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The social epistemology of science has adopted agent-based computer simulations as one of its core methods

for investigating the dynamics of scientific inquiry. The epistemic status of these highly idealized models is 

currently under active debate in which they are often associated either with predictive or the argumentative 

functions. These two functions roughly correspond to interpreting simulations as virtual experiments or 

formalized thought experiments, respectively. This paper advances the argumentative account of modeling 

by proposing that models serve as a means to (re)conceptualize the macro-level dynamics of complex social 

epistemic interactions. I apply results from the epistemology of scientific modeling and the psychology of 

mental simulation to the ongoing debate in the social epistemology of science. Instead of considering 

simulation models as predictive devices, I view them as artifacts that exemplify abstract hypothetical 

properties of complex social epistemic processes in order to advance scientific understanding, hypothesis 

formation, and communication. Models need not be accurate representations to serve these purposes. They 

should be regarded as pragmatic cognitive tools that engender rather than replace intuitions in philosophical 

reasoning and argumentation. Furthermore, I aim to explain why the community tends to converge around 

few model templates: Since models have the potential to transform our intuitive comprehension of the 

subject of inquiry, successful models may literally capture the imagination of the modeling community.

1. Introduction

The high level of idealization in agent-based models of scientific inquiry has raised concerns about the 

epistemic function and utility of the methodology. These concerns become especially pressing if we treat 

simulations as virtual experiments (e.g., Fazelpour & Steel, 2022, 214), or use them for other purposes that 

require high-fidelity representation or prediction. However, scientific models have a wide range of uses that 



do not always require accurate representation and can even benefit from idealization, such as advancing 

scientific understanding, hypothesis formation, and communication. This paper argues that the key function 

of current agent-based models of scientific inquiry is to facilitate these three aims by supporting the 

development of cognitive skills and conceptual schemata. This claim is consistent with related suggestions 

that the proper use of simulation models of scientific inquiry is for theoretical exploration (Šešelja, 2021) or 

argumentation (Aydinonat, 2021). However, this paper does not prescribe how models should be used or 

evaluated. While my argument is prescriptive, it still aims to further answer the question of what the 

epistemic benefits of these highly idealized models are, if not prediction and accurate representation. 

The methodological debate on modeling in social epistemology of science has largely focused on using 

formal models to investigate how to best design and modify the social organization of science. However, 

normative recommendations typically involve prediction, yet, the current models are neither calibrated nor 

validated against data (Martini & Pinto, 2017), their representational accuracy has been called into question 

(Thicke, 2020), and some have found them conceptually vague (Thompson, 2014; Bedessem, 2019). Some 

recent reviews have emphasized that simulation models of scientific inquiry are theoretical arguments rather 

than virtual experiments (Reijula & Kuorikoski, 2020; Aydinonat et al., 2021). Rather than for prediction, 

these models should be used, for example, to identify possible causal mechanisms and potential explanations 

(Šešelja, 2022). Furthermore, their evaluation necessitates assessing not only the relation between the model 

and its target but the wider argumentative context in which the model is used (Aydinonat et al., 2021).

In line with this argumentative approach, I focus on the pragmatic model-modeler and model-audience 

relationships, instead of the model-target relation. Rather than discussing how models of scientific inquiry 

should be used, my examination centers on how modeling influences the theoretical intuitions of modelers, 

and how it affects the research practices of the community engaged in model-based reasoning. Here, the 

notion of "theoretical" should be understood in a psychological sense as pertaining to a class of conceptions 

derived from inferential and communicative practices, while "intuition" refers to a fluent skill in using the 

acquired concepts for those practices. Following De Regt & Dieks (2005), I hold that a theory is intelligible 

to scientists if they can recognize its characteristic consequences without performing exact calculations.  

The epistemological value of simulation models is often considered to lie in the possibility of explicating our

conceptions about the target system (perhaps in an altered form), and then replacing our intuitive reasoning 

with the aid of the computer (e.g., Aydinonat et al., 2021; Mayo-Wilson & Zollman, 2021). I focus on the 

epistemological relation that basically runs in reverse. Instead of discussing how we externalize reasoning 

with computer models, I argue that we also internalize aspects of models and modeling practices through 

engaging in model-based reasoning. Therefore, the relationship between computer and mental models is best 

understood as interactive and complementary.



Rather than acknowledging the obvious fact that we use models to develop theories and arguments, I pursue 

a more nuanced hypothesis on how modeling can change our implicit understanding of the object of study, 

and consequently, the associated research practices and norms. There is a rich, psychologically informed 

literature on thought experiments and model-based reasoning in science. I find this literature useful for 

shedding light on this aspect of modeling within the social epistemology of science as well, where similar 

discussions have been largely absent. In particular, it has been often argued that models of scientific inquiry 

serve heuristic purposes, but the analysis of that function has thus far remained thin. Previous literature has 

also noted the heuristic benefits of recursive interactions among theory, model, and data. However, models of

scientific inquiry are theoretical models that rarely connect with actual data. The mutually reinforcing loops 

between theory and models may not be solely virtuous, particularly if the theoretical nature and cognitive 

functions of models are not clearly understood while they begin to drive theoretical research. 

Section 2 contains an overview of epistemic networks (Zollman, 2007) and epistemic landscape models 

(Weisberg & Muldoon, 2009), which are highly influential and illustrative examples of agent-based models 

of scientific inquiry. The three main topics—scientific understanding, hypothesis formation, and 

communication—are covered in Sections 3, 4, and 5, respectively. 

Section 3 argues that pragmatic cognitive activity with model systems functions as a source of cognitive 

skills and intuitive conceptual schemata relevant to scientific reasoning and understanding. This section 

discusses the topic in general terms, not specifically focusing on modeling in social epistemology. Section 4 

then discusses how the cognitive competencies acquired through experience with formal models guide 

hypothesis and theory formation in the context of current agent-based modeling in the social epistemology of

science. The focus is on how the abstract properties of model systems guide the implicit comprehension and 

hypothesis formation concerning the opaque macro-dynamics of social epistemic interactions. This implicit 

guidance is essential for conceiving of models not only as explicit representational devices but also as 

sources of intuitive conceptual systems. Section 5 then explains how these hypotheses and theoretical 

conceptualizations, couched in terms of simulation models, affect and potentially benefit the wider research 

community beyond the actual modelers. Successful models recruit new users, who are not limited to 

modelers but include anyone who uses these models and modeling results for scientific reasoning. 

