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Abstract: 

This paper proposes an original definition of samples as a kind of data within the relational 

framework of data. The distinction between scientific objects (e.g., samples, data, models) 

often needs to be clarified in the philosophy of science to understand their role in the scientific 

inquiry. The relational framework places data at the forefront of knowledge construction. 

Their epistemic status depends on their evaluation as potential evidence in a research situation 

and their ability to circulate among researchers. While samples are significant in data-

generating science, their role has been underexplored in the philosophy of data literature. I 

draw on a case study from data-centric microbiology, viz. amplicon sequencing, to introduce 

specifications of the relational framework. These specifications capture the distinctive 

epistemic role of samples, allowing the discussion of their significance in the inquiry process. 

I argue that samples are necessarily transformed to be considered as evidence, portable in the 

limits of a situation, and they act as world anchors for claims about a phenomenon. I compare 

these specifications with other data and evidence frameworks and suggest they are compatible. 

The paper concludes by considering the extension of these criteria in the context of 

biobanking. The specifications proposed here help analyze other life sciences cases and 

deepen our understanding of samples and their epistemological role in scientific research. 
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1. Introduction 

In the philosophy of science, data are objects participating in constructing scientific 

knowledge. Defining data implies understanding this role and how it potentially differs from 

the role of other scientific objects, such as samples, models, or theories. In philosophical 

discussions, data are linked to the old dichotomy between observation of the world and what 

we know about it. In this context, data have the power to constrain what we can say about the 

world. They are empirical constraints and connect our ideas of the world (theories, knowledge, 

assertions) to the world. 

The relational framework of data places data at the center of the construction of scientific 

knowledge. It spurs from practice analysis in which theory plays, at best, an attenuated role. 

The status of a product of the research activity as data depends on its evaluation to function as 

potential evidence by the actors of a given research situation. And it also depends on its 

capacity to be disseminated – to travel – among these actors (Leonelli 2016). 

Samples are also prominent scientific objects in data-generating research activities. Still, their 

analysis has been neglected in the philosophy of data literature (Leonelli and Tempini 2020, 

viii and 17), which calls for more clarity on their role and place in scientific inquiry. Indeed, 

current works sometimes place sample collection as part of “the early stages of a data journey” 

(Halfmann 2020, 27) or as part of the data (Wylie 2020, 298). Other times, samples are 

explicitly distinguished from data: “[I]t remains to be seen whether the model described here 

applies to sample journeys as well as to data journeys” (Griesemer 2020, 162, footnote 17). 
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Therefore, I propose an original and timely definition of samples as a kind of data within the 

relational framework. The argument proceeds via a case study representative of microbiology 

and, more generally, biology: the technique of amplicon sequencing. 

Section 2 presents the relational framework of data, its motivations, definitions, and 

advantages in contemporary life sciences. Section 3 has two parts. First, I describe a case from 

data-centric microbiology, amplicon sequencing (AS). Second, I subscribe to the relational 

framework of data and explore its fitness for this case study. I agree that its criteria are 

essential for analyzing and understanding the epistemic role of scientific objects. Still, these 

criteria need to be more precise to make sense of the distinctive role played by samples in the 

case used here. Section 4 specifies the characteristics of samples1 compared with other kinds 

of data within the relational framework of data. These specifications make the discussion of 

the significance of samples’ epistemic role in the inquiry process possible. Section 5 compares 

these specifications with data and evidence frameworks developed since the relational 

                                                 
1 These precisions and the role of samples in the inquiry described here should be compared 

with the definition of statistical samples. In philosophy of statistics, “samples” are actual 

values or data obtained in a specific setting. They are part of a whole, called the “sample 

space” constituted by all possible values in this setting (see Romeijn 2022). This comparison is 

beyond the scope of this article. I restrain my conclusions to the life sciences. 
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framework. In Section 6, I conclude with a possible generalization of these criteria in the case 

of biobanking. 

2. The Relational Framework of Data 

2.1. Motivations for a New Framework of Data 

The concept of data is related to the difference between observations of the world and the 

knowledge we form about it. There is tension between what data are and what data do in 

knowledge construction. 

The traditional view of scientific inquiry focuses on theories. Knowledge construction is about 

how they are formed, confirmed, or chosen when conflicting theories are available. Theories 

are conceptualized as sets of sentences in a formally structured language, a theoretical 

language. Comparing these sentences with what happens in the world needs observational 

reports—data—of the phenomenon expressed in an observational language (Boyd & Bogen 

2021) and relations of interpretations between these two languages (Peschard & van Fraassen 

2018, 23). Data represent a part of a phenomenon, and using the relations of interpretations 

and the theory, scientists arrive at an explanation of this phenomenon or the prediction of 

another phenomenon (Hempel 1952, 36). Data are considered reliable in this conception to test 

the theory’s accuracy. They have a fixed, context-independent, and objective representational 

content. This view is also called the syntactic view of theories and formed the core of early 

20th-century logical empiricism. 
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By the 1960s, the semantic view of theories introduced a new focus on models rather than 

theories. Patrick Suppes advocates an explicit focus on models to understand scientific 

representation. Models are indispensable tools for linking data and theories, which are 

understood as sets of models. In a later development of his view, he constructed a hierarchy of 

models from data to theory (e.g., “data models”) to make this relationship explicit. 

At the end of the 1970s, the focus on models contributed to what is sometimes called the 

“practice turn” in philosophy and sociology of science. The common point is a specific 

emphasis on actual scientific practice. The main aim is to give a detailed, meticulous, and 

descriptively adequate account of all stages of actual scientific practice and reasoning (Soler, 

Zwart, Israel-Jost, et al. 2014, 12). 

During this turn, the purpose of scientific representations changes from a description of the 

world to a means for intervening in that world. Moreover, the “format” of these 

representations plays a role in the epistemic content they convey (Soler, Zwart, Israel-Jost, et 

al. 2014, 9, 16, and 24). Thus, data are considered valuable representations. They are not just 

theory-testing devices; they count as scientific achievements and can change locations to 

obtain new articulations of the world (Latour 1999, 306-7). They can be justified outside of, 

and be more robust than, theories; they can be retained while the theory is not. They have a 

fixed representational content, but this content is more context-dependent. 

Sabina Leonelli developed the relational framework of data as an alternative to the available 

concepts described above. According to Leonelli, these concepts are either theory-centered, 
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“representation”-centered, or both. This does not match contemporary scientific practices in 

biology. 

