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1 Introduction

The study of space and time is a natural meeting point for philosophy and
physics. Although one could start the story earlier (space, time and motion
were a major consideration in, for example, Aristotelian physics), this arti-
cle starts with Newton and the birth of modern physics, and works its way
through to the nature of space and time in our hitherto unestablished theory
of quantum gravity. Although the theories themselves differ considerably, the
considerations on which our understanding of spacetime is based will remain
remarkably connected. Unifying themes emerge: the symmetry group of the
dynamics is crucial to our understanding of spacetime structure (although un-
derstanding that symmetry group is not always straightforward). Understand-
ing this requires thought about the role of reference frames and coordinate sys-
tems. Perhaps more surprisingly, understanding inter-theoretic relations is also
crucial to understanding spacetime structure.

2 Spacetime in Newtonian theories

2.1 From Newtonian Space to Galilean Spacetime

Newton famously set his mechanics against a background of absolute space
and time. Absolute space can be thought of as a container relative to which rest
and motion may be defined; absolute space has parts, and these parts persist
through time. An object at rest remains in the same part of space, and an object
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in motion moves relative to absolute space. (Absolute time defines a universal
moment, or simultaneity standard, throughout absolute space.) Newton’s rea-
sons for postulating absolute space in the Principia are clear: he is well aware
that his system presupposes absolute, rather than merely relative, differences
between states of motion.

A scholium to Book I of the Principia posits a thought experiment in which
a bucket is suspended by twisted ropes that cause it to rotate. As Newton
notes, the concave shape of the water’s surface in a rotating vessel cannot be
explained either by motion relative to the bucket itself (which is greatest before
the water’s shape is much affected), or by motion relative to the environment:
spinning the bucket’s surroundings does not have the same effect. Insofar as
his observation is empirical, one might question this last claim - after all, an
experiment in which all the bucket’s surrounding are rotated is impossible.
But the crucial point to note here (especially in a context in which Newtonian
mechanics is not the last word!) is that Newton’s result follows from his me-
chanics - if a rotating bucket can be accurately described by Newton’s physics,
then the rotation of the bucket, but not its surroundings, leads to observable ef-
fects. This is a simple consequence of a fact that every physics student who has
modelled classical systems in rotating reference frames knows: Newton’s me-
chanics is not invariant under rotations. Newton postulated absolute space in
order to explain the existence of absolute rotational motion, which was a con-
sequence of his mechanics. Newton then defines absolute motion (rotational
or otherwise) as motion relative to absolute space.

Newton’s logic is clear, but his postulation of absolute space has other con-
sequences. If motion is defined relative to absolute space, then it follows that
there are facts about whether a body is at rest or in motion relative to absolute
space, and about what its precise velocity is. But, as Galileo famously observed,
absolute velocities are unobservable:

Shut yourself up with some friend in the main cabin below decks
on some large ship, and have with you there some flies, butterflies,
and other small flying animals. Have a large bowl of water with
some fish in it; hang up a bottle that empties drop by drop into a
wide vessel beneath it. With the ship standing still, observe care-
fully how the little animals fly with equal speed to all sides of the
cabin. The fish swim indifferently in all directions; the drops fall
into the vessel beneath; and, in throwing something to your friend,
you need to throw it no more strongly in one direction than an-
other, the distances being equal; jumping with your feet together,
you pass equal spaces in every direction. When you have observed
all these things carefully (though doubtless when the ship is stand-
ing still everything must happen in this way), have the ship pro-
ceed with any speed you like, so long as the motion is uniform and
not fluctuating this way and that. You will discover not the least
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change in all the effects named, nor could you tell from any of them
whether the ship was moving or standing still. [Galileo:1967]

Galileo is here describing an empirical symmetry: without reference to the
outside world, there is no way to tell whether the ship is stationary or mov-
ing with constant velocity. This robust empirical observation is enshrined in
Galileo’s Principle of Relativity, which holds both empirically and in all con-
temporary theories. It is also enshrined as a theoretical symmetry in Newton’s
mechanics, which is invariant under the group of Galilean transformations:

t′ = t+ τ, x′i(t′) = Ri
jx

j(t) + vit+ ai (1)

where Ri
j is a constant orthogonal matrix and ai is a constant.

This means that Newtonian mechanics is invariant under velocity boosts:
the symmetries of Newtonian mechanics rule out the possibility of observ-
ing any internal difference between Newtonian systems moving with different
constant velocity. Newtonian mechanics thus enshrines the Galilean Principle
of Relativity as a symmetry.

But, as Leibniz famously pointed out in his correspondence with Clarke (a
devotee of Newton), all of this poses a problem for Newton. If absolute space
exists, then the world is filled with facts about absolute velocity - facts about
the velocity of my office chair, of the earth itself, and of the other planets and
stars. And yet no experiment has ever detected these, and Newtonian me-
chanics itself tells us that they are in principle unmeasurable. If one boosted
all the contents of the universe by some constant velocity, absolutely nothing
measurable would change. This places Newton in a tricky position: on the one
hand, he needs absolute space to underpin the observability of absolute rota-
tional acceleration, on the other hand, absolute space has too much structure.
Because absolute space fails to reflect the symmetries of Newtonian mechan-
ics, it introduces structure (in the form of absolute velocities) that can never be
observed.

Leibniz saw the problem with universal velocity boosts as an argument for
relationism - the view that space is not a substance, but reduces to relations be-
tween bodies, as opposed to Newton’s substantivalism - the view that space is a
substance. However, neither view seems to quite fit the features of Newtonian
mechanics - relationist views fail to explain why rotation is absolute in New-
tonian mechanics, and substantivalism fails to explain why velocities seem to
be relative. Newton himself had no way out of this dilemma, and the mod-
ern literature tends to conclude that he was right to postulate absolute space
given the tools that he had. However, it would be better to have a formulation
of the theory in which the spacetime structure supported absolute rotational
acceleration without introducing unobservable absolute velocities. Contempo-
rary mathematical resources allow us to do just that. In 1967 Howard Stein1
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Figure 1: Galilean Spacetime: Each ‘leaf’ here represents a three dimensional space at a time, and
the trajectories the worldlines of point particles. This geometrical structure can be represented by
a tuple (M, tab, h

ab,∇) where M is a four dimensional manifold, tab is a temporal metric, hab is a
spatial metric, and ∇ is derivative operator that imposes a flat affine connection. Note that straight
lines in spacetime are picked out by the connection, not by extremal distance in a spacetime metric
- Newtonian spacetimes have separate spatial and temporal metrics and no spacetime metric.

proposed that the structure of a four dimensional classical spacetime could un-
derpin Newtonian mechanics in a way that allowed for absolute acceleration
without absolute velocity. He dubbed this structure Galilean Spacetime.

