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Abstract

Unlimited pancomputationalism claims that every physical system imple-

ments every computational model simultaneously. Some philosophers ar-

gue that unlimited pancomputationalism renders implementation ‘trivial’ or

‘vacuous’, unsuitable for serious scientific work. A popular and natural reac-

tion to this argument is to reject unlimited pancomputationalism. However,

I argue that given certain assumptions about the nature of computational

ascription, unlimited pancomputationalism does not entail that implementa-

tion is trivial. These assumptions concern the relativity and context sensitiv-

ity of computational ascription. Very roughly: relative to a specific, contex-

tually salient way of regarding a physical system computationally, the claim

that that system implements a specific computational model is as non-trivial

as one could reasonably want.

1 The state of play

Since the late 1980s, philosophical reflection on physical computation has been

animated by a skeptical argument advanced by Hilary Putnam (1987) and John

Searle (1992). At issue is the notion of computational implementation. Putnam

and Searle argue for unlimited pancomputationalism, the view that every physical
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system implements every computational model simultaneously. They conclude on

the basis of unlimited pancomputationalism that computational descriptions of

physical systems are ‘trivial’ or ‘vacuous’. This argument has potentially dramatic

implications, if sound. Not only would it seriously threaten computationalist pro-

grammes in the philosophy of mind, but if computational descriptions are trivial

it would seem we ought to substantially curtail — if not eliminate outright — the

use of such descriptions in scientific inquiry generally.

Few philosophers nowadays accept this radical conclusion. The most popular

response to Putnam and Searle’s argument rejects unlimited pancomputational-

ism. This is usually achieved by imposing a global, context-insensitive constraint

on implementation. There are quite a few proposals about how this might go. The

most prominent suggestions appeal to counterfactual,
1

causal,
2

mechanistic,
3

rep-

resentational,
4

information-theoretic,
5

naturalness,
6

and pragmatic
7

constraints in

an effort to block unlimited pancomputationalism. Others are surely possible. Per-

haps unsurprisingly, however, none has emerged as a clear victor, and Putnam and

Searle’s challenge remains with us today.

In light of this situation, I want to explore an alternative response. This alter-

native is designed to incorporate the insights of these others while going beyond

them in certain respects. In particular, I will suggest that under certain plausi-

ble assumptions about the nature of computational ascription, the Putnam-Searle

argument loses much of its force. Roughly put: physical systems implement com-

putational models only relative to a contextually salient way of regarding a system

computationally. But, relative to such a way of regarding, there is little reason to

think that computation is trivial. Or so I will argue.

I start in Section 2 by reconstructing a generic triviality argument. Then, I

argue in Section 3 that when systems implement computations, they do so rel-

ative to specific ways of regarding those systems computationally — what I will

call labelling schemes. Section 4 argues that there can be non-arbitrary grounds

for describing physical systems in terms of specific labelling schemes. Section 5

contrasts my response to others in the literature. Section 6 concludes.

1
(Copeland, 1996; Rescorla, 2014).

2
(Chalmers, 1996; Chrisley, 1994; Melnyk, 1996; Scheutz, 1999).

3
(Milkowski, 2013; Piccinini, 2015, 2020).

4
(Rescorla, 2014; Shagrir, 2022; Sprevak, 2010)

5
(Millhouse, 2019; Anderson & Piccinini, 2024).

6
(Godfrey-Smith, 2009).

7
(Dewhurst, 2018; Matthews & Dresner, 2017; Schweizer, 2019).
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2 Triviality arguments

Different presentations of the triviality argument may be found in the literature,

varying in terms of their exact scope and formulation.
8

My aim in this section is

to sketch a generic version of the argument. On my reconstruction, the argument

proceeds in two main steps. The first establishes unlimited pancomputationalism.

The second moves from unlimited pancomputationalism to the claim that physical

computation is trivial. I will take each in turn.

2.1 Unlimited pancomputationalism

I will begin with some orienting remarks about the notion of computational im-

plementation. Computer and cognitive science seek to understand the behavior of

certain physical systems in terms of computations those systems perform. These

endeavours are routinely framed in terms of abstract, mathematically character-

ized computational models drawn from theoretical computer science. Typical ex-

amples include machine models like finite automata, pushdown automata, or Tur-

ing machines, and program models written in any of a variety of languages like

Lisp, Python, or Haskell. When a physical system is accurately described by such

a model, it is said to ‘implement’ or ‘realize’ that model.
9

Philosophical theories of implementation attempt to specify in general terms

the conditions under which a physical system implements a computational model.

Perhaps the most straightforward is the simple mapping account (Godfrey-Smith,

2009), which holds that a physical systemP implements a computational modelM
just in case the physical state transitions carried out byP approximately mirror the

formal state transitions specified by M . This is usually cashed out by saying that

the computational model and the physical system (at a certain level of description)

are isomorphic:

The Simple Mapping Account (SMA)
P implements M if and only if P is isomorphic to M ; that is, just in

case:

1. There is a grouping of microphysical states of P into state-types,

and a function f mapping state-types of P to states of M , such

that

8
See (Sprevak, 2019) for a survey.

9
Computational models in the this sense are scientific models and their targets are physical

systems which perform computations. According to a broader usage, computational models are

scientific models which rely on computational techniques, but which may not ascribe computations

to their targets (Weisberg, 2013). Triviality arguments concern computational models in the former,

narrower sense (Piccinini, 2007).
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2. Under f , the state-transitions of P mirror those of M ; i.e., when-

everP is in state p1, where f(p1) = m1, andm1 → m2 is a formal

state transition, then P goes into state p2, where f(p2) = m2.

SMA is prima facie attractive. Not only does it characterize implementation

in terms of the antecedently well-understood notion of a structure-preserving

map, but it also smoothly accommodates the implementation conditions for a wide

range of computational models (Sprevak, 2019; Schweizer, 2019). Yet, despite these

virtues, SMA is widely taken to be untenable on the grounds that it entails unlim-

ited pancomputationalism:

Unlimited Pancomputationalism (UP)
Every sufficiently sophisticated physical system simultaneously im-

plements every computational model.
10

UP follows from SMA if every sufficiently sophisticated physical system is iso-

morphic to every computational model; that is, if for any physical system and any

computational model, there is a mapping from a system’s state-types to the states

of a computational model, such that, under that mapping, the two are isomorphic.

