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ABSTRACT. A general mathematical framework, based on countable partitions of Natural
Numbers [1], is presented, that allows to provide a Semantics to propositional languages.
It has the particularity of allowing both the valuations and the interpretation Sets for the
connectives to discriminate complexity of the formulas. This allows different adequacy
criteria to be used to assess formulas associated with the same connective, but that differ
in their complexity. The presented method can be adapted potentially infinite number of
connectives and truth values, therefore, it can be considered a general framework to provide
semantics to several of the known logic systems (eg, LC, L3 LP, FDE). The presented
semantics allow to converge to different standard semantics if the separation complexity
procedure is annulled. Therefore, it can be understood as a framework that allows greater
precision (in complexity terms) with respect to formula satisfaction. Naturally, because
of how it is built, it can be incorporated into non-deterministic semantics. The presented
procedure also allows generating valuations that grant a different truth value to each formula
of propositional language. As a positive side effect, our method allows a constructive proof
of the equipotence between N and Nn for all Natural n.

1. INTRODUCTION

We will begin by recalling some basic concepts that will be essential to understand the
development of the work. As it can be linked, (among others) with the non-deterministic
semantics of Nmatrices, in the first section, we will give a very brief introduction to the
topic. We will also give an explanation of what it means to have functional connectives and
valuations. As the argumentative line of the entire work is closely linked to the concept
of complexity of a well-formed formula of the language wff, we will also remember some
basic issues associated with it. In the section 2.2, we present a method that generates special
Naturals Number Partitions, called doubly numbered partitions (DNP). Our exposition is a
summary of main ideas, presented in [1], necessary for the development of this article. The
semantics used in our presentation depend on the generated DNPs. In 2.2 (end of section) we
show the algorithm that allows generating DNP for any base greater than 1. Valuations are
strictly linked to these special partitions in section 3. Once the semantics have been presented,
we show some characteristics that the interpretation sets have for the connectives and we
provide adapted adequacy criteria in section 4. In section 5 we show how our formalism is
applied to the systems Ł3, LP and FDE. Continue studying new fields of application will be
future work. Finally, in the last section we draw some conclusions from our article.

1.1. Complexity of a Formula, functional connectives and consequence relations. We
will begin by recalling some basic definitions.

Definition 1.1. The set FrmL of the well-formed formulas of a propositional language L
is defined, giving [2]
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(1) The symbols:
• Propositional variable symbols: p1, p2, ..., pn, ... (considered countable).
• Connective symbols: (⊙i)i∈I , where each ⊙i corresponds to a n natural, which

is its arity: 0-ary or constant, unary, binary, . . .
• Punctuation symbols: (, ).

2. Formation rules:
• Each pi is a formula, for i = 1,2, ...
• If A1,A2, ...,An are formulas and ⊙ is a n-ary connective, then ⊙(A1,A2, ...,An)

is a formula. If ⊙ is binary, we will write
A1⊙A2 rather than ⊙(A1,A2).
• A string of symbols is a formula if and only if it can be obtained from the above

two items in a finite number of steps. The above definition gives us the syntax
of the propositional calculus language.

Definition 1.2. Complexity of a formula.
We define the complexity of a well-formed formula of our language as its number of

connectives, i.e.:
• If A is an atomic formula, compl(A) = 0.
• compl(¬A) = compl(A)+1.
• compl(A⊙B) = compl(A)+ compl(B)+1.

Where ⊙ denotes any of the binary connectives of our language. If we were to work
with connectives of arity n greater than 2, then compl(⊙(A1, ...,An)) = compl(A1)+ ...+
compl(An)+1.

In 1.2.1 we will define the deterministic matrices and the functional valuations. But the
truth-functionality can also be defined for the connectives of a language. It can be shown
that, under very general conditions (involving, for example, closure under subformulas),
asking for functionality of valuations is equivalent to asking for veritative functionality of
connectives. Let’s start by defining truthful-functionality for the connectives of our language.

Let T be the set of valuations (or maps) t : Sent(L)→V (see [3]).

Definition 1.3. We say that T truely respects the negation functionality if, for all t, t ′ ∈ T
and any φ , φ ′ ∈ Sent(L),

t(φ) = t ′(φ ′)⇒ t(¬φ) = t ′(¬φ
′).

Definition 1.4. We say that T respects the veritative functionality of the conjunction if

∀t, t ′ ∈ T, ∀φ ,φ ′,ψ,ψ ′ ∈ Sent(L) (t(φ) = t ′(φ ′) y t(ψ) = t ′(ψ ′)

=⇒ t(φ ∧ψ) = t ′(φ ′∧ψ
′)).

Definition 1.5. We say that T respects truth-functionality of disjunction if

∀t, t ′ ∈ T, ∀φ ,φ ′,ψ,ψ ′ ∈ Sent(L) (t(φ) = t ′(φ ′) y t(ψ) = t ′(ψ ′)

=⇒ t(φ ∨ψ) = t ′(φ ′∨ψ
′)).

We will now give two definitions of logical consequence.

Definition 1.6. Pure logical consequence.
Let S ⊂ V be a proper subset of the set of truth values. We say that the sets Γ y ∆ are
connected by a pure relationship of logical consequence, Γ |=P ∆, if and only if for each
valuation v and each formula γ ∈ Γ, if v(γ) ∈ S, then there exists δ ∈ ∆, such that v(δ ) ∈ S.
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Definition 1.7. Mixed logical consequence.
Let S1 ⊆V and S2 ⊆V be subsets of truth values. A logical consequence relation between
sets of formulas Γ y ∆ will be called mixed, Γ |=M ∆, if and only if for each valuation v and
each formula γ ∈ Γ, if v(γ) ∈ S1, then, there exists δ ∈ ∆, such that v(δ ) ∈ S2.

Pure consequence relations can be considered a proper subset of mixed relations. To
see more details and definitions about these relations, we recommend [4, 5]. Each of these
relations can be thought of as defining a subset of P(FrmL )×P(FrmL ).

1.2. Non-deterministic semantics. Non-deterministic multi-valued matrices (Nmatrices)
are a fruitful and rapidly expanding field of research. They were introduced into [6, 7, 8] and,
since then, they have developed rapidly as a fundamental logical theory finding numerous
applications, that go from automata theory, to quantum mechanics [9, 10], going through
various areas of logic, such as modal logics. The novelty of Nmatrices is that this formalism
extends the usual multivalued algebraic semantics of logical systems by importing the idea
of non-deterministic calculation,allowing the truth value of a formula to be chosen non-
deterministically from a given set of options. Nmatrices have proven to be a powerful
tool, whose use conserves all the advantages of ordinary multivalued matrices, while being
applicable to a much wider range of logics [11]. In fact, there are many non-classical
(propositional) logics which, while not having finite multivalued characteristic matrices, do
admit finite Nmatrices and are therefore decidable.

1.2.1. Deterministic Matrices. In this section we will follow the approach presented in [11].
In what follows, L is a propositional language and FrmL denotes the set of well-formed
formulas of the language. Metavariables ϕ , ψ ,. . . , traverse L-formulas, while Γ, ∆,. . . ,
will be used for sets of L-formulas. Also, all the outfits are classic. The standard general
method for defining propositional logic is based on the use of deterministic matrices (possibly
many-valued):

Definition 1.8. An matrice for L is a tuple

P = ⟨V ;D;O⟩
where

• V is a non-empty set of truth values.
• D (designated values) is a non-empty proper set of V.
• For each n-ary connective ♢ in L, O includes an interpretation function ♢̃ : V n→V .

A partial valuation in P is a function v, going from V to a subset W ⊆ FrmL closed under
subformulas, such that for each connective n-ary ♢ from L and for allψ1, . . . ,ψn ∈W :, the
following is fulfilled

v(♢(ψ1, . . . ,ψn)) = ♢̃(v(ψ1), . . . ,v(ψn)) (1)

Proposition 1. Analyticity. Any partial valuation of a matrice P for L, defined over a set of
L-formulas closed under sub-formulas, it can be extended to a total valuation in P.
Due to this property, any finite matrice P will be decidable.

1.2.2. Non-deterministic matrices (Nmatrices). We now turn to the non-deterministic case.
The main difference is that, in contrast to deterministic matrices, nondeterministic matrices,
given their input truth values, assign a set of possible values (instead of a single value).

Definition 1.9. A non-deterministic matrix (Nmatrix) for L is a tuple M = ⟨V,D,O⟩, where:
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• V is a non-empty set of truth values.
• D ∈P(V ) (Designated truth values) is a proper non-empty subset of V .
• For each n-ary ♢ connective in L, O includes the corresponding interpretation

function
♢̃ : V n→P(V )\{ /0}

Definition 1.10. (1) A dynamic partial valuation in M is a function v on a closed set
under subformulas W ⊆ FrmL a V , such that for each connective n-ary ♢ of L and
for all ψ1, ...,ψn ∈W the next is fulfilled:

v(♢(ψ1, ...,ψn)) ∈ ♢̃(v(ψ1), ...,v(ψn))

A partial valuation in M is called a (total) valuation if your domain is FrmL.
(2) A static (partial) valuation in M is a dynamic (partial) valuation that also satisfies

the following principle of compositionality (or functionality) (defined in some W ⊆
FrmL): for each connective n-ary ♢ of L and for each ψ1, . . . ,ψn,ϕ1, . . . ,ϕn ∈W , si
v(ψi) = v(ϕi) (i = 1, . . . ,n), then

v(♢(ψ1, . . . ,ψn)) = v(♢(ϕ1, . . . ,ϕn))

It is important to note that the classical (deterministic) matrices correspond to the case in
which each ♢̃ : V n→P(V ) is a function that takes singleton values. In this case there is no
difference between static and dynamic valuations, we have (functional) determinism.
To understand the difference between ordinary matrices and Nmatrices, we remember that
in the deterministic case, the truth value assigned by a valuation v to a complex formula
is defined as follows: v(♢(ψ1, ...,ψn)) = ♢̃(v(ψ1), ...,v(ψn)). The truth value assigned to
♢(ψ1, . . . ,ψn) is uniquely determined by the truth values of its subformulas: v(ψ1), . . . ,v(ψn).
However, this is not the case for Nmatrices: in general, the truth values of ψ1, . . . ,ψn no
univocally determine the value assigned to ♢(ψ1, . . . ,ψn), since different appraisals that
have the same truth values for ψ1, ...,ψn can assign different elements of the performance
set ♢̃(v(ψ1), . . . ,v(ψn)) a ♢(ψ1, . . . ,ψn). Therefore, the non-deterministic semantics of
Nmatrixes do not fulfill truth functionality, as opposed to matrix semantics. In the table (1),
some differences between matrices and Nmatrices are shown.

TABLE 1. Matrices deterministas vs Nmatrices.

Deterministic matrices Nmatrices
Set of truth values V V
Designated Value Set D⊂V D⊂V
Connectives ♢ ♢̃ : V n→V ♢̃ : V n→P(V )\{ /0}
Valuations Not dynamic Possibly dynamic / not static.
Veritative functional If Not necessarily

Now, we will review the standard definitions of logical consequence. [11].

Definition 1.11. (1) A (partial) valuation v in M satisfies a formula ψ (v |= ψ) si (v(ψ)
is defined and v(ψ) ∈ D. We say that it is a model of Γ (v |= Γ) if it satisfies each
formula of Γ.