Galilean Spacetime, also sometimes called Neo-Newtonian Spacetime, is
a four-dimensional spacetime with a preferred foliation into same-time slices
- that is, it preserves the absolute simultaneity structure of Newtonian me-
chanics. However, instead of identifying points across time, the spacetime is
equipped with affine structure (represented geometrically via a connection)
that distinguishes straight timelike trajectories in the spacetime from curved
ones (timelike trajectories are those that intersect different time slices). Straight
trajectories represent the possible motions of force-free point particles - the in-
ertial trajectories - while curved trajectories represent accelerated motion. The
reference frames associated with these inertial trajectories are inertial frames:
those in which force-free bodies move in straight lines, and in which Newton’s
laws take their standard form. This provides the structure needed to define
absolute accelerations without absolute velocities.2

The move to Galilean spacetime can be seen as motivated by what is some-
times known as Earman’s principle (Earman, 1989, p.46): the symmetries of
our spacetime should match the symmetries of our dynamical theories.

2.2 Alternative Newtonian Spacetimes

Although there is some consensus that Neo-Newtonian spacetime captures the
spacetime structure needed for Newtonian mechanics better than Newton’s
absolute space, it fails to fully account for the symmetries of Newtonian me-
chanics. Newton notes a further symmetry in Corollary VI of his Principia:
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If bodies, any how moved among themselves, are urged in the di-
rection of parallel lines by equal accelerative forces; they will all
continue to move among themselves, after the same manner as if
they had been urged by no such forces. (Newton, 2003, p.31)

Although Leibniz did not mention it, Newton’s mechanics has another em-
pirical symmetry: all relative motions are invariant under uniform, arbitrary,
linear accelerations. That is, it looks as if the symmetry group of the theory
should be wider than the Galilean group, and one should seek a theory that is
invariant under the wider Maxwell group of transformations:

t′ = t+ τ, x′i(t′) = Ri
jx

j(t) + ai(t) (2)

where ai(t) generated arbitrary time-dependent translations.

But Newton’s equations as standardly presented are not invariant under
the full class of transformations above - if all bodies are subjected to forces
causing equal accelerations, then, in Newtonian terms, the absolute forces dif-
fer. The question of invariance is a slightly tricky matter here - one might have
argued that Newton’s original mechanics is not invariant under the Galilean
transformations precisely because it postulates absolute velocities, and these
are not invariant under boosts! But excising absolute forces from the standard
presentation of Newtonian mechanics is a trickier matter than excising absolute
velocities. The apparent symmetry under linear accelerations seems to require
some reformulation of the dynamics of the theory, and a move to a spacetime
setting that reflects these dynamical symmetries.

There are now (at least) two options. One, advocated by Simon Saunders
(2013), is to move to Maxwellian Spacetime3 and articulate a theory that is
explicitly invariant under the Maxwell group. Saunders thus offers us a ver-
sion of Newtonian mechanics (which Wallace (2020) calls vector relationism) that
gives a well-defined dynamics for the vector displacements of particles. This
theory has some interesting features. It has much less structure than Galilean
spacetime: it does not appear to posit a structure of inertial frames, a stan-
dard part of defining a spacetime structure. On the other hand, it is not a fully
relational theory, nor should it be. Although uniform linear accelerations are
unobservable in Newtonian systems, rotational accelerations are observable,
as demonstrated by Newton’s rotating bucket. So the theory requires at least
enough background structure to distinguish absolute acceleration from relative
acceleration. If one chooses to express the spacetime structure in the language
of differential geometry (an awkward fit for Maxwellian spacetime), the space-
time structure is represented by a tuple , ta, h

ab, [∇]⟩, where the manifold and
metrics are the same as in the Galilean case, but such affine structure as there is
is now represented by a class of derivative operators that pick out a standard
of non-rotation. Given that inertial trajectories are usually picked out by the
derivative operator, this makes explicit the sense in which there is no class of
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inertial trajectories defined by the structure of Maxwellian spacetime.

Another option is to note that Newton’s Corollary VI expresses a symmetry
very like that expressed by general relativity’s equivalence principle (further dis-
cussed in 4.1). Given the equivalence of gravitational and inertial mass, grav-
ity provides just the universal force needed to induce equal accelerative forces.
Bodies moving in a homogeneous gravitational field will experience the same
relative motions as unaccelerated bodies. This is the insight that led Einstein
to postulate a curved spacetime structure in general relativity in which force-
free bodies follow geodesics of the curved metric. Elie Cartan (1925) was the
first to realise that the reasoning that leads to curved spacetime in a relativistic
context could also lead to curved spacetime in a Newtonian context: the result
is Newton-Cartan theory, also known as Geometrized Newtonian Gravitation.
This theory maintains the absolute time structure of Galilean spacetime, but
replaces the flat affine connection with a dynamical connection that curves in
response to matter. Bodies that Newtonian gravitation considered to be mov-
ing under gravitational forces are now considered to be freely falling bodies
following the inertial paths picked out by this new, non-flat connection. Mala-
ment (1995) offers a formal account that connects Newton-Cartan theory to the
kind of symmetry considerations mentioned above. Knox (2014) argues that,
in light of Corollary VI, Galilean spacetime is an unstable stopping place: once
one is committed to finding a spacetime structure that respects the empirical
and dynamical symmetries of Newtonian systems, those commitments lead
inexorably to Newton-Cartan theory.

This suggests a puzzle: how do the same kinds of symmetry considerations
seems to lead both to Maxwellian spacetime and to Newton-Cartan spacetime?
Further work has explored the degree to which Saunders’ vector relationism in
Maxwellian spacetime with gravitation is equivalent to Newton-Cartan the-
ory. Weatherall (2016) demonstrates that there is a natural two-way mapping
between Newton-Cartan and Maxwellian spacetimes with gravitation. Wal-
lace (2020) gives a more philosophical account of the link between the two
accounts: Wallace points out that although Maxwellian spacetime does not
‘come’ equipped with inertial structure, once gravitating systems are intro-
duced, an effective or emergent inertial structure can be defined. This inertial
structure is that of Newton-Cartan theory. One moral of Wallace’s paper is that
spacetime plays two different roles in our theorizing; in this case they come
apart. When one asks what the ‘right’ spacetime is given some symmetry, one
might be asking for the minimal background structure needed to write down a
theory with the relevant symmetry. Maxwellian spacetime provides this struc-
ture. Alternatively one might be asking for the inertial structure of the theory,
in order to understand force-free motion and preferred reference frames. This
latter kind of spacetime structure can, according to Wallace, be scale-relative
and emergent.
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3 Spacetime in special relativity

3.1 From Einstein to Minkowski

Spacetime considerations are more familiar in the relativistic context. In 1905,
Einstein pointed out that, once combined with the newly established fact that
the two way speed of light was the same in all reference frames, the relativity
principle could be used to derive the Lorentz transformations:

x′ = γ(x− vt) (3)

t′ = γ
(
t− xv

c2

)
(4)

where γ = 1√
1−v2

c2

. This transformation, of course, is for a velocity boost of

v along the x axis, and other spatial coordinates transform trivially. A more
general, but possibly less informative, form of the transformations relevant for
relativity is given by.

x′µ = Λmunux
ν + aµ (5)

where Λmunu is the Lorentz transformation matrix (defined by the need to
preserve the spacetime interval) and aµ generates spatiotemporal translations.
Equation 5 includes translations, and therefore represents a slightly wider group:
the Poincaré transformations.