Idealization likely contributes to the success of models in this regard, since the gist of highly idealized 

models is easier to grasp, communicate, and adapt for new purposes compared to intricate simulations.

Thus, the plan of the paper is as follows: models equip modelers not only with external computational tools 

but also with mental models that guide scientific comprehension (Section 3). After formal models are utilized

for theoretical argumentation concerning the dynamics of scientific inquiry (Section 4), the underlying 

mental models and conceptual intuitions they convey can be internalized by a wider research community 

through various cognitively efficient representational means (Section 5). Finally, Section 6 concludes.



2. Examples of agent-based models of scientific inquiry

My analysis focuses on agent-based models that explore the effects of diversity in scientific inquiry. 

Specifically, I discuss two well-known studies that have spurred a series of follow-up models and 

methodological debates on the use of simulation models in the philosophy of science. These models are the 

epistemic networks of Zollman (2007; 2010) and the epistemic landscape model of Weisberg and Muldoon 

(2009). The reason to focus on diversity models is that most simulation models of scientific inquiry fall into 

this category, or they are derived from models that investigate the effects of diversity in opinions, heuristics, 

or research strategies. Hence, this class of models is highly representative.

The epistemic networks (Zollman 2007) consist of agents who can investigate two competing theories. In 

each turn of the simulation, the agents can choose to sample either of the two options, A or B. In return, they 

receive either null or positive rewards. This cycle is conceptualized as conducting an experiment on either of 

the competing theories and receiving either a negative or positive result, such as a publishable experimental 

finding. The results are sampled from random and unknown distributions for each of the options, A and B. 

The agents' goal is to maximize their rewards in the long run. This means settling on the option that yields 

more positive outcomes, which is the correct theory or at least the one that is objectively more probable.

The agents are modeled as Bayesian learners who update their beliefs about the two theories as evidence 

accumulates. The agents face an elementary exploration/exploitation dilemma well-known in fields such as 

economics and artificial intelligence. The dilemma is that you want to exploit the option that has consistently

produced rewards, but it is impossible to determine which option is superior without occasionally exploring 

the other one. In epistemic networks, the agents are not alone; they also monitor the actions and results of 

other agents. In Zollman’s (2007) seminal model, agents explore solely based on information received from 

others. They exploit their preferred option and switch only if the rival option gains more support within the 

network of agents they are monitoring.

Zollman demonstrated that the entire community can become locked into an inferior theory if promising but 

misleading results prematurely convince everyone. However, this problem can be mitigated by limiting the 

connectivity of the network. If agents monitor only few peers, the early results do not reach everyone. A part 

of the network may flip, but some agents may still persist with the other option and eventually persuade the 

rest. The diversity of beliefs, therefore, ensures that the community keeps viable alternatives available, at 

least transiently, even if they are not initially the best-supported by the evidence (Zollman, 2010).

The epistemic landscape (Weisberg & Muldoon, 2009) is an abstract representation of a research problem 

and its search-space. This landscape consists of a xy-plane of two discrete-valued dimension. These 

dimensions represent alternative “approaches” to the problem investigated, which may include alternative 



theories, experimental paradigms, or something alike. Each point on this xy-plane corresponds to a 

combination of approaches selected from each of the two dimensions. Each point is also associated with a 

measure of the epistemic significance of that specific combination. Some combinations are more fruitful than

others, and agents navigate the landscape in an attempt to find the most significant combination

In the original Weisberg–Muldoon model, the landscape consists of a grid with two hills, and at the start of 

each simulation run, the agents are randomly positioned on it. The agents do not see the form of the 

landscape, but they rely on the combination of random walk and hill-climbing search heuristics. They move 

randomly one patch at a time. However, if they move on a patch of a higher significance than the one they 

had just left, they continue in the same direction. This process corresponds to a well-known learning scheme 

called gradient ascent, which involves a local search for incrementally better solutions. The challenge is that 

the agents tend to become trapped at local maxima instead of finding the global maximum, if they start their 

search on the slopes of the wrong hill. They can also get lost on a plain terrain that cannot guide the search.

The purpose of the epistemic landscape model is to investigate how social interaction influences the global 

search of the terrain when multiple agents are involved. Specifically, the model simulates the effects of 

diverse search strategies by incorporating three sub-populations: followers, mavericks, and controls. Each 

agent leaves a trace on the landscape. When follower agents encounter a trace, they follow it if it leads to 

higher significance in their local environment. Mavericks instead avoid previously visited patches and move 

away from trails left by others. Controls simply ignore the traces. Based on their simulations, Weisberg and 

Muldoon (2009) concluded that even a small number of mavericks significantly enhance the success of the 

entire population, as mavericks have the ability to discover hidden peaks of significance and guide others 

toward them.

My reason for focusing on these two studies is that they are widely known and representative examples of 

the use of agent-based models in the philosophy of science. They are particularly noteworthy for introducing 

novel ways to conceptualize the social dynamics of science, and they have inspired a subsequent generation 

of models that build upon their original frameworks. Some of the follow-up studies have modified the 

original model to examine the robustness of the initial results, while others have used the model templates to 

investigate new mechanisms and questions different from the original studies (see Aydinonat et al., 2021;  

Šešelja, 2022). Aydinonat et al. (2021) have tracked the evolution of epistemic landscape models, and argued

that the modifications made to the original model and its versions can be interpreted as argumentative moves.

I am more interested in what remains intact in these modifications, which is the abstract model template that 

serves as a conceptual foundation for a family of models used for various argumentative purposes. 

Despite the differences of these two models, they share similarities. They both model well-known learning 

issues, namely the exploration/exploitation dilemma in epistemic networks and gradient ascent in epistemic 

landscapes. In addition, they both employ model templates with a history in other disciplines, implying that 



some conceptual and formal features of these models not only travel across research questions within social 

epistemology but also across disciplines. These features are addressed in Section 4 in more detail.

Before delving further into modeling in the social epistemology of science, the next section discusses mental 

modeling, scientific reasoning, and the psychology of comprehending complex causal scenarios. I argue that 

explicit computational models should not be understood merely as replacements for implicit mental models. 

Instead, their relationship is interactive; theoretical intuitions and cognitive skills develop through the 

coupling of internal and external models within cognitive activities that involve model systems.