And this follows under two quite modest additional assumptions.

The first is the assumption that there is an isomorphism between a physical

system and a computational model whenever the former’s state-types are equinu-

merous with the latter’s formal states. This assumption is backed by a basic model-

theoretic technique known as Push-Through, which provides a generic method

for defining an isomorphism between any set-theoretic structures whose carrier

sets are equinumerous. Intuitively, given any computational model, Push-Through

shows us how to define a transition relation on physical state-types that exactly

mirrors the formal state transitions specified by that model.
11

The second is the empirical assumption that for any give time interval, any

physical system has (at least) denumerably infinitely many microphysical states.

10
Sometimes, unlimited pancomputationalism is characterized as the claim that every suffi-

ciently sophisticated physical system computes every Turing-computable function. These char-

acterizations are for all intents and purposes equivalent, since the model or models implemented

by a system determine the function(s) it computes.

11
A little more precisely, letP be a physical system and let SP be a set of state-types defined over

P ’s microphysical states. And let M = ⟨SM , TM ⟩ be a computational model, where SM is a set of

formal computational states and TM : SM → SM is M ’s transition function. And suppose that SP

and SM are equinumerous, so that there is a bijection f : SP → SM . Now we can define a physical

state-transition function TP : SP → SP as follows: let TP (s1) = s2 iff TM (f(s1)) = f(s2). Then

the structure P = ⟨SP , TP ⟩ is isomorphic to M . For more on Push-Through, see, e.g., (Button,

Walsh, & Hodges, 2018).
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This ensures that it is possible to find a set of physical state types equinumer-

ous with those of any computational model. Different philosophers motivate this

step in different ways. For instance, Putnam argues that under certain physical

assumptions, every ‘ordinary open system’—such as a rock lounging in the sun—

proceeds through uncountably many microphysical states in any given time inter-

val. Shenker and Hemmo (2022), by contrast, argue for this assumption on general

statistical mechanical grounds. However we establish the existence of these states,

the important point is that by judiciously grouping them, we can identify a set of

physical state types equinumerous with the formal states of any computational

model.

Thus UP follows from SMA given basic model theory and a modest empirical

assumption. Briefly: let P be any physical system and M be any computational

model. By the empirical assumption, P has state-types equinumerous with the

states of M . By Push-Through, the two are isomorphic. Hence, by SMA, P imple-

ments M . UP follows, since P and M were arbitrary.

2.2 From pancomputationalism to triviality

Why is UP a problem? The usual charge is that it renders computation ‘trivial’.

This charge is perhaps best understood as a complaint about the theoretical sta-

tus of computation, in that any account which entails UP suffers from a variety

of distinct but related theoretical failures. These failures concern an account’s de-

scriptive and explanatory ambitions, respectively.

Descriptive failures

To begin, notice that the argument for pancomputationalism relies on extraordi-

narily weak empirical assumptions. The only empirical facts cited in the argument

are facts about number of states or parts of physical systems. The argument does

not rely on facts about the character of these states or parts, nor does it rely on

facts about their arrangement, interactions, or activities. Nor, for that matter, does

it rely on facts about the gross structure of physical reality, concerning the distri-

bution of matter, the structure of spacetime, or which natural laws obtain. Given

all this, it is unsurprising that any theory that entails pancomputationalism suffers

from a variety of descriptive failures:

• Lack of empirical content. The empirical demands required to establish UP
are extremely modest, concerning only the cardinalities of a system’s state-

types. Insofar as these demands would be met in almost every physically

possible situation, it would thus appear that theories of implementation lack

empirical content almost entirely.
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• No empirical discoveries. While one might have thought that substantial em-

pirical investigation would be required to determine whether a system com-

putes, under UP such questions are answerable largely from the armchair,

by reflecting on the number of microphysical states of the system in ques-

tion.

• Widespread predictive failure. Information about what a system implements

ought to be predictively useful. The fact that a robot implements this pathfind-

ing algorithm should presumably allow one to predict that it will take that

path through an obstacle course. Yet it is hard to see how to use such knowl-

edge to predict anything given UP. Under UP, the robot simultaneously im-

plements a wide variety of different pathfinding algorithms, some of which

may find quite different paths through the course. It is thus hard to see what

would justify the prediction that the robot will take one path instead of an-

other.

• Unwarranted retrodictive success. While one might have thought that retro-

diction of past pathfinding behavior is the sort of thing that we could in

principle get wrong, under UP we cannot help but retrodict successfully.

This is because, no matter what path the robot in fact takes, there will be

some pathfinding algorithm it implements under which it would have taken

that path.

• Extensional inadequacy. Whereas the computational sciences ascribe com-

putational properties to comparably few physical systems — chiefly engi-

neered devices and cognitive systems — UP entails that these notions ap-

ply to every physical system. Thus while the account correctly classifies

paradigmatic cases, it incorrectly classifies anti-paradigms more or less across

the board (Piccinini, 2015; Sprevak, 2019).

Explanatory failures

A second concern is that UP undermines SMA’s explanatory power. Computer

and cognitive science attempt to explain the capacities and behavior of certain

physical systems in terms of the specific computational models they implement.

For instance, the reason why a laptop takes O(n2) time to sort a list of n digits

might be that it implements selection-sort rather than some other sorting algo-

rithm. Had it implemented a more efficient sorting algorithm, like mergesort, it

would have sorted a list of n digits in O(n log n) time. Yet if UP holds, the lap-

top does implement mergesort— indeed, it implements every sorting algorithm

at once.
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One way of framing this problem foregrounds the contrastive character of

many scientific explanations. This is sometimes expressed by the idea that scien-

tific explanations answer “what if things had been different?” questions (Woodward,

2003). In the computational case, such questions concern how physical systems

would have been different if those systems had been different computationally.

Yet under UP there is no clear sense in which things might have been different

computationally, for in every possible world even remotely similar to ours every

physical system is computationally indistinguishable from every other.