The Poincaré group is the symmetry group of electromagnetism (as well as
all other relativistic theories). Following Earman’s Principle (see section 2.1), it
is natural to seek a spacetime whose symmetries match these dynamical sym-
metries. Einstein, however, did not originally think of his special theory of
relativity in these terms, and indeed, was somewhat relectant to adopt them.4

In Einstein (1905), he was focused on operational matters - the lengths and
times reflected by rods and clocks in motion, which in turn depended on the
equations governing these moving bodies. It was only in Minkowski’s 1908
presentation of the theory that its now-standard setting in Minkowski Space-
time was developed. From this perspective, the Lorentz transformations re-
late inertial coordinate systems in which a flat pseudo-Riemannian Minkowski
metric takes the form ηµν :=diag(−1, 1, 1, 1).

3.2 Time in special relativity

One crucial way in which Minkowski spacetime overturns our Newtonian in-
tuitions in in the relativization of simultaneity. Whereas Newtonian spacetimes
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Figure 2: Minkowski Spacetime: The Minkowski metric defines a spacetime interval between any
two spacetime points. This in turn distinguishes spacelike and timelike trajectories and the light-
cone structure. Inertial frames are those in which force-free bodies move in straight lines and the
Minkowski metric and the relativistic laws take a particular form. The simultaneity plane in this
diagram no longer reflects invariant structure, but depends on the reference frame adopted. Image
created by Stib available at https://en.wikipedia.org/wiki/Minkowski_space.

come equipped with a preferred foliation into simultaneity slices, in special rel-
ativity, simultaneity is only defined relative to a reference frame. Observers in
different states of motion judge different sets of events to be simultaneous.

The relativity of simultaneity has far-reaching consequences for the phi-
losophy of time.5 In particular, it appears to rule out both presentism and the
growing block accounts of the metaphysics of time. According to the presentist,
reality is fundamentally three-dimensional and changes continuously - the pre-
sentist holds that all and only the present is real. The growing block advocate
sees reality as four-dimensional sand continuously growing as a new moment
becomes present. It is relatively easy to see how this is at odds with the relativ-
ity of simultaneity: both views assume that there is a unique present moment,
but Minkowski spacetime does not admit of a preferred foliation into same-
time spaces.

This incompatibility between special relativity and presentism was devel-
oped in detail by Hilary Putnam (1967) (although Wim Rietdijk articulated a
similar argument at roughly the same time (1966) and the argument has also
been put forward by Saunders (2002) and others.) Putnam takes presentism
and special relativity to be incompatible with the following three claims:

1. I-now am real.

2. At least one other observer is real. It is possible for this observer to be in
motion relative to me.
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Figure 3: The relativity of simultaneity: Event B is simultaneous with event A in the green ref-
erence frame. B occurs before A in the blue frame, and after A in the red frame. Image created
by Wikipedia user Army1987, available at https://en.wikipedia.org/wiki/Relativity_
of_simultaneity.

3. If B is real for A and C is real for B, then C is real for A. (The ‘real for’
relation is transitive.)

The conjunction of these three claims (which amount to the claim that ‘A is real
for B’ must pick out an equivalence relation) with the relativity of simultaneity
implies that all observers at all times should be real for one another: if observer
B (in motion relative to A) is on A’s simultaneity slice and hence present and
real for A, then all those on B’s simultaneity slice (which differs to A’s) must be
real for A as well. Thus, for Putnam, relativity of simultaneity implies not just
the negation of presentism but eternalism: the view that all events at all times
are equally real. This view is sometimes also called the block universe view.

Many, both in physics and philosophy, embrace the block universe, but
some resist. If one wishes to rehabilitate presentism in the face of special rel-
ativity the options fall into two broad categories. The first is to redefine what
one means by the present, decoupling it from the concept of a simultaneity sur-
face. This may involve denying one of Putnam’s three claims. The second is
to deny that special relativity should be the last word on our metaphysics of
time, either by arguing that metaphysics gives us reason to believe in a privi-
leged reference frame, or by arguing that physics itself might introduce such a
frame.

How might one change the notion of the present to better fit relativistic
physics? Howard Stein (1991) pointed out that the move to spacetime means
that, in some sense, the analog of temporal moment in relativity is a spacetime
point. This suggests that the relativistic analog of classical presentism is so-
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called “point presentism”; only a single spacetime point is real. This option,
which involves denying Putnam’s second premise, has never actually been de-
fended; Stein is interested in defending a notion of ‘becoming’, rather than
presentism itself. Not only is it lonely (see (Hinchliff, 2000, p.597), but it means
that many past events (in the past lightcone) were never present. An alter-
native, advocated by William Godfrey-Smith (1979), is “cone presentism”, in
which the present for a given point is identified with its past lightcone. This
does a good job of capturing our everyday notion of the present at ordinary
scales - after all, the things considered to be present are usually the things one
can see - but is quite counter-intuitive at larger scales: given that cosmic mi-
crowave background (CMB) radiation is currently reaching us, the big bang
itself is on our past light cone and hence counts as present. Cone presentists
must also give up the transitivity of the present - there will be events present
to those on my past light cone but not to me. (Note that cone growing block
views avoid this.)

If radical re-conceptualizations of the present make “red-blooded presen-
tists squirm” (Savitt, 2000, p.566), then a better option may be to insist that,
despite the empirical success of special relativity, there is a preferred foliation
of spacetime and the present may be identified with a three-dimensional spa-
tial slice. Proponents of this view will note that nothing in special relativity
actually forbids the idea of a preferred reference frame and hence preferred
foliation - it is just that, insofar as special relativity is correct, such a reference
frame would be undetectable, in principle and in practice. The motivation for
postulating such a frame must come from outside of special relativity. The mo-
tivation is usually metaphysical - presentists claim that coherent metaphysics
requires a notion of the present not postulated by special relativity. However,
some presentists also appeal to empirical or theoretical motivations. For exam-
ple, Lee Smolin (2013, Ch.14) argues that the CMB picks out a preferred ref-
erence frame, that hidden-variable theories require it, and General Relativity
can be reformulated as shape dynamics, which is more hospitable to presen-
tism. Many presentists (Smolin included) appear to believe that our conscious
experience is evidence for the existence of this reference frame, although it is
unclear how the physics of the brain might work so as to probe non-Lorentz
covariant physics.

3.3 Clock synchrony and the conventionality of simultaneity

It has also been claimed (Reichenbach, 1958; Grünbaum, 1973) that simultane-
ity in special relativity is not only relative but also conventional: one can adopt
any value for the one-way speed of light one chooses, as long as one maintains
the empirically established two-way speed of light. Einstein (1905) explicitly
introduces his clock-synchrony procedure as a convention: To synchronise two
clocks, send a light pulse from clock A at time t0, and reflect it back from clock
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B to clock B. If the light is received back by A at time t2 as measured by clock
A, then the time assigned to clock B at the moment of reflection should be
t1 = t0 + 1

2 (t2 − t0). Because any one-way velocity measurements already
assume that we have clocks synchronised at different points, we cannot es-
tablish the one-way speed of light independent of clock synchrony, and both
the one-way speed of light, and our standard of clock synchrony and hence of
simultaneity must be considered conventional.