3. Mental simulation and reasoning with models and thought experiments

In this section, I argue that while explicit simulation models help articulate theoretical intuitions, they also 

transform modelers’ theoretical intuitions by providing new mental models, cognitive skills, and associated 

conceptual schemata. Moreover, explicit models help make abstract ideas accessible to mental imagery and 

other cognitive faculties capable of exploiting non-propositional knowledge. Therefore, model systems 

enable the development of new kinds of mental models and simulative reasoning. To explain how external 

and mental models are coupled, it is instructive to begin with a brief discussion of scientific thought 

experiments, as there is a rich body of epistemological and psychological literature exploring the connections

between mental simulation, model-based reasoning, and thought experiments in science and philosophy.

I first provide a brief overview of the theory of mental models and mental simulation. Then, I explain how 

mental simulation is an integral part of cognitive skills, and how expertise facilitates the development of 

increasingly abstract conceptual schemata. These schemata enable intuitive understanding of the domain and 

potentially other domains via analogical transfer of knowledge. Finally, this section argues that model 

systems function as learning targets that allow the development of conceptual competencies relevant for 

scientific understanding. This claim is further utilized in Section 4, which argues that the cognitive influence 

of formal models on theoretical intuitions guides hypothesis formation in the social epistemology of science.

In the context of social epistemology, the comparison of computer simulations with thought experiments is 

sometimes made in passing (e.g., Currie & Avin, 2019; Aydinonat et al., 2021). Recently, Mayo-Wilson and 

Zollman (2021) provided a more thorough analysis of the idea, as they argued that philosophers should use 

simulations in place of thought experiments when reasoning about complex social interactions. This is 

because simulations can check our ideas about the dynamics of complex systems, which are often impossible

to grasp intuitively. According to them, imagining a real-world process can also be understood as running a 

model. However, this is a mental model that remains implicit and untested, whereas computer simulations 

are explicit and can reveal unintuitive behaviors. Throughout this paper, I will rely on the idea that imagining

a real-world process involves simulating a mental model of some kind.



Miščević (1992) and Nersessian (1992) were perhaps the first philosophers of science to propose that thought

experiments are based on mental modeling. The exact nature of mental models is not entirely clear, but it is 

commonly held that they comprise mixtures of (quasi)perceptual mental imagery with causal and other forms

of knowledge that preserve spatial and temporal features of the events from which the knowledge is derived. 

Mental simulation is a general cognitive mechanism intrinsic to understanding and coping with real-world 

phenomena by simulating scenarios represented by mental models. Much of the knowledge encoded in these 

models remains implicit and non-propositional, but thought experiments help make it accessible. Thought 

experiments exploit this simulative comprehension process by activating implicit knowledge through 

imagined scenarios, similar to how perception activates knowledge about how perceived events unfold.

Similarly, Gendler (2004) has argued that thought experimenting involves reasoning about a particular 

scenario, with a purpose to confirm or disconfirm a specific hypothesis or theory. In scientific contexts, the 

hypothesis concerns the features of the physical world, but the access to the scenario is via imagination 

instead of observation. According to Gendler, reasoning with mental images relies on non-propositional 

knowledge via quasi-perceptual processing, which is a fallible but reliable cognitive mechanism that we 

routinely rely on in everyday reasoning. With scientific thought experiments, we exploit this ordinary mental 

faculty with non-ordinary imagined scenarios that can reveal novel possibilities, inconsistencies, or other 

insights into some of our beliefs concerning real-world phenomena. 

All three of these theorists hold that the cognitive mechanisms involved in the comprehension of and 

inference from thought experiments are ordinary cognitive faculties that we rely on in everyday reasoning. In

particular, Nersessian's (2018) account of model-based mental simulation is rooted in a rich set of 

psychological mechanisms that exploit temporal and spatial structure, causal and procedural knowledge, 

mental animation, and more. Mental simulation is fundamentally a pragmatic faculty that has likely evolved 

to help us plan how to navigate the physical environment (Nersessian, 2018) and to anticipate the results of 

alternative courses of action, thus enabling the basic capacity for hypothetical reasoning (Koechlin, 2014).  

Apart from mental imagery, any general knowledge—from logic to folk and scientific theories—can be used 

to manipulate the simulated model and make further inferences based on it. Moreover, mental models and 

simulations can operate on multiple levels of specificity and abstraction (Barsalou, 1999; Nersessian, 2018).

The benefits of mental simulation are thought reside in the use of non-propositional knowledge that is often 

hard to verbalize and factor into explicit deductive reasoning. Moreover, some reasoning tasks are easier to 

carry out by using, e.g., spatial and visual models instead of propositional information. Imagistic processes 

may also be heuristically valuable as they enable novel and creative ways to combine and assess existing 

pieces of knowledge. In addition to these commonly identified features, the key benefit of simulative 

reasoning lies in its role in cognitive skills that allow us to surpass some cognitive limitations that hinder our 

ability to comprehend and reason with complex scenarios.



Intuitive inference and sound judgment develop through the learning of domain-specific cues, which allow 

familiar contexts to be simulated mentally (Klein, 1998; Kahneman & Klein, 2009). When experts face a 

problem in their domain of expertise, they need not pay attention to all the details, but they they focus on few

broad strategic decisions and simulate one option at a time. If the simulated action feels credible, it is 

executed. If not, the simulation is either manipulated or replaced by another option (Klein, 1998). This 

intuitive competence is attributed to perceptual and procedural learning, where familiar contexts cue 

decisions from long-term memory that have proven successful in the past. Experts learn to chunk complex 

cues and procedures, and they learn to recognize goal-relevant patterns (Gobet & Chassy, 2009). Thus, 

expertise builds up by learning predictive and explanatory models that compress experiences and background

knowledge into highly organized, perceptually cued intuitive know-how that can be activated via mental 

imagery. Therefore, imagined scenarios are able to recruit non-propositional knowledge in a cognitively 

efficient way and “mobilize the resources of highly organized background knowledge” (Miščević, 1992, 

225), like recognition processes do in expert decision making. 

This know-how also pertains to tasks associated with higher cognition and abstract reasoning, such as chess 

or doing philosophy. For example, when philosophers contemplate a Gettier case, their knowledge about the 

familiar use of the word “knowledge” is activated. This knowledge is neither explicit nor analytic, nor is it a 

priori. It is tacit, procedural, and derived from experience, as are cognitive skills in general. This highly 

learned procedural knowledge delivers intuitive understanding of how the word “knowledge” is properly 

used in the imagined scenario that many find to clash with the classical definition of knowledge.

Furthermore, the comprehension of familiar tasks gradually shifts to an increasingly abstract level from mere

perceptual cues. Experts become more competent in projecting their knowledge across structurally similar 

problems and also across domains (Chi et al., 1981; Reeves & Weisberg, 1994). Thus, as the understanding 

of the domain becomes increasingly intuitive, the domain ceases to be a target of conceptual learning and it 

becomes a conceptual system in itself, enabling experts to (re)conceptualize and reason about other domains 

that bear schematic similarity to the concepts in their domain of expertise. 