This overall diagnosis can be refined by more sharply delineating two distinct

explanatory scenarios. In intrasystemic scenarios, computations explain contrasts

between the actual versus merely possible properties or behavior of a system. The

laptop has a certain performance profile because it uses one sorting algorithm

rather than another. Similarly, a robot takes one path through a maze (rather

than another) because it implements this path-finding algorithm (rather than that

one). In intersystemic scenarios, by contrast, computations explain differences be-

tween systems. The fact that the visual system computes depth from binocular

disparity partly explains why healthy individuals exhibit competent grasping be-

havior while those with various cortical injuries — not to mention manifestly non-

cognitive systems such as rocks, walls, and pails of water — do not.

The trouble is that successful explanation in either case requires a contrast

(Hitchcock, 2013). The fact that healthy visual systems compute some depth-

extraction function explains differences grasping behavior only if those same depth-

extraction computations are not also implemented by injured visual systems (or

rocks, walls, etc.). Similarly, the fact that the robot implements some pathfind-

ing algorithm explains why it takes a certain path only if it doesn’t also imple-

ment another algorithm which charts a different course. Yet under UP no such

contrasts obtain. Rocks and injured visual systems implement the same computa-

tional models as healthy visual systems, and the robot implements every pathfind-

ing algorithm, no matter what path it in fact takes. UP threatens computational

explanation, then, because it violates certain basic requirements on contrastive

explanation.

Stepping back, while I do not claim to have identified all the problems that

might be raised by UP, these failures are arguably the most serious. In light of

this, I will take the principle task in responding to triviality to be to ameliorate

all or at any rate most of the descriptive defects discussed above, and to vindicate

computational explanation in both intersystemic and intrasystemic scenarios. I

consider next how this might be done.
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3 Implementation and the applicability of mathematics

Given my reconstruction, we can resist the triviality argument either by reject-

ing UP, or by rejecting the inference from UP to triviality. Most responses take

the first route—we will come back to some examples later on. Here, I want to ex-

plore the possibility of addressing the triviality argument without showing that

UP is false. My starting point is the idea that describing physical systems compu-

tationally is an instance of the more general practice of describing systems math-

ematically. Given this orientation, it is natural to consider whether an analogue of

the triviality argument applies to other applications of mathematics as well. This

section considers such an argument and uses it to offer an intuitive diagnosis of

what’s gone wrong in the original triviality argument.

3.1 Harmless abundance

One widely noted feature of the application of mathematics to physical systems

is that physical systems do not wear their mathematical characteristics on their

sleeves. Regarded one way, a physical system has a certain mathematical charac-

ter; regarded a different way, it has another. Perhaps the most well-known exam-

ple of this involves the application of finite cardinals in ordinary counting practice.

Here’s Frege in the Grundlagen:

If I give someone a stone with the words: Find the weight of this, I

have given him precisely the object he is to investigate. But if I place

a pile of playing cards in his hands with the words: Find the Number

of these, this does not tell him whether I wish to know the number of

cards, or of complete packs of cards, or even say of points in the game

of skat … Number, cannot be said to belong to the pile of playing cards

in its own right, but at most to belong to it in view of the way in which

we have chosen to regard it … What we choose to call a complete pack

is obviously an arbitrary decision, in which the pile of playing cards

has no say. (Frege, 1884, §21)

Frege observes that different ‘ways of regarding’ physical stuff may yield dif-

ferent counts.
12

As we now say, counting proceeds under an appropriate sortal

concept, which individuates stuff into objects. Relative to the concept card this

stuff is fifty-two; relative to deck, it is one.

12
Stuff-talk is awkward but ineliminable if we wish to avoid begging questions. There is typically

no deep question about the size of a collection, for instance, because collections come preindivid-

uated. That is, collections are collections of objects, and it is plausible to think that we cannot

meaningfully talk of objects without presupposing some way of individuating them. Frege’s point

is that undifferentiated physical matter, by itself, does not determine a particular count.

8



Frege uses this observation to motivate the controversial view that number be-

longs to concepts, not physical objects. I take no stand on that further claim here.

What’s important for my purposes is Frege’s observation that multiple distinct

numerical descriptions apply simultaneously to a given hunk of stuff. This bears

more than a passing resemblance to Putnam and Searle’s claim that multiple com-
putational descriptions apply to a fixed physical system. It is therefore instructive

to consider whether an analogue of the triviality argument might be developed for

applications of finite cardinals as well.
13

The first step of such an argument would be to establish, not pancomputation-

alism, but pancardinalism:

Pancardinalism
Every sufficiently large expanse of physical stuff simultaneously falls

under every sortal concept.

To establish Pancardinalism, we begin with an analogue of the simple map-

ping account, which holds that a mathematical structure applies to a system (at a

certain level of description) just in case the structure and that system, so described,

are isomorphic.
14

In the case of finite cardinals, this amounts to the claim that a

collection is n just in case the objects in that collection are equinumerous with the

first n cardinals.

The next step is to show that for any finite cardinal and any sufficiently large

expanse of physical stuff, there is a concept relative to which that matter falls

under that cardinal. And although it would be tedious to argue for this point in

detail, it is not too hard to see that with a little ingenuity we will be able to identify

such concepts. For instance, although we might count cards or decks, we might

also count faces or suits or even more recondite entities like half-cards, quarter-

cards, thirds of cards, and so forth. While many of these will be highly artificial,

there is no reason to think that we cannot proceed in this way and thereby as-

sign extraordinarily many distinct cardinals to a given hunk of physical stuff. This

would establish Pancardinalism. Should we therefore conclude that whole num-

ber counting is trivial?

Clearly not. We cite finite cardinals to address numerosity questions of the

form “how many Fs are there?”. Such questions are raised in particular conver-

sational contexts, which fix the relevant sortal F. It is of course true that had we

13
See (Matthews & Dresner, 2017) for a related thought concerning the representational theory

of measurement.