This leaves open the idea that we might adopt some alternative synchrony
convention t1 = t0 + ϵ(t2 − t0) where ϵ ̸= 1

2 . Doing so has far-reaching conse-
quences for what are usually thought of as standard results in special relativity.
With a non-standard synchrony convention, the Lorentz transformations look
different, and length contraction and time dilation are no longer governed by
the usual equations. The speed of light now depends on the direction in which
it travels, as do other velocities; length contraction and time dilation likewise
vary with direction of travel. If ϵ can take values smaller than 0 or larger than 1,
then causality is not respected in the clock coordinates; it is possible for signals
to arrive at B before they left A.(See Winnie (1970a,b) for more details.)

These odd consequences of a non-standard synchrony convention have led
various authors to argue that clock synchrony is not, after all, conventional,
and that there are non-pragmatic reasons to adopt the Einstein synchrony con-
vention. These arguments try to establish that some phenomenon requires
standard synchrony - a notable example is the argument from slow clock trans-
port, originally proposed by Eddington (1923). This argues that one can estab-
lish a synchrony convention by slowly transporting a clock from A to B, and
then synchronising the two clocks present at B. If one considers the limit of
a sequence of such processes as the velocity of the transported clock tends to
zero, one gets a standard of synchrony that coincides with the Einstein syn-
chrony convention. The trouble here, of course, is that the very concept of
‘slow’ transport depends on a standard of one-way velocity, and thus assumes
a synchrony convention. Various attempts have been made (Bridgeman, 1962;
Ellis and Bowman, 1967) to establish a standard of slow clock transport that
does not depend on synchrony, but it is generally agreed that all of these im-
plicitly assume some kind of synchrony standard.

A more widely accepted argument for non-conventionality was proposed
by David Malament in 1977. Malament argues that, relative to some inertial
observer with worldline O, there is only one simultaneity relation that can be
defined if we demand that that relation is an equivalence relation, is defined
in terms of O and the structure of causal connectability, and relates points on
O to points off the worldline. This relation is the one picked out by the stan-
dard synchrony convention. Technically, the result is valid, and some authors
(e.g.Torretti (1983) and Norton (1992)) accept that this closes the issue of the
conventionality of simultaneity. Others (e.g. Grünbaum (2010)) disagree with
the restrictions Malament places on the simultaneity relation, and hence argue
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that his result does not establish non-conventionality.

With hindsight, one can adopt a perspective from which both positions are
understandable. Establishing a standard of simultaneity effectively involves
picking a coordinatization of time, and then insisting that velocities and simul-
taneity are defined via the relevant coordinates. From this perspective, we are
free to choose our coordinates however we like - our choice of coordinates is
conventional. At the same time, some coordinates are better adapted to the ge-
ometrical structures of Minkowski spacetime than others. In these coordinates,
special relativistic laws will take familiar forms. Malament’s result shows that
the standard inertial coordinates associated with an inertial worldline bear a
particular relation to the causal structure of spacetime, and are thus privileged.
This result is compatible with our freedom to choose mal-adapted coordinates.
The conventionality of simultaneity debate thus highlights a theme that ap-
pears elsewhere in the philosophy of spacetime: the relationship between co-
ordinate descriptions of spacetime theories and geometrical descriptions that
aim to describe spacetime structure in a coordinate independent way.

3.4 Dynamical and geometrical relativity

Questions about the relationship between dynamics, coordinates, and geome-
try sit beneath many debates in the philosophy of spacetime. They reach their
most explicit form in the literature on special relativity. An orthodox position
in the literature (expressed in e.g. Friedman (1983) and Maudlin (2012)) holds
that the content of special relativity is best captured by expressing the struc-
ture of Minkowski spacetime in coordinate invariant form. That is, the theory
is well-described by a tuple of geometrical structures ⟨M,η, ϕ⟩, where M is a
four-dimensional manifold, η is the Minkowski metric, and ϕ are matter fields
whose dynamics are adapted to the Minkowski metric. Implicit in this kind of
approach is the idea that this description captures the structure of spacetime it-
self, and that Minkowski’s reformulation of Einstein’s theory was a substantial
step forwards in understanding the nature of space and time.

In his book Physical Relativity, Harvey Brown questions this orthodoxy. He
points out that the Minkowski metric is empirically relevant because it has op-
erational significance; it governs the behaviour of the “rods and clocks” used to
survey physical geometry. This leaves open a question of why physical systems
like rods and clocks reflect the relevant geometry. Brown takes the orthodox
position to assume that the behaviour of material bodies is constrained by the
structure of spacetime (as in Nerlich (1979)), but argues that Einstein thought
that such behaviour requires a “constructive” explanation in terms of the con-
stituents of matter. While a full such picture is unavailable, Brown argues that
we have a shortcut if we assume that the laws governing matter dynamics are
Lorentz covariant. It is, he claims, this fact about the symmetry of the laws,
and not the structure of spacetime, that explains why moving clocks dilate and
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moving rods contract. In Brown and Pooley (2001), this argument is explicitly
used in favour of a kind of relationism: Minkowski spacetime is held to be “a
glorious non-entity”.

Brown’s work points to the need for analysis of the relationship between
the structure of spacetime and the symmetries of the dynamical laws. At least
three options present themselves in the literature. One possible position is that
spacetime is a substantival entity whose geometry serves to constrain its con-
tents. Another is the relationist position: spacetime is reducible to the symme-
try properties of the laws. A third, offered by Myrvold (2019), interprets Brown
not as reducing spacetime geometry to dynamical symmetry, but as pointing
out that the two are conceptually intertwined. Knox (2019) interprets this view
as a form of spacetime functionalism, the view that spacetime is whatever plays
the functional role of spacetime, part of which is to define the dynamical sym-
metries.

4 Spacetime in general relativity

The philosophy of general relativity (GR) shares some themes with the philos-
ophy of special relativity and Newtonian spacetime theories, but several de-
bates are fundamentally changed by key features of the theory. For one thing,
the metric field in GR is now governed by dynamical equations - the GR field
equations. As a result, the issue discussed in 3.4 has no exact parallel; there
is little question that the metric is one of the entities postulated by the theory.
For another, the theory does not, in general, admit of any global coordinatiza-
tion, let alone a choice of privileged coordinates. The combination of these two
(related) facts means that questions about symmetries, coordinate transforma-
tions, and the reality of spacetime take on a different character in GR.

4.1 The equivalence principle

In 1919, Einstein offered a retrospective origin story for general relativity: in
1907, while writing an essay on special relativity, Einstein had “the happiest
thought of my life”:

the gravitational field ... has only a relative existence. Thus, for an
observer in free fall from the roof of a house there exists, during his
fall, no gravitational fieldâat least not in his immediate vicinity. If
the observer releases any objects, they will remain, relative to him,
in a state of rest, or in a state of uniform motion, independent of
their particular chemical and physical nature.(Einstein, 1919)
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What is now usually called the Einstein Equivalence Principle was central
to the development of general relativity. Its core thought is that there is an
intimate relationship between gravitation and inertia: homogeneous gravita-
tional fields can be simulated by accelerations, and they can be cancelled by
the acceleration of freefall. The most perspicuous formulation of this princi-
ple, and its relation to the “Weak Equivalence Principle”, which asserts the
equivalence of gravitational and inertial mass, is a matter of some debate -
see Lehmkuhl (2021) for a comprehensive overview. There are also interesting
questions about exactly how the principle played a role in Einstein’s thinking -
see Norton (1986) or Norton (1984). But even without the historical details, the
principle itself is puzzling in the context of general relativity. Once we move to
GR, it is doubtful that anything can be identified with the gravitational field,
and those things that might be are usually tensorial and cannot be transformed
away. There is certainly no counterpart for a homogeneous gravitational field.
It therefore seems that the Einstein Equivalence Principle is not applicable to
GR itself - it, as Synge (1960) famously commented, merely “performed the of-
fice of midwife at the birth of general relativity” and should now be “buried
with appropriate honours”.