The syntactic view of theories is too theory-centered, whereas contemporary biology is “data-

centered” (Leonelli 2016). Many data are generated in such practices, and there is a strong 

emphasis on their production, storage, manipulation, and dissemination. In addition, data 

participate in discovery; they are valuable outcomes of the scientific process and are thus 

worthy of public, scientific, and philosophical attention. The relational framework emphasizes 

this central place of data. It considers the iterative process between different phases of inquiry 

and the various products of this inquiry (Leonelli 2019, 18-25). 

The “relational” view of data is constructed in opposition to what Leonelli coined the 

“representational” view of data (Leonelli 2016, 74). Syntactic and semantic views of theories 

constitute the latter. In both, data are representations: they capture some of the mind-

independent properties of a phenomenon. They also have fixed and context-independent 

representational content. Data are conceptualized primarily as representations during and after 

the practice turn. The representational content is more context-dependent than the syntactic 

view but is still fixed. The relational framework calls into question the stability of the data 

content – whatever this can be: information, a signal, etc. It is relational because it stresses the 

role of the inquirer(s) in determining what counts as data. Data are defined “by the evidential 

value ascribed to them within specific research situations” (Leonelli 2016, 5). I subscribe to 

this framework for the remainder of the paper and for my case study analysis. 
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2.2. Definitions 

In the relational framework, data are “any product of research activities, ranging from artifacts 

such as photographs to symbols such as letters or numbers, that is collected, stored, and 

disseminated in order to be used as evidence for knowledge claims.” (Leonelli 2016, 77, 

original emphasis). Any particular object produced by a scientific inquiry can be data. They 

can be “any product of research activities […] that (1) are treated as potential evidence for one 

or more claims about phenomena and (2) are formatted and handled in ways that enable its 

circulation among individuals or groups for the purpose of analysis” (Leonelli 2016, 77-78). 

One can summarize these two criteria as 1) being considered potential evidence for knowledge 

claims and 2) having the capacity to travel between different situations of scientific inquiry. 

Let me unpack this definition. 

First, data are mobile. The notion of “traveling” (“dissemination” and “circulation” are also 

used; see quotations above) builds on ideas developed by Howlett and Morgan (2011). In that 

work, the interpretation of traveling is quite literal. Facts travel in space and time, between 

disciplines, across epistemic traditions, etc. (Morgan 2011). Leonelli defines “traveling” as 

“data journeys.” That is, “the movement of scientific data from their production site to many 

other sites within or beyond the same field of research” (Leonelli 2016, 39). This notion is a 

helpful metaphor for highlighting key features. These suggest the need for infrastructure (e.g., 

databases) that aids dissemination, appropriate vehicles (e.g., file formats, particular software, 

etc.), and financial resources (Leonelli 2016, 39-41). Even though data have no intention or 



9 

 

agency, they cannot plan, book, etc. (Leonelli 2016, 42). The notion of travel is literal. Data 

journeys “range from very concrete shifts of materials from one individual to another […] to 

highly diffused and depersonalized dissemination” (Leonelli 2016, 40). It is the displacement 

between at least two things (e.g., two different times, locations, disciplines, etc.). 

Second, what count as data and the representational value of data are situation-dependent. 

Situationism (borrowed from John Dewey) is, roughly speaking, a kind of contextualism. The 

idea is that the “research context may have flexible and dynamic boundaries” (Leonelli 2016, 

183-184). It gathers only those elements (whether they are events, objects, concepts, social 

features, etc.) of the context that are relevant to the agent’s current inquiry (Brown 2012; 

Dewey 1938). No a priori elements are or are not necessarily part of a situation. For example, 

a biologist may use sequencing DNA to identify the type of microorganisms in an 

environment. The context includes external conditions, such as the weather, and background 

knowledge, such as the theory of evolution. They relate differently to the context. Suppose that 

the weather is known to influence the DNA sequencing process, leading to potential bias. In 

that case, it becomes a relevant part of the context and, thus, part of the situation. It should be 

documented in the metadata. Evolutionary theory is relevant in a different way. It can be 

relevant in interpreting the DNA sequences relative to the aim of the investigation. For 

example, it can help understand the evolutionary history of the environment or evaluate the 
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results in the context of evolution2. However, not all contextual factors are always relevant, 

and the biologist must carefully consider which factors are part of the situation. 

Meanwhile, Dewey links the concept of a situation tightly to the idea of inquiry (Brown 2012). 

The inquirer’s perception of an unsettled situation sparks the inquiry. Based on this perception, 

she will develop research questions. The investigator’s judgment at the end of the inquiry will 

settle the new situation. 

2.3. Advantages of the Relational Framework 

The relational framework presents two main advantages. First, it fits particularly well with 

contemporary scientific practices such as data-centric science and has been used to analyze 

how data play their role in various scientific inquiries (e.g., Leonelli and Tempini 2020; Currie 

2021; Pietsch 2015; Lloyd et al. 2022). Second, it clearly distinguishes between data and 

models. 

The same data can be used to support various knowledge claims in the context of big data and 

data-centric practices. “[T]he same set of data can act as evidence for a variety of knowledge 

claims, depending on how they are interpreted—a feature that I take to be central to 

understanding the epistemic power of data as research components” (Leonelli 2016, 79). This 

                                                 
2 I thank an anonymous reviewer to help me clarify the distinctive roles of different contextual 

elements within the situation. 
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is not easy to account for in representational frameworks because what data represent is fixed. 

Yet, one characteristic of the relational framework is that data have broad representational 

power and can represent different things depending on the research situation (Leonelli 2019, 

19). 

Moreover, Suppes’ model hierarchy is very well suited to numerical and statistical data 

(Leonelli 2019, 7). However, it is unsuitable when the data are more varied (images, photos, 

etc.). Exploratory research often encountered in biology uses this type of data. The relational 

framework is better suited to this type of research because it has a broader understanding of 

the types of objects that data can be. The idea is that any product of a given situation can be 

considered as data. However, whether this is realized depends on many factors, including the 

investigator(s), the situation in which she is, the aim of the inquiry, etc. This does not mean 

that anything is data. Nor does it equate to a specific scientific product that can serve as 

evidence for any biological phenomenon (see Leonelli 2016, chapter 3, especially note 23). 

The criteria must be fulfilled. 

The view inherited from Suppes suffers from seeing everything as a model. Yet this is an 

uncomfortable position (Leonelli 2019, 5). Indeed, if “data” are one type of “model,” what 

makes that type so particular that it can judge which theory is “truer” or at least more 

empirically adequate than another? Leonelli (2019) argues that the relational framework 

provides a more precise distinction than the representational view. In the relational framework, 

models are a way to organize data to represent a targeted phenomenon. A phenomenon can be 
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anything considered to be occurring in the world. It is what scientists judge interesting to 

study3. Modeling or ordering of data narrows the actual representational meaning of data. 