14
This way of understanding the applicability of mathematics traces back at least to (Quine,

1960); (Pincock, 2011, ch. 2) is a more recent statement. Even philosophers who deny that the

existence of an appropriate isomorphism is sufficient for a mathematical structure to apply to a

given system typically accept that such isomorhpisms are necessary (see, e.g., Batterman, 2010;

Bueno & French, 2018; Bueno & Colyvan, 2011).
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varied F, we may have arrived at a different count — focus on CARD rather than

DECK and the count is fifty-two, not one. But as long as a given count is gener-

ated in light of an appropriate sortal, it is hard to see how the existence of different

counts, generated by different Fs, trivializes anything. The reason is straightfor-

ward: in that conversational context, those alternative counts answer questions

that weren’t being asked.

Moreover, although we might regard them as bizarre, unprincipled, or other-

wise useless, it seems clear that we nevertheless can count with gruesome gerry-

mandered sortals (even if in some cases we have little reason to). This is a man-

ifestation of the more basic fact that arithmetic (and indeed mathematics more

generally) furnishes an extremely flexible set of domain-neutral tools for reason-

ing about physical systems and their properties. It would be a mistake to limit

our ability to deploy this tool by imposing additional constraints over and above

the existence of an appropriate isomorphism. And this suggests that it would be

a mistake to respond by attempting to constrain our account of numerical ‘imple-

mentation’ and thereby block Pancardinalism. Rather, it is enough to note that,

relative to a specific conversational context, certain ways of counting are simply

irrelevant.

The provisional lesson is that ordinary counting practice is not in any obvious

sense trivialized by the fact that multiple cardinals simultaneously apply to a given

hunk of physical stuff. Although there is an abundance of ways we could count

Frege’s cards, this abundance is harmless because counts proceed under specific,

contextually salient ways of regarding— that is, specific, contextually salient con-

cepts. Focus attention on a specific concept, and applications of finite cardinals

are as non-trivial as one could reasonably want. With this in mind, let’s turn back

to the original triviality argument.

3.2 Diagnosis

To begin, observe that the triviality argument does not show that a physical sys-

tem implements every computational model tout court. Rather, when a physical

system implements every computational model, it does so relative to distinct ‘way

of regarding’ that system computationally. This is perhaps easiest to see with Put-

nam’s original argument. Putnam argues that a rock implements every determin-

istic finite automaton (DFA). The crux of this argument is a recipe that takes a DFA

and shows us how to label microphysical states of the rock so that, under that la-

belling, the rock implements that DFA. Importantly, however, the recipe yields a

distinct labelling for each DFA: it uses one for the automaton ABA, another for

the automaton ABABA, and so on. Thus, although the rock simultaneously imple-

ments every DFA, it does so only relative to distinct labellings—distinct ‘ways of
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regarding’ the rock computationally in each case.

Putnam concludes that the claim that the rock implements any specific DFA

is trivial. But this is too quick. Relative to a fixed labelling, claims about the com-

putational properties of the rock are no more trivial than are claims about the

numerical properties of Frege’s cards, when the latter are subsumed under a spe-

cific concept. Indeed, once we focus attention on a specific labelling of the rock,

claims about its computational properties and behavior do not obviously suffer

from the descriptive or explanatory defects identified earlier. For instance, given

the ABA-labelling, we can accurately predict that it will be in state A at the next

time interval if it is currently in state B and we can explain that it is currently in

state B because at the previous interval it was in state A. To be sure, these claims

are hardly surprising. But this shows only that it is scientific unilluminating to de-

scribe the rock in terms of a two-state DFA in the manner suggested by Putnam’s

recipe. It does not on its own show that such descriptions are trivial.
This is perhaps easy to overlook if we focus only on examples like Putnam’s

rock. Because the rock exhibits little interesting macroscopic behavior, it would be

admittedly arbitrary to prefer one of Putnam’s schemes to any other when describ-

ing it computationally. It is thus unsurprising that attempts to describe the rock

computationally strike us as trivial. But this shows, at most, that the rock is not

fruitfully understood in computational terms. It would be a mistake to conclude

that there cannot be non-arbitrary grounds for working with specific labellings

when we wish to understand other kinds of systems computationally, just as there

can be non-arbitrary grounds for working with specific concepts in our ordinary

counting practice.

When we consider the kinds of systems characteristically investigated by the

computational sciences, we must therefore ask whether there are grounds for de-

scribing these systems in terms of specific labellings. If there are, then we would

be in a position to make substantive judgments about the descriptive and explana-

tory virtues of the models implemented under those labellings. This would be so

despite the fact that these systems might implement other computational models—

indeed, perhaps even all of them—under other labellings. Thus, to defuse the triv-

iality argument, it would be enough to show that there are or at any rate could
be non-arbitrary grounds for describing these systems in terms of specific kinds

of labelling schemes. Of course, to be absolutely clear, I have not yet argued that

there are such grounds. But I think there are. That’s coming up next.

4 Putting implementation in context

At the center of my proposal is the idea that when a physical system implements a

computational model, it does so relative to a specific way of regarding that system
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computationally. Following Copeland (1996), I call these ways labelling schemes. I

will regiment this idea with the following slight modification of SMA:

The Relativized Simple Mapping Account (RSMA)
P implements M relative to a labelling scheme L just in case, under

L, P is isomorphic to M .

According to RSMA, implementation is a three-place relation between a phys-

ical system, computational model, and a labelling scheme. This section starts by

examining labelling schemes in more detail. Then, I argue that in certain engineer-

ing and scientific contexts there can be principled reasons for describing systems

in terms of specific kinds of labelling schemes. I round off the section by revisiting

the descriptive and explanatory failures identified in Section 2.