Even if the Einstein Equivalence Principle should not be buried, there is
another equivalence principle that has more claim to be contentful in GR, al-
though this too is contested. The Strong Equivalence Principle (SEP) says some-
thing about the local validity of special relativity in GR. While Einstein dis-
cussed something like this principle at various points (Lehmkuhl, 2021, p.134),
its first clear formulation is due to Wolfgang Pauli:

For every infinitely small region of the world (i.e. a region so small
that the spatial and temporal variation of gravity can be neglected
therein), there always exists a coordinate system K0(X1, X2, X3, X4)
such that there is no influence of gravity either on the motion of
mass points or on any other physical processes. (Pauli, 1921)

The idea here is that there exist freely falling coordinates in which any grav-
itational effects may be neglected, and the laws may be formulated as they
would in inertial coordinates of flat Minkowski spacetime. The best formu-
lation of the principle is a matter of some debate. The SEP is only valid in
some neighbourhood to the extent that tidal effects due to curvature may be
neglected. This has lead some (e.g. Ohanian (1977)) to try to constrain the
principle to a point. Others (e.g. Brown (2005) or Knox (2013)) think that it
holds approximately for some small region picked out by the accuracy of the
measurement systems involved. Harvey Brown sees the SEP as crucial to the
‘geometricity’ of general relativity. That is, the SEP is taken to pick out that
feature of the matter fields that ensures that the metric has operational signifi-
cance. Further work by Brown, Read and Lehmkuhl (Read et al., 2017; Brown
and Read, 2021) explores the requirements and limitations of this connection
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to the matter fields. Disagreements in this literature center around the tension
between two thoughts. The first is the compelling idea that the SEP says some-
thing non-trivial about the behaviour of matter in GR, and that what it says is
intimately related to the validity of the Einstein Equivalence Principle in pre-
GR theories. The second is the undeniable fact that, in a curved spacetime, the
inertial frames picked out by the theory only hold locally and approximately.

Some prefer to cast their expression of the local validity of special relativ-
ity in a more geometrical form. The GR metric, it is claimed, is ‘locally flat’
- that is, it approximates the Minkwoski metric at small scales. This requires
some non-trivial sense in which one metric approximates another. Fletcher
and Weatherall (2023a) explore various ways to cash this out, and conclude
that none are contentful - insofar as one can find true readings of the statement
that one metric locally approximates another, every metric approximates every
other with the same signature. One might hope (returning to something more
like the full SEP above) that one could give the claim more content if one said
something not only about the metric, but about the form of the laws that are
adapted to it. This too, proves tricky to make precise (Fletcher and Weather-
all, 2023b). Many formulations appeal to ‘minimal coupling’, often stated as
the holding that one should replace ordinary derivatives in pre-GR laws with
the covariant derivative in GR. While there is something right about this - the
behaviour of matter in the SEP does depend on a general absence of curvature
coupling - more work is needed to make this precise.6

4.2 The hole argument

Einstein saw the lack of global inertial structure in his theory as a positive move
away from absolute structures. One of his motivations for the original Einstein
Equivalence Principle was the desire to implement a General Principle of Rel-
ativity - to create a theory with no privileged reference frames whatsoever, not
even inertial frames. In order to do this, he sought a theory that could be writ-
ten in any coordinates whatsoever - that is, a generally covariant theory.

But general covariance is conceptually tricky. In 1913, Einstein was very
close to arriving at the GR field equations, but it would take him two more
years before arriving at their final form (Norton, 1984, 1995). This is because
concerns about general covariance led him to temporarily abandon the origi-
nal form of the theory. Einstein became convinced that general covariance led
inevitably to an indeterministic theory. The problem is this: generally covari-
ant equations remain true under arbitrary coordinate transformations - that is,
if the variables of the theory (like the metric) are transformed: g(x) → g′(x′).
This passive transformation seems unproblematic. But, formally, if g′(x′) sat-
isfies the equations, so will g′(x). The transformation g(x) → g′(x), a diffeo-
morphism, appears to be an active transformation - that is, it appears to involve
assigning different variable values to one and the same spacetime point, be-
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cause we have held the original coordinate assignments fixed. (This formula-
tion of the problem follows Pooley (2021), which gives an up to date overview
of the hole argument).7 Einstein reasoned as follows: imagine an active diffeo-
morphism that leaves variables unchanged everywhere except some bounded
spacetime region in our causal future - a ‘hole’ diffeomorphism. No amount of
information about the physics outside of the hole determines the values of the
variables at points inside the hole (determines whether, at some point a inside
the hole, we have g(a) or g′(a)). Thus the theory is indeterministic.

In 1987, John Earman and John Norton recast this as an argument against
spacetime substantivalism - the view that spacetime is a substance. In their view,
the active interpretation of the diffeomorphism arises because we reify the
points of GR’s four-dimensional manifold. That is, the problematic interpre-
tation of the diffeomorphism comes from attributing a certain meaning to the
transformation ⟨M, g, T ⟩ → ⟨M, g′, T ′⟩, where now g represents the metric and
T the matter fields. The active reading of the diffeomorphism is only possi-
ble because we see the above as assigning new metric and matter-field values
to one and the same manifold points, and hence see our transformed tuple as
representing a new physical situation. Earman and Norton claim that the sub-
stantivalist is required to interpret the transformation in this way: taking these
Leibniz Shifts to represent new physical situations is an “acid test of substan-
tivalism”Earman and Norton (1987)[p.521]. In order to avoid indeterminism,
one should take the diffeomorphically related solutions to represent one and
the same physical situation. Earman and Norton take this to involve the denial
of substantivalism.