(2) We say that ψ is dynamically (statically) valid in M, in symbols |=d
M ψ (|=s

M ψ), if
v |= ψ for each dynamic (static) valuation v in M.
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(3) The dynamic (static) consequence relationship induced by M is defined as follows:
Γ ⊢d

M ∆ (Γ ⊢s
M ∆) if each dynamic (static) model v in M of Γ satisfies some ψ ∈ ∆.

Obviously, the relation of static consequence includes the dynamic, that is to say, ⊢d
M⊆⊢s

M.
Furthermore, for ordinary matrices, we have that ⊢s

M=⊢d
M.

Proposition 2. Let M be an Nmatrix of two values that has at least one non-deterministic
operation. So there is no finite family of finite ordinary matrices F, such that ⊢d

M ψ sii ⊢F ψ .

Proposition 3. For every (finite) Nmatrix M, there is a (finite) family of ordinary matrices F,
such that ⊢s

M=⊢F .

Thus, only the expressive power of dynamic semantics based on Nmatrices is stronger than
that of ordinary matrices. The following theorem taken from [6] is a generalization of the
proposition 1 for the case of Nmatrices:

Proposition 4. (Analyticity) Let M = ⟨V,D,O⟩ be an Nmatrix for L, and let v′ be a partial
valuation in M. Then v′ can be extended to a (total) valuation in M.

2. PARTITIONS OF THE NATURALS

In this section, we show the method that will allow us to partition natural numbers into
countable classes. It will be of crucial importance for the rest of the work. The method,
together with several of the consequences that arise from it, was originally presented in [1].
In this section we give a brief summary of it to introduce the results that we need. The basic
idea is to separate the set of Naturals into countable sets, each countable and disjoint in
pairs. We will call Doubly Numberable Partitions (DNP) to partitions that meet the above
requirements.

2.1. Partitions and equivalence relations. Let’s briefly recall the concepts of partition and
equivalence relation.

Definition 2.1. A relation is said to be an equivalence relation if and only if it is
• reflexive. Every element in the domain is related to itself: ∀x(xRx).
• symmetric. If x is related to y, then y is related to x: ∀x ∀y (xRy⇒ yRx).
• transitive. If x is related to y and y is related to z, then x is related to z: ∀x∀y∀z

(xRy∧ yRz⇒ xRz).
The equipotential relation between sets is an equivalence relation. As an example we can

name that both even and odd numbers are equipotent with the set of natural numbers. This is
related to the fact that there is a partition of the natural numbers formed by the even and the
odd numbers. On the other hand, since the Naturals and the Integers are equipotent, we have
that even or odd have the same number of elements as the Integers (using the transitivity
of the equipotential relation). When X is equipotent with the set of natural numbers (X
numerable), its cardinal is said to be Aleph subzero and it is denoted by ℵ0 . All countable
sets have the same cardinal value, ℵ0. When the above is true, we will write

|X |= ℵ0.

This is central in our work, since the DNPs fulfill the previous equation, they are all equipotent
with the Natural ones. Partitions have a very close link with equivalence relations: every
equivalence relation defined on elements of a set X generates a unique partition of this set.
What do we mean by a partition? Intuitively, a partition of a set X is a way of generating
subsets of X , such that they are disjoint, that is, their intersection is empty, and their union is
also the original set X (no element can be left out).
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Definition 2.2. Let {Xi}i∈∆ be a family of non-empty subsets of X , with i belonging to a
fixed set of subscripts ∆. We say that this family is a partition of X if

•
⋃

i∈∆ Xi = X .
• Xi∩X j = /0 for all i ̸= j.

As we mentioned before, every partition of a domain defines an equivalence relation on it
and vice versa. [12, 13]. We will generate the partitions and therefore obtain the associated
equivalence relations.

2.2. Doubly Numberable Partitions. We will start this section by showing how to generate
one of the at least countable DNPs. For a partition of the Naturals to be called doubly
countable, it is necessary and sufficient that each one of the countable subsets that make up
the partition of the domain (it cannot be a finite partition) is countable, that is, equipotent
with N, that are disjoint two by two (their intersection is the empty set) and that their union
equals the natural numbers.

Let us consider the natural numbers with their usual order starting with 1 (but the argument
is the same if we consider that 0 is natural). We could also extend this process to Integers.
Let’s start with the natural series:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
...

With the colors we simply specify the set to which we will make each natural belong, that
is, our process generates successive sets of double length than the previous one starting with
the initial length 2. This is,

C1 = {1,2} ; C2 = {3,4,5,6} ; C3 = {7,8,9,10,11,12,13,14}

C4 = {15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30},etc.

It is clear that

N=
∞⋃

l=1

Cl ; Cl ∩Cl′ = /0 ; l ̸= l′.

Remark: Note that the Cl form a partition of the Naturals, but such a partition
is not doubly countable. This is because, despite there being as many Cl as
there are natural numbers (and being disjoint), they are not countable (they
are all finite).

The next step is to choose the first element of each of the sets Cl to form the set A1 . This can
be done algorithmically because the Naturals are well-ordered. We then have:

A1 = {1,3,7,15,31, ...}.

Where the elements of A1 maintain the following recursion:

a1,i+1 = 2.a1,i +1 ; a1,1 = 1.

Each element of this set is equal to the successor of the double of its previous one.
Furthermore, it is clear that it is a countably infinite set, since there are infinitely many Cl and
each has a first element. Now we build the next array, A2, by taking the second element of
each Cl . This is equivalent to taking the first element already used in A1 out of the original
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sets and taking the first element back. This is something that can be done without drawback
recursively.

A2 = {2,4,8,16,32, ...}.
Where its elements maintain the following relationship:

a2,i+1 = 2.a2,i ; a2,1 = 2.

We obtain a new countable set where each element is twice its previous one. In forming the
third set, we must take the third element from each of the Cl . We directly observe that C1
has no third element, so we start with the next set, C2, which is the first set that has a third
element.

A3 = {5,9,17,33, ...}
a3,i+1 = 2.a3,i−1 ; a3,1 = 5.

In this case, each element is generated from the previous one by duplicating it and subtracting
1.
Continuing this way:

A4 = {6,10,18,34, ...}
a4,i+1 = 2.a4,i−2 ; a4,1 = 6.

For the following case, it should be noted that the first two Cl do not have a fifth element,
so the first element of A5 will belong to C3, the first of these sets that has a fifth element, 11.

A5 = {11,19,35,67, ...}
a5,i+1 = 2.a5,i−3 ; a5,1 = 11.

It is clear how to continue our construction and, furthermore, that it can be done taking as
base any number greater than 1, instead of base 2 as we have chosen to show the construction
process. By construction, it is true that:

N=
∞⋃

n=1

An ; An∩An′ = /0 , n ̸= n′ and ∀n |An|= |N|= ℵ0 (2)

It is easy to prove that each natural number belongs to only one of the An. This is due
to the fact that each natural belongs to a unique Cl (they are disjoint) and that within that
set it can occupy only one location, the nth. When we show the general case shortly, it
will be seen that because of how the n associated with each natural number is computed,
having the same n generates a relation that is reflexive, transitive, and symmetric, that is, it
generates a relation of equivalence. Therefore, we have the natural numbers separated into a
countable number of disjoint sets, each one equipotent with N. This partition of the natural
numbers is an example of what we call doubly countable partition (DNP) and will have its
corresponding equivalence relation associated. In addition, they will be absolutely linked to
our semantics.

DNPs originally arose in the context of Hilbert’s Hotel. They present an alternative
solution for the case in which the hotel is full and numerous contingents of tourists arrive
simultaneously, each with countable individuals. In such a case, we have how to assign a
piece to each person. This way is not only a different alternative to the classical solution
shown, but also generates infinitely many more equivalent alternatives. We index the
contingent in question with n and assign it the class An together with an index i that denotes
its position within the An. Since there will be a single natural associated with each pair
(n, i), each individual will have their own piece. Each person belongs to a single contingent,
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which univocally determines the n, and has a given order (i) within it, which is also unique.
Therefore, each person has a unique pair (n, i). If the hotel were already fully occupied when
the infinite contingents of tourists arrive, then we leave all the odd rooms free (with the
classic ruse of the problem) and carry out the partition shown on the odd rooms.
We have created a particular example of countable disjoint sets of pairs, each countable,
whose union is countable (since their union is the set N). Each constructed DNP represents
an example of a countable union of countable sets that results in a new countable set (the
Naturals). That is, we have infinite examples (as many as real numbers, see [1]) of a general
theorem that can only be proved with the help of the axiom of choice: the countable union of
countable sets and disjoint pairs have the cardinality of the Naturals.

2.2.1. Formalization of the problem. We are going to show the recursive function that bi-
univocally assigns n and i to each natural number x. The n will determine to which class
(An) it belongs and the i will designate its position within it. That is, given x ∈ N , we
will assign a single class An and within this enumerable class, the i-th position. This will
be one possible way, among many, of bijectively assigning a pair (n, i) to each natural x,
which shows the relationship between the problem of generating doubly countable partitions,
and joining countable disjoint sets, with that of establishing a bijection between N and N×N.

Any natural number x greater than 2 can be delimited in the following way (the case x = 1
and x = 2 does not cause any problem, since we know how to locate them):

m

∑
j=1

2 j < x≤
m+1

∑
j=1

2 j. (3)

The above condition can be equivalently expressed as

2m+1−2 < x≤ 2m+2−2.

We will use the first form when doing the following calculations because it better demon-
strates the sequential and constructive reasoning that we use.
According to the equation (3), each natural univocally defines a m. It can be seen that
l = m+1, where l is the subscript of the sets Cl at the beginning. We define the number n
(class An) associated with x as follows:

n = x−
m

∑
j=1

2 j = x− (2m+1−2) = x−2m+1 +2, (4)

where m is determined by the equation (3).
Let’s see an example: si x = 17, then

2+4+8 < 17≤ 2+4+8+16.

Using (3) we have that m = 3 and l = 4. With (4) we calculate that n = 17− 24 + 2 = 3.
Therefore, 17 ∈ A3, a result that agrees with our definition of A3. It remains now that we
determine what position it occupies within this class. The i-th location within An is given by:

i = log2(
x−n+2

an,1−n+2
)+1. (5)

Where an,1 is the first element of the set An and is given by:

an,1 = n+
k

∑
j=1

2 j = 2k+1 +n−2 (6)
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with k satisfying:
2k < n≤ 2k+1. (7)

The number k can be null or negative (-1). If n = 1, then k =−1:

k ∈ {−1,0,1,2,3,4,5, ...}.

This does not generate a problem in the equation (6) (when calculating the first element
of that set) if we take the convention that the result of the summation is null every time
the upper index is less than the lower one. Let us now see the complete operation of this
algorithmic procedure. Suppose we have x = 131 and see what location it corresponds to
within its corresponding An class. Primero debemos obtener el n con las ecuaciones (3) y (4):

2+4+8+16+32+64< 131≤ 2+4+8+16+32+64+128 =⇒m= 6 y n= 131−126= 5.

That is to say, 131 ∈ A5. Using the equations (5), (6) and (7) we calculate the associated i.
By (7):

22 < 5≤ 23.

Concluding that k = 2. Using this k in (6):

a5,1 = 5+
2

∑
j=1

2 j = 11.