4.1 Labelling schemes

RSMA is designed to accommodate the observation that that physical systems

do not wear their computational characteristics on their sleeves. Rather, physical

systems implement computational models only under specific ‘ways of regarding’

them computationally—only under an appropriate labelling scheme. Perhaps the

simplest illustration of this concerns a bistable digital circuit which transforms in-

put voltages into output voltages according to a certain pattern. Perhaps it outputs

5V just in case both input voltages are 5V; otherwise it outputs 0V. By varying the

logical interpretation of these voltage levels, we can vary the function computed

by the gate. If we interpret the 5V state as logical 1 and the 0V state as logical 0,

the gate computes logical AND; under the reverse assignment, it computes logical

OR. Under different ways of regarding the circuit computationally—under differ-

ent labelling schemes—it computes a different logical function.
15

Labelling schemes are the computational analogue of concepts. They are part

of the representational machinery used by practitioners to describe physical sys-

tems computationally.
16

Labelling schemes accomplish two main tasks: they group

the microphysical states of a system into a set of state types, and they assign spe-

cific mathematical states or values to the state types. Both of these tasks can be

15
It is also possible to vary the logical function implemented by employing different group-

ings of the circuit’s microphysical states. For examples and recent discussion of such cases, see

(Papayannopoulos, Fresco, & Shagrir, 2022a, 2022b; Fresco, Copeland, & Wolf, 2021; Shagrir, 2022;

Piccinini, 2020; Shagrir, 2022; Piccinini, 2020).

16
It is important to distinguish this aspect of labelling schemes from the idea that a physical

system implements a computational model (only) if it has certain representational properties (e.g.,

Shagrir, 2022). Even those who reject the claim that computation involves representation should

accept that labelling schemes are representational in the sense that they are part of our represen-

tational machinery.
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rendered formally as functions: a grouping function which takes microphysical

states to state-types, and an assignment function which takes state-types to labels.

A labelling scheme can then be treated as the composition of these two functions.

How states are grouped depends on their properties, and different schemes

will group states in different ways. Intuitively, the idea is to collect together mi-

crophysical states which are similar in some antecedently specified respect. For

instance, in the circuit we grouped states according to their electromagnetic prop-

erties: a microphysical state falls under one state type if its voltage is within some

delta of 5V, while it falls under another if it is within some delta of 0V. Of course

these are not the only groupings possible. Another grouping might collect to-

gether states that fall in some circumscribed range; perhaps states in a 0-6V range

fall into one type,and states in a 6-8V range fall into another. Yet other groupings

might collect states according to their causal or representational features, so that

microphysical states are grouped together only when they occupy approximately

similar positions in a network of causal relations or they carry approximately sim-

ilar representational content—I return to these alternatives later on, in Section 5.

The domain of the grouping function is a set of microphysical states. This set

is determined by a prior, non-computational characterization of a system’s micro-

physical states, furnished by some background theory appropriate for systems of

that sort (cf. Scheutz, 1999; Anderson & Piccinini, 2024). We must assume that the

background theory yields a determinate answer to the question whether a given

microphysical state falls under a given state-type to ensures that any set of state-

types can support a structure-preserving map. However, we do not need to assume

that there is a single background theory appropriate for every kind of physical

system, although it is convenient to do so. We should also not assume that the

salient background theory will yield a unique set of state-types for a given phys-

ical system—ordinarily it will not. For instance, nothing about electromagnetic

theory per se (if that is the salient background theory) forces us to work with the

groupings identified in the last paragraph.

The assignment function takes these state-types and assigns them mathemat-

ical values. Some of these values will be internal states of a model, like states of a

Turing machine’s read-write head. Others will be inputs, outputs, or intermediate

values of a data structure like entries on the Turing machine’s tape. For instance,

in the circuit, we assigned logical 1 and logical 0, although these are assigned in

different ways in the two alternatives.

For any system with even a modest number of microphysical states, there will

typically be an abundance of schemes to choose from when we wish to describe

it computationally. This can be because there are multiple distinct possible group-

ings, or multiple distinct possible assignments, or both. As a result, it is possible

for a single system to implement the same model under different schemes. It is
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also possible for a single system to implement different models under different

schemes. Importantly, however, this abundance will be harmless if there are prin-

cipled grounds for preferring some schemes over others when we wish to under-

stand phenomena computationally. I will argue next that there are.

4.2 Scheme selection

Let me start by managing expectations. I somewhat doubt there is an informa-

tive general story told about when a given labelling scheme should be preferred

over others. This is because the question of what makes a given computational

description relevant is an instance of the more general question of what makes a

given scientific description (e.g., model or theory) relevant. And there is, to put

it lightly, no firm agreement amongst philosophers of science about how to an-

swer the latter question, at least in general terms. Of course, scientists ought to

favour descriptions which save the relevant phenomena, are simple, explanatory,

improve understanding, and so forth. But this tells us little about which kinds of

schemes will exhibit these virtues in practice.

Matters are more promising, however, once we bracket general considerations

and attend to specific descriptive or explanatory projects. Computational mod-

els are applied by researchers in specific investigative contexts, to fashion devices

with certain desirable properties or to understand the properties or behavior of

certain kinds of systems. These applications are guided and constrained by a va-

riety of local considerations including (i) a prior, non-computational characteri-

zation of the phenomena or systems of interest, (ii) the available investigative or

engineering techniques and practices (e.g., measurement, modeling, or fabrication

techniques), and (iii) the evaluative standards and aims accepted by the researchers

in question. Although I cannot hope to do full justice to computational practice

in what follows, I will suggest that these considerations can motivate the deci-

sion to work with a specific labelling scheme, or at any rate a principled family of

such schemes, in the most important engineering and scientific contexts in which

computational descriptions are typically deployed.

Engineering practice and computing artefacts

To begin, consider a simple artificial computing system, like the bistable digital cir-

cuit considered earlier. These devices are explicitly engineered to compute specific

logical functions while meeting various design criteria (concerning, e.g., reliability,

modularity, power consumption, and so forth). Thus, it is reasonable to describe

them in terms of a labelling scheme that allows us to use them to compute these

functions while satisfying these criteria. That’s to say, given this goal, it is hardly
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arbitrary to describe the circuit in terms of a specific scheme.

Concerning the grouping of states into state-types, contemporary CMOS dig-

ital circuits are explicitly designed to distinguish two stable states: a low state

(typically around 0V) and a high state (nowadays, around 2V or 3V) (Harris &

Harris, 2013; Weste & Harris, 2011). Thus, it is eminently reasonable to work with

a labelling scheme that groups states according to these specific electromagnetic

properties: a microphysical state falls under the ‘low’ state type if it falls within

some delta of 0V; it falls under the ‘high’ state type if it falls within some delta of

2V or 3V; and it is outside the scope of the labelling scheme otherwise. Of course,

as recently noted, there are many other ways of grouping a circuit’s microphys-

ical states, many of which will cut across this particular grouping. Interpreting

a device in term of these alternatives will ordinarily not yield a description that

is suitably modular, reliable, or useful for solving problems of interest, and so are

safely ignored.