Here, modeling has nothing to do with a higher degree of abstraction. Thus, it differs from 

Suppes’ conception of “models of data.” Instead, it is a reduction, a focus of the initial broad 

representational possibilities of data. 

3. Different Kinds of Data 

I argue that distinguishing several kinds of data within the relational framework helps better 

understand the methodology and epistemology of amplicon sequencing (AS) than the notion 

of data alone. This distinction allows us to understand the specificity of the role played by 

different objects, specifically the role of “samples.” Through the description of AS (Figure 1), 

                                                 
3 I place my analysis within the relational framework of data, so in this manuscript, I make no 

ontological commitment as to what phenomena can be. I follow Leonelli’s definition: A 

phenomenon is the target of the scientific inquiry. It is “the target of the claims for which data 

can be used as evidence” (Leonelli 2019, 3), and it can be more or less well-defined at the 

beginning of the inquiry. I believe the choice of characterizations for a phenomenon may not 

significantly impact my analysis. For instance, my choice does not hinder me from drawing 

conclusions regarding samples and data compatible with existing literature (see citations in 

section 5). 
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I map the scientific products using criteria 1) and 2) of the relational framework (Table 1). I 

also highlight the specificity of different kinds of data in their role in scientific inquiry. 

 

Fig. 1 Schematic representation of the seven steps of the amplicon sequencing method 

3.1. Amplicon Sequencing 

The AS method is widely used in microbiology and microbial ecology (Richardson et al. 

2023). It is supposed to “reveal” the underlying characteristics of the microbial community in 

any environment (Quince et al. 2017). AS substitutes microbial observation by generating 

millions of DNA sequences. This data-centered method qualifies, in principle, for the 

relational framework of data. 
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My situated experience as a researcher4 gave me knowledge of the steps of this procedure. It 

also helped me generate preliminary hypotheses about sample definition, data definition, and 

their epistemic roles in AS. Concepts in the philosophy of data challenged these hypotheses, 

and I investigated these hypotheses in a mixed-methods design—close reading of research 

papers and informal, semi-structured conversations with informants that were documented. I 

took these data as direct information and did not apply a particular analysis to them. I adopted 

something similar to an “iterative dialogue” (Mansnerus and Wagenknecht 2015, 45-46) 

between the concepts I was developing, informed by philosophical frameworks and the 

practice of the scientists. 

On the basis of this analysis and published work (Alteio et al. 2021; Pollock et al. 2018), I 

decompose AS into seven steps, each yielding a scientific product. More specific examples 

come from the Earth Microbiome Project (EMP). The EMP is a collaborative project between 

researchers from around the world, and the aim is to understand microbial communities across 

the environment globally. To do so, data are gathered from individual studies (Thompson et al. 

2017). 

                                                 
4 I have performed a doctoral research project between 2014 and 2017 in the Micalis Institute 

at the INRAE of Jouy-en-Josas, France. This institute performs this analysis regularly. During 

this time, I performed myself steps A to C and was in direct contact with bioinformaticians for 

steps D to G It gave me a “feeling with” the phenomenon (Mansnerus & Wagenknecht 2015). 
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Step A – The environment of interest (e.g., soil) is sampled for analysis in a laboratory. These 

material extracts share properties with the world where they originate, e.g., the pH of the bulk 

of soil is similar to that of the environment where it originates. They are stored at least long 

enough to reach the laboratory. The context and specific means used to obtain the material 

extracts are stored in the metadata that follow them. 

The paper from the EMP published in 2017 gathers 27,751 samples from 97 independent 

studies. The collection of these material extracts is standardized relative to the nature of the 

“world” to be sampled. For example, material extracts are constituted by swabs for microbial 

communities found on surfaces. For water communities, material extracts are filters; for 

communities of soil, sediment, and feces, material extracts are bulk samples. They “were 

collected fresh and, where possible, immediately frozen in liquid nitrogen and stored at -

80 °C” (Thompson et al. 2017, Supplementary Methods). Moreover, the project created a 

specific bio-ontology5 (EMPO). EMPO assigns samples to environments according to 

different criteria (e.g., host-associated or free-living microbial communities) (Thompson et al. 

2017). 

                                                 
5 Leonelli 2016 discusses the role of these bio-ontologies in data traveling and reuse (see 

Chapter 5 and section 5.2). I will only state that if EMP ontology facilitates the reuse of the 

computerized DNA sequences, it also limits the number of situations in which these data can 

travel by fixing certain parameters and their relations with each other. 



16 

 

Step B – Molecular DNA is extracted from these material extracts after several biochemical 

reactions, including microorganismal membrane disruption. Hence, the DNA of a particular 

microorganism is mixed with DNA extracted from other occurring microorganisms. As a 

result, the DNA-microorganism link is lost. This molecular DNA is stored to be used for 

amplification. 

Step C – In the AS method, a specific DNA part, the amplicon, is amplified through 

biochemical reactions. When studying microbial communities, two assumptions hold. This is 

true regardless of the scientific question at hand. First, the amplicon represents the whole 

microorganism. It can thus reconstruct the missing link between the DNA and the 

microorganism. Second, the amplicon sequence is evolutionarily stable and novel enough to 

separate microbial species and reliably measure the natural diversity of the microbial 

community. Thus, these molecular DNA amplicons are the material basis for future 

knowledge claims, and parts of them are sent to sequencing facilities. 

Material extracts, molecular DNA, and molecular amplicons are called “samples” by 

scientists. These products are all stored frozen and handled so that they can be moved between 

different locations. They are handled to enable their dissemination. In theory, they can be used 

in new scientific inquiries, but in practice, they are usually discarded after being processed in a 

single inquiry. Scientists treat them as containing the information that will act as evidence in 

the scientific inquiry. However, these scientific products must be transformed before fulfilling 

this role. In contrast, “controls” in AS are very similar in nature but not in function to 
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“samples.” Scientists consider “controls” as elements that can inform the reliability of the 

experimental process but not as containing evidence for knowledge claims. In alignment with 

the relational framework, this example shows that two similar objects are distinguished not on 

the basis of essential differences but on the basis of the situation of inquiry and the researchers 

within it. 

These samples are the initial link to the external world. Information about them (metadata) 

grounds the continuity of the reference between the external world—the environment—and 

the knowledge about it—this environment is composed of this microbial community. Samples 

and their metadata are why the other kinds of data produced afterward are still about 

something in the world. The samples themselves are lost; if their metadata are also lost, the 

computerized DNA sequences produced (step D) cannot refer to or represent the outer material 

world. 