With which we obtain the first element of this equivalence class. Finally, by (4):

i = log2(
131−5+2
11−5+2

)+1 = 5

Therefore, 131 is the fifth element of A5. In relation to the hotel, our result says that we
must assign room number 131 to the fifth tourist of contingent number 5. Although in this
way what we did was assign a room to a tourist, we can do the reverse procedure as we will
show below. If we wanted, for example, to see which piece to assign to the sixth tourist in
contingent 3, what we have to do is see which natural number occupies position 6 in A3.
We must calculate the first element of this class and then recursively the other elements
through the recursion that characterizes A3, in this case, double the previous element to take
its successor. The general recursion relation behind all An is the following:

an,i+1 = 2ian,1− (n−2)(2i−1). (8)

Where both n and i are taken from 1 and each an,1 is computed according to (6). This
function is the inverse of the one that assigns a pair (n, i) to each x. Let’s see that this agrees
with the first An that we showed at the beginning. If n = 1, then

a1,i+1 = 2ia1,1 +(2i−1).

What generates the succession 1,3,7,15, ... starting from its first element, a1,1 = 1.
Si n = 2,

a2,i+1 = 2ia2,1.

For n = 3,
a3,i+1 = 2ia3,1− (2i−1).

And in this way it can be corroborated for the rest of the numbers.
Returning to the hotel, we were interested in seeing which room to give to the sixth member
of contingent 3.Let us first compute a3,1. According to the equation (7),

21 < 3≤ 22
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implies that k = 1. So, by (5):

a3,1 = 3+
1

∑
j=1

2 j = 5.

And finally we get (from (8)):

a3,6 = 25(5)− (25−1) = 129.

Therefore, if we were in the framework of the Hilbert’s Hotel problem, we would award
room 129 to the traveler in question. Something essential for our procedure is that the sum of
the lengths of the sets Cl is not bounded. Thus, we have at least countable examples, which
we can effectively generate, that show this property of countable sets with respect to the
cardinality of their union. The equivalence relation behind all these partitions, regardless of
the base that generates it, is the following: two naturals x,y are related if and only if they
belong to the same An, that is , if they have associated the same n (4). Having the same n
assigned proves reflexive, symmetric, and transitive.

The previous line of reasoning can be generalized for the case of a generic base b ∈
N\{1}.Their corresponding equations are:

an,i+1 = bian,1− ((b−1)n−b)(
bi−1
b−1

) (9)

an,1 = n+
k

∑
j=1

b j (10)

bk < n≤ bk+1 (11)

The program that performs the corresponding base 2 partition can be down-
loaded at the following link. Given a natural x, it assigns the corresponding
n and i, as well as showing some elements of the An in question, and if enters
the pair (n, i), returns the natural that corresponds according to our equations:
https://drive.google.com/file/d/0B-rDGOh8gCl2OE1RdE5BVGhac1E/
view

2.3. Generalized DNPs. In this part, we will generalize the recursive DNP generation
method. This generalization was not presented by its authors in [1] and can be considered
the first contribution of our article. Such a generalization is not necessary to understand the
basic procedures related to the semantics that we will present (we only use it in some of
the applications at the end of the paper). It could be useful if we wanted, in the near future,
to generalize the method presented in the next section. Therefore, any reader will not have
comprehension problems if they want to skip this subsection and go to 3.

As we have seen, a particular DNP consists of generating a partition of N into enumerable
classes, each one enumerable. As each of the classes is equinumerable with the starting
set, we can associate a new partition to each one. In this way, we will get a new partition
associated with the original one. Since this process can be iterated as many times as one
wishes, we will have an effective way to accomplish this task. Such a form continues in the
framework of recursive processes and allows, among other things, to obtain an alternative
(algorithmic) proof of the equinumerability of the sets N and Nn for all n nature. It is easy to
see that the proposed method for generating the DNPs provides an effective method to prove
that N and N2 are equipotent. One only has to take into account the bijection that a DNP, in

https://drive.google.com/file/d/0B-rDGOh8gCl2OE1RdE5BVGhac1E/view
https://drive.google.com/file/d/0B-rDGOh8gCl2OE1RdE5BVGhac1E/view
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a given base, establishes between each natural number x and the pair (n, i).Where the first
element of the pair indicated the class of x and the second, the position within it. That is,
to each natural x an An is associated, such that x ∈ An in the i-th position. If we apply the
same procedure to An (and to all the other sets of that partition), we will have associated a
triad (n, i, j) with each natural x. That is, to each x we biunivocally associate an an,i, j, which
means that we apply a DNP to the class An (with the same original base) obtaining a new
partition doubly countable, {Bm}m∈N, where x ∈ Bi in the j-th position. Let us show this
procedure in a little more detail.

If in a first DNP of N we obtain the classes {Am}m∈N, then we have that

N=
∞⋃

i=1

Ai

, where
A1 = {a1,1,a1,2,a1,3, ...,a1,n, ...}
A2 = {a2,1,a2,2,a2,3, ...,a2,n, ...}

...
An = {an,1,an,2,an,3, ...,an,n, ...}

...
If we apply the same effective procedure to each class Am of the previous ones, we obtain

Am =
∞⋃

j=1

Am, j

, with
Am,1 = {am,1,1,am,1,2,am,1,3, ...,am,1,n...}

Am,2 = {am,2,1,am,2,2,am,2,3, ...,am,2,n, ...}
...

Am,n = {am,n,1,am,n,2,am,n,3, ...,am,n,n...}
...

Therefore, to a natural x that in the first partition the pair (n, i) was paired, that is, we
associated the number an,i, after a second DNP, will have associated the triad (n,m, j), where
i = am, j.

an,m, j = an,am, j .

For example, in the partition associated with the equation 8, we associated the number 31
with the class A1, in position 5, that is, a1,5. In turn, 5 was in class A3, position 1. Therefore,
after a second partition, a1,5 is associated with a1,3,1.

31←→ a1,5←→ a1,3,1.

It can also be confirmed that the number 19 is related to the pair (5,2), that is, with a5,2.
Since 2 is related to the pair (2,1), then 19 will correspond, in the second application of the
DNP, el a5,2,1.

19←→ a5,2←→ a5,2,1.
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Since our assignments through the DNPs are bijective, there is no way that more than one
an,m, j is associated to each an,k in this way. All these associations are one-to-one, therefore,
we have an effective mechanism to prove the equipotence between N,N2 and N3. The
procedure can be generalized to the general case as follows:

an1,n2,...,nk−2,nk−1,nk ←→ an1,n2,...,nk−2,m

with m = a(nk−1,nk).
For example, we know that a2,3,4,1,1, which is a coefficient product of performing the

same partition 4 times, will have associated a2,3,4,a(1,1) = a2,3,4,1, since in the considered DNP,
1 = a(1,1).

a2,3,4,1,1←→ a2,3,4,1←→ a2,3,a(4,1) ←→ a2,a(3,a(4,1))

using the program
https://drive.google.com/file/d/0B-rDGOh8gCl2OE1RdE5BVGhac1E/view
, that the DNP performs in base 2, we can calculate all the coefficients that appear and finish
the assignment. According to this program, a4,1 = 6. Therefore,

a2,3,4,1,1←→ a2,3,4,1←→ a2,3,a(4,1) = a2,3,6←→ a2,a(3,6) = a2,129

Of course, all these accounts could be done by hand with what is presented in the formaliza-
tion part of the DNP. Therefore, we have an algorithmic method that proves the equipotence
between N and Nn for all n ∈ N.

3. APPLICATION OF DNPS TO VALUATIONS

We are already in a position to relate the DNPs with our semantics. This is the core of our
work.

We will consider the DNP, on the desired basis, fixed. We will work with the DNP
generated in base 2, but the results naturally extend to any base greater than 1. Once
the partition of the Naturals into countable sets is determined, we establish the following
relationship:

A1 = {1,3,7,15,31, ...}←→ Dp

A2 = {2,4,8,16,32, ...}←→ Np

A3 = {5,9,17,33, ...}←→ D¬p

A4 = {6,10,18,34, ...}←→ N¬p

A5 = {11,19,35,67, ...}←→ Dp∨q

A6 = {a6,1,a6,2,a6,3,a6,4, ...}←→ Np∨q

A7 = {a7,1,a7,2,a7,3,a7,4, ...}←→ Dp∧q

A8 = {a8,1,a8,2,a8,3,a8,4, ...}←→ Np∧q

A9 = {a9,1,a9,2,a9,3,a9,4, ...}←→ Dp→q

A10 = {a10,1,a10,2,a10,3,a10,4, ...}←→ Np→q

https://drive.google.com/file/d/0B-rDGOh8gCl2OE1RdE5BVGhac1E/view
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Where with D and N we denote the designated and undesignated sets respectively associ-
ated with each connective. The first two sets, Dp,Np, are the sets of named and unnamed
values corresponding to atomic statements. If ⊙ denotes a connective of our language, then
Dp⊙q,Np⊙q are the corresponding sets associated with wff of complexity 1 (for simplicity
we do not specify the superscript 1). In general, we will denote them by Dα

⊙,N
α
⊙ , where the

superscript α corresponds to the complexity of the formula associated with the set. In this
way, for each complexity, we have associated 8 sets Ai of our partition. For example, the 8
associated with complexity 2 formulas are:

A11←→ D2
¬

A12←→ N2
¬

A13←→ D2
∨

A14←→ N2
∨

A15←→ D2
∧

A16←→ N2
∧

A17←→ D2
→

A18←→ N2
→

Dα
⊙ must be interpreted as the set of values designated for the complexity formulas α

whose principal connective is ⊙. Analogously, Nα
⊙ is interpreted. In this way, we are assured

of different sets (named and unnamed) for all formulas of different complexity, even though
they share their main connective. Since there are as many Ai (disjoint and countable) as there
are complexities associated with fbf, the process can be continued indefinitely.

Remark: Our reasoning is independent of whether the designated and undes-
ignated sets of values consist only of true and f alse or whether there are
several different types of these elements in each set. Each of our arrays is
countable and could contain different types of named (or unnamed) values.
For the moment, we can think that all the elements of each of the sets D⊙
will at some point end up in the truth value true (and those of N⊙ in f alse).

It can also be noted that we have arbitrarily selected as primitive con-
nectives ¬,∨,∧ →, when we could do with less. We do this to have the
greatest possible degree of independence and generality. If we want them to
be interdefinable, we will make their respective suitability conditions and
truth tables relate appropriately. In our next examples, we will also take
double implication as a primitive connective and it will be clear that the
number of these we take does not affect the line of our reasoning.

At this point we have two alternatives, which we will explore in parallel: a) analyze prop-
erties of these interpretation sets, as if they were interpretation sets for a non-deterministic
semantics of Nmatrices. That is, to explore properties of adequacy of each set, the relation-
ship that each presents with the valuations, etc. b) use these sets to define evaluations in a
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functional way, such that each evaluation gives different values to each wff of the language.
Both problems are strongly interconnected.

Let’s start by looking at how to define injective valuations using our sets. We will
consider the functions v : F rmL → N, such that they assign different values to all atomic
propositions (pn) (countable ) on sets assigned to propositional variables (Dp,Np). That is,
if we restrict the domain of v to atomic statements, the function v : Atom→ Dp∪Np must
be injective. This is not only possible, but it is easy to prove that there is an uncountable
number of valuations with these characteristics. We further ask that such assessments meet
the following criteria, which we will call fitness criteria for the disjunction, conjunction, and
implication interpretation sets (see section 3 of [14]), together with a corresponding criterion
for denial.