In the context of model-based research, this account explains how the interplay of internal and external 

models is crucial for scientific reasoning and understanding. Computational models, in particular, are good 

candidates for supporting perceptual, causal, and procedural learning, leading to the development of new 

cognitive skills and concepts that enable the intuitive simulation of hypothetical real-world processes. 

For example, Nersessian (2008) traced historical records on how Maxwell derived his theory of 

electromagnetism. Maxwell relied heavily on visual diagrams and sketches that he continuously modified as 

his theoretical work progressed. These representations served as external models of the known properties of 

the electromagnetic forces, and their continuous manipulations—often under the guidance of various 



analogies—led to conceptual shifts on the dynamics and ontology of electromagnetism and eventually to the 

mathematical expression of the phenomena. A similar phenomenon is observed when graduate students in 

scientific and technical fields solve physics problems. Students produce and manipulate diagrams and exploit

various visual aids and analogies to represent the dynamics of the target. They sketch and gesture over their 

external representations as they communicate and reason about the system (Nersessian, 2008).

The point of the above remarks is not to identify theories with models. Rather, the point is that models are 

cognitively efficient means to make sense of theories. Creative problem-solving in science involves model-

based reasoning, where external and internal models are coupled through various interactions, supported and 

constrained by the model’s features as well as available analogies and domain knowledge (see also Knuuttila,

2011; 2021).  As tangible and manipulable representational tools, models facilitate the development of 

cognitive skills and the associated mental models and simulative model-based reasoning. Through this 

learning process, external models become internalized as intuitive conceptual systems that can be utilized for

conceptualizing and reasoning about hypothetical real-world processes. 

In conclusion, models have two epistemic functions: (1) to represent the ontology and dynamics of the target 

phenomena (in some relevant respects) and (2) to support intuitive understanding and creative reasoning 

about the target. These functions are not perfectly aligned, as representation can sometimes be independent 

of the aim of understanding, which is only hindered by excessive accuracy (Potochnik, 2015; Kuorikoski & 

Ylikoski, 2015). In the next section, I examine the epistemological import of agent-based simulation 

practices specifically in social epistemology, focusing on the latter function (2). 

Computer models are sometimes understood to replace intuitive theoretical reasoning with automated 

inference over a particular formal representation of the target (e.g., Beisbart, 2012). In this section, I have 

argued that models should also be viewed as cognitive and communicative tools that function as sources of 

cognitive skills and conceptual intuitions. Experience with models and modeling techniques enables one to 

conceptualize other systems by these frameworks and to intuitively grasp the qualitative consequences of 

doing so. Essentially, this is analogical reasoning, where an actual or hypothetical real-world system is 

conceived and mentally simulated in terms of a familiar formal system. The next section further argues that 

often the theoretical ideas explicated in formal models are partly derived from model formalisms themselves.

In particular, many agent-based models of scientific inquiry are partially based on content-neutral model 

templates that guide the conceptualization and formalization of the basic elements of the models.

4. Abstract model templates as conceptual systems

Much of the methodological discussion on modeling in the social epistemology of science has focused on the

representational realism of models (Martini & Pinto, 2017; Thicke, 2020). Modeling studies usually build on 



existing ones, and new models are often advertised as more accurate than their predecessors in terms of the 

representational model-target relationship. In this section, I argue that current models represent modelers' 

theoretical ideas, which largely stem from the properties of model systems themselves. More specifically, I 

focus on the contribution of content-neutral model templates that, as such, do not represent anything specific.

However, these templates already contain abstract conceptualizations of the target system and guide how 

model elements are conceptualized and formalized. I argue that abstract properties of models largely guide 

the concept and hypothesis formation in model-based research of scientific inquiry.

This claim is a natural implication of the argument in Section 3: Cognitive skills acquired through activities 

involving models train modelers to intuitively conceive poorly understood systems in terms of familiar 

model systems. The suggestion is not a criticism of modeling practices in the social epistemology of science, 

but rather an epistemological assessment of the consequences of how modeling influences hypothesis 

formation. The main argument of this paper is that this is one of the key epistemological functions of formal 

models of scientific inquiry. Section 5 further argues that it also benefits the wider research community by 

providing shared mental models that coordinate research and intersubjective theoretical intuitions.

Note that even if models represent only theoretical ideas derived from model systems, replacing thought 

experiments and mental simulation with computer simulations can convey significant epistemic benefits. 

Mental simulations are rooted in implicit and possibly idiosyncratic knowledge and experiences. According 

to Gilbert and Wilson (2007, 1354), “mental simulation is the means by which the brain discovers what it 

already knows.” Computer simulations have a very different epistemic nature. They are public, explicit, and 

formally well-defined, and they can uncover properties that are either unintuitive or too complex to be 

reliably grasped by theoretical or commonsense intuitions (see Mayo-Wilson & Zollman, 2021). 

In this section, my aim is not to argue against analyses that emphasize the merits of computation over 

intuitive inference. Instead, I seek to identify and highlight a distinct epistemic function of these models. I 

argue that once we look beyond the mere computational aspect of agent-based simulation practices in the 

social epistemology of science, it appears that (pre)theoretical intuitions are not simply formalized and 

replaced by the explicit model and computation. With complex and causally opaque phenomena, such as 

social epistemic systems, model construction does not typically begin with a careful formal representation of 

the target’s components, followed by discovery of its properties through computation (cf. Mayo-Wilson & 

Zollman, 2021, 3663). Instead, modeling may usually begin by conceiving the target in terms of some 

abstract principle or model system and envisioning how the target would behave under that construal. This 

process involves analogical reasoning and mental simulation during theoretical ideation, where the abstract 

model formalism provides a conceptualization of the hypothetical macro-dynamics of the target.

If that is the case, modeling has two interacting cognitive aspects: (1) Experience with models and related 

formal tools enables researchers to conceive of target systems by the properties of these formalisms, and (2) 



constructing the actual model yields a public artifact that allows the modelers to computationally verify 

whether their intuitions hold in the actual model and under what conditions. The results attained in step (2) 

can be used for reasoning about the target, and they also feed back into the pool of knowledge exploited in 

step (1), potentially fueling further theoretical ideation based on the models and their templates. 

