly understood) are generated by arbitrary combinations of

first-class constraints.

7.1 Motivating the Extended Hamiltonian

First, let’s start with why the Extended Hamiltonian is motivated. It is clear that on the con-

straint surface, Hamiltonians related by an arbitrary combination of first-class constraints are

equivocated. However, I think it is more important to recognize that on the constraint surface,

the vector fields corresponding to solutions to the equations of motion for some Hamiltonian

are defined only up to arbitrary combinations of vector fields associated with the first-class

constraints. Take a (first-class) Hamiltonian vector field XH and transform it to XH + ajXγj
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where Xγj
are the null vector fields associated with the first-class constraints γj and aj are

arbitrary functions. We have that

ω̃(XH + ajXγj
, ·) = ω̃(XH , ·) = dH|Σ

since Xγj
are null vectors. But this means that transforming XH by an arbitrary linear

combination of the vector fields associated with the first-class constraints preserves the dy-

namical equations on the constraint surface. In other words, the structure of the constraint

surface is such that the evolution generated by XH and that generated by XH + ajXγj
is not

distinguished: if f satisfies ω̃(Xf , XH) = df
dt |Σ, then it satisfies ω̃(Xf , XH + ajXγj ) = df

dt |Σ.

Therefore, we can think of the vector fields XH + ajXγj
on the constraint surface as character-

izing the equivalence class of vector fields that generate solutions to the equations of motion.

Let us call this equivalence class of vector fields the “Extended Hamiltonian vector fields”.

Notice that in such reasoning, we have not made any assumptions about the Xγj
be-

ing associated with primary or secondary first-class constraints, nor about what the gauge-

transformations are; each first-class constraint constitutes a null direction of the constraint

surface, and it is this property that is important in determining which transformations of the

Hamiltonian vector field are dynamically equivalent. In particular, notice that the sense of

dynamical equivalence here is just that these Hamiltonian vector fields form an equivalence

class, relative to the structure of the constraints surface. Inasmuch as this structure is how one

makes predictions in the theory, these Hamiltonian vector fields generate the same predictions.

This provides one way in which restricting to the Total Hamiltonian is unnatural in the

geometric framework: it distinguishes a class of null vectors (those that correspond to primary

first-class constraints) that cannot be distinguished from other null vectors in terms of the

structure of the constraint surface.10

10One can distinguish the secondary constraints through the fact that they correspond to time derivatives of
the primary constraints, but this is not the relevant kind of difference in determining the equivalence class of
Hamiltonians.
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7.2 State Gauge Transformations

Second, let’s consider the notion of gauge transformations on states. Again, restrict ourselves

to the constraint surface. On the constraint surface, the induced two-form ω̃ only acts on vector

fields that are tangent to the constraint surface. In other words, the induced two-form only

applies to functions g such that Xgdγj = 0 on the constraint surface. But notice that these

are precisely the functions for which ω(Xg, Xγj
) = 0 when restricted to Σ i.e. the observables.

So the functions f for which ω(Xf , Xγj ) ̸= 0 on Σ must be such that Xf is not tangent to

Σ, and thus one cannot define the action of ω̃ on them. This means that for functions which

vary along the gauge orbits (the gauge variables), the induced two-form effectively cannot ‘see’

this change, since it only acts on those vector fields tangent to the constraint surface. And so,

points along a gauge orbit are equivalent in the sense that one cannot distinguish the value of

a function at different points along a gauge orbit using the structure of the constraint surface.

Notice that this reasoning does not make reference to the dynamics, in particular, it doesn’t

make reference to the Total Hamiltonian; it relies only on the structure of the constraint surface.

This suggests a revision to the definition of the state gauge transformations:

State∗ Gauge Transformation: A (state) gauge transformation is a transfor-

mation that relates any two states on the constraint surface that cannot be distin-

guished by the induced two-form.

This emphasizes that what makes states along a gauge orbit equivalent has to do with

their role in the structure of the constraint surface. Notice that on this definition, arbitrary

combinations of first-class constraints generate gauge transformations precisely because they

give rise to the gauge orbits. We therefore have a definition of the gauge transformations on

states that is motivated independently from the gauge transformations on solutions, but which

agrees with both sides of the debate about the generators of gauge transformations on states.