Those who accept Earman and Norton’s argument must either deny sub-
stantivalism (Earman and Norton’s preference), or accept indeterminism (see,
e.g. Brighouse (1997)). Others resist Earman and Norton’s central dilemma.
A number of strategies have been put forward for reconciling substantivalism
with the hole argument. Tim Maudlin’s metrical essentialism (1988; 1990) argues
that spacetime points hold their metrical properties essentially, so that, rela-
tive to one choice of representation, diffeormorphically related solutions rep-
resent metaphysically impossible worlds. Sophisticated substantivalists, such
as Hoefer 1996 or Pooley 2006 deny that the reality of Leibniz shifts should be
a hallmark of substantivalism. They note that viewing ⟨M, g, T ⟩ and ⟨M, g′, T ′⟩
as representing different possible worlds depends on haecceitism, which holds
that worlds could differ solely in terms of which objects (in this case space-
time points) are assigned which properties (in this case the values of metric
and matter fields). Metaphysical commitment to the reality of an object need
not commit us to the reality of purely haecceitistic differences, so substantival-
ism need not commit us to interpreting diffeomorphically-related solutions as
distinct physical possibilities. A wide range of authors (e.g. Butterfield (1989);
Stachel (1993, 2014); Rynasiewicz (1994); Saunders (2003)) ultimately endorse
anti-haecceitism as a solution to the hole argument, although they may not
always call themselves sophisticated substantivalists.
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More recently, Weatherall (2018) and Fletcher (2020) have suggested that
the hole argument rests on a mistaken understanding of the representational
capacities of general relativity’s mathematical structure. A correct understand-
ing of the notion of a Lorentzian manifold should commit one to regarding
diffeomorphically related solutions as representationally equivalent. Other au-
thors question whether mathematics alone can determine one’s interpretation
of GR models - see Pooley and Read (2021) or Roberts (2020).

4.3 Background independence and general covariance

Although their metaphysics may differ, the vast majority of authors in the hole
argument literature ultimately reach the same conclusion that Einstein reached:
models related by diffeomorphisms can be thought of as representing one and
the same physical situation. General covariance is thus secured as an unprob-
lematic feature of general relativity. But what of Einstein’s original motivation:
to implement a general principle of relativity? Einstein’s interest in such a
principle was inspired, in part, by his hope that his theory would implement
Machian relationism, and that all spacetime features would depend on the dis-
tribution of matter. This did not come to pass in the final theory: in the end, the
metric has its own degrees of freedom independent of matter, so the geometry
of spacetime is not fully specified by the matter fields. Nonetheless, general co-
variance does seem to implement some kind of generalised principle of relativ-
ity: except in specific solutions, GR has no globally preferred reference frames,
and is written in the explicitly coordinate independent language of differential
geometry.

To many this has seemed to be a crucial feature of GR and perhaps the fea-
ture that should be carried through into a theory of quantum gravity. However,
putting one’s finger on an account of substantive general covariance proves
tricky. The problem stems from the ‘Kretschmann objection’ (Kretschmann,
1917): all our familiar pre-GR theories of spacetime can be rewritten in the lan-
guage of differential geometry, with their geometrical structure made explicit.
Once written in such a form, they too have equations that hold true in any co-
ordinates whatsoever. Why, then, think of this as a special feature of general
relativity? General covariance seems to be trivial.8

To get a handle on what an account of substantive general covariance might
involve, start by noting that, while Kretschmann is correct that special relativ-
ity and other pre-GR theories can be given a generally covariant form, general
relativity appears novel insofar as it must be written in such a form - there is
no non-generally covariant formulation of GR. This feature of GR stems from
the absence of preferred reference frames in the theory, and that, in turn, stems
from the dynamical nature of the GR metric. Contrast this with the Minkowski
metric in SR, which underpins the existence of a preferred class of frames
in which the theory can be written in its non-generally-covariant form. The
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Minkowski metric, unlike the GR metric, remains the ‘same’ across dynamical
solutions of the theory. Let us (following Anderson (1967)) define:

Absolute Object. A geometrical object that is the same (up to isomorphism) in all
dynamically possible models of the theory.

and

Background Independence, absolute objects version. A theory is background
independent if it has no absolute objects in its formulation.

This captures a sense in which special relativity, even in its generally co-
variant formulation, differs from GR. The Minkowski metric is present in every
model of the theory, qualifies as an absolute object, and thus provides a fixed
and non-dynamical background on which the theory plays out. However, this
definition of background independence is insufficient to distinguish GR from
SR: for one thing, as Brian Pitts (2006) points out, GR has an absolute object in
Anderson’s sense, namely

√
−g. This prompts a search for a better definition

of Background Independence. One might, for example, replace the notion of
absolute object above with the concept of a fixed field - a field fixed by the kine-
matics of a theory or an absolute field - a field specified by the kinematics and
fixed in all the dynamical models of the theory. These successive definitions
try to capture the sense in which the Minkowski field qualifies as a piece of
background structure where, for example,

√
−g does not.

In the end, no particular tweak to the notion of absolute object succeeds in
carving the space of theories in a way that all commentators agree on. Other
definitions, for example in terms of variational principles, are available: In his
comprehensive book on the subject (2023) James Read surveys 5 main kinds
of classical definition alongside a number of precisifications and alterations
for the quantum context. Inevitably, no definition proves apt for all applica-
tions. Gordon Belot (2011) argues that Background independence is a matter
of degree. Read espouses explicit pluralism about background independence
- rather than rendering background independence otiose, our array of defini-
tions afford us a range of guiding principles depending on the context.

Read’s optimism seems well-founded: despite the ambiguity of the term,
background independence has been a major motivation behind a number of
approaches to quantum gravity. Carlo Rovelli, in particular, saw background
independence as a guiding principle for the original foundations of loop quan-
tum gravity (Rovelli, 2004a). Various authors (e.g. Huggett and Vistarini (2015)
and De Haro (2017)) have since argued that other approaches to quantum grav-
ity - such as string theory and holography - can also offer background indepen-
dent theories. The pluralism above suggests that we take such general claims
with a pinch of salt, but nonetheless learn something from understanding the
various senses in which these theories are or are not background independent.
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5 Spacetime in quantum gravity

Discussions of spacetime in quantum gravity inevitably have a different flavour
to those in the preceding sections: after all, we don’t have an agreed theory
of quantum gravity, or even a candidate theory that makes empirical predic-
tions. Comments on individual theories are therefore speculative, and this ar-
ticle won’t go into specific questions about loop quantum gravity, string theory
or causal set theory (to name a few). But some broader philosophical questions
about spacetime (or space and time) cut across different theories. One of these,
the question of whether the general covariance of GR provides a guide to quan-
tum gravity, has already been discussed in 4.3. Another concerns the possible
disappearance of spacetime itself in quantum gravity. And a third concerns
the ‘problem of time’, which arises quite generally for Hamiltonian theories of
gravity.

5.1 The emergence of spacetime

Newtonian mechanics, quantum mechanics, and special relativity all proposed
a fixed background spacetime on which our dynamics might be defined. Gen-
eral relativity changed this: spacetime itself, or at least the metric field that
represents its geometry, is a dynamical player. But many theories of quantum
gravity seem to need a more extreme shift - one in which nothing like a fixed
or dynamical spacetime appears in the ‘fundamental’ quantum gravity theory.
In such a context, the spacetime of General Relativity, and the space and time
of our ordinary experience9 are said to ‘emerge’ from the more fundamental
theory.

The term ‘emergent spacetime’ originates in the theoretical physics com-
munity.10 ‘Emergence’ here is thus intended in the sense of the physicist or
philosopher of physics, where emergence is compatible with reduction. But-
terfield (2011), for example, holds emergent behaviour to be behaviour that is
novel and robust with respect to some lower-level theory. The emergent space-
time idea is therefore compatible with the project of deriving the GR field equa-
tions in some limit of a quantum gravity theory - presumably a desideratum
for a theory of quantum gravity.