Once microphysical states are grouped, they are assigned mathematical val-

ues. Conventionally, states in the ground range are assigned logical 0, while states

in the high range are assigned logical 1. This assignment is not mandatory. Some

early electronic computers use the reverse assignment (Burks & Burks, 1988). In-

deed, for very simple systems such as atomic digital circuits, nothing about their

physical structure mandates the assignment of ‘0’ to the ground state and ‘1’ to the

high state. There is thus a degree of slack between groupings and the assignment

of logical values that may taken up by conventional or pragmatic considerations

(Dewhurst, 2018).

Although proponents of UP sometimes suggest that the decision to describe

a system computationally one way rather than another is a matter of ‘free inter-

pretation’ (e.g., Searle, 1992), it is evident that this decision is guided by a variety

of considerations about how to best build devices that meet our needs. And even

if these considerations sometimes involve pragmatic or conventional aspects, as

when assigning logical values, that does not render descriptions in terms of that

scheme arbitrary. Moreover, there are sometimes principled reasons for departing

from a conventionally established scheme. Virtual machines are a case in point.

In such cases, we employ a new labelling scheme to see a system as performing a

different kind of computation (e.g., as running a different operating system).

Stepping back, the point is that our engineering goal of building a system that

computes a certain logical or mathematical function guides how artefacts like con-

temporary circuits or digital computers are best described computationally. What

matters is that one is able to use a device to solve a problem of interest, under

some fixed characterization of the device’s inputs and outputs. It is hardly a trivial

question whether the device in fact solves this problem, under this characteri-

zation, even if it could in principle be used to solve other problems under other

15



characterizations.

Scientific modeling and natural computing systems

Matters are more complicated for natural computing systems. This is because

which scheme or schemes it is appropriate to use when theorizing about some sys-

tem is itself an open empirical question. Minimally, an adequate scheme should be

consistent with the available behavioral data and known structural and functional

features of a target system. In practice, there may be a range of schemes consistent

with what is known about a target system.

Regarding behavior, computational models are often developed to explain some

non-computationally described behavioral phenomenon. Adequate labelling schemes

must ensure that hypothesized computations smoothly interface with behavioral

inputs and outputs described non-computationally. Not just any scheme will ad-

equately capture how patterns of retinal irradiation produce competent grasping

behavior, for instance (Egan, 2012; Godfrey-Smith, 2009).

However behavioral data alone will typically not fix a unique computational

description of a system. A given pattern of input/output behavior can be pro-

duced by many different computations. Information about the non-computational

structural and/or functional features of a system helps to winnow down the range

of promising schemes. This information bears primarily on the grouping func-

tion. For natural computing systems, a grouping function will typically cite the

specific structural and functional features of the system under investigation. For

instance, for computations in the brain, groupings will ordinarily be ‘neurobio-

logically plausible’ in the sense that states are grouped, at least in part, according

to the known structural or functional features of the relevant brain structures. Of

course, there is nothing in principle that would prevent researchers from investi-

gating the computational properties of brains under more recondite groupings. If

models implemented under such groupings yield novel predictions, provide satis-

fying explanations of otherwise puzzling phenomena, and so forth, then there is

reason to take such groupings seriously.

As with artificial computing systems, there may be flexibility when assigning

mathematical labels to grouped states. Here too slack may be picked up by con-

ventional or pragmatic considerations. This possiblity looms largest for highly

complex natural computing systems, such as the brain. Given our limited under-

standing, the choice to model a specific brain region in terms of a given com-

putational model may come down in part to the fact that the model is familiar,

straightforward to work with, mathematically elegant, and so forth. This should

come as no surprise. Pragmatic considerations such as these guide the application

of mathematics throughout science, and it would be remarkable if the application
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of computational notions were an exception.

Pragmatic considerations may enter the picture by another route. As with

any scientific modelling practice, the choice of scheme, and a model implemented

thereunder, may be underdetermined by the available behavioral, structural, or

functional evidence. In such cases, we may again fall back on pragmatic or con-

ventional considerations. Of course, once a model, under a specific scheme, is

adopted as a working hypothesis, we may in light of further investigations be led

to refine or even abandon it and the scheme that supports it. But underdetermi-

nation is a fact of scientific life, and there is no reason to think that the existence

of underdetermination makes the decision to work with a given scheme (or family

of schemes) arbitrary.

Clarifications

Two comments before moving on. First, I remain agnostic about the question

whether these considerations will recommend schemes which are metaphysically

privileged in some deeper sense (joint-carving, natural, or what have you). My

claim is that despiteUP, in specific investigative or engineering contexts, there can

be good reasons for choosing to work with a specific (kind of) labelling scheme,

just as in specific conversational contexts there can be good reasons for choosing

to work with a specific concept. This, I will argue next, is enough to address the

descriptive and explanatory failures usually thought to attend UP.

Second, however, I am not merely suggesting that philosophers simply defer

to scientific or engineering practice when considering how to describe systems

computationally. Although any adequate response to the triviality problem should

be grounded in computer and cognitive scientific practice, the ultimate tribunal is

whether these schemes meet our broader descriptive and explanatory demands.

They might not—there are no a priori guarantees. Progress on this question will

require a closer look at the computational sciences than I have space for here.

4.3 Theoretical failures revisited

With these points in mind it is time to revisit the theoretical failures thought to be

incurred by UP. In what follows I assume that there are non-arbitrary grounds for

describing a system in terms of a specific labelling scheme, or at least a principled

family of schemes.

Descriptive failures

Lack of empirical content. Relative to a fixed labelling scheme, it is an empiri-

cal question whether a given system implements a given computational model.
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Consider a scheme under which a digital circuit computes AND. This scheme

maps voltage levels to logical values. We can determine empirically whether a

given physical system implements an AND-gate under this scheme by determin-

ing whether it has the right electromagnetic properties and transforms them in

the right way. And although the empirical demands imposed by this scheme are

rather minimal, more complicated schemes, necessary for more complicated mod-

els, will impose more exacting demands. And in both cases the empirical demands

require far more than that a system simply has a certain number of microphysical

states.