This suggestion aligns with the Kuhnian account of normal science, which posits that scientific reasoning is 

typically case-based or model-based (Nickles, 2003). It does not proceed by general rules or theories but 

rather by established techniques for representing and inferring about specific research problems. The 

selection of a technique for a particular problem is guided by the problem's similarity to those with a known 

solution or approach. Thus, successful modeling efforts tend to reinforce the further use of the same or 

similar approaches for related research questions. This emerging pattern shapes how the domain of inquiry is

conceived. Section 3 discussed how the comprehension of familiar tasks becomes increasingly abstract and 

how experts become more competent at projecting their knowledge across structurally similar problems and 

across domains. Hence, the similarity that guides the selection of an approach can be recognized on multiple 

levels of abstraction. This includes the high level of abstraction and idealization that many scientific models 

exhibit, explaining the prevalent reuse of the same abstract model templates for very different purposes, even

across disciplines (see Gerrits & Marks, 2015; Knuuttila & Loettgers, 2016).

Before going into more detail, it is instructive to analyze model-based arguments in the social epistemology 

of science into more distinct components. The general form of simulation-based arguments in the social 

epistemology of science can be outlined roughly as follows: Given a modeling template T and its 

parametrization P, conditions C bring about an effect E. Here, T is the generic modeling template or formal 

framework used (epistemic landscapes, epistemic networks, etc.), and parametrization P fixes the structural 

assumptions and variables of the model. Conditions C specify what variables are investigated in the actual 

simulation runs, and E is the interesting property discovered. How E depends on C is discussed in order to 

support the actual theoretical argument of the study, and some reasons are provided why the particular 

framework and parametrization was chosen. The formal dependencies in the simulation model constitute a 

chain T→P→C→E, where each step is constrained by the preceding one and the last step is computationally 

determined. Step T→P corresponds to the construction of the formal model and C→E to the simulation runs 

and their interpretation. Note that the purpose of this characterization is not to depict the actual model 

construction process but solely to facilitate the discussion below.

For concreteness, here are two examples of the above argument form. First, If we use epistemic networks to 

represent the exploration and distribution of information among scientists (T), and we assume that scientists 

always use the hypothesis they believe has the best support and explore only through information received 

from peers (P), then restricting the connectivity in the networks (C) will prevent the community from 

prematurely locking into an inferior hypothesis (E) (Zollman 2010). Second, if we use fitness landscapes to 

represent the epistemic success of research as a function of combinations of different approaches (T), and we 



assume that progress of individual scientist can be modeled by gradient ascent that is sensitive to the already 

visited locations of the landscape (P), then increasing the proportion of agents who avoid already covered 

areas (C) will increase the epistemic success of the community (E) (Weisberg & Muldoon, 2009).

The findings concerning the relation C→E are usually described as the main contribution of the model. This 

is also where the added epistemic value of the simulation runs is considered to reside, i.e., in the uncovering 

of the effects of model variables through numerical computation, especially when complexity trumps 

analytical and intuitive inferences. Robustness analyses also target the relation C→E by extending the 

simulated parameter space in C. Some robustness analyses also focus on P, involving the addition, removal, 

or modification of mechanisms and idealizations in the simulation (see Kuorikoski & Ylikoski, 2015; Frey &

Šešelja, 2018). Changes in the parametrization are usually interpreted as modifications to the existing model,

while changing the underlying template means to replace the entire model with a qualitatively different kind. 

What interests me here is not the computational process from C to E, but rather the conceptualizing process 

with T and P, which together give the formal structure and interpretation of the model. Following the 

analysis by Aydinonat et al. (2021), the model template is involved in setting up a conceptual model, which 

lays down the qualitative assumptions about the modeled phenomenon and which guides the parametrization 

and construction of the actual computational model. The authors did not fully specify the role of the 

template. However, they argued that the conceptual model conveys a set of hypothetical properties of the 

modeled target. These are made precise, albeit often in idealized or distorted form, in the parametrization. 

However, the template does not usually function as a rough representation of the modeled real-world target, 

which is subsequently made more precise by the parameters. In scientific modeling, it is common for the 

template to import some generic abstract property, or a set of properties that are independent of any subject-

specific interpretation of the model. The interpretation is provided alongside the parameters chosen for that 

particular modeling purpose (Knuuttila, 2011; Knuuttila & Loettgers, 2016). Thus, the template already 

conveys an abstract idea of the hypothetical structure or dynamics of the target. Hence, if the template is 

involved in devising of the conceptual model, the abstract properties associated with the template are an 

integral part of the initial conceptualization of the target. In that case, modeling proceeds in a top-down 

manner, starting from the abstract conceptualization of the dynamics and moving on to the specification of 

more detailed elements, such as agents and their actions in agent-based models.

In current simulation studies in social epistemology, the justifications for choosing specific templates are 

often quite elliptic. For example, it is unclear what the epistemic landscape and its dimensions actually 

represent (Bedessem, 2019). Similar criticisms have been directed toward, e.g., Hong and Page’s (2004) 

diversity model (Thompson, 2014). It is also unclear why Hong and Page chose that particular model for 

investigating their famous diversity-trumps-ability result instead of using their earlier template, which, in 

fact, does not support the result (Reijula & Kuorikoski, 2021). Some models are more semantically 



transparent. For instance, it is arguably easier to understand how the elements in Zollman’s (2007; 2010) 

epistemic networks map to scientific experimentation and communication. However, even these models are 

rough idealizations that omit many features prominent in theory choice for scientists, such as argumentation 

and the role of funding allocations for different research programs. 

However, in scientific modeling, it is common and often necessary to focus on factors beyond accurate 

representation. Specific templates may be chosen not only for their representational adequacy but also for 

pragmatic reasons, including tractability and familiarity. These qualities make the properties of the template 

salient and heuristically useful to the modeler during hypothesis formation and model design. Familiarity 

may arise from domain expertise with modeling or from the template's earlier successful adaptations in 

various fields (Knuuttila & Loettgers, 2016; see also Gerrits & Marks, 2015).

I suggest that in the current models used in the social epistemology of science, the choices of modeling 

frameworks are based more on their heuristic role and salience than on representational accuracy. This 

implies that when modelers specify and justify their modeling assumptions, their theoretical intuitions may 

reflect more the abstract properties of model systems than the presumed empirical properties of their real-

world targets. If a template has a history, it can be selected based on its known behavior, i.e., the qualitative 

understanding of the relation C→E, if it appears conceptually relevant for the current modeling task. The 

model template is then adapted for the current modeling task by giving it an interpretation that guides its 

parametrization, and the computational runs verify which interesting properties survive the adaptation and 

which new ones emerge (see Knuuttila, 2011, 268). Some of the key findings may then be more properly 

considered as being replicated in the adaptation rather than discovered through computation, and the 

theoretical discovery resides largely in the adaptation process wherein the intuitive understanding about the 

model's behavior meshes with (pre)theoretical conceptions of the target in creative ways.