What then is required for a theory to posit emergent spacetime? In the
usual case considered by philosophers, spacetime emerges from a theory with
no candidate spatiotemporal variables. Spacetime is not present in the more
fundamental quantum gravity theory, but is present in general relativity, the
higher-level theory. But spacetime might also emerge from a theory that does
have a candidate spacetime, if the relationship between that fundamental space-
time and the spacetime of GR is sufficiently distant that one cannot think of the
GR metric as approximating the spacetime structure of the lower-level theory.
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Exactly what level of distance is required for emergence is a matter of philo-
sophical debate - see e.g. Butterfield (2011); Knox (2016); Franklin and Knox
(2018); Franklin and Robertson (2021); Wallace (2022b); ?); Palacios (2022).

Some have worried that the very notion of an emergent spacetime is in-
coherent. One source of these worries originates in debates about the status
of configuration space in quantum mechanics: Maudlin (2007) suggests that a
therory’s empirical (and metaphysical!) coherence depends on the existence of
what John Bell called ‘local beables’ (Bell, 1987, p.234) - fundamental objects
located in space and time. Were that to be the case, the very notion of a non-
spatiotemporal fundamental theory might seem problematic. Huggett and
Wüthrich (2013) argue that emergent spacetimes are neither metaphysically
nor empirically incoherent. While Maudlin believes that the physical salience
of a higher-level structure must be secured by the nature of the lower-level
entities that compose it, there is an (appealing) alternative: physical salience
of lower-level structures is secured by their relation to empirically accessible
higher-level theories. This implies that the structures of a non-spatiotemporal
theory of quantum gravity gain their empirical significance and physical salience
from the spatiotemporal entities and structures that emerge from them, rather
than vice versa.

Traditional substantivalist views of spacetime might suggest that it cannot
be a candidate for an emergent entity: if spacetime is the fundamental back-
ground or container in which all physical processes (including fundamental
ones) play out, then it is not the kind of thing that can emerge from our funda-
mental theory. We therefore need an alternative way of thinking about space-
time if we are to entertain the possibility of emergent spacetime. One strand
running through recent philosophical literature is spacetime functionalism (Lam
and Wüthrich, 2018; Knox, 2013, 2019). On this view, spacetime is whatever fills
some functional role - to use Lam and Wüthrich’s slogan: spacetime is as space-
time does. Just as functionalism in the philosophy of mind is intended to help
reconcile a physicalist neurological theory with the particular nature of mental
phenomena, spacetime functionalism is intended to help us understand how
a non-spatiotemporal fundamental reality can be reconciled with spatiotem-
poral phenomena. Opinions differ as to exactly how spacetime functionalism
achieves this. For Knox (Knox, 2013, 2019; Knox and Wallace, 2023), spacetime
functionalism is intended as an interpretative tool - it allows us to identify
spacetime structure in a higher level theory. For Lam and Wüthrich, it aids in
reduction. Butterfield and Gomes (2023) have recently argued that funcitonal-
ism in physics should be seen as offering a reductive programme á la David
Lewis (1972; 1970). However, such reductive programmes struggle to make
sense of the emergence of spacetime: as Baron (2020) argues, functional reduc-
tion ultimately serves to identify spatiotemporal structure in the fundamental
theory, and thus demonstrates that this theory contains spacetime after all. An-
other key debate in the spacetime functionalism literature concerns spacetime’s
functional role. Knox (2019) argues that many key aspects of spacetime involve
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picking out a structure of inertial frames, but critics (Read and Menon, 2021;
Baker, 2021) argue that this fails to capture important features of spacetime.
Lam and Wüthrich explore a wider range of roles, while Chalmers (2020, 2021)
examines the role of spacetime in our phenomenal experience.

Beyond these broad debates, questions about the emergence of spacetime
depend on the details of particular theories. Group Field Theories (a class of
background independent approaches to quantum gravity) can give rise to ‘ge-
ometrogenesis’, a putative emergence of geometry (Oriti, 2014; Huggett, 2021).
Loop Quantum Gravity’s discrete spin network states are far-removed from
the continuous spacetimes of general relativity and suffer from the ’problem
of time’ (see 5.2 for the problem of time, and Wüthrich (2021) for discussion of
loop quantum gravity). Some physicists (e.g. Seiberg (2006a) or Horowitz and
Polchinski (2009)) see string theory’s AdS/CFT duality not as an exact duality
but rather as an instance of the emergence of spacetime. Understanding par-
ticular theoretical instances of spacetime emergence depends on the particular
details of the relation between these theories and GR (or some other spacetime
theory), and thus need considerable speculative theoretical work.

5.2 The problem of time

In the roughest of terms, the problem of time in quantum gravity refers to
the ’disappearance’ of a time parameter when we attempt to quantize a repa-
rameterization invariant theory like quantum gravity. It is sometime said to
result from the clash between the absolute nature of time in quantum theories
and its dynamical nature in General Relativity: this is at best a gross oversim-
plification. A lesser oversimplification points out that our quantization tech-
niques usually require a theory to be cast in Hamiltonian form, and that for
General Relativity, the Hamiltonian is zero, which implies no temporal change
to observables of the theory. This section will attempt a to give a slightly more
nuanced gloss on this latter claim, but will inevitably omit important techni-
cal and philosophical details. For a better, slightly less brief, overview, see
Thébault (2021).11

Start with the Lagrangian formulation of a mechanical system - that is, the
formulation that specifies the dynamics of the system in terms of the positions
and velocities of its particles. Time in this kind of system plays one role as a
parameter - it serves to label the succession of positions and velocities of the
particles. But it also plays a second role in defining the velocities. Classical me-
chanics as standardly presented in the Lagrangian formulation is therefore not
invariant under reparameterizations of time that preserve temporal ordering -
if we change the time parameter in such a way that we change the time elapsed
between two states of the world changes, we alter not only the labelling of suc-
cessive states but also the velocities assigned to the particles.
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However, some theories (including classical non-gravitational theories with
the right characteristics - see Gryb and Thébault (2023)) can be cast in a repa-
rameterization invariant form. That is, they are invariant under any change to
the time parameter that leaves the temporal ordering of events the same. As
Gryb and Thebault point out, one might have philosophical grounds for prefer-
ring such a theory - Leibnizian relationism about time implies that time should
be reducible to temporal ordering of events. And General Relativity is one such
theory: its diffeomorphism invariance implies that all smooth changes to the
time coordinate preserve solutions of the theory, and the nature of its dynami-
cal metric means that a preferred time coordinate cannot be reintroduced. But,
as it turns out, reparameterization invariance implies a zero Hamiltonian.