No empirical discoveries. Relative to a fixed scheme, we may well discover that

a physical system implements one computation rather than another, or indeed no

computation at all. While this criterion is less important for artificial computing

systems, it is more important for natural systems. For instance, relative to the

scheme for AND, by examining how a configuration of neurons transforms volt-

age levels we may discover that they compute AND rather than OR. We may also

discover that there is no good way to characterize a give system computation-

ally, for we may find that there is no labelling scheme under which computational

descriptions help us understand its properties or behavior. This, I submit, is the

lesson to be learned from Putnam’s rock.

Widespread predictive failure. Relative to a specific scheme, a robot will im-

plement a specific pathfinding algorithm, hence will choose a determinate path

through the obstacle course. We can thus make substantive predictions about the

robot’s behavior, at least some of which may succeed. Of course, for any prediction

there will always be some scheme under which that prediction comes out correct.

But there is no reason to think that these alternatives will be indistinguishable.

For instance, some will yield accurate predictions in a wider range of scenarios,

including novel scenarios, than others, and this will be prima facie reason to prefer

them.

Unwarranted retrodictive success. Similarly, given the path actually taken, once

we fix upon a particular scheme there is a genuine question whether the pathfind-

ing computation implemented relative to that scheme could have produced that

path. Under a salient scheme, we can make substantive retrodictions about the

robot’s past pathfinding behavior, at least some of which may fail. Of course, we

must strike a balance between schemes that balance predictive and retrodictive

success. This is no different in principle from curve-fitting exercises elsewhere in

science. We might fit a set of data points perfectly by introducing additional terms

into our formula, at the cost of simplicity and and perhaps predictive accuracy. All

else equal, we should prefer curves that satisfactorily balance simplicity, retrodic-

tive and predictive accuracy, and much else. Ditto for labelling schemes and the

models they underwrite.
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Extensional adequacy. This one is trickier. The trouble is that labelling schemes

appropriate for one class of systems might not apply to another class of systems.

Suppose, for the sake of argument, that (i) schemes most appropriate for contem-

porary digital computers group states according to their electromagnetic proper-

ties, while schemes most appropriate for brains group states at least partly accord-

ing to their chemical properties, and (ii) schemes appropriate for digital computers

do not apply to brains, and vice versa. Then, relative to the former, brains don’t

compute, whereas relative to the latter digital computers don’t compute. Isn’t this

a problem?

In response, I suggest that we reject a context-independent conception of ex-

tensional adequacy. What matters is that we can correctly categorize systems

according to the standards operative in a given scientific context. It is enough

if, for instance, we can distinguish digital computers from rocks, walls, etc. in

those contexts where digital computers (and their properties, behavior, etc.) are

the phenomena of interest. Admittedly, this does leave open the possibility that

scientists in different contexts might talk past each other if they rely on different

labelling schemes. In such circumstances, one can try to disambiguate by flag-

ging the schemes at issue, being clear about one’s theoretical goals and interests

in describing systems computationally, and so forth. I hazard that in many cases

this will be enough to avoid serious misunderstanding. However, while I think

such scenarios will be rare, I see no reason to think that they will be completely

unavoidable. But that’s life.

Explanatory failures

With respect to computational explanation, the main point is that there can be

genuine computational contrasts relative to a fixed labelling scheme. Start with

the intrasystemic case. Relative to a specific labelling scheme, there is a fact of the

matter about what model a system implements. We can thus advert to that specific

model to explain the properties and behavior of that system. For instance, we

can explain that the robot takes this path because it implements that pathfinding

algorithm, relative to a scheme appropriate for explaining how the robot moves

about its environment.

Regarding the intersystemic case, the point to notice is that schemes appro-

priate for explaining one kind of system will typically not apply to other kinds

of system. For instance, schemes appropriate for explaining computations in the

visual system will presumably key in to specific features of such systems: neu-

ronal organization and activation patterns, voltage levels, spike rates, and so on.

Relative to a scheme framed in terms of these features, healthy visual systems will

quite likely perform different computations than injured visual systems. This is be-
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cause injured systems display patterns of organization and activation, spike rates,

and so forth. Thus, relative to such a scheme we can explain why individuals with

healthy visual systems display more competent grasping behavior (etc.) than their

injured counterparts.

Moreover, relative to a scheme appropriate for healthy visual systems, it is

highly unlikely that manifestly non-cognitive systems such as rocks, walls, or

pails of water compute anything, much less complex depth-from-disparity com-

putations. The reason is straightforward: these systems will simply do not have

the kinds of features cited by schemes appropriate for explaining visual systems:

they aren’t composed of neurons, don’t have spike rates, and so on. Accordingly,

in cognitive scientific contexts we can appeal to the computations carried out by

the visual system to explain why individuals with healthy visual systems, but not

rocks, walls, etc. display certain grasping behavior.

Of course, rocks presumably implement these computations somehow, relative

to some (perhaps highly gerrymandered) labelling schemes. But relative to the

kinds of labelling schemes operative in the contexts in which cognitive scientists

usually operate, these schemes will be utterly inappropriate for explaining physi-

cal systems. Cognitive science countenances schemes appropriate for explaining

the kinds of systems it investigates, namely brains. Claims about computations in,

say, the visual system, must be assessed relative to such schemes. Insofar as rock-

computations rely on schemes utterly inappropriate for describing brains, there

is little reason to think that UP threatens the use of computational notions in the

cognitive scientific contexts in which those notions are ordinarily deployed.