For example, epistemic landscapes can be traced to fitness landscape models in biology, from where they 

have been adapted for a wide range of purposes in disciplines including sociology, economics, law, and 

anthropology (Gerrits & Marks, 2015). While Weisberg & Muldoon (2009) did not mention the history of 

the model template, in some subsequent works this connection is made explicit (e.g., Alexander et al., 2015). 

Zollman has been more explicit on the origins of his epistemic network models as well as theoretical and 

analogical reasoning behind them. Epistemic networks were adapted from a model of social learning of 

economic choice (Bala & Goyal, 1998). The pioneering paper that introduced these networks to model 

scientific interaction highlighted the similarities between the economics model and scientific inquiry  

(Zollman, 2007). In the original Bala–Goyal model, agents face an uncertain recurring choice, and they are 

sensitive to the information received from others and upgrade their behavior accordingly. This resembles 

how scientist respond to socially transmitted evidence within their professional networks. In a subsequent 



publication, Zollman (2010) further discussed how his modeling results bear similarities to well-known 

theoretical ideas about the benefits of the diversity of opinions in science.

Epistemic networks in particular exemplify the general point of this section. Zollman’s networks are based 

on an abstract but intuitive analogy between scientists and the populations simulated by Bala and Goyal. 

Based on this analogy, the existing formal model guided the selection of the relational and functional 

properties to be imported from the socio-economic study – even if the resulting model omitted important 

features specific to scientific inquiry. The first published study (Zollman, 2007) qualitatively replicated the 

simulation results by Bala and Goyal. These results, despite the omissions, proved to be analogous with 

influential theories in the philosophy of science and, hence, conceptually highly relevant. 

Some agent-based simulations in social epistemology appear to be based on novel templates, however. For 

example, Hong and Page (2001; 2004) have introduced two such models. Hegselmann and Krause's (2009) 

model of opinion dynamics is also an example. The early publications that explain the motivation and 

construction of these models (Hong & Page, 1998; 2001; Hegselmann & Krause, 2002) rely far more heavily

on modeling literature than detailed empirical considerations of the mechanisms and variables of the social 

phenomena being simulated. The theoretical discussion about the empirical subject matter proceeds on a very

general and intuitive level as the authors explain the rationales for developing their modeling frameworks.

Therefore, the construction of these simulations was apparently guided by the experience with formal 

systems more than careful empirical considerations of their purported real-world targets. To be clear, I am 

not suggesting that there is something wrong with this. My point is only that even when the current models 

of scientific inquiry are not adapted from existing templates, their construction seem to be guided by abstract

hypothetical conceptualizations, and they are not even intended to be accurate representations of any real-

word systems. Hegselmann and Krause (2009, 131) are particularly explicit in this. Instead of being 

descriptions of actual events and processes, simulations in social epistemology are means to investigate the 

robustness of the general logic of arguments (see Hong and Page, 1998, 17).

In this section, I have relied on accounts of scientific modeling that share the consensus that models are 

generally not accurate representations of the ontology and laws of their targets. Instead, they are cognitive 

tools that support reasoning about selected aspects of modeled phenomena by instantiating abstract formal 

systems for surrogate reasoning (Knuuttila, 2011; 2021; Kuorikoski & Ylikoski, 2015; Currie, 2019; 

Aydinonat et al., 2021). Scientific models, in general, have various purposes, some of which require accurate 

representation. However, the account adopted here seems particularly adequate for describing the current use

of agent-based models in the social epistemology of science. These highly idealized models conceptualize 

the hypothetical macro-dynamics of social epistemic interactions in ways that are largely derived from 

abstract properties of model formalisms themselves. Because they are theoretical models, modeling results 

reveal the consequences of these conceptualizations, not real-world events. 



These conclusions are not offered to reveal shortcomings of current models of scientific inquiry, but rather 

their proper epistemic interpretation. The ability to conceptualize the opaque dynamics of complex social 

interactions in cognitively efficient ways is a major cognitive benefit not only for the modeler but for the 

wider research community. The next section discusses this aspect not solely in terms of modeling but in 

terms of model-based argumentative and theoretical reasoning more generally.

5. Collaborative reasoning with intuitive models

In this section, I argue that the cognitive impact of model-based reasoning is not exclusive to actual 

modelers. Section 3 argued that model systems, as tangible external tools, enable pragmatic interactions that 

facilitate the development of new cognitive skills and conceptual schemata relevant for scientific reasoning 

and understanding. More specifically, this understanding is rooted in the mental simulation of cognitive 

activities that involve model systems. While mental simulation is associated with quasi-perceptual mental 

imagery, what is more crucial is the experience accumulated through pragmatic interaction, which fosters the

development of new cognitive skills and conceptual schemata that can be recruited to reason about other 

domains via the analogical transfer of skills and knowledge. In Section 4, I argued that these skills guide 

modelers to conceptualize and reason about real-world phenomena in terms of familiar model systems and 

their abstract properties. Here, I argue that engaging in actual modeling is not necessary for this 

conceptualization function to have its cognitive impact. It suffices for researchers to utilize models and their 

properties as conceptual systems for scientific reasoning. While allowing highly idealized models to drive 

argumentative practices involves cognitive risks, they also offer cognitive benefits by providing shared 

mental models that coordinate collaborative research.

It is instructive to note the broad similarities between the heuristic use of models and the psychology of 

analogical reasoning: An unfamiliar target problem or scenario is compared against a set of potential 

analogies, and some form of similarity is recognized between the target and a candidate source analogy. 

Irrelevant surface properties are excluded from consideration, and the underlying “deep structure” of the 

source, often a causal or other relational structure, is mapped onto the target and adapted for a better fit for 

its constraints. The acquired scenario is run (mentally or on a computer), and the outcome is interpreted to 

answer our questions about the target. Essentially, the same general idea characterizes both modeling in the 

social epistemology of science and analogical reasoning with mental models (see Holyoak et al., 2010; 

Reeves & Weisberg, 1994). In the analogical reasoning literature, it is commonly held that the source 

analogy is selected based on its similarity to the deep structure of the target. However, if we already knew the

target structure, there would be no need to import it from an analogy (Reeves & Weisberg, 1994). Analogies 

are useful precisely when we do not understand how the target functions, and hence we need to conceptualize



it with the aid of familiar schemas or scenarios. This is the main epistemic function of highly idealized 

models of scientific inquiry. 