Arguably, this zero Hamiltonian creates a ‘problem of time’ even in non-
quantized theories, especially if relationism about time makes one resistant to
a move back to a non-reparameterization invariant form of the theory. But
this problem becomes particularly obvious and acute when we attempt canon-
ical quantization of the theory. Following Dirac’s method for quantizing con-
strained Hamiltonian theories (a zero Hamiltonian acts as a constraint), the
observables of our quantized theory should commute with the constraint:

{g,H} = 0 (6)

But observables that commute with the Hamiltonian are those that do not
change over time - what Kuchar̆ calls perennials. Straightforward quantization
of any reparameterization invariant theory thus results in a theory whose phys-
ically measurable quantities are unchanging: hence the claim that time van-
ishes from the theory. Related lines of reasoning lead to the Wheeler-DeWitt
equation, which suggests a frozen universal wavefunction:

Ĥ |Φ⟩ = 0 (7)

As stated, the problem affects quite a large class of theories, but it is usu-
ally associated with ‘canonical’ quantum gravity theories like Loop Quantum
Gravity. One solution, advocated by Carlo Rovelli (1991; 2002; 2004b; 1990), is
to supplement the usual quantum notion of an observable with ‘partial observ-
ables’ that can serve as internal clocks. Rovelli claims that these partial observ-
ables, which do not commute with the Hamiltonian, are sufficient to develop
a physically measurable notion of relative time - relative to some system of
partial observables, we can measure change with respect to some other system
of partial observables. The debate here turns on whether these partial observ-
ables are truly mneasurable - Thiemann (2008) claims that they are not. This is
inevitably a theoretical and conceptual debate given the non-empirical status
of quantum gravity: see Rickles (2008) for an account of how this connects to
earlier philosophical debates.

One alternative approach to the problem of time comes from Gryb and
Theébaulr (2012; 2014; 2016a; 2016b) who advocate what they call relational
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quantization. This approach seeks to reinstate a global time parameterization,
although only up to rescalings, so there is no preferred temporal metric. Such
an approach effectively requires a preferred foliation, something that general
relativity does not admit of. However, alternative approaches offer some hope
for such a foliation - for example shape dynamics, originally proposed by Ju-
lian Barbour and collaborators (Barbour, 2003; Anderson et al., 2003, 2005) and
since developed by Gomes et al. (2011).

6 Conclusion: unifying themes

What, of anything, connects our various debates about the philosophy of space-
time physics? Several themes emerge from the debates discussed here. One
obvious issue is the importance of symmetry, and the link between spacetime
structure and the symmetries of the dynamics. In Newtonian mechanics and
special relativity alike, the recognition of dynamical symmetries leads to the
rejection of metaphysical claims about absolute space and time. And yet, de-
spite the apparent simplicity of Earman’s directive that we should match our
dynamical symmetries to our spacetime symmetries (see 2.1), determining the
relevant dynamical symmetries is a non-trivial issue.12

A second thread that weaves across different theories is the status of ref-
erence frames and coordinate systems. We saw this in the discussion of clock
synchrony (3.3), the equivalence principle (4.1), the hole argument (4.2) and
general covariance (4.3). In many of these cases there exists tension between
the crucial representative capacities of reference frames and their associated
coordinates, and our freedom to transform between coordinates. An orthodox,
geometry-first view (as discussed in 3.4) holds that these coordinates only con-
tain physics insofar as they reflect the symmetries of an invariant geometrical
description. However, such views risk ignoring the centrality of coordinate
based approaches to both applications and theory. Not only do virtually all
applications of spacetime theories rely on coordinate descriptions, but not all
spacetimes are well-suited to a coordinate-free characterisation in terms of dif-
ferential geometry. Wallace (2019) argues that coordinate-based descriptions
contain more physics than orthodox views give them credit for.

A final theme may be more surprising: questions about the philosophy of
spacetime physics are shot through with questions about inter-theoretic rela-
tions. Some of these are obvious, as in the case of emergent spacetime (5.1).
But others are less obvious - questions about Newtonian theories, for example,
depend on questions of theory identity and equivalence, and perhaps also on
our ideas about emergence.13 Furthermore, the sequence of theories discussed
here provide an example of how theories can remain in use in physics despite
being apparently superseded by a more ‘fundamental’ theory. Understanding
how Newtonian theories remain just as, if not more, relevant to astrophysics as
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general relativity requires a nuanced view of inter-theoretic relations.

Notes

1Stein wasn’t the first to suggest that the geometrical tools used by relativity could be repur-
posed for classical mechanics. Hermann Weyl 1952, Élie Cartan 1923; 1924 and Kurt Friedrichs
1927 all proposed four-dimensional settings for classical theories, but Stein was the first to explic-
itly propose this as a solution to the Leibniz-Clarke debate.

2For an more thorough overview of classical spacetime structure, see Weatherall (2021)

3Saunders calls this Newton-Huygens spacetime, choosing to differentiate his presentation of
the spacetime from one presented in terms of differential geometry.

4Einstein reportedly called Minkowski’s presentation ‘superfluous learnedness’ (Pais, 1982,
p.152).

5Other physics has further consequences for the philosophy of time that lie outside the scope
of this article. For example, debates about the arrow of time are intertwined with the philosophy
of thermodynamics and statistical mechanics. See ? in this encyclopedia for more details.

6Read et al. (2017) explore the limitations of our minimal coupling prescriptions in some detail.

7Note that in the presence of fixed fields like the Minkowski metric, the relationship between
general covariance and diffeomorphism invariance becomes more complex, and general covari-
ance does not in general imply diffeomorphism invariance. See Read (2023) for details.

8For a comprehensive review of the general covariance debate up until the mid-nineties, see
Norton (1993). For a sweeping look at the issues in the contemporary Background Independence
debate, see Read (2023).

9The spacetimes of General Relativity and ordinary experience might or might not be the same
thing. Arguably, at local and everyday scales, space and time behave much like Newtonian space-
time - whether one sees this spacetime as GR spacetime or as something that emerges from the
relativistic description depends on one’s views on inter-theoretic relations and emergent ontology.

10A well known reference is Nathan Seiberg’s (2006b), but the ideas and term were around before
this, for example in Cahill and Klinger (1996).

11This section owes a great deal to Thébault (2021)’s presentation of the problem.

12For more on the philosophy of symmetry, see, for example Baker (2010); Ismael and Van Fraassen
(2003); Ismael (2021); Dewar (2019); Dasgupta (2021); Greaves and Wallace (2014); Wallace (2022a).

13See Dewar (2022), Weatherall (2019a) and Weatherall (2019b) or overviews of theoretical equiv-
alence and Wallace (2012) for an argument that emergence is relevant to Newtonian theories.
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80(1):22–48.

Savitt, S. F. (2000). There’s no time like the present (in minkowski spacetime).
Philosophy of science, 67(S3):S563–S574.

Seiberg, N. (2006a). Emergent spacetime. Arxiv preprint hep-th/0601234.

Seiberg, N. (2006b). Emergent spacetime. arXiv preprint hep-th/0601234.

Smolin, L. (2013). Time reborn: From the crisis in physics to the future of the universe.
HMH.

Stachel, J. (1993). The meaning of general covariance. Philosophical problems
of the internal and external worlds: Essays on the philosophy of Adolf Grunbaum,
pages 129–160.

Stachel, J. (2014). The hole argument and some physical and philosophical
implications. Living Reviews in Relativity, 17:1–66.

Stein, H. (1991). On relativity theory and openness of the future. Philosophy of
science, 58(2):147–167.

Synge, J. (1960). Relativity: the general theory. Amsterdam.
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