5 The usual suspects

Next I would like to contrast my response to the other main strategy in the lit-

erature, which targets UP directly. That strategy, recall, attempts to block UP by

supplementing SMA with an in-principle, global constraint on admissible group-

ings of states into state-types. In the language of labelling schemes, the idea is that

only certain kinds of labelling schemes may feature in genuine implementation re-

lations. For instance, causal accounts privilege causal labelling schemes, according

to which microphysical states may be grouped together only when they occupy ap-

proximately similar positions in a network of abstract causal relations, while rep-

resentational accounts privilege representational labelling schemes, which hold

that microphysical states may be grouped together only when they instantiate ap-

proximately similar representational properties.
17

And others are possible, as I

17
Bear in mind that ‘representational’ labelling schemes in this sense apply only to systems

which instantiate the relevant representational properties. This is distinct from the claim that
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noted in the introduction. However, for simplicity’s sake I will focus on these two

proposal in what follows.

This is not the place to argue that my account is all-things-considered prefer-

able to these alternatives. Instead, I would like to sketch how things look from the

vantage of RSMA. Understood as competing theories of the nature of computa-

tional implementation, causal and representational accounts are in tension. But

from the perspective of RSMA, causal and representational labelling schemes re-

flect distinct and potentially complementary ways of applying computational no-

tions for certain descriptive or explanatory ends. From this perspective, the princi-

ple question is not whether causal or representational (or whatever) schemes yield

a satisfactory account of implementation, but rather whether the kinds of compu-

tational models sanctioned by these schemes allow us to adequately account for

phenomena of interest.

To help bring this out, observe that these schemes are well-suited to different

kinds of explanatory tasks. Suppose we want to explain performance differences

between two chips, measured in the number of primitive mathematical or logical

operations required to compute some function. Perhaps the chips differ because

they implement different instruction set architectures (ISAs). An ISA describes the

basic logical and mathematical operations supported by the machine. Accordingly,

facts about a system’s ISA can explain certain performance differences: perhaps

one device uses a reduced instruction set while another uses a complex instruction

set, with more primitive instructions for complex operations. Because an ISA does

not specify how these instructions are executed in hardware, they are naturally

understood as a kind of abstract causal description. Consequently, we can use

ISA descriptions to explain this kind of performance difference while ignoring

finer-grained details concerning, e.g., their datapath, memory hierarchy, physical

constitution, and so forth.

At the same time, our explanatory interests can encourage us to look beyond

the abstract causal structure of a system. Some such cases are naturally addressed

in terms of representational schemes. For instance, in some cases, physical sys-

tems which are indiscernible with respect to their causal structure (at a fixed level

of description) implement distinct computational models. This can happen when

the systems are embedded in distinct linguistic communities, relative to which

the systems compute distinct numerical functions (Rescorla, 2013). In other cases,

systems with distinct causal structures implement the same computational model:

for certain explanatory purposes, computer scientists treat different kinds of mi-

croprocessors as register machines, despite substantial differences at the level of

labelling schemes are part of the theoretical machinery used for describing and reasoning about

physical systems.
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their internal dynamics (Curtis-Trudel, 2022). To be sure, opponents of represen-

tational accounts of implementation can make various maneuvers in responses

to these cases (e.g., Piccinini, 2020). My point, however, is that such maneuvers

needn’t be couched as defences of an alternative theory of implementation. Rather,

it is enough to treat these as differences about the sorts of labelling schemes that

are required meet our explanatory interests and demands.

As a final illustration, consider longstanding disputes about whether cogni-

tive computations should be understood representationally or not. One might at-

tempt to settle the issue by pairing a computational theory of cognition with a

non-representational theory of computation. The inference, to put it extremely

crudely, runs as follows: cognition is computational, but computation is non-

representational, so cognitive computations are non-representational.
18

Observe,

however, this is fundamentally a dispute about cognition, not computation. Ac-

cordingly, it should be answered in light of the explanatory interests and standards

of cognitive science — whether we should explain cognitive processes in represen-

tational terms or not. An account of implementation should be flexible enough to

accommodate both of these alternatives without prejudging the issue.

Stepping back, while I have focused here only on causal and representational

schemes, I submit that similar remarks apply to others in the literature. To reiter-

ate, the important point is that from the point of view of RSMA, these proposals

need not compete as accounts of implementation. Rather, they are better under-

stood as proposals about how to describe systems as implementing computational

models, under certain kinds of labelling schemes, for certain theoretical purposes.

If such proposals disagree, it is because they disagree about how best to describe or

explain some theoretical target, not whether they capture some deeper fact about

computation as such.

6 Limitations and outlook

I have argued that in certain scientific or engineering contexts, there can be non-

arbitrary grounds for describing physical systems computationally. However, this

conclusion is in certain respects limited. First, although I have argued that my

response avoids the most serious descriptive and explanatory failures incurred by

unlimited pancomputationalism, I have not argued that my response is preferable

all things considered. One critical avenue for future work will be to assess my

response against a fuller range of adequacy criteria for theories of implementation

(for more on which, see Piccinini, 2015; Shagrir, 2022).

18
I doubt anyone nowadays would accept such a crude inference. But (Stich, 1983) perhaps

comes close.

22



Second, I have not argued that computation is non-trivial in every theoretical

context. Indeed, on my view, it will typically be an empirical question whether

computational notions can be applied non-arbitrarily. But the discovery that com-

putational notions cannot be applied non-arbitrarily to a given system need not

undermine our confidence in computation wholesale. Rather, it would be a philo-

sophically important insight, for it would illuminate which kinds of physical phe-

nomena are fruitfully understood in computational terms and which ones are not.

Elaboration on this point would benefit from closer investigation of the particular

schemes employed in computer and cognitive science. This too remains on the

agenda for future work.
19

These limitations notwithstanding, I have argued that computation faces no

special triviality worry. The triviality argument was supposed to show that com-

putational descriptions are unlike physical (chemical, biological, etc.) descriptions,

in that the former but not the latter applied to physical systems indiscriminately.

However, if computational descriptions are on a par with other kinds of mathema-

tized scientific descriptions, then the former are no more trivial than the latter. In-

deed, the question of what makes a given computational description relevant turns

out to be an instance of the more general question of what makes a given scien-

tific description relevant. This is, of course, a familiar general problem, among the

hardest in the philosophy of science. It is no less a problem for being general (or

familiar). But it is no objection to computational descriptions per se that we lack

a uniform account of what makes them relevant for various scientific purposes.
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