In the previous two Sections, I argued that modelers are able to exploit the abstract properties of model 

systems for conceptualizing hypothetical real-world processes. However, there is no reason to suppose that 

the ability to use models for surrogate reasoning is within the reach of only modelers. The skilled use of 

models involves understanding how they function, which is derived from toying and experimenting with 

them. However, it also involves the ability to use them for inferential and communicative practices 

concerning actual and hypothetical systems. While modelers are best positioned to acquire the former kind of

skills, engaging in modeling is not necessary to learn expertise in using models and modeling results for 

scientific reasoning and communication. These represent two related but distinct cognitive skill sets. Using 

models for scientific reasoning requires learning the relevant inferential norms and practices prevalent in the 

research community, which stem from conceptualizing hypothetical real-world phenomena with models.

The reason for emphasizing this is that modelers evidently acquire distinct cognitive skills and conceptual 

competencies. However, it is less clear whether this applies to other members of the research community. 

Perhaps they only absorb the modeling results in the form of explicit hypothetical claims without significant 

conceptual or procedural learning. Nonetheless, I believe this is not the case. It is by no means trivial to 

understand how the highly idealized models of scientific inquiry are supposed to map onto their purported 

real-world targets and what, if anything, can be learned from them. Understanding modeling practices and 

model-based arguments requires conceptual learning and the adjustment of theoretical intuitions to align with

the properties of model systems and aims of modeling. Some of the non-propositional knowledge generated 

by modeling can be shared across the research community through diagrams and other means. These 

methods convey the model's structure and dynamics in heuristically useful and cognitively efficient ways. 

Consequently, models can provide different skills and concepts to different researchers, depending on how 

they learn to reason with models and the representational means they use to access the modeling results.

This difference in competence between modelers and the rest of the community can be understood along the 

lines of Harry Collins’ (2004) distinction between contributory and interactive expertise. Contributory 

expertise refers to the ability to exercise a practical skill, while interactive expertise refers to the ability to 

expertly converse about the skill without being able to exercise it. In this context, these forms of expertise 

can be seen as the skill to program and use computational models and the skill to competently discuss and 

reason about them. However, competent utilization scientific models involves not only reasoning about 

models but also with models in order to devise and understand model-based arguments. Anyone who is 

proficient in using models and modeling results for hypothesis formation, inference, and argumentation, 

possesses contributory expertise to that extent. 



Apart from these psychological aspects, there is also a social coordinative factor that is crucial for the 

conceptualization function of models. In Section 4, I suggested that successful modeling efforts contribute 

back to the pool of shared knowledge that enables the ideation of theoretical models in the first place. The 

significance of this factor becomes most evident when the initial model serves as a foundation that 

coordinates further theoretical work through broader model-based reasoning in addition to actual model 

construction and simulation. 

Computational models of scientific inquiry are introduced for investigating specific effects. Subsequent 

discussions around the seminal results mostly retain the basic template, and the argumentative moves in the 

following debates revolve around adding and tweaking the model parameters. These investigations into new 

or corrected mechanisms are common in the ensuing critical assessment of models. Critiques of specific 

models are plentiful (Thicke, 2020), and not all critiques assess only the representational details but deeper 

conceptual issues involved in the model templates (e.g., Thompson, 2014; Bedessem, 2019). However, rarely

are the entire templates replaced while keeping the original research questions intact. This would amount to a

more radical reconceptualization of the phenomenon under study, but subsequent research tends to retain and

build upon the original formal conceptualization. Often, this reuse of templates also occurs when research 

questions change. Consequently, successful templates sometimes evolve into more general tools for 

representing scientific inquiry, as they are adapted for diverse purposes beyond the scope of the original 

research questions (see Aydinonat et al., 2021; Šešelja, 2022). 

As argued in Section 4, I suggest that the reason for sticking with successful templates, and allowing them to 

drive the research, is not solely it is easier than developing a new one for each modeling purpose. Scientific 

reasoning in general is based on the selection and adaptation of familiar techniques within one’s domain of 

expertise. Consequently, the use of particular frameworks tends to reinforce their further use for related 

questions. In the context of social epistemology, this tendency trains the participants to think of scientific 

inquiry in terms of the familiar model systems and their properties. In doing so, they further entrench the 

ways in which the research community conceptualizes their research questions in terms of model system, 

shaping the argumentative practices and the norms concerning competent research. 

In particular, if a model draws attention, critics draw upon their own understanding of the modeled 

phenomena to point out how the model misses some relevant mechanisms or formalizes them incorrectly, 

how it is based on unfounded assumptions, or how it could be better operationalized. Some may be less 

critical and utilize its resources for further theoretical arguments. This is ordinary scientific reasoning in the 

course of normal science, which now revolves around the conceptualization brought by the initial model.

One prominent example of the development of a theoretical idea through iterated modeling efforts is the 

concept of transient diversity of opinions. As explained in Section 2, the idea is that the research community 

benefits from investigating several theories, even if only one of them is best supported by evidence. This 



raises the chances that the community eventually settles on the correct theory. Zollman (2010) first proposed 

that transient diversity could be maintained by restricting the information flow among scientists or by biasing

them with extreme prior opinions. Later, Kummerfeld and Zollman (2016) discovered that transient diversity

prevails if individual scientists occasionally test different theories instead of only their favorite one. 

Fazelpour and Steel (2022) demonstrated that the same benefit can result from in-group/out-group biases 

among scientists. Frey and Šešelja (2018) also found that the transient diversity can be secured by inertia that

delays the theory switch for individual scientists. 

If one presumes that the purpose of modeling scientific inquiry is to identify unique mechanisms for specific 

macro-scale phenomena, this may seem like a conflicting collection of results, as it remains unclear which 

mechanism is the key factor in transient diversity. However, this is usually not the aim. While the results 

might reduce the credibility of any single mechanism as being the main factor for transient diversity, together

they reveal two valuable insights: first, transient diversity is a multifaceted phenomenon that can be 

implemented by various mechanisms; second, these modeling results suggest that the benefit of transient 

diversity is a robust abstract principle, regardless of its implementation. Moreover, any singular finding 

might be an artifact of the specific model implementation, so the proper unit of analysis should not be a 

single model but rather a whole family of models investigating the same phenomenon (Kuorikoski & 

Ylikoski, 2015). While all the simulation results referenced above were based on modifications of the 

epistemic network template introduced by Zollman (2007), there is no obvious reason for these 

investigations to adhere to the same template. For example, Šešelja (2022) noted that an argumentative 

agent-based model also replicated the diversity result, and essentially for the same abstract reason as the 

Kummerfeld and Zollman’s (2016) model, even though it was based on a very different template. 