(1) ∧̃:
If a ∈ D and b ∈ D, then a∧̃b⊆ D

If a ̸∈ D, then a∧̃b⊆V \D
If b ̸∈ D, then a∧̃b⊆V \D

(2) ∨̃:
If a ∈ D, then a∨̃b⊆ D

If b ∈ D, then a∨̃b⊆ D
If a ̸∈ D y b ̸∈ D, then a∨̃b⊆V \D

(3) →̃:
If a ̸∈ D, then a→̃b⊆ D
If b ∈ D, then a→̃b⊆ D

If a ∈ D and b ̸∈ D, then a→̃b⊆V \D
(4) ¬̃:

If a ∈ D, then ¬̃(a)⊆V \D
If a /∈ D, then ¬̃(a)⊆ D

In the section 4 we will analyze these conditions in more detail, but for the moment, and
to understand the procedure, we will keep this basic form. In the above conditions, D refers
to any of the designated sets for any connective and complexity.

Remark: This property will be mentioned several times throughout our
article. Sometimes we will predicate the adequacy of interpretation sets cor-
responding to a single connective to denote that the corresponding property
holds for that connective (and a given complexity).

In all cases, the set D of designated values is considered the countable union of all Ai with
odd i. Therefore, V \D := N, the set of non-designated values, is the countable union of Ai
with i even. This is,

D =
∞⋃

i=1

A2i−1 ; N =
∞⋃

i=1

A2i (12)

This adequacy criterion (for ∨,∧ and→) is proposed in the framework of Nmatrix semantics
to ensure that the positive segment of Classical Logic is validated. We will see that our case is
similar, since for each connective, and given the input values a,b, we have uniquely assigned
a set where the corresponding connective must be interpreted. The main difference with
the standard case of non-deterministic semantics (Nmatrix) is that we can propose different
adequacy criteria for connectives depending on the complexity of each wff. In addition, we
could provide, if we wanted, an extra criterion to univocally determine the position that each
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valuation will assign to each formula within the corresponding set.
If ⊙ denotes a dyadic connective and ⊙(p1, p2) is a formula of complexity α , then we
impose the following conditions on v (for wff of higher complexity than 0):

If v(p) = ai′, j′ , then v(¬p) = ai,k ∈ Ai ; k = 2i′3 j′ (13)

i =
{

8α−5 If i’ is even
8α−4 If i’ is odd

}
In the case of denial, α is the complexity of ¬p

If v(p) = ai′, j′ ; v(q) = ak′,l′ , then v(p⊙q) = ai,k ∈ Ai ; k = 2i′3 j′5k′7l′ (14)

If ⊙ ∈ {∨}, i =
8α−3 If k’ o i’ is odd
8α−2 If k’, i’ son pares

If ⊙ ∈ {∧}, i =
8α−1 If k’, i’ they are odd

8α If k’ o i’ is even

If ⊙ ∈ {→}, i =
8α +1 If k’ is odd o i’ is even
8α +2 If k’ par e i’ is odd

In the equation for negation, the subscript i is determined from the subscript i′ of ai′. j′

corresponding to v(p). If i′ is odd, that is, v(p) = ai′, j′ ∈ D, then i must be even, and
consequently ai,k ∈ N. In order to know which is the assigned Ai, of those that belong to N,
one must take into account the complexity of the valued formula at that stage. There are
8 sets that are used to interpret formulas of complexity α (greater than 0) with principal
connective ⊙. The wff of complexity 0, propositional variables, are assigned the sets A1 and
A2. Therefore, if a formula has complexity α > 0, the 8 assigned interpretation sets are

A8α−5 , A8α−4 , A8α−3 , A8α−2 , A8α−1 , A8α , A8α+1 , A8α+2
(15)

The first two sets correspond to designated and undesignated values for negation, the next
two, A8α−3,A8α−2, to the respective sets for disjunction, then, A8α−1,A8α , are the two sets
assigned to the conjunction, and finally there are the two sets that correspond to designated
and not designated for the material implication. This way of associating the k-th position
within an Ai is only one of the possible alternatives to ensure that two different formulas are
never evaluated to the same value. Of course, other criteria can be chosen to ensure the same.
We have selected this one for simplicity and because it is enough to show what we want,
but none of the reasoning would change if we had another procedure to assign positions.
It can be noted that our criteria leaves many elements of each Ai unused by the valuations.
For example, since i > 0, all k will be even. On the other hand, k can never be a prime
greater than 7. That is, all ai,p with p strict prime greater than 7 will not be the image of
any valuation (of course, this set is included in the set of odd numbers). Therefore, we have
numerable vacant places within each Ai, which could be used if necessary. Finally, we can
name that the valuations will use different elements within those that are possible. To name
just one example, the element a4,6 will only be used by a valuation v, such that v(p) = a1,1
for some atomic statement p. It can also be directly verified that these valuations meet the
definitions 1.3, 1.4,1.5 of functionality of connectives.



16 JUAN PABLO JORGE1,3, HERNÁN VÁZQUEZ 2, AND FEDERICO HOLIK4

Let’s see an application example. Let’s calculate the truth value of the following formula
of complexity 6, whose main connective is negation.

¬(¬(p∨q)−→ (¬r∧ s))

From what has been said before, since we have to value a w f f of complexity 6, the eight
interpretation sets assigned will be A43,A44, ...,A50. Since its main connective is a negation,
we are left with A43 and A44 (designated and not designated for negation respectively). In
order to know which of these sets the valuation of the formula under consideration will
belong to, we must know if the value of the formula of complexity 5 that is being negated
is designated or not and apply the negation criterion shown in 4.¬̃. Using the suitability
criteria for the interpretation sets of the connectives given above (1.∧̃, 2.∨̃, 3.→̃, 4.¬̃), it
can be calculated that the set to which the valuation value will belong is A44. To properly
develop the method with all its details, we are going to assume the following values even for
the propositional variables:

v(p)= a1,1 ∈Dp =A1 ; v(q)= a2,5 ∈Np =A2 ; v(r)= a1,3 ∈Dp =A1 ; v(s)= a2,2 ∈Np =A2

Let’s calculate the value that the valuation assigns to p∨ q.As p∨ q is a formula of
complexity 1 with principal connective ∨, its corresponding set of interpretation will be
Dp∨q = A5. Therefore, v(p∨q) = a5,k1 , with k1 = 21315275. Where the subscripts of the ai, j
and the corresponding powers of the prime factors of k1 have been intentionally highlighted
with the same colors so that their origin can be easily identified. We proceed in the same
way to calculate the truth value of the remaining formulas. Let’s calculate the value that the
valuation assigns to ¬r. Since this is a formula of complexity 1 with principal connective
¬ and the value of r is designated, then its corresponding interpretation set is A4 = N¬p.
Therefore, v(¬r) = a4,k2 , k2 = 2133.We are now in a position to see the value of v(¬r∧ s).
We have a formula of complexity 2 whose main connective is a conjunction and we know
that its value will not be designated. This means that we will value it in the set A16. That
is to say, v(¬r∧ s) = a16,k3 , con k3 = 243k25272. Now let’s go back to the formula p∨q to
establish the value that the valuation assigns to its negation. v(¬(p∨ q)) is a formula of
complexity 2 whose main connective is negation, which means that it will be interpreted
in A11. v(¬(p∨q)) = a11,k4 , with k4 = 253k1 . We still have two steps left, to assign value
to the implicative formula ¬(p∨ q)→ (¬r∧ s) in order to then be able to negate it. The
implicative formula is of complexity 5, therefore the sets that interpret formulas of this
complexity whose main connective is the implication matter of of are A41,A42. Since our
implicative formula has an undesignated antecedent, it will have a designated value. That
is, the set that corresponds to it will be A41. So, v(¬(p∨ q)→ (¬r∧ s)) = a41,k5 , where
k5 = 2113k45167k2 . Finally, v(¬(¬(p∨q)→ (¬r∧s))) = a44,k6 ∈ A44 =N6

¬, with k6 = 2413k4 .

In this way we obtain what we want, our valuation assigns within the set A44 the element
that is in position k6. This value can be calculated with the algorithms presented in the 2.2.1
section. Regardless of the specific natural number assigned, we know that no other wff will
be able to correspond to that value through the considered valuation. Since the reasoning
shown only depended on the initial values that the valuation assigns to the propositions,
if another valuation v′ assigned the same values, but reversing some order, for example
v′(p) = v(q), v′(q) = v(p),v′(r) = v(r),v′(s) = v(s), then this new valuation would send
the statement ¬(q∨ p)→ (¬r∧ s) to the same value found for the original proposition. It
should also be noted that the original valuation v assigns different values to the two statements
considered, since the order of the values assigned to the atomic statements is considered in
the calculation. As we well named, the conditions (1.∧̃, 2.∨̃, 3.→̃) guarantee the positive
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fragment of Classical Logic. By adding the condition (4.¬̃), we ensure the behavior of
classic negation. Therefore, these conditions guarantee that the classical inferences are
validated. That is, the valuations presented will satisfy the same theorems as the classical
bivalued valuations for CL (see section 4.1).

4. INTERPRETATION SETS FOR DIFFERENT COMPLEXITIES AND SUITABILITY CRITERIA

In this section we will present the general adequacy criteria for each complexity. We
will begin by analyzing the case of disjunction. The case of complexity 1 has already
been presented, therefore we will apply the same reasoning for complexity 2. If we have
a wff of complexity 2 whose main connective is a disjunction, two cases can occur: the
disjunction connects a propositional variable to the right with a wff of complexity 1 to the
left or vice versa. In either case our valuations are assigned the same sets of designated and
undesignated values. In the deterministic case presented above, the criteria used to select
the corresponding k in each case guarantees that they can never occupy the same position
within any of the corresponding sets.Therefore, we must take into account that the input
values for ∨̃2(a,b) can belong to both Dp = A1,Np = A2, propositional case, and to any of
A3,A4, ...,A10 (D¬p,N¬p,Dp∨q,Np∨q,Dp∧q,Np∧q,Dp→q,Np→q) if it is a wff of complexity 1.
If we denote with D1,N1,V 1 the sets of designated, undesignated values and truth values
corresponding to complexity 1, that is,

D1 = D1
¬∪D1

∨∪D1
∧,D

1
→ = A3∪A5∪A7∪A9 =

2⋃
l=−1

A7−2l

N1 = N1
¬∪N1

∨∪N1
∧,N

1
→ = A4∪A6∪A8∪A10 =

2⋃
l=−1

A8−2l

V 1 = D1∪N1 =
5⋃

l=−2

A8−l

, then we can introduce the adequacy criterion for the disjunction associated with wff of
complexity 2 as follows:

∨̃2(a,b) :



If a ∈ Dp and b ∈V 1, then ∨̃2 ⊆ D2
∨ = A13

If a ∈ Np and b ∈ N1, then ∨̃2 ⊆ N2
∨ = A14

If a ∈ Np and b ∈ D1, then ∨̃2 ⊆ D2
∨ = A13

If a ∈ D1 and b ∈Vp, then ∨̃2 ⊆ D2
∨ = A13

If a ∈ N1 and b ∈ Dp, then ∨̃2 ⊆ D2
∨ = A13

If a ∈ N1 and b ∈ Np, then ∨̃2 ⊆ N2
∨ = A14

 (16)

We must remember that, because of how our sets were defined, the unions are all disjoint.
For all complexity, the following relations hold:

Dα =Dα
¬∪Dα

∨∪Dα
∧∪Dα

→ ; Nα =Nα
¬ ∪Nα

∨ ∪Nα
∧ ∪Nα

→ ; V α =V α
¬ ∪V α

∨ ∪V α
∧ ∪V α

→ ; V α =Dα∪Nα

In the same way, our DNP produces the following relations even to the interpretation sets
of the connectives:

¬̃=
⋃

α∈N
¬̃α ; ∨̃=

⋃
α∈N
∨̃α ; ∧̃=

⋃
α∈N
∧̃α ; →̃=

⋃
α∈N
→̃α

Therefore, the corresponding adequacy criteria in complexity α can be expressed as:



18 JUAN PABLO JORGE1,3, HERNÁN VÁZQUEZ 2, AND FEDERICO HOLIK4

∨̃α(a,b) :
If a ∈ Dβ and b ∈V γ ; β + γ = α−1, then ∨̃α ⊆ Dα

∨ = A8α−3

If a ∈ Nβ and b ∈ Dγ ; β + γ = α−1, then ∨̃α ⊆ Dα
∨ = A8α−3

If a ∈ Nβ and b ∈ Nγ ; β + γ = α−1, then ∨̃α ⊆ Nα
∨ = A8α−2

(17)

∧̃α(a,b) :
If a ∈ Nβ and b ∈V γ ; β + γ = α−1, then ∧̃α ⊆ Nα

∧ = A8α

If a ∈ Dβ and b ∈ Nγ ; β + γ = α−1, then ∧̃α ⊆ Nα
∧ = A8α

If a ∈ Dβ and b ∈ Dγ ; β + γ = α−1, then ∧̃α ⊆ Dα
∧ = A8α−1

(18)

→̃α(a,b) :
If a ∈ Nβ and b ∈V γ ; β + γ = α−1, then →̃α ⊆ Dα

→ = A8α+1

If a ∈ Dβ and b ∈ Dγ ; β + γ = α−1, then →̃α ⊆ Dα
→ = A8α+1

If a ∈ Dβ and b ∈ Nγ ; β + γ = α−1, then →̃α ⊆ Nα
→ = A8α+2

(19)

¬̃α(a) :
If a ∈ Dβ ; β = α−1, then ¬̃α ⊆ Nα

¬ = A8α−4

If a ∈ Nβ ; β = α−1, then ¬̃α ⊆ Dα
¬ = A8α−5

(20)

Remark: Unlike the previous form (16), this compact versions are symmetric
with respect to α and β . But it is clear that we could formally maintain the
asymmetry if necessary.

This partitioning of the interpretation sets for each connective in function of complexity
allows an alternative interpretation of logical connectives. Normally, we assign an interpre-
tation set for each connective. We now have countably disjoint sets of interpretation for every
connective and every given complexity. Therefore, we could think that we have different
connective numerables, one for each of the previous sets of interpretations. That is, we could
think that the disjunction connecting two wff of complexities α1 and α2 respectively is a
different disjunction from the one connecting two formulas of complexities α3 and α4, while
α1+α2 ̸= α3+α4. If equality were given in the previous expression, both connectives would
have the same set associated, namely ∨̃α5+1, with α5 = α1 +α2 = α3 +α4. In addition, the
respective conditions for adequacy (or not) can be treated independently, so we could have
different criteria for each of the sets. This would be, in some sense, similar to having distinct
connective numerables in our language.

We could also ask ourselves the following: is the condition α1+α2 ̸= α3+α4 inescapable
or could we have different connectives also for the case of equality? Because of the way
we present our method, we require that the sums are not equal, but it is easy to adapt the
method so that cases where the sums agree can be discerned. We could have presented it
like this from the beginning. For this, it would be necessary to assign a different set of
interpretation to each disjunction (or whatever connective) that connects wff of complexity
α for each possible decomposition of it as the sum of two complexities. That is, we would
need a partition of ∨̃α made up of s sets (equivalence classes), where s is the number of
ways to add α−1. For example, if α = 3, then s = 3 (0+2,2+0 and 1+1). The DNP method
allows this partition to be carried out in enumerable classes, so we should only apply the
method to each Ai set of the original partition again. In this way, we would keep the first
s arrays and leave the rest unused (this would be just one of many ways to implement it).
That is, we would need a generalized DNP of three subscripts, as we effectively computed
in the 2.3 section. With these generalized DNPs, we could not only distinguish sets for
complexities α1,α2 with the same sum, but we could also have countable and disjoint sets
that discriminate the main connective of the main formula and that of all the subformulas
that compose it. . That is, a countable and disjoint interpretation set could be assigned that
takes into account the entire formation tree of the wff in question. In the last section, we will
present an example that goes along these lines. We will show how to isolate bad behavior or
“anomalies” in our interpretation sets if we want them not to propagate over all the higher
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complexities. This example will show the use of generalized DNPs and will make it clear
how to proceed if one wanted the interpretive sets of connectives to accompany the formula
formation chain. Our valuations may change their behavior depending on the complexities
involved, since different sets of interpretation for different complexities may have different
criteria regarding their adequacy. This means that equivalent replacement might fail if the
replaced formulas had different complexities. Of course, we would recover such a property
by collapsing the adequacy criteria in the standards, which do not discriminate complexity.
Two formulas could be equivalent within the classical framework and yet not be equivalent
in the complexity formalism.

4.1. Functional relationships. We are in a position to establish some functional relations
that can be enlightening. Remember that FrmL denotes the set of wff of a language L ,
which in our case is the propositional. In future works we will study the feasibility of
generalizing the method to incorporate first-order (and even arithmetic) languages. Each of
the doubly countable partitions of natural numbers (DNP) generated in section 2.2, is an
element of the set Pnum(Pnum(N)), where

Pnum(N)) = {A⊆ N : |A|= |N|}.
That is, the set formed by all the infinite subsets of the natural ones. To establish the interpre-
tation sets shown in the previous section, we have selected a particular DNP, which is in base
2 (for additional details and properties, [1] is recommended). Each of the interpretation sets
for the connectives is an infinite subset of the natural ones, that is, an element of Pnum(N).
We have established an effective method to assign to each formula, based on its main connec-
tive and its complexity, certain sets of interpretation (designated and not designated), which
are countable subsets of the natural ones:

v′ : FrmL →Pnum(N) (21)

w f f → Ai

For example, in the section 3, we assign the set A44 to the formula ¬(¬(p∨q)−→ (¬r∧ s)).
Furthermore, the valuation assigned it a set position within that set, which could not be
shared by any other formula (for that given valuation). If we restrict the codomain of v′ to
the established DNP, that is, to {Ai}i∈N, we can make our function surjective.

Let’s define the following function, v′′, whose domain is the image of v′:

v′′ : {Ai}i∈N→{0,1} (22)

Ai→ 1 If i is odd ; Ai→ 0 If i is even
Therefore, we can obtain a new valuation, v, by performing the composition v′′ ◦ v′:

v : FrmL →{0,1} (23)
Controlling the adequacy criteria imposed on each of the sets of interpretations of the

connectives for each complexity, we can make these last functions coincide with the classical
valuations. Seen from the point of view of interpretation sets, the above can be thought of as
follows: for each formula of complexity α and principal connective ⊙, we have a function
that assigns it (depending on the values of true a,b) any of the interpretation sets Dα

⊙,N
α
⊙ .

Each of these sets ends up, in the classical case, at {1},{0}, and if the semantics are not
deterministic, at certain ⊙̃(a,b) ⊆ D or ⊙̃(a,b) ⊆V \D. In some way, it could be considered
that if we stay at the level of the function v′, without doing the composition with v′′, we
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DNP
v′′

##
FrmL

v=v′◦v′′ //

v′
;;

{0,1}

FIGURE 1. Relationship between classical bivalued ratings and complexity ratings.

have a higher degree of precision in our language, since we can handle the evaluations
independently for each connective and complexity. We lose this richness when we compose
with the function that takes us from the classes of the DNP in question to {0,1}. Therefore,
if we work at the level of Ai we can have an “enriched”semantics (in terms of precision),
with the security of converging on Boolean semantics if desired (imposing fitness conditions
for all performance sets). At this intermediate level, we would have a truth table, which
may or may not be deterministic, for each connective and complexity. Numerous truth tables
that converge, under the right conditions, to the classical Boolean tables. That is, we could
interpret our results as having connective numerals, with their respective associated tables,
which, if required, converge to classical logic.

Another equivalent way of understanding complexity ratings is as follows: each rating is
a function, with domain FrmL and codomain N, defined by cases as follows:

v(ψ) =

ai, j ∈ Dp∪Np If compl(ψ) = 0
ai, j ∈ ¬̃α(v(φ)) ⊆ Dα

¬ ∪Nα
¬ If ψ = ¬φ ∧ compl(ψ) = α

ai, j ∈ ∨̃α(v(φ1),v(φ2)) ⊆ Dα
∨ ∪Nα

∨ If ψ = φ1∨φ2 ∧ compl(ψ) = α

ai, j ∈ ∧̃α(v(φ1),v(φ2)) ⊆ Dα
∧ ∪Nα

∧ If ψ = φ1∧φ2 ∧ compl(ψ) = α

ai, j ∈ →̃α(v(φ1),v(φ2)) ⊆ Dα
→∪Nα

→ If ψ = φ1→ φ2 ∧ compl(ψ) = α

(24)
The sets Dα

⊙ and Nα
⊙ are defined for each complexity and connective according to our

algorithm, but in the most general case, where no adequacy criteria have yet been imposed.
for connectives, we cannot decide which of these disjoint sets the valuation belongs to. In
summary, the previous function can be expressed as:

v(ψ) =
ai, j ∈ Dp∪Np If compl(ψ) = 0
ai, j ∈ ¬̃α(v(φ)) ⊆ Dα

¬ ∪Nα
¬ If ψ = ¬φ ∧ compl(ψ) = α

ai, j ∈ ⊙̃(v(φ),v(φ2))⊆ Dα
⊙∪Nα

⊙ If ψ = φ1⊙φ2 ∧ compl(ψ) = α

(25)
Remark: The central idea behind these valuations is that, somehow, we
perform a DNP in the domain of well-formed formulas, another DNP in
the natural numbers, and relate them in a convenient way for our purposes.
The DNP of the naturals can be, for example, the one generated in base
2, and that of the domain could be thought to have as its first class the
set of propositional variables, the second class formed by all the formulas
of complexity one that can be formed. with the propositional variables of
the first class and the nth class by all the formulas of complexity n whose
subformulas belong to the previous classes.

Comparative example. We will show an example to compare the complexity semantics
with the classical two-valued one. Take a formula of complexity 2, such as, for example,
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Ψ = p∨ (¬q) and, for each semantics, a valuation v, such that it designates both atomic
propositions, that is v(p) ∈ D and v(q) ∈ D (where the set of values designated corresponds
to the system we are dealing with).

With classical two-valued semantics, we have: D = {1}

v(p) = v(q) = 1 ; v(¬q) = 0 ∈ ¬̃(1) ; v(p∨ (¬q)) = 1 ∈ ∨̃(1,0)
If we use complexity ratings:

v(p) = a1, j ∈ Dp = A1 ; v(q) = a1,k ∈ Dp = A1

v(¬q) = c ∈ ¬̃1
(a1,k)
⊆ N¬p = A4

That is, c = a4,l ∈ A4, where l indicates the position of the element in this set.
Finally,

v(p∨¬q) = d ∈ ∨̃2
(a1, j,a4,l)

⊆ D2
∨ = A13

This is, d = a13,m.

Conclusion:
classically−→ v(p∨ (¬q)) = 1 ∈ ∨̃(1,0) = {1}

complexity−→ v(p∨¬q) = d = a13,m ∈ ∨̃
2
(a,c) ⊆ D2

∨ = A13

What is gained in the case of complexity is that, by having the information given by v(p∨
¬q) = a13,i, we can know the complexity and principal connective of the valued formula.
Something that is not within the possibilities of the standard semantic system.