We can also use this argument to oppose a claim made by Henneaux & Teitelboim (1994).

They say:

“The identification of the gauge orbits with the null surfaces of the induced two-

form relies strongly on the postulate made throughout the book that all first-class

constraints generate gauge transformations.” (p. 54)

19



In other words, they suggest that one must independently maintain that first-class con-

straints generate gauge transformations in order to interpret the null surfaces as the gauge-

equivalent points. But the argument above shows that this interpretation is motivated from

within the geometric formulation.

7.3 Solution Gauge Transformations

Finally, let us consider the gauge transformations on solutions. From the previous two ar-

guments, we have determined that adding an arbitrary combination of null directions to the

Hamiltonian vector field generates a curve whose derivative along the Hamiltonian vector field

is the same (on the constraint surface). This curve differs only with regards to where on the

gauge orbit it lies at each point in time. Moreover, each state along a gauge orbit forms an

equivalence class of states. Thus, transforming a solution by an arbitrary amount along the

gauge orbit at each point gives rise to another solution generated by a Hamiltonian vector

field with a different combination of null vectors. We have a natural reason to think these are

physically equivalent, since the Hamiltonians of this kind form an equivalence class, and the

states along a gauge orbit form an equivalence class.

To see this more precisely: take a curve s(t) defined on the constraint surface whose tangent

vector is a solution to the equations of motion ω̃(Xs, XH + ajXγj
) = ds

dt . Now take another

curve s′(t) = h(t)·s(t) where h(t) is a smooth function that “moves” s(t) by some amount along

the gauge orbit at each point. Then Xs′ will also be a solution to ω̃(Xs′ , XH + ajXγj
) = ds′

dt ,

since this equation of motion determines the tangent vector to the dynamical trajectory only

up to the addition of an arbitrary (time-dependent) combination of null vectors. Therefore, an

arbitrary combination of first-class constraints generates a transformation that takes solutions

of the Extended Hamiltonian to other solutions.

This motivates the following characterization of the solution gauge transformations:

Solution∗ Gauge Transformation: A (solution) gauge transformation relates

any two curves that are possible evolutions from an initial state under the dynamics

generated by the Extended Hamiltonian vector fields.

Notice that this definition is supported on two fronts. First, we have independently moti-
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vated the Extended Hamiltonian vector fields as the correct equivalence class (which we argued

earlier was lacking in Pooley & Wallace (2022)). Second, we have independently motivated

that the equivalence class of states is given by the gauge orbits. This provides another way

in which restricting to the Total Hamiltonian is unnatural geometrically: it would be to say

that the dynamics can distinguish states along a gauge orbit, even though the structure of the

constraint surface is such that it cannot distinguish these states. So we shouldn’t think that

gauge transformations on states are a special case of those on solutions; rather, there are two

independent notions that are coherent with each other.

In summary, we can diagnose the debate about the right characterization of a gauge trans-

formation as follows: the debate takes for granted that gauge transformations are determined

by the evolution generated by the Total Hamiltonian. This leads to a disagreement about the

generators of gauge transformations, and consequently the right equivalence class of Hamilto-

nians. What I have argued here is that this reasoning is flawed: the Extended Hamiltonian

can be motivated as the right equivalence class of Hamiltonians prior to determining the gauge

transformations, and the gauge transformations on states can be determined without directly

considering the evolution generated by the equivalence class of Hamiltonians. This allows one

to maintain a clear conceptual difference between gauge transformations on states and gauge

transformations on solutions, and it allows one to maintain that both of these notions capture

a notion of physical equivalence without conceptual tension.