There is nothing wrong with reusing existing templates for theoretical exploration, even if they are highly 

idealizing. After all, all the assumptions are made explicit in the models. However, there may be a more 

subtle effect: models that drive research may implicitly guide researchers to imagine complex real-world 

phenomena in terms of these idealizing systems when conceiving how real-world systems actually behave. 

For instance, current models are frequently used for making normative recommendations (see Thompson, 

2014; Martini & Pinto, 2017; Bedessem, 2019; Thicke, 2020). But suggestions to take action in the real 

world cannot be based solely on theoretical ideation; it must be assumed that the models inform us of the 

expected consequences of actual interventions. However, current models are mostly adequate only for 

theoretical exploration. While many modelers pursue empirical adequacy by increasing complexity, making 

the current models more complex does not necessarily make them more reliable representations of real-world

events (Martini & Pinto, 2017; Šešelja, 2021).

Therefore, the tendency of model systems to capture the imagination of the research community may not be 

solely advantageous. However, it does offer a clearly identifiable epistemic benefit: The sources of our 

intuitions about the dynamics of complex social systems are likely to be highly diverse and dependent on 



personal backgrounds and theoretical orientations. For example, Marxist sociologists and evolutionary 

psychologists may have very different understandings of the dynamics and key variables of social 

interactions. Additionally, we all have experience-based intuitions about individual behavior, which we likely

extrapolate to our mental models of large-scale social systems. One commonly identified benefit of even 

highly idealized models is that, as public and well-defined systems, they are capable of being accessed, 

evaluated, and refined by others. If our conceptual understanding is refined through the use of models, model

systems also serve as a means to coordinate shared understanding within the research community regarding 

the opaque macro-dynamics of social epistemic processes. In this role, simulation models do not regiment 

our intuitions merely as computational systems but as shared conceptual systems. As argued in this section, 

this epistemic benefit is available for the whole research community and not solely for modelers.

6. Conclusions

I have expanded the argumentative account of modeling in the social epistemology of science by examining 

the cognitive functions of agent-based models as conceptual systems. Specifically, I have argued that the use 

of models facilitates the development of cognitive skills and conceptual schemata that allow modelers to 

mentally simulate real-world processes by exploiting their understanding of model systems and their abstract

properties as sources of theoretical intuitions. Hence, computational models serve not only as explications or 

replacements for intuitive mental modeling but also provide material for it. I explored this aspect specifically

within the social epistemology of science, extending the discussion to include the socially coordinative 

functions of model-based reasoning and its cognitive impact on users beyond the actual modelers. 

My argument includes both positive and critical contributions. I have primarily focused on the positive 

contribution of explaining how model systems support intuitive reasoning and understanding, where intuition

has a specific psychological interpretation as mental simulation based on mental models. I have argued that 

cognitive skill-learning and expertise provide the correct theoretical frameworks for understanding the 

cognitive impact and the social epistemology of modeling and model-based reasoning practices. While 

highly idealized models simplify and distort, idealization facilitates understanding and concept formation, 

and, consequently, communication, argumentation, and intuitive model-based reasoning.

The critical implications of my argument are mostly latent. The learning that facilitates the aforementioned 

cognitive benefits targets model systems, not real-world phenomena. Separate arguments are needed to 

justify the relevance of modeling results if their purpose is to make empirical claims. However, if models are 

used solely to demonstrate the qualitative consequences of a particular conceptualization of the target 

process, they should be evaluated similarly to analogies. The success of analogies is primarily a matter of 

pragmatics rather than veridicality or accurate representation. The source analogy serves its purpose if it 



promotes hypothesis formation, correct inferences, mutual understanding, and orderly communication and 

argumentation. 

Computational modeling offers the clear epistemological benefit of forcing us to precisely articulate and 

formalize our every assumption (Mayo-Wilson & Zollman, 2021, 3663) Nevertheless, the necessary 

idealizations in the computational models of scientific inquiry also force us to simplify and misrepresent, 

leaving the mapping between the model and its supposed real-world target occasionally obscure. Even very 

remote analogies (or highly idealized models) can convey an abstract gist or structure that they actually share

with the target. However, when this is not the case, both analogies and idealized models can be misleading 

and cause a false sense of understanding. In such instances, certain conceptualizations may pose high 

epistemological risks if the formal framework itself drives theoretical research on ill-understood phenomena.

This approach to the epistemology of simulation models may appear to downplay their computational aspect.

However, the computational properties of models are essential for constituting the associated conceptual 

systems because they establish how the models actually behave. This, in turn, determines the characteristic 

consequences of conceptualizing the target through a particular model system. Computational runs also 

provide systematic feedback to modelers about the consequences of changes in model parameters. This 

factor is crucial since a predictable environment and feedback are prerequisites for the development of any 

complex intuitive expertise (Kahneman & Klein, 2009). Simulation models are unique cognitive tools 

precisely because they are interactive causal systems and not mere representations of causal systems.

To be clear, I do not deny that agent-based models of scientific inquiry can also boost our epistemic practices

as computational tools. Neither do I deny that genuine discoveries through computation occur. I have simply 

analyzed modeling from a broader perspective, emphasizing aspects beyond the computational part. 

However, the reason why this part is particularly important in the social epistemology of science is that it is 

challenging to establish clear and agreed-upon conceptualizations of such a complex process as the social 

dynamics of scientific inquiry. Highly idealized models help overcome this problem by providing relatively 

accessible conceptualizations for facilitating scientific reasoning and communication. With regard to these 

aims as well as hypothesis formation, argumentation, and mutual understanding, idealization is a epistemic 

virtue rather than a vice, as far as it promotes comprehensibility.

The claim that highly idealized models function as conceptual systems is quite general and involves more 

specific functions such as explanation, argumentation, and the coordination of non-propositional knowledge.

I have elaborated the claim by discussing the psychology of model-based and analogical reasoning, mental 

simulation, and cognitive skills. I hope that accounting for these cognitive factors helps us understand the 

epistemological prospects and potential problems of highly idealized theoretical models, especially in the 

context of modeling practices in the social epistemology of science. 
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