5. EXAMPLES OF APPLICATION TO MULTIVALUED LOGICS

In this section we will show how the DNP method can be adapted to known cases
of multivalued logics. We will focus on the following two systems: trivalued system of
Łukasiewics and fourvalued FDE. This will make it clear how to adapt the method to more
general cases, as we will briefly show in section 5.3 . Strictly speaking, the semantics
presented so far were multivalued, since the interpretation sets were infinite, but now we
have more classes of countable sets, instead of two, D and N, as in the previous case.

5.1. Trivalued logic of Łukasiewicz. Continuing the line of reasoning presented for the
standard case, to atomic propositions, we assign the sets Vp, Ip,Fp, corresponding to A1,A2,A3
respectively. We will follow the canonical interpretation for this system. V will represent
true values (v), with I denoting indeterminate values (i) and F denoting false values ( f ).
Which of these values will or will not be designated usually comes hand in hand with the
way in which the logical consequence relationship is defined. For example, if it is defined as
preserving designated values, then only v is usually taken as designated. We will say more
about this shortly.

For any complexity α greater than or equal to 1, we assign the following fifteen sets:

A15α−11,A15α−10,A15α−9,A15α−8,A15α−7,A15α−6,A15α−5,A15α−4

A15α−3,A15α−2,A15α−1,A15α ,A15α+1,A15α+2,A15α+3

Each connective ⊙ has associated, for each complexity, three sets: V α
⊙ , I

α
⊙,F

α
⊙ . And we

consider 5 different connectives even for each complexity: ¬,∨,∧,→,↔. We do this, as
we have already mentioned above, to maintain the maximum possible generality. If you
wish to have only three or four independent ones, you only have to join the corresponding
interpretation sets and leave a single adequacy criterion (or table).
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Remark: Now we will present the criteria of adequacy corresponding to
the connectives, but it is important to clarify the following point. The
expressions below (including those corresponding to the FDE case that we
show later) are functions of the sets V α

⊙ , I
α
⊙,F

α
⊙ (V α

⊙ ,b
α
⊙,n

α
⊙,F

α
⊙ for FDE),

rather than based on Dα
⊙ and Nα

⊙ . We do this to become independent (or not
have to take a position until the end) of the role that these sets have when
dealing with the logical consequence. That is, when defining the relation
of logical consequence, we could take as designated values only the V α

⊙ ,
or also include the Iα

⊙. Since we don’t want to commit to this yet at this
point, we use all the sets presented. Once decided which ones are part of
the designated ones, the expressions that we will show can be simplified.
Therefore, the conditions that for familiarity and convenience we continue
to call suitability conditions are halfway between certain non-deterministic
truth tables and proper suitability conditions. We think that this will not
generate problems when it comes to understanding the presentation, since
from these conditions the proper expressions of adequacy can be obtained if
the set D is made explicit.

For each complexity α , Vα =V α ∪ Iα ∪Fα represents the set of all truth values associated
with that complexity.

Conditions of adequacy.

∨̃α(a,b) :

If a ∈V β and b ∈Vγ ; β + γ = α−1, then ∨̃α ⊆V α
∨ = A15α−8

If a ∈ Iβ and b ∈V γ ; β + γ = α−1, then ∨̃α ⊆V α
∨ = A15α−8

If a ∈ Iβ and b ∈ Iγ ∪Fγ ; β + γ = α−1, then ∨̃α ⊆ Iα
∨ = A15α−7

If a ∈ Fβ and b ∈V γ ; β + γ = α−1, then ∨̃α ⊆V α
∨ = A15α−8

If a ∈ Fβ and b ∈ Iγ ; β + γ = α−1, then ∨̃α ⊆ Iα
∨ = A15α−7

If a ∈ Fβ and b ∈ Fγ ; β + γ = α−1, then ∨̃α ⊆ Fα
∨ = A15α−6

(26)

∧̃α(a,b) :

If a ∈ Fβ and b ∈Vγ ; β + γ = α−1, then ∧̃α ⊆ Fα
∧ = A15α−3

If a ∈ Iβ and b ∈V γ ∪ Iγ ; β + γ = α−1, then ∧̃α ⊆ Iα
∧ = A15α−4

If a ∈ Iβ and b ∈ Fγ ; β + γ = α−1, then ∧̃α ⊆ Fα
∧ = A15α−3

If a ∈V β and b ∈V γ ; β + γ = α−1, then ∧̃α ⊆V α
∧ = A15α−5

If a ∈V β and b ∈ Iγ ; β + γ = α−1, then ∧̃α ⊆ Iα
∧ = A15α−4

If a ∈V β and b ∈ Fγ ; β + γ = α−1, then ∧̃α ⊆ Fα
∧ = A15α−3

(27)

→̃α(a,b) :

If a ∈ Fβ and b ∈Vγ ; β + γ = α−1, then →̃α ⊆V α
→ = A15α−2

If a ∈ Iβ and b ∈V γ ∪ Iγ ; β + γ = α−1, then →̃α ⊆V α
→ = A15α−2

If a ∈ Iβ and b ∈ Fγ ; β + γ = α−1, then →̃α ⊆ Iα
→ = A15α−1

If a ∈V β and b ∈V γ ; β + γ = α−1, then →̃α ⊆V α
→ = A15α−2

If a ∈V β and b ∈ Iγ ; β + γ = α−1, then →̃α ⊆ Iα
→ = A15α−1

If a ∈V β and b ∈ Fγ ; β + γ = α−1, then →̃α ⊆ Fα
→ = A15α

(28)

¬̃α(a) :
If a ∈V β ; β = α−1, then ¬̃α ⊆ Fα

¬ = A15α−9

If a ∈ Fβ ; β = α−1, then ¬̃α ⊆V α
¬ = A15α−11

If a ∈ Iβ ; β = α−1, then ¬̃α ⊆ Iα
¬ = A15α−10

(29)

Remark: Although we omit it, the corresponding set for double implication
can be presented in the same way.
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DNP
v′′

$$
FrmL

v=v′◦v′′ //

v′
;;

{ f , i,v}

FIGURE 2. Relationship between trivalued ratings of Łukasiewicz and
complexity ratings.

In the same way that we did in 21 for the bivalued case, we now pose

v′ : FrmL →Pnum(N) (30)

w f f → A j

v′′ : {A j} j∈N→{ f , i,v} (31)

A j→ f si j ≡ 0(3) ; A j→ i si j ≡ 2(3) ; A j→ v si j ≡ 1(3)

Therefore, we can obtain a new valuation, v, by performing the composition v′′ ◦ v′:

v : FrmL →{ f , i,v} (32)

If we ask that the criteria given by (26), (27), (28), (29), then this semantics will have the
same logical consequences as its standard counterpart.

5.2. FDE. To adapt our partition to the goals of having a semantic for FDE, we proceed as
follows. In FDE “¬,∨,∧” are taken as primitive connectives, but for greater generality, we
will take implication and double implication as primitives as well. If we want to get back
to classic FDE, we just need to ignore the partition elements associated with implication
and double implication, as well as their respective suitability conditions. In the same way
that if we want to dispense with the distinction by complexities, we simply unite (for each
connective) the sets associated with all the complexities. Since the standard semantics for
FDE have four truth values, 0,n,b,1 (interpreted as false only, neither true nor false, true
and false, true only), then we define

V=V ∪n∪b∪F =
⋃
α

[(V α
¬ ∪V α

∨ ∪V α
∧ ∪V α

→∪V α
↔)∪ (bα

¬ ∪bα
∨ ∪bα

∧ ∪bα
→∪bα

↔)

∪(nα
¬ ∪nα

∨ ∪nα
∧ ∪nα

→∪nα
↔)∪ (Fα

¬ ∪Fα
∨ ∪Fα

∧ ∪Fα
→∪Fα

↔)]

We will take four sets for each connective and complexity. Therefore, associated with the
zero complexity we will have the sets Vp,bp,np,Fp, linked respectively with A1,A2,A3,A4.
Then we have, for each (non-zero) complexity α , 20 sets. Four sets for each connective.

V α
¬ ,b

α
¬,n

α
¬,F

α
¬ (A20α−15,A20α−14,A20α−13,A20α−12)

V α
∨ ,b

α
∨,n

α
∨,F

α
∨ (A20α−11,A20α−10,A20α−9,A20α−8)

V α
∧ ,b

α
∧,n

α
∧,F

α
∧ (A20α−7,A20α−6,A20α−5,A20α−4)

V α
→,b

α
→,n

α
→,F

α
→ (A20α−3,A20α−2,A20α−1,A20α)

V α
↔,b

α
↔,n

α
↔,F

α
↔ (A20α+1,A20α+2,A20α+3,A20α+4)
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Adequacy criteria for FDE. For reasons of length, we will present only the criteria associ-
ated with the sets of interpretation of negation, disjunction, and conjunction. The conditions
even for the rest of the connectives are those inherited by their interdefinition (if one wishes to
stay within the standard FDE framework). If required, independent criteria can be presented
including involvement and double involvement, which adapt to the needs.

¬̃α(a) :

If a ∈V β ; β = α−1, then ¬̃α ⊆ Fα
¬ = A20α−12

If a ∈ bβ ; β = α−1, then ¬̃α ⊆ bα
¬ = A20α−14

If a ∈ nβ ; β = α−1, then ¬̃α ⊆ nα
¬ = A20α−13

If a ∈ Fβ ; β = α−1, then ¬̃α ⊆V α
¬ = A20α−15

(33)

∨̃α(a,b) :

If a ∈V β and b ∈Vγ ; β + γ = α−1, then ∨̃α ⊆V α
∨ = A20α−11

If a ∈ bβ and b ∈V γ ∪nγ ; β + γ = α−1, then ∨̃α ⊆V α
∨ = A20α−11

If a ∈ bβ and b ∈ bγ ∪Fγ ; β + γ = α−1, , then ∨̃α ⊆ bα
∨ = A20α−10

If a ∈ nβ and b ∈V γ ∪bγ ; β + γ = α−1, , then ∨̃α ⊆V α
∨ = A20α−11

If a ∈ nβ and b ∈ nγ ∪Fγ ; β + γ = α−1, , then ∨̃α ⊆ nα
∨ = A20α−9

If a ∈ Fβ and b ∈ X γ ; β + γ = α−1, then ∨̃α ⊆ Xα
∨

(34)

Where X denotes, to simplify the expression, any of the sets V,b,n,F .

∧̃α(a,b) :

If a ∈ Fβ and b ∈Vγ ; β + γ = α−1, then ∧̃α ⊆ Fα
∧ = A20α−4

If a ∈ nβ and b ∈V γ ∪nγ ; β + γ = α−1, then ∧̃α ⊆ nα
∧ = A20α−5

If a ∈ nβ and b ∈ bγ ∪Fγ ; β + γ = α−1, , then ∧̃α ⊆ Fα
∧ = A20α−4

If a ∈ bβ and b ∈V γ ∪bγ ; β + γ = α−1, , then ∧̃α ⊆ bα
∧ = A20α−6

If a ∈ bβ and b ∈ nγ ∪Fγ ; β + γ = α−1, , then ∧̃α ⊆ Fα
∧ = A20α−4

If a ∈V β and b ∈ X γ ; β + γ = α−1, then ∧̃α ⊆ Xα
∧

(35)

Continuing what was done in the previous cases,

v′ : FrmL →Pnum(N) (36)

w f f → A j

v′′ : {A j} j∈N→{ f ,n,b,v} (37)

A j→ f si j≡ 0(4) ; A j→ n si j≡ 3(4) ; A j→ b si j≡ 2(4) ; A j→ v si j≡ 1(4)

Therefore, we can obtain a new valuation, v, by performing the composition v′′ ◦ v′ (figure
3):

v : FrmL →{ f ,n,b,v} (38)

If we ask for the corresponding adequacy criteria to be checked, then our semantics will
validate the same formulas as the standard case of FDE.