8 Possible Counterarguments

Before concluding, let’s consider how one might respond to the argument given in the previous

section; in particular, how one might defend “Solution Gauge Transformation” over “Solution∗

Gauge Transformation”, since it is these notions that lead to different characterizations of the

transformations that generate gauge transformations. One notable aspect of the argument is

its commitment to the geometry of the constraint surface as a guide to the symmetries of the

theory. So let us consider two objections one might have to this. First, that we shouldn’t restrict

to the constraint surface. Second, that we shouldn’t think that the geometrical formulation of

the constrained Hamiltonian formalism is adequate.
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Starting with the first objection: Inasmuch as constraints are understood to provide the

“physically allowed states”, it seems natural to think that the points off of the constraint

surface are unnecessary for describing the dynamics of the theory. However, one might want

to maintain that these points still have importance as “kinematically possible” states. That

is, one might want to maintain that we ought to consider states off the constraint surface as

important for describing the physical theory as a whole, even if the dynamics is restricted to

the constraint surface. In particular, the secondary constraints are fixed by thinking about

the consistency of the primary constraints with the dynamics. And so it might seem that at

least when it comes to secondary constraints, there is no logical inconsistency with specifying

a theory in terms of points where the secondary constraints do not hold. And the vector fields

associated with the secondary constraints are not null vectors of the two form on the full phase

space (nor on the primary constraint surface); the full phase space is symplectic, and so it is

non-degenerate by definition. So, the counterargument goes, we cannot use the fact that these

vector fields are null to argue that they generate gauge transformations.

One natural response is that the points off of the constraint surface are ‘excess structure’:

although there is nothing inconsistent about including them, the content of the theory is given

by the constraint surface. Another response is to point out that the idea that we start out with

the primary constraints and then generate the secondary constraints through the dynamics

is somewhat an accident of the way that the Hamiltonian formalism is usually set up. As I

presented Dirac’s version of the theory, one starts with a Lagrangian function, from which

one derives the primary constraints. Only once we have the primary constraints and the

Hamiltonian in hand do we determine the secondary constraints. But we could have set up the

Hamiltonian formalism in a different way: we could say that our theory is given by specifying

a Hamiltonian function, a symplectic two-form, and a collection of constraints. In this way of

setting up the formalism, although there is a functional relationship between the primary and

secondary constraints, there is no clear difference in the role that they play. In particular, the

only relevant difference seems to be which constraints are first-class; these are the ones that

generate transformations that keep one along the constraint surface, and which are null vectors

of the induced two-form on the constraint surface.

In order to push back on this response, one would have to argue that there is something

22



wrong with setting up the Hamiltonian formalism on the constraint surface. This leads to

the second objection, namely that the geometric formulation of the constrained Hamiltonian

formalism is not adequate. The first thing to note here is that this geometric formulation

is a natural extension of a widely accepted formulation of Hamiltonian mechanics without

constraints using symplectic manifolds, and so in this sense is well motivated. But one might

want to argue that it is inadequate in a different way. In particular, one might want to argue

that the Hamiltonian formalism is derivative from the Lagrangian formalism; the Lagrangian

formalism is the “fundamental” one, and the Hamiltonian formalism is just an alternative way

of expressing the Lagrangian one. Indeed, on the standard way of presenting Dirac’s formalism,

one begins with a Lagrangian, and uses it to define the Hamiltonian and constraints. On this

view, there is a difference between the primary and secondary constraints that comes from the

Lagrangian viewpoint and that isn’t captured purely through consideration of the geometry

of the constrained Hamiltonian formalism. The difference is that the primary constraints are

necessary to ensure that the Hamiltonian formalism is equivalent to the Lagrangian formalism,

while the secondary constraints are ‘extra’ constraints on the Hamiltonian side that are not

motivated from the Lagrangian perspective. In particular, it is only the primary constraints

that have to be imposed in order for the map from the Lagrangian to Hamiltonian state spaces

(the Legendre transformation) to be invertible.