Step D – Sequencing facilities have specific equipment and human skills. They sequence the 

amplicons, resulting in computerized DNA sequences. The molecular information of the 

nucleotide chain is converted into strings of letters. These strings can be manipulated and 

compared computationally. However, they have no biological meaning without extra 

information. Scientists call these computerized DNA sequences “raw data.” The computerized 

DNA sequences are deposited in databases with technical metadata. They travel, for example, 

from the sequencing facility’s computer to the researcher’s computer. This is already a change 

in the situation of scientific inquiry. The objectives are different: technical, i.e., to get a 
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reliable object for constructing knowledge claims during sequencing; biological, when these 

sequences are used to describe a community, to explain the microbial distribution, etc. 

In the EMP, steps B to D are standardized to facilitate the reuse of the computerized DNA 

sequences (Pollock et al. 2018). In particular, the authors insist on three critical points for 

these steps: the use of a single protocol for step B (DNA extraction), which is chosen for its 

efficiency toward diverse sample types, rather than its high efficiency toward any given type. 

The primers for step C (Amplicon amplification) are the same across individual studies and 

are chosen with the abovementioned assumptions in mind. Finally, the sequencing 

technologies are limited to Illumina HiSeq and Illumina MiSeq (Thompson et al. 2017, 

Supplementary Methods). 

The “raw” data travel with their metadata. These metadata register the detailed circumstances 

of producing these data in each individual study of the EMP project. Their quality was 

assessed before integrating the pool of studies used in the 2017 publication (Thompson et al. 

2017). 

Step E – Computerized DNA sequences are transformed through many computational and 

statistical steps. The underlying assumption is that statistical methods allow scientists to 

distinguish between natural and artifactual variation (caused by the AS method itself) in DNA. 

To date, there are no community-accepted standards (Pollock et al. 2018). However, such 

decisions affect the knowledge claims made later. This step leads to what I call “pre-treated 

DNA sequences.” These sequences are stored locally (in the researcher’s computer) and can be 
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disseminated in principle. However, this is rarely the case because of the lack of 

standardization. By modifying computerized DNA sequences, the scope of what they can 

represent is narrowed down to a single organism or type of organism. For example, each 

computerized DNA sequence contains a small part at the beginning. This region corresponds 

to the initiation of the DNA amplification and sequencing procedures. It can be removed or 

kept. If it is kept, further analysis can be performed on this sequence, such as to determine 

how far it is genetically conserved. If not, the sequence cannot represent genetic variations in 

this region. 

Step F – Pre-treated DNA sequences are sorted according to their variations. The distinction 

between natural and artifactual variations is related to the assumption of the method. Given the 

range of mathematical and statistical tools available, this method impacts the inquiry’s 

conclusions. This step is called “denoising” or “clustering,” depending on the method used. 

“Denoising” refers to the elimination of errors—the artifactual variations. Instead, “clustering” 

refers to the grouping of sequences by similarity. Sometimes, data are cleaned to be more 

suitable for travel (Boumans and Leonelli 2020). Here, the sequences are cleaned to ensure the 

reliability of the products they will help construct. These products will ground knowledge 

claims about a particular environment’s microbial composition and diversity. The sequences 

are cleaned to be able to sustain knowledge claims. 

This step leads to the obtention of occurrence tables (Figure 1). The rows are the amplicon 

sequence variants (ASVs). These are DNA sequences of the region amplified (cleaned pre-
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treated DNA sequences). The columns correspond to the material extracts. Each cell contains 

the number of copies of an ASV retrieved in a material extract. The aim of this step is twofold. 

First, to count how many different individual microorganisms (i.e., different ASVs or the 

number of rows) the original environment might contain. Second, to count how many of these 

individuals are detected relative to the total number of microorganisms retrieved. The ASVs 

now represent only one kind of thing, a specific kind of microorganism (depending on the 

resolution, it can be a species or a genus). This representational image is fixed within the 

situation of inquiry that has produced it. In community ecology, occurrence tables play the 

same role as observational diversity measurements do. Once again, the AS method is a 

molecular alternative to microscopic observation. 

Occurrence tables travel between different situations of inquiry in the form of published 

papers (usually in the supplementary information). However, they are not reused in different 

situations of inquiry. 

In the EMP example, occurrence tables are called “observation tables” (Thompson et al. 2017, 

Supplementary Methods). Each original study generated occurrence tables for its line of 

investigation using the computerized DNA sequences it obtained. These tables are (most of the 

time) accessible in the supplementary data of these individual studies. Each separate study is a 

data production and analysis situation that generates “raw data” (computerized DNA 

sequences) and occurrence tables. Thompson and coauthors then developed new tables to 

uncover patterns of microbial diversity globally. When gathered for the EMP project, these 
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computerized DNA sequences travel into a new situation of analysis, but not the occurrence 

tables. 

Step G – Occurrence tables are combined with metadata and knowledge stored in databases 

(existing taxonomy) to serve as evidence for knowledge claims about the microbial 

community. Scientific papers constitute knowledge claims or at least contain them; they are 

published and travel between different situations of inquiry. 

The EMP project has a double output: one about the physical world and one about the inquiry 

process. Biological conclusions involve the determination of patterns in community 

distribution and the exploration of “key hypotheses in ecological theory” (Thompson et al. 

2017, 458). The authors also highlight the creation of a reference database and a standardized 

framework for incorporating data from future studies as achievements of their work. 

3.2. The Shortcomings of the Relational Framework 

In the AS case, there is causal continuity between all the empirical products. After all, the 

material extracts contain the DNA that will end up populating the occurrence tables. These 

findings will then ground conclusions about the microbial community. Scientists consider 

these products to be potential evidence. Moreover, given the understanding of travel 

developed in section 2.2, all these products have the potential to travel. All these products can 

be stored locally in virtual or physical databases, and they can all be distributed by mail or 
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email to researchers for analysis in various investigations. Thus, all the AS products fulfill 

conditions 1) and 2) of the relational view; they are all data (Table 1). 

This inclusivity of the relational framework helps make sense of the diversity of objects used 

as data in scientific inquiry. However, it does not help to understand the distinctive role played 

by samples compared with data in the AS case and, more generally, biological research. 

Scientists refer to some objects of the inquiry as “samples” and others as “data.” As 

philosophers, we should be cautious when analyzing these concepts before equating the 

philosophical ones with those used by scientists. I argue that we should at least consider this 

difference in the discourse relevant. 

First, the relational framework is aligned with the practice-oriented tradition. Indeed, one of 

the advantages of the relational framework is its relevance to biological scientific practice and 

how it deals with data. The language used by scientists is one of these practices and thus 

should be considered when analyzing scientific objects. 

Second, despite the lack of homogeneity in the use and meaning of “samples” and “data” in 

the scientific discourse (as is the case with words such as gene or species), here, I indicate that 

the scientific use of different words highlights the need for different concepts designating 

different things in the inquiry. I propose that this distinction is, at least partly, based on the 

distinctive role of these two objects in the inquiry. As described above, molecular DNA does 
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not play the same role as computerized DNA sequences. The evidential role of what scientists 

call samples and what they call data (raw or not) is different. 

More generally, as highlighted in the introduction, the analysis of samples as scientific objects 

could be more precise (Leonelli and Tempini 2020, viii and 17). The connection between 

samples and data remains to be clarified to characterize the full extent of biological scientific 

practice epistemically. 

This paper contributes to the issue of the place and epistemic role of samples in the inquiry. I 

propose precisions of the criteria of the relational framework that help distinguish the peculiar 

position of samples compared with other kinds of data in the case of AS (Section 4). These 

specifications are compatible with the existing literature on data and evidence (Section 5). 

Because this ambiguity might be due to discipline-related differences, I propose a first step 

toward a generalization in the conclusion. 

 



24 

 

Table 1 

Mapping of the products of amplicon sequencing with the conditions of the relational framework 

Step. Products of AS inquiry 
Considered as 

potential evidence 

Capacity to travel 

between different 

situations of inquiry 

Relational framework 

A. Material extracts Y Y 

Data 

B. Molecular DNA Y Y 

C. Molecular DNA amplicons Y Y 

D. Computerized DNA sequences Y Y 

E. Pre-treated DNA sequences Y Y 

F. Occurrence tables Y Y 

G. Scientific papers   N* Y Knowledge claims 

*I take them to contain the evidence either explicitly or implicitly. 
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4. Samples 

In AS and within the relational framework, samples 1) are necessarily transformed to be 

considered evidence, 2) are portable in the limit of the situation where they endure this 

transformation, and 3) act as material/world anchors for claims about a phenomenon. I clarify 

these points successively in the remainder of the section. 

Samples are a subcategory of data because they fulfill the criterion of being treated as 

potential evidence, but they must be transformed to be considered evidence. In the general 

definition of data from the relational framework, data are considered potential evidence. The 

scientific product that will end up being considered evidence is a subset of the ones considered 

potential evidence. I argue here that samples are not part of this subset. They are treated and 

considered potential evidence. If not, there will be no difference between a bulk of soil 

collected for no purpose and a bulk of soil collected in the context of a scientific inquiry. In 

addition, samples do not need to be transformed to be considered potential evidence. They are 

collected from the world according to an inquiry procedure. However, samples differ from 

other kinds of data because they can never be evidence per se. They need to be transformed, 

changed, and altered. This transformation is necessary. In contrast, the result of step D, the 

computerized DNA sequences, could readily be used as evidence. These “raw” data are 

extracted from the samples. This form and other data are not automatically evidence; it will 

depend on the situation of inquiry and often on additional information, but they have the 

potential to do so; transformation is not necessary. 



26 

 

The necessity of the transformation comes from the fact that the samples are not amenable to 

human understanding. An investigator can do nothing with a hand of soil; she needs to extract 

something from it. This extraction or transformation needs to lead to something amenable to 

human understanding, manipulation, and the starting point of inferential reasoning. 

Transforming samples into something about the world, another form of data, is a transition 

from “being part of the world” to not being a part of it anymore. In AS, molecular sequences 

are transformed into letter sequences that refer to the world because of the causal continuity 

between the samples and DNA sequences. 

I parallel the notion of samples with that of “ubjects” to emphasize the importance of the 

situation and the inquirers in what constitutes a sample. In the context of exchanging human 

body material, the concept of a “ubject” has been developed as a hybrid between an object and 

a subject: “Ubject [designates] that which is seen by (at least) some as having been part of a 

body and therefore related to a subject.” (Hoeyer 2013, 5). “Ubjects” are those things leaving 

“the space identified as the body” (Hoeyer 2013, 68). They should not be conceived “as an 

entity with a name but more like a point in time between being part and not part of a body” 

(Hoeyer 2013, 143)6. Similarly, samples are those entities seen by some inquirers as leaving 

the space identified as the world. The sample is a point in the inquiry between being part and 

not part of the world. They are a hybrid between a portion of the natural world and a 

                                                 
6 I thank Sara Green for bringing this work to my attention. 
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representation of it, a “presentation.” For example, the bulk of soil sampled in step A is a 

portion of the world, and at the same time, it represents the environment of this portion of the 

world. I return to the samples’ representational power later in this section. 

A rupture of the material continuity of the scientific product marks the transformation of 

samples into another kind of data. In the general definition of data, rupture of material 

continuity does not automatically include or exclude a scientific object in the set of objects 

considered data. The nature of the object does not matter fundamentally. Here, I emphasize 

this change to highlight that samples are a distinct kind of data and thus need particular 

analysis. It highlights the scientific practice of sampling and sample processing and allows a 

focus on these “upstream” activities rather than data analysis. In AS, the materiality of the 

sample is essential for the epistemic relevance of the DNA sequence retrieved. There is an 

“integration of physical matter from various sources so as to constitute a new entity” 

(Halfmann 2020, 27). Indeed, after DNA extraction – DNA comes from the “world” – 

nucleotides and other things are added to synthesize new DNA. This step integrates new 

physical matter. The physical part coming from the world might be lost at the end of the 

process. What remains is the information on the organized sequence of nucleotides. So, the 

material continuity of the samples (steps A to C) is conserved. The sample is preserved 

“through several stages of the research process without a change of medium” (Halfmann 2020, 

27). In AS, between steps A and C, “information is transferred materially and not by 

impression or translation to a different medium.” (Halfmann 2020, 39). The transformation 
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from samples to step D is a “jump” from one medium to another; it is the digitalization of the 

DNA sequence, a rupture of the material continuity. It is not a degree of transformation that 

distinguishes samples from other kinds of data but rather the necessity of the transformation. 

In the relational framework, data are portable. They have the potential to travel, and they are 

handled to travel between different situations. In AS, samples are handled to travel between 

different facilities, at least from the field to the laboratory (Figure 1). They are portable. The 

potential to travel between situations does not determine whether the object will travel. 

Scientific products travel between situations, or they do not. I argue that samples travel 

peculiarly because they change location and time, but this is not a change of situation. The 

research question is the same: identifying patterns in the microorganismal population of a 

particular environment (a classic question in community ecology). The relevant criteria of the 

context are the same during steps B and C in the laboratory as they are during the collection of 

samples, i.e., step A in the field. Thus, samples travel within the same situation between 

different phases of the inquiry but not between different situations. This is important in AS 

because it is a fundamental difference between the “samples” and other products of the 

inquiry. 

Another way to put it is to use the distinction between “phenomena-time” and “data-time” 

(Leonelli 2018) when data are limited to the kind that I am delineating: samples. In AS, the 

time and location of the samples are essential to the phenomenon under investigation. They 

constitute information of the “phenomena-time.” They are relevant information gathered in the 
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metadata file. They always accompany other kinds of data extracted from those samples. 

However, the time and location of the sample transformation are contextual information that is 

not relevant to the investigation and thus does not pertain to the situation of inquiry. The 

methods used are relevant, so they are part of the situation and of the “data-time”. They 

influence the evaluation of the quality of the data retrieved and their future uses. This is 

compatible with Leonelli’s vision of the situation. Data can travel between their production 

site and utilization site. These sites might constitute different situations, but not necessarily. I 

argue that in AS, samples are a kind of data that stays in one situation. They already become 

something new when they change situations (for example, between steps C and D). They are 

in transition to become another kind of data. 

Another important specification for samples in AS inquiry is that they are portable but only 

portable once. Indeed, samples are discarded once computerized DNA sequences are obtained. 

In AS inquiry, sample analysis is never reproducible. It is physically impossible to reanalyze 

the same set of samples in the same manner. It is a disruptive science. The destruction of 

research products tracks a distinction between samples and other kinds of data. Research 

products might be destroyed, and only the latter stage of the “data process” might be 

conserved. For example, not all the “intermediate” files generated during computerized DNA 

sequence analysis are conserved; they are destroyed. The status of any given research 

product—data or not—will depend on whether it has been handled to travel. In AS, samples 

are handled in ways that enable their circulation. Moreover, the samples are destroyed, but 
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information about them (metadata) is not. As the EMP example suggests, the computerized 

DNA sequences are mobile and available for reanalysis, but this is not the case for the 

samples. 

Samples are replicable but nonreusable. That is, samples are renewable in that an experimenter 

can, in theory, return to the experimental field, take another sample of the same environment 

as the first one, and extract what she might consider similar “raw” data. However, the original 

sample is lost forever. Moreover, in that case, the “phenomena-time” is different from the 

original one, which might have an impact depending on the research question. Thus, the 

sample is replicable but nonreusable. 

Samples have dual representational content. On the one hand, samples are literally part of the 

world. They are the products of material continuity. There is no intentional “writing or 

imprinting information onto a medium” (Halfmann 2020, 39, footnote 22). Samples are 

representative instances of the target; in this sense, they have a similar representative role as 

that of the statistical samples. The idea is that an investigator can take whichever part of a 

homogenous environment. Samples are subsets, typical, characteristic, or usual of a more 

extensive set, the environment, that is investigated. However, this representative role is 

nonintentional and contingent on the sample being the environment. This does not mean that it 

is fixed and immutable. The material process itself threatens this fixity. For example, between 

the field and the laboratory, samples are frozen to try to keep their microorganismal 
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composition fixed. Different techniques of freezing impact the composition retrieved later 

(Pollock et al. 2018, 2). 

Samples speak about the world because they are the world as it is. If the samples have been 

correctly collected, there is no question about the appropriateness or accuracy of this 

representation in the same sense as in whether the data accurately represent a phenomenon. 

The question is how representative the sample is of the whole but not how samples represent 

the whole. That is, whether samples are typical and relatively preserved instances of the 

phenomenon. Samples are anchors for data claims; they ensure that these data document this 

phenomenon (Wylie 2020)7. In AS, samples are why researchers can say that their strings of 

letters speak about the world. Samples are the physical reference of propositions written in a 

lab book. In a Latourian sense, I consider samples to be the initial step of a reference circle. 

Samples play the role of the referent that scientists can “point to with their finger outside of 

discourse,” even if it needs to be transformed to be “brought back inside discourse” (Latour 

1999, 32). The difference with Latour’s case study is that the reference is lost in AS: the 

samples are destroyed. However, the information about them is conserved. 

                                                 
7 Wylie also considers samples as data. The word “data” in her work refers to two things. It 

refers to the final product of a “practical argument,” i.e., the “evidential anchor.” It also refers 

to a part of this argumentation, i.e., the samples but also the “radiogenic data,” the “temporal 

data,” and the “chronological data.” 
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On the other hand, samples instantiate the properties of the whole environment(s) studied. A 

scientific intention is needed to interpret these properties. Again, this is another difference 

between a soil sample and a handful of soil. In AS, samples instantiate two kinds of relevant 

properties. The properties, such as the temperature, pH, time, date, etc., of the samples were 

recorded as metadata. These parameters affect the environment that scientists seek to 

understand. The other properties, such as the microorganismal composition and organization 

of the sample, are the ones under study. The first properties determine which kind of 

environment the sample is from. They have a double use of characterizing the environment of 

interest, for example, “dry land,” and monitor that different samples of the same environment 

are similar enough to pertain to the same category. Samples are “typical” enough of the 

environment. They do not display exceptional values for those parameters. The typicality of 

these parameters is crucial for investigation because it warrants inference according to which 

other properties, such as the microorganismal composition, are also typical of the environment 

studied. This will then warrant inferences that data extracted from these samples document the 

entire environment and not only the tokens of that environment, i.e., the samples. The products 

from steps A and C are primarily handled to secure the typicality of the DNA in terms of 

identification (the DNA is typical of this or that species) and composition (there is molecular 

DNA of all the species and only the species that are present in the original environment and 

the same relative quantity). This is why samples are usually discarded after sequencing. They 

cannot be reused because they are no longer considered typical for these parameters (DNA can 
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have been modified or lost). This loss of typicality will lead to impairments and less reliability 

in the data extracted, ultimately threatening the claims based on these data. 

I want to make two remarks. The first concerns the compatibility of this conceptualization of 

samples with the relational framework, and the second concerns the connection of this analysis 

with the notion of specimenhood8 (Currie & Levy 2019). 

The relevant properties of similar samples can differ depending on the situation. For example, 

in a biological context, the relevant properties of a bulk of soil might be how it has been 

processed and the methods used. The bulk of soil then instantiates those properties, relegating 

the microorganismal composition to the background of the investigation. Similar or different 

samples of the same environment can instantiate other properties according to the situation. It 

is compatible with the relational framework of data that attributes a representational scope to 

data that can change between situations of scientific inquiry (Leonelli 2019). 

The notions used to characterize samples’ representational content and role in AS are close to 

the idea of specimenhood9 developed in the context of experiments (Currie & Levy 2019). 

Like specimens, samples in AS are “part of the world [brought] into the lab” (Currie and Levy 

2019, 1071). They are objects typical of a target, the environment, and they are drawn by an 

                                                 
8 I thank Franziska Reinhard for bringing this literature to my attention. 

9 This concept is close to the one of exemplification developed by Elgin – see footnote 4 for an 

explanation of the difference between the two (Currie and Levy 2019, 1073). 
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“unbiased procedure” or at least a procedure that “reduces the risk of selecting an unusual 

object, and which preserves typicality by avoiding problematic alteration of the object” (Currie 

and Levy 2019, 1073). Whether the AS procedure causes “problematic alteration” does not fall 

within the scope of this paper, and instead, I focus on two differences between specimens and 

samples. First, the difference between the object and the target is not empirically tractable. In 

AS, there is no way of precisely knowing the distance in the “focal property,” here the 

microorganismal composition, between the sample and the environment studied. The best 

scientists can do is multiply the number of samples, standardize the collection protocol, and 

use various controls. However, ultimately, what scientists analyze is only a picture of the real 

world. Second, the notion of specimenhood is developed in the context of hypothesis-driven 

experiments. In contrast, AS is closer to observation. The occurrence table obtained during the 

inquiry is an adaptation of the observational fieldwork in community ecology. The 

methodological principle is the same: counting the number of individuals per species in a 

restricted area. This is done in macroecology. In microecology, this has been done using a 

microscope. AS is like looking with a microscope at who is there, how many they are, and 

how they are distributed within the environment. The aim is the same: describing the ecology 

of the community and identifying new phenomena, i.e., patterns of diversity that will have to 

be explained. 

5. Branching out of the Relational Framework 

5.1. Other Kinds of Data 
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No data are absolutely unprocessed. However, the AS case analysis shows a difference in the 

role of three kinds of data in the inquiry: samples (detailed above), “raw” data, which are 

relatively unprocessed, and non-raw data, which are relatively more processed. 

They can be interpreted as different stages of the data journeys. Similar to the case described 

in Tempini (2020), computerized DNA sequences – “raw” data – are “data sources.” These 

sequences can be selected, reassembled, and transformed into “data mixes.” One can generate 

as many different data mixtures of combinations and modifications of the data sources as 

possible. However, once you have settled your mixes in a new table, they are more fixed than 

the data sources used to generate them. Trade-offs are needed in this transformation or 

“metamorphosis” (Tempini 2020, 259). In AS, the key trade-off between computerized DNA 

sequences and occurrence tables is determining the boundary between natural and artifactual 

variation in DNA sequences. 

Transforming biological information into digital data is likened to a “pipeline” (Stevens 2013, 

109)10. This metaphor applies to AS, where “raw” data are converted into non-raw data 

through “bioinformatic pipelines.” The distinction between “raw” and non-raw data is relative. 

                                                 
10 Stevens uses this metaphor for sequencing platforms. This is similar to steps C to D in the 

current analysis, albeit the sequences are not put into GenBank by the sequencing platforms, 

the scientists upload them into databases. Additionally,  only one part of a gene (not even 

necessarily the entire gene) is sequenced – the “amplicon” – not whole genomes. 
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They can be distinguished within the virtual space (Stevens 2013, 129-130). In AS, “raw” data 

– computerized DNA sequences – are publicly available in databases11, standardized under 

digital formats (e.g., FASTQ) and bio-ontologies, and preserved for future uses. In contrast, 

non-raw data are locally accessible and modifiable only to the bioinformatician who produced 

them. Bioinformaticians are crucial in making data usable for biological research and 

knowledge production (Stevens 2013, 127-133). In AS, the uploading of “raw” data into 

databases and the transformation of “raw” data into non-raw data can be performed by the 

same person, be it a biologist with bioinformatics training or a bioinformatician with “wet” lab 

training, exemplifying a hybrid epistemic practice described by Strasser as something between 

“collecting” and “experimenting” (2019, 108, 115). This process influences how biological 

information is perceived and ultimately shapes the form of knowledge produced, with 

standardization of steps within the pipeline affecting the definition of “raw” data. For example, 

if steps D to E become standardized in AS, the “raw” data would be the pre-treated DNA 

sequences instead of the computerized DNA sequences12. 

                                                 
11 For a detailed analysis of the role of databases and other collection of specimens and data in 

the production of scientific knowledge, see Strasser (2019). 

12 I am grateful to an anonymous reviewer for highlighting the importance of this literature in 

the context of this analysis. 
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Another way to analyze the difference between “raw” and non-raw data is to consider the 

occurrence tables (Figure 1, result of step F) as data models. The relational framework sees 

data models as the “ordering of data” to represent a more specific phenomenon or to make one 

or more patterns salient in a collection of data (Leonelli 2019). Indeed, occurrence tables are 

partly created by sorting the pre-treated DNA sequences. In constructing them, researchers 

want to make the natural diversity salient compared to the diversity generated via the AS 

method. I have two comments on this point. First, scientists do not consider occurrence tables 

to be models. They are reluctant to do so because they do not consider the mathematical and 

statistical tools used to get the occurrence tables to model anything (although some of these 

tools may use models to do their work). As mentioned above, these tables are considered more 

as observations, not as a model of these observations. Second, if we put aside the last comment 

and assume that they are data models in the relational sense, that would not undermine the 

conclusions drawn for the categories of samples and the difference in their role compared with 

the role of other kinds of data. The generalizability of these precisions to different use cases in 

the life sciences remains to be established. 

5.2.  Enriched Evidence 

I draw a parallel with the notion of “enriched evidence” (Boyd 2018). She developed the idea 

that theories should be tested against enriched evidence to at least meet the empirical criterion 

of empirical adequacy. Enriched evidence contains a kind of empirical constraint that the 

theory needs to meet to remain relevant in current scientific practice. Enriched evidence is 
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defined as follows: “The evidence with respect to which empirical adequacy is to be 

adjudicated is made up of lines of evidence enriched by auxiliary information about how these 

lines were generated.” More precisely, a line of evidence is “a sequence of empirical results 

including the records of data collection and all subsequent products of data processing 

generated on the way to some final empirical constraint.” Auxiliary information is “the 

metadata regarding the provenance of the data records and the processing workflow that 

transforms them” (Boyd 2018, 406-407). 

In this analysis, I take samples to be at the origin of the “line of evidence.” They are the first 

empirical results that scientists take as valuable to distinguish because they serve to produce 

and construct the data. They are not constraining enough; data need to be extracted. In this 

framework, thus, the samples described above would be different from the data conceptualized 

here. 

The difference between the data kinds mentioned in section 5.1. could be interpreted as a 

difference between an empirical result and an empirical constraint. Data and auxiliary 

information are part of the final “empirical constraint” (Boyd 2018). They ground knowledge 

claims by constraining the interpretation that can be done using them. However, in my case 

study, the final empirical constraint is the association of the occurrence table, the metadata 

associated with each sample, and the taxonomy retrieved using the DNA sequences and 

information stored in databases (see Figure 1). I would instead consider the computerized 

DNA sequences as something “mal-adapted” (Boyd 2018) to a theory because they are not 
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usually produced to test a theory. Therefore, they need to be transformed to be better adapted 

(and become occurrence tables) to describe a phenomenon. Contrary to Boyd, I do not think 

that data always test theory. They can be very descriptive or explorative. Nevertheless, they 

empirically constrain what theory or explanations scientists choose to follow or deepen. 

5.3. The Pragmatic-Representational View of Data. 

I draw a parallel with the “pragmatic-representational (PR) view of data” (Bokulich and Parker 

2021). They place representation at the center of the data’s role while embracing the view that 

all data are constructed through a process of inquiry. That is, “they should be evaluated in 

terms of their adequacy or fitness for particular purposes” (Bokulich and Parker 2021, 1). Like 

Leonelli, constructed does not equate to data having content entirely subjective to scientists’ 

choices. They also recognize that data have a sort of representational “scope” dependent on the 

world, the scientists, and the various elements of the situation in which the inquiry occurs. 

Their view aims to account for how data and data models are about the world, “no matter how 

many rungs we have in our data model hierarchy, at some point we need our ladder to reach 

the ground” (Bokulich and Parker 2021, 5). I argue that because samples are part of the world 

and not only representations of it, they can be the first step of that ladder. Samples are the 

world anchors for data claims about the phenomenon. This approach is compatible with the 

idea that the extent to which any given sample, data, or dataset can still document the world 

should be assessed in each situation of inquiry. 
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The idea of a jump from one medium to another medium between samples and other kinds of 

data aligns with the idea of the PR view that what counts as data is narrower than in the 

relational framework. Indeed, only records of the interaction process between the world, an 

apparatus, and an inquirer count as data (Bokulich and Parker 2021, 6-7). Moreover, in this 

view, the objects I described to be sampled will not be data as in the relational framework but 

part of the phenomenon itself. I grant that point in my precision of what samples are (Section 

4), yet because they are also considered epistemically as having the capacity to contain data, 

they are more than that. Thus, samples are data in the sense developed by Leonelli (Table 1) 

but are a particular and distinctive kind of data. 

The difference from the PR view is that samples should not be judged according to “whether 

they can be used to achieve the particular epistemic or practical aims that interest their users” 

(Bokulich and Parker 2021, 10). The question in sampling is different, and the epistemic aim 

might be in the background of the sampling method. What is essential about samples is how 

well they retain the typicality of the phenomenon (or some properties of it) they are an 

instance of. 

A second difference is that samples cannot be reused in the sense developed in the PR view. 

“While data reuse involves using the same data to answer the same question, data repurposing 

involves using the same data to answer a different question” (Bokulich and Parker 2021, 11, 

original emphasis removed). Their definition of data reuse is close to the notion of 

reproducibility explored in section 4. In this sense, samples are not reusable, as they are 
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usually discarded. Investigators need to generate new samples or take computerized DNA 

sequences. 

In the EMP example, the justification for the study’s repeatability is that the computerized 

DNA sequences come from multiple samples from multiple studies for each habitat, 

constituting a replication but not a reproduction. The EMP is an example of the repurposing of 

computerized DNA sequences. As argued above, a new analysis of the same data is a situation 

change from the first analysis, which generated those data. The question remains as to whether 

the situation of inquiry needs to change in order to repurpose data. It is not my aim here to 

answer such a question. 

6. Conclusion and Outlook 

I propose refinements to the criteria of the relational framework. These specifications help 

understand samples’ distinctive role in scientific inquiry compared with other kinds of data in 

the case of AS. By being compatible with additional views of data and evidence, these 

specifications can help analyze other life sciences cases. 

As a first step, I explore the case of biobanks and argue that these modifications can help 

understand the epistemic role of different scientific objects. Biobanks are infrastructures that 

collect, manage, and store vast quantities of biological materials (human or not). They also 

deliver these materials to different research groups. 
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The term “sample” is used to designate the biological extract at the beginning of the 

biobanking process and the biological material delivered to a research group. Thus, it would 

seem that my criterion of “traveling only within the situation of data production” does not 

apply. While I agree that this constitutes two different situations, I argue that a particular 

object can be considered as sample in one situation and as another kind of data in another—

aligning with the relational framework—depending on the inquirer and the situation at stake. 

In the situation of biobanking, a biological extract (e.g., blood) is taken. It is moved from the 

collection site to the biobank site. This extract is necessarily transformed (treated and 

processed) before being considered evidence. Several tubes (e.g., different pretreatments 

before storage) can be made with the same biological extract. All these tubes are stored in a 

collection managed and organized by biobankers. Contextual information about the origins of 

the extract, how it has been processed, etc., is also stored in a digital format, i.e., metadata. 

The biological extract is the material anchor for different technical or scientific claims. So, 

these biological extracts are samples, whereas the tubes preserved in biobanks are “biological 

resources” or even “material data” (Clarizio 2022). 

When materials are sent or requested for a particular inquiry, they reach a new situation of 

inquiry. Inquirers evaluate the role of the scientific objects at their disposal. When used in 

these cases, these “biological resources” play the role of samples. They necessitate 

transformation before being able to be considered evidence. They will move, even between 

different laboratories, to produce this evidence. Inquirers use these materials (and not the 
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biological extract they are from) as anchors to ensure that downstream data document a 

phenomenon in the world. 

In this paper, I provide specifications of the relational framework that help analyze the 

distinctive role of samples compared with data in scientific inquiry. These specifications help 

deepen our understanding of these objects and their epistemological role.  
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