THE ACTASMONTEIRO DOCUMENT CLASS 25

DNP
v′′

%%
FrmL

v=v′◦v′′ //

v′
;;

{ f ,n,b,v}

FIGURE 3. Relationship between tetravalued FDE ratings and complexity ratings.

5.3. General case. For the case in which there are m truth values and s independent connec-
tives (both finite), we must associate the elements of our partition as follows.

The atomic propositional level will be assigned the sets of truth values (including desig-
nated and undesignated)

V1,V2, ...,Vm (corresponding to A1,A2, ...,Am)

For complexity α greater than zero, we will have m sets for each of the s connectives, that is,
we will have a total of s.m sets

V α
1,⊙i

,V α
2,⊙i

, ...,V α
m,⊙i

i ∈ {1, ...,s}
If the complexity is 1, the s.m associated sets are:

Am+1,Am+2, ...,As.m+m

And for generic α:
Am(sα−s+1)+1, ...,Amsα+m

Note that for the particular case m= 4,s= 5, the sets used in the FDE case are reproduced (for
each complexity). For example, m = 4,s = 5,α = 1, generates the s.m = 20 sets A5, ...,A24.
In the same way, it can be corroborated that it also complies with what was seen in the case
of Łukasiewicz. The criteria that the sets must meet must be introduced in each case and
taking into account the compatibility with the semantics that one wants (for the case that
discriminates complexity)

5.4. Isolating unwanted behaviors: two examples of modularization. The objective of
our final section is to show, through two examples, a possible effective procedure that can
be implemented when it is desired to have interpretation sets with particular behaviors for
some complexities, without affecting the other sets. That is, when we want to isolate certain
valuation behaviors within some particular regions. We mentioned this possibility before
when we asserted that with generalized DNPs it is possible to build sets of interpretations
that take into account the entire chain of formation of the wff. In order not to overextend
this section and to make the example as clear as possible, we will assume that we have only
two independent connectives, ¬,∨. The actual procedure shown will make it clear how to
generalize for the case of an arbitrary number of connectives (even infinite). It will also
allow extracting the general procedure to control behaviors by regions of complexity for
any connective. The following examples are only intended to show the general idea, not
to formalize a method. Although such formalization will be postponed for future work, its
plausibility as an algorithmic method to be implemented will be clear.

Example of modularization. Suppose we have a negation with a totally inadequate behavior
when it comes to formulas of complexity 1. Can we make this bad behavior not affect the
other formulas of our language? That is, we want the bad behavior of the negation to be
isolated for wff of complexity 1, that is, the values of this non-standard negation have no
effect when evaluating formulas such as ¬(¬p) or (p∨¬q). For our first example, let us
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consider that the interpretation set for formulas of complexity 1 with principal connective ¬
is such that:

¬̃1
(a) ⊆ N1

¬ ∀a ∈Vp (39)
However, we want its behavior from this complexity to be classical (and not to have “error”

carryover for higher complexities). We are going to say that this negation is anomalous, or
that it behaves anomalous, for complexity 1. With this set of interpretation, all valuations
give undesignated values to the negations of propositions , no matter what truth value they
give to the propositional variables. We expose this extreme case to make it clear how to
implement the modularization procedure, not because we think that this case can have direct
application.

It is clear that it is not enough to impose a standard behavior on all sets of larger complex-
ities, that is,

¬̃α

(a) ⊆ Dα
¬ si a ∈ Nα−1

¬ ; ¬̃α

(a) ⊆ Nα
¬ si a ∈ Dα−1

¬ ; α ≥ 2 (40)
Since in this way, all the formulas of complexity 2 with principal connective “¬” will have
designated values and we will drag the initial bad behavior. Let’s see how to give a possible
solution. Let’s start by establishing the standard DNP associated with the system. Remember
that to simplify the exposition, we take only two independent connectives (¬,∨).

A1←→ Dp

A2←→ Np

A3←→ D1
¬

A4←→ N1
¬

A5←→ D1
∨

A6←→ N1
∨

A7←→ D2
¬

A8←→ N2
¬

A9←→ D2
∨

A10←→ N2
∨

...
Suppose that the only sets that have non-adequate behavior, outside of the classical,

are those associated with ¬̃1. How should we make our valuations isolate this anomalous
behavior so that we can continue to hold, for example, ¬(¬p) |= p? (or that p∨ (¬q) is
designated when neither p nor q is designated).

The general procedure consists of acting on the sets from where it is desired to restore a
given behavior. In our case, we want to restore the classical behavior for negation starting
from complexity 2, so we act on ¬̃2 and all sets whose input values involve elements of
¬̃1. That is, we must also make similar changes to the designated and undesignated sets
associated with ∨̃α , since a wff of complexity α ≥ 2 with main connective ∨, of the form,
for example, (φ ∨q)∨ (¬r), it will be committed to the bad behavior of negating statements
(q and r are statements and compl(φ) = α−3).

To concretize, we will begin by calculating the truth value that one of these evaluations
gives to the proposition p∨ (¬q). Then we will give one last example that commits to the
double negative.
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Let v(p) = a2,1 ∈ Np = A2 and v(q) = a2,2 ∈ Np = A2, we want to obtain v(p∨¬q). Let
us call c the value that our valuation gives to ¬q. Then, v(¬q) = c ∈ ¬̃1 ⊆ N1

¬, that is,
our valuation will give an undesignated value to the negation of q. If the behavior of the
disjunction is considered classical, then the value that the valuation will give to p∨¬q will
be undesignated. But this will be due, not to the bad behavior of the disjunction, but to the
carryover of the undesired value that the valuation gives to ¬q. To get around this obstacle,
we perform a new DNP on the sets corresponding to the disjunction of complexity 2. For
this, we can use the procedure shown in the section 2.3. That is, we use internal degrees of
freedom associated with ∨̃2, since v(p∨ (¬q)) ∈ ∨̃2

(a2,1,c). We know that the unwanted input

value, c, that will be taken by our array ∨̃2 is in N1
¬, when, in “reality”, it should belong to

D1
¬ (if we didn’t have the negation anomaly). So let’s internally develop D2

∨ to fix that value
internally.

Remark: we must internally develop this set, and not N2
∨, because we want to

recover some classical behavior from a situation that, in principle, is totally
opposite. And in a classical context, we know that, from the values that the
valuations gave to the propositional variables, it follows that the truth value
of the considered formula must be designated. That is, from complexity 1
we want to return to an adaptation of the connectives of a classical nature.
As we have already said, for each complexity one can impose its adequacy
criteria. The only new thing now is that we want to have the possibility that
the criteria selected for lower complexities do not affect higher ones.

The whole ruse of the question lies in recalculating, from the the truth values of the atomic
statements (belonging to Dp,Np), the truth values of the subformulas associated with ∨̃2,
without having to take anomalous input values (in this case c) corresponding to sets that have
the undesired behavior. Performing a new partition on A9, we obtain countable subsets of
the form A9, j. We show only the first ones because this is enough for us to make the named
changes. We associate to the first two sets of D2

∨, that is, A9,1,A9,2, the sets Dp(A1) and
Np(A2) respectively , which is where the desired information unaffected by the complexity
denial 1 anomaly is located.

A9←→ D2
∨ :

2Dp←→ A9,1 ≡ A1(we associate a9,1,i←→ a1,i)
2Np←→ A9,2 ≡ A2(we associate a9,2,i←→ a2,i)
2D1
¬←→ A9,3

2N1
¬←→ A9,4

2D1
∨←→ A9,5

2N1
∨←→ A9,6

2D2
∨←→ A9,7

(41)

We have put left superscripts to distinguish, for the moment, the sets of the original partition
from those obtained by this new generalized DNP. It is important to see that N1

¬ y 2N1
¬

they are different, one is associated with A4 (DNP in the base 2 with two independent
connectives) and the other, A9,4. While the anomalous negation of complexity 1 is fully
committed to ¬̃1

(a) ⊆ N1
¬ = A4 for every input value a, the same is not true of the calculation,

through internal degrees of freedom, that we reproduce using A9,4. This is left to the new
(and independent) criteria that we impose on the new partition. Since we want to restore a
standard behavior, let’s impose:



28 JUAN PABLO JORGE1,3, HERNÁN VÁZQUEZ 2, AND FEDERICO HOLIK4

D2
∨ :

¬̃1
(a) ⊆

2D1
¬ = A9,3 if a ∈ Np

¬̃1
(a) ⊆

2N1
¬ = A9,4 if a ∈ Dp

∨̃1
(a,b) ⊆ 2D1

∨ = A9,5 if a ∈ Dp or b ∈ Dp

∨̃1
(a,b) ⊆ 2N1

∨ = A9,6 if a ∈ Np and b ∈ Np

∨̃2
(a,b) ⊆ 2D2

∨ = A9,7 if a ∈ 2Dβ ∧b ∈V γ or b ∈ 2Dγ ∧a ∈V β ; β + γ = 1
(42)

Thus, when we internally evaluate ¬q to get v(p∨¬q), we will not use the sets D1
¬ and N1

¬
(A3 and A4), but 2D1

¬ and 2N1
¬ (A9,3 and A9,4).

Let’s take a closer look at this: how v(p) = a2,1 ∈ Np y v(q) = a2,2 ∈ Np, then using (42)
we have to v(¬q) ∈ ¬̃1

(a2,2)
⊆ 2D1

¬ = A9,3, since of a2,2 ∈ 2Np = A9,2 ≡ A2. That is, a2,2 is
a9,2,2, according to what we said in the first two lines of (41). Therefore, v(¬q) is designated,
let’s assign the value a9,3, j (where j represents the position within the set A9,3). Continuing
in this way, v(p∨¬q) ∈ ∨̃2

(a2,1,a9,3, j) ⊆
2D2
∨ = A9,7 (by last line of 42). With which we obtain

that our proposition acquires a designated value, for example, a9,7,k, restoring the given
anomaly due to the interpretation set of complexity 1 for the negation. It is important to
remark, that since all this calculation depends only on the internal degrees of freedom, it
does not affect the previous valuations. That is, propositional valuations continue to maintain
original values and ¬q remains undesignated. The only change will appear from complexity 2,
restoring a classic behavior, for those interpretation sets that take input values corresponding
to 2D2

∨ (which for the purposes of higher complexities, can already be be taken directly as
D2
∨, disregarding the left superscript).