Therefore, this argument goes, restricting to the secondary constraint surface – and conse-

quently having the view that arbitrary combinations of first-class constraints generate gauge

transformations – leads to a theory that is inequivalent to the Lagrangian theory, and so is

not the right theory to consider. Indeed, one can show that the Total Hamiltonian formalism,

understood as relying on the primary constraint surface, gives rise to solutions that are equiva-

lent to the solutions to the Euler-Lagrange equations (Batlle et al. (1986)). Therefore, it seems

that restricting to the constraint surface (including the secondary constraints) gives rise to a

theory that although is empirically equivalent to the Lagrangian formalism, is not strictly the

same theory. And so, if one takes the view that the Lagrangian formalism is more fundamental,

then this might motivate one to say that our definition of a gauge transformation should be

inherited from this formalism, and thus not the definition motivated by the geometry of the
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constraint surface.11

There are several deep and subtle questions here about what makes one theory more “fun-

damental” than another and how to characterize the equivalence of theories that I do not have

space to answer here.12 However, what the arguments here suggest is that if one wants to

advocate for “Solution Gauge Transformation” over “Solution∗ Gauge Transformation”, these

are questions that one is forced to face. That is, in order for one to maintain that “Solution

Gauge Transformation” is the correct definition, one has to say what it is that provides the

distinction between primary and secondary constraints in characterizing the equivalence class

of Hamiltonians, and it seems that this requires one to adopt views regarding the relationship

between the Hamiltonian and Lagrangian formalisms.

9 Conclusion

To summarize, I have argued that the debate about the correct characterization of the gauge

transformations in the constrained Hamiltonian formalism rests on assumptions about the re-

lationship between gauge transformations and the form of the Hamiltonian that are unnatural

from the perspective of the geometric formulation of the constrained Hamiltonian formalism.

Using the geometric formulation, I showed that we can distinguish between gauge transforma-

tions on states and gauge transformations on solutions in a conceptually clear way and that

both are generated by arbitrary combinations of first-class constraints, thereby supporting the

orthodox view. However, this allowed us to pinpoint more clearly where disagreement can

be found. In particular, I suggested that there are crucial questions about the relationship

between Lagrangian and Hamiltonian theories in the presence of gauge symmetry, where dif-

ferent answers to these questions can lead to different views regarding the correct form of the

Hamiltonian, and thus to what the correct characterization of the gauge transformations is.

One important topic that I have not discussed in this paper is the “Problem of Time”.

Recall: for theories that are time-reparameterization invariant, the standard account of gauge

11On the other hand, Gryb & Thébault (2023, ch.8) argue that on a proper understand of Noether’s Second
Theorem, the secondary Hamiltonian constraints can be derived from the Lagrangian perspective. This suggests
that the Extended Hamiltonian is not in conflict with the Lagrangian account.

12In Bradley (2024), I address the question of the equivalence between Lagrangian and Hamiltonian gauge
theories.
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transformations implies that time evolution is itself a gauge transformation since the Hamilto-

nian is a first-class constraint. In supporting the standard account of gauge transformations as

being generated by arbitrary combinations of first-class constraints, it might appear that we

are also left with the issues surrounding the Problem of Time. That is, we haven’t seemed to

do anything to deny that a Hamiltonian first-class constraint generates a gauge transformation.

However, I think that the distinctions drawn out here highlight what is interesting about the

case of a Hamiltonian first-class constraint. In particular, the claim that we can conceptually

distinguish the gauge transformations on states and the gauge transformations on solutions

does not seem to be true in the case where the Hamiltonian is a first-class constraint: the

gauge orbits are just the solutions to the equations of motion, and so the states along a gauge

orbit cannot be understood independently from the dynamics. Thus, it is less clear whether

one can distinguish two notions of physical equivalence as well. This suggests that the puzzle

surrounding the Problem of Time at least partly comes down to the fact the transformation

generated by a Hamiltonian first-class constraint doesn’t fall neatly into the categories defined

here. But more work needs to be done to say what exactly is distinct about this case, inasmuch

as when the Hamiltonian is a first-class constraint, it seems to play the same role geometrically

as any other first-class constraint since it is a null vector field of the induced two-form on the

constraint surface. To answer this would require a more careful consideration of the role of

the Hamiltonian and whether there is a more fine-grained distinction between different kinds

of constraints.13 I hope that the work here has at least provided support for the claim that the

Problem of Time is not the result of an incorrect definition of the gauge transformations in the

constrained Hamiltonian formalism; rather, it must be treated on its own terms.
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