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Abstract

Lagrangian and Hamiltonian mechanics are widely held to be two distinct but

equivalent ways of formulating classical theories. Barrett (2019) makes this intu-

ition precise by showing that under a certain characterisation of their structure, the

two theories are categorically equivalent. However, Barrett only shows equivalence

between “hyperregular” models of Lagrangian and Hamiltonian mechanics. While

hyperregularity characterises a large class of theories, it does not characterise the

class of gauge theories. In this paper, I consider whether one can extend Barrett’s

results to show that Lagrangian and Hamiltonian formulations of gauge theories

are equivalent. I argue that there is a precise sense in which one can, and I il-

lustrate that exploring this question highlights several interesting questions about

the way that one can construct models of Hamiltonian mechanics from models of

Lagrangian mechanics and vice versa, about the role that constraints play, as well

as the definition and interpretation of gauge transformations.

∗Draft of August 27, 2024.
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1 Introduction

Lagrangian and Hamiltonian mechanics are widely held to be two distinct but equiva-

lent ways of formulating classical theories. Although there have been recently challenges

to this view1, Barrett (2019) makes precise the sense in which one can maintain that

Lagrangian and Hamiltonian mechanics are equivalent: as long as one characterizes the

structure of these theories in a certain natural way, one can show that they are theoreti-

cally equivalent, where the standard of theoretical equivalence is categorical equivalence.

However, Barrett’s equivalence result is restricted in an important way: he only shows

equivalence between “hyperregular” models of Lagrangian and Hamiltonian mechanics.

While hyperregularity characterizes a large class of theories, it does not characterize the

class of gauge theories: theories that have local, time-dependent symmetries. The ques-

tion of whether Lagrangian and Hamiltonian mechanics are equivalent in the context

of gauge theories is one that has not been discussed directly in the philosophical litera-

ture, despite the fact that it bears on other debates that are prominent in the literature.

In particular, there has been a recent debate about the correct characterization of the

gauge transformations in the Hamiltonian formalism. Several authors have criticized the

standard view on the basis that the resulting theory is inequivalent to the Lagrangian

formalism.2 However, one fails to find a clear exposition of which formulations of La-

grangian and Hamiltonian mechanics in the presence of gauge symmetries are equivalent

and in what sense.

In this paper, I aim to fill this gap. I demonstrate that the relationship between

Lagrangian and Hamiltonian mechanics is made significantly more complicated when the

assumption of hyperregularity is dropped, and I argue that the literature has so far failed

to establish more than a notion of dynamical equivalence in the non-hyperregular context.

However, I show that one can extend Barrett’s result to prove an equivalence result in

the irregular case by constructing hyperregular models of Lagrangian and Hamiltonian

1See North (2009) and Curiel (2014).
2See in particular Pitts (2014a,b), Gracia & Pons (1988).
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gauge theories through a process known as ‘symplectic reduction’. In doing so, I argue

that the claims in the literature that the standard approach to gauge transformations

renders Hamiltonian mechanics inequivalent to Lagrangain mechanics are false: there is

a natural formulation of Lagrangian mechanics in the irregular context that is equivalent

to the formulation of Hamiltonian mechanics under the standard definition of gauge

transformations.

While ultimately the paper supports the equivalence between Lagrangian and Hamil-

tonian mechanics in the context of gauge theories, exploring this question will highlight

several interesting questions about the way that one can construct models of Lagrangian

mechanics from models of Hamiltonian mechanics and vice versa, about the role that

constraints play in relating the kinematics and dynamics of a theory, as well as the

interpretation of gauge transformations.

In section 2, I spell out the equivalence result in Barrett (2019), paying particular

attention to the parts of the result that require the assumption of hyperregularity. In

Section 3, I discuss how the situation changes when one considers gauge theories, and

present the standard Hamiltonian approach to determining the gauge transformations in

terms of a constraint formalism. In Section 4, I consider the arguments in the literature

regarding equivalence between Lagrangian and Hamiltonian gauge theories, and I discuss

why they fall short of providing an account of theoretical equivalence. In Sections 5 and

6, I show that one can reformulate Lagrangian mechanics as a constraint theory in a

way that is analogous to formulating a Hamiltonian constraint theory, drawing from

the work of Gotay & Nester (1979), and I show that the models of the reformulated

Lagrangian gauge theory are related to the models of the Hamiltonian constraint theory

in a natural way. In Section 7, I prove an equivalence result that extends the result

in Barrett (2019) to the context of gauge theories. Finally, in Section 8 I discuss the

upshots of this equivalence result and some possible responses.
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2 The Regular Case

The relationship between Lagrangian and Hamiltonian mechanics in the ‘regular’ case has

been widely discussed. On the one hand, North (2009) defends the view that Hamiltonian

mechanics has less structure than Lagrangian mechanics. On the other hand, Curiel

(2014) agrees that Hamiltonian and Lagrangian mechanics ascribe different structure, but

argues that Lagrangian mechanics is a better representation of the structure of classical

systems. More recently, Barrett (2019) argues that this debate hinges on how one defines

the structure of the two theories: while one can maintain that they are inequivalent by

defining the structure of the two theories in certain ways, there is also a natural way

of spelling out the structure of the two theories that renders them equivalent under a

widely defended account of theoretical equivalence, namely, categorical equivalence.3

In light of this debate, let us distinguish three views that one might hold regarding

the equivalence between Lagrangian and Hamiltonian mechanics in the ‘regular’ case:

Lagrangian-first View: Lagrangian mechanics better represents physical

systems than Hamiltonian mechanics.

Hamiltonian-first View: Hamiltonian mechanics better represents physi-

cal systems than Hamiltonian mechanics.

Equivalence View: Lagrangian and Hamiltonian mechanics are (categori-

cally) equivalent, and so equally well represent physical systems.

Our focus here will be whether the Equivalence View is one that can also be main-

tained in the irregular case, and so it will be important for our purposes to see how the

Equivalence View is defended in the regular case.

Lagrangian mechanics has state space given by the tangent bundle of configuration

space, T∗Q, whose points consist of the pair (qi, q̇i) encoding the positions and velocities

of the particles. The dynamics is given by specifying a Lagrangian function L(qi, q̇i),

3See Halvorson (2012, 2016), Weatherall (2016a,b, 2019) for discussion and defense of categorical
equivalence as a standard of theoretical equivalence.
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with dynamical equations given by the Euler-Lagrange equations, which in coordinate-

dependent form are given by:
d

dt

∂L

∂q̇
=

∂L

∂q
.

The fiber derivative of L is called the Legendre transformation and it is the map

FL : T∗Q → T ∗Q from the tangent to cotangent bundle that is defined as taking the

point (qi, q̇i) to (qi,
∂L
∂q̇i

). We say that L is regular iff FL is a local diffeomorphism. When

FL is a global diffeomorphism i.e. it is also invertible, we say that the model (T∗Q,L)

is hyperregular.

Hamiltonian mechanics has as its state space the cotangent bundle of configuration

space, T ∗Q, whose points consist of the pair (qi, pi) encoding the positions and canonical

momenta of the particles. The dynamics is given by specifying a Hamiltonian function

H(qi, pi), with dynamical equations given by Hamilton’s equations:
dq

dt
=

∂H

∂p
,
dp

dt
=

−∂H

∂q
.

The fiber derivative of H is the map FH : T ∗Q → T∗Q from the cotangent to tangent

bundle that is defined as taking the point (qi, pi) to (qi,
∂H
∂pi

). When FH is a (global)

diffeomorphism, we say that the model (T ∗Q,H) is (hyper)regular.

The cotangent bundle naturally comes equipped with a symplectic (closed, non-

degenerate) two-form