Remark: It is evident that the generalized DNP procedure, as was already
highlighted in the section 2.3, along with the actual procedure that grants the
internal degrees of freedom are entirely algorithmic. Therefore, our recursive
procedure can be automatically implemented on a computer. Complexity
estimations, including generalized DNPs with internal degrees of freedom,
represent an effectively implementable procedure with which to construct
estimations. The procedure shown developing the internal degrees allows
compositionality and functionality (within the range allowed by the Nmatrix
framework) to be restored to previous steps and not necessarily to the im-
mediately previous one. It is not simply a “to forget what was previously
calculated” and set new values to convenience. Effective criteria can be
algorithmically implemented complexity by complexity and recalculated, if
necessary, from new algorithmic criteria at each step. In our example we
set the “compositional” dependency on the values of the atomic statements,
skipping the complexity level 1. It’s as if we could “bypass” certain problem
regions and re-establish the dependency with certain previous areas . Taken
to the extreme, and despite at all times moving within a non-deterministic
framework of Nmatrices, we can make all valuations, regardless of com-
plexity, depend directly on the atomic level without being affected by the
intermediate levels. So to speak, this method allows for independent reshuf-
fling and rerolling for each complexity. Obviously, when no internal level
of freedom is expanded and the suitability conditions become independent
of complexity, we recover the starting semantics (as we already showed in
previous chapters). We can call this characteristic of the interpretation sets
for Nmatrix connectives with internal degrees of freedom dependence on
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initial conditions. So these initial conditions would recursively determine
the behavior of the interpretation sets independently for each complexity.
All could eventually, if we wished, depend only on the initial conditions,
although this dependency may be different for each complexity.

Last example. In view of what has just been shown and considering the anomaly in the
negation, what would we have to do so that any valuation that does not designate p also does
not designate ¬(¬p)? As we have seen, we cannot count on the value that each valuation
gives to ¬p, since they are all non-designated. What we must do is take the value that each
valuation assigns to each propositional variable and, based on this, calculate the set where
¬(¬p) will be interpreted, which is ¬̃2. The main difference is that we want this set to be a
function of v(p), instead of depending on v(¬p) (as it would be in the standard way). Or, put
equivalently, we want ¬̃2 to be a function of a new value of v(¬p), (we could call it vint(¬p),
by internal valuation) that is not committed to the anomaly and which is only used for the
internal calculation of the double negation of p without changing the values established up
to now by the valuation. That is, even if we internally recalculate the truth value of ¬p to
obtain an untainted value of ¬(¬p), we do not change the original anomalous value that the
valuation gives to any denial of complexity 1.

They are two equivalent ways of looking at it:

(1) we want ¬̃2
(v(p)), instead of ¬̃2

(v(¬p)). In other words, to calculate the set where all wff
of complexity 2 with negation main connective will be valued, we will not take into
account the truth value of ¬p, but that of p.

(2) we want ¬̃2
(vint(¬p)), instead of ¬̃2

(v(¬p)). That is, using a generalized DNP and the
internal degrees of freedom associated with ¬̃2, we will calculate the truth value
of ¬p imposing new criteria of adequacy, in order to to obtain a value for ¬(¬p)
unaffected by the anomaly of the interpretation set for the negation of complexity 1.

In both points of view we are using the new sets associated with a generalized DNP and
imposing independent criteria on them.

As we have already seen in the previous example, we must maintain the information on
the truth values that each valuation gives to the propositional variables to calculate the set
of interpretation where the formulas in question are going to be valued. Since we want, in
principle, to value ¬(¬p) and v(¬(¬p)) ∈ ¬̃2, the information must be stored in one of the
sets associated with ¬̃2. We will show how to proceed to ¬̃2.

The interpretation set for the negation of complexity 2 is associated with A7 and A8
(D2
¬,N

2
¬). On these two sets we apply the standard procedure to generate a new DNP for

each one. In the previous example we performed this procedure only with D2
∨(A9), because

we had assumed given values for the propositional variables from the outset. But doing it on
both sets won’t cause any confusion. For this, we apply the previous procedure, developed in
the section 2.3. That is, A7 is separated into countable and disjoint sets A7,1,A7,2, ...,A7,n, ...
and A8, en A8,1,A8,2, ...,A8,n,....

As we already mentioned, the trick is to recalculate, from the the truth values of the atomic
statements (Dp,Np), the truth values of the subformulas associated with ¬̃2, without having
to take anomalous input values corresponding to the sets that have the unwanted behavior.
For this, in our case, we associate the first two sets of D2

¬,N
2
¬, that is, A7,1,A7,2 and A8,1,A8,2,

the sets Dp(A1) and Np(A2) respectively, which is where the desired information not affected
by the complexity denial 1 anomaly is found. From A7,3 and A8,3 onwards, we proceed in
the way that we will now show:
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A7←→ D2
¬ :

2Dp←→ A7,1 ≡ A1(we associate a7,1,i←→ a1,i)
2Np←→ A7,2 ≡ A2(we associate a7,2,i←→ a2,i)
2D1
¬←→ A7,3

2N1
¬←→ A7,4

2D1
∨←→ A7,5

2N1
∨←→ A7,6

2D2
¬←→ A7,7

(43)

The first two sets A7,1 y A7,2 were replaced by A1(Dp) y A2(Np), which are the ones that
keep the original information on the valuations of atomic propositions. In the last line, we
arrive at 2D2

¬, which is the final designated set, product of the treatment of these internal
degrees of freedom, which will be used in the adequacies, without carrying over previous
anomalies. This set, 2D2

¬, will be the one we will use, for example, when a connective
of complexity needs a designated value corresponding to a negation of complexity 2. In
this way, we were able to calculate the set 2D2

¬ from the original values that the valuation
gives to the atomic propositions. It is this set that we will use if we want the truth value of
the double negative to coincide with that of the propositional variable. Si v(p) ∈ Dp, then
v(¬(¬p)) ∈ ¬̃2

(v(p)) ⊆
2D2

¬ = A7,7

We proceed in the same way for N2
¬:

A8←→ N2
¬ :

2Dp←→ A8,1 ≡ A1
2Np←→ A8,2 ≡ A2
2D1
¬←→ A8,3

2N1
¬←→ A8,4

2D1
∨←→ A8,5

2N1
∨←→ A8,6

2N2
¬←→ A8,7

(44)

These internal degrees of freedom will allow fitting the interpretation sets without dragging
on unwanted previous errors. Now it will be seen, as soon as we apply the classic adequacy
criteria for our example, that these generalized DNPs allow the valuation calculations to be
reproduced internally, without taking into account results of previous complexities (except
from where we decided to start, in our case Dp and Np) and without altering them. What
we do in these sets (internal degrees of freedom) and the successive ones will not affect the
valuations of complexity 1.

Let’s proceed to carry out the adequacy of the internal degrees for D2
¬.

D2
¬ :

¬̃1
(a) ⊆

2D1
¬ = A7,3 If a ∈ Np

¬̃1
(a) ⊆

2N1
¬ = A7,4 If a ∈ Dp

∨̃1
(a,b) ⊆ 2D1

∨ = A7,5 If a ∈ Dp or b ∈ Dp

∨̃1
(a,b) ⊆ 2N1

∨ = A7,6 If a ∈ Np and b ∈ Np

¬̃2
(a) ⊆

2D2
¬ = A7,7 If a ∈ 2N1

¬∪ 2N1
∨ := 2N1 = A7,4∪A7,6

(45)

For N2
¬, we get:
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N2
¬ :

¬̃1
(a) ⊆

2D1
¬ = A8,3 If a ∈ Np

¬̃1
(a) ⊆

2N1
¬ = A8,4 If a ∈ Dp

∨̃1
(a,b) ⊆ 2D1

∨ = A8,5 If a ∈ Dp or b ∈ Dp

∨̃1
(a,b) ⊆ 2N1

∨ = A8,6 If a ∈ Np and b ∈ Np

¬̃2
(a) ⊆

2N2
¬ = A8,7 If a ∈ 2D1

¬∪ 2D1
∨ := 2D1 = A8,3∪A8,5

(46)

The final sets, 2D2
¬,

2 N2
¬, product of the process of adequacy of the internal degrees of

freedom, are the ones we take to replace the original D2
¬,N

2
¬. Therefore, we are now in a

position to express the adequacy condition for ¬̃2, without it being affected by the anomalies
of the previous level.

¬̃2 :
¬̃2
(a) ⊆ D2

¬(
2D2
¬) si a ∈ N1 = N1

¬∪N1
∨ = A7,4∪A7,6

¬̃2
(a) ⊆ N2

¬(
2N2
¬) si a ∈ D1 = D1

¬∪D1
∨ = A8,3∪A8,5

(47)

These last fits are a function of the truth value of the previous complexity formula,
in our case v(¬p), but it is equivalent to calculating it from the original value of v(p) ,
because the sets are already adequated in the correct way to correspond to classical behavior.
Therefore, we can choose (for the case of negation) to take as input value the truth value of
the propositional variable or the value of the previous complexity subformula. This procedure
allows us to value the valuations of complexity 2 within sets that are not affected by the
anomalies of the previous level.

Summarizing: thanks to generalized DNPs and internal degrees of freedom, each inter-
pretation set of a certain connective of complexity α , you can keep an internal copy of all
previous interpretation sets that are needed to recalculate valuations without having to resort
to input values that carry errors or unwanted behavior. The method without internal degrees
of freedom allowed us to provide suitability criteria independently for each complexity. By
incorporating these new degrees of freedom, we can further apply these criteria by avoiding
misbehavior loopholes that may have arisen in the environment, may have arisen for some
reason, or may have been produced intentionally.

It can be seen that with this procedure, by being able to correct the anomaly caused by
the negation of complexity 1, our valuation does not represent a counterexample for the
following relation

¬(¬p) |= p

, even though all valuations give undesignated values to ¬p.
Take the special case where v(p1) = a2, j ∈Np and let’s see what value this valuation would

give us for v(¬(¬p1)). As v(¬(¬p1))∈ ¬̃2, if we did not take into account what has just been
said, then v(¬(¬p1))∈ ¬̃2

(b), with b = v(¬p1)∈Np, since all valuation grants non-designated
values to ¬p1. Like, of course, ¬̃2(b) It has a classic behavior, ¬̃2

(b) ⊆ D2
¬ = A7. That is, the

valuation designates the double negation of p1. with which we have to ¬(¬p1) ̸|= p1.
If, on the other hand, we consider the internal degrees of freedom so as not to depend

on the outlier value of the complexity negation 1, we have v(¬(¬p1)) ∈ ¬̃2
(v(p1))

(instead
of v(¬(¬p1)) ∈ ¬̃2

(v(¬p1))
) and we follow instructions according to (46). This is for (44),

we have to v(p1) = a8,2, j ∈ 2Np ≡ A8,2. Therefore, v(¬p1) ∈ 2D1
¬ = A8,3. And finally,

v(¬(¬p1)) ∈ 2N2
¬ = A8,7, giving an undesignated value to the double negative of p1.
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6. CONCLUSIONS

The DNPs constitute a powerful method to disjoint the natives into countable countable
sets. The process is algorithmic and there are as many ways to do it as there are real
numbers. We show that these partitions can be the basis of a semantic for a propositional
language. We have shown that the method allows building a general semantic framework
where not only logical systems such as LC, LP, Ł3 and FDE are embedded, but also allows
meaning to be given to the formulas depending on their complexity. That is, this general
framework admits semantics with sufficient precision to discriminate (and signify) formulas
that, having the same logical form, differ in their complexities. The construction method of
complexity valuations allows generalizing, in terms of precision, certain semantics, such as
the classical two-valued, the trivalued Łukasiewics and the four-valued FDE, among others.
The method gives us the guarantee of being able to recover these systems in their standard
form if necessary, simply by joining certain disjoint sets. The reasoning presented was fully
compatible with the non-deterministic semantics of Nmatrices, so we will be able to present
applications in this field in future works. As one of the many consequences of this line
of reasoning, we show that it is possible to construct valuations that consistently assign a
different truth value to each formula in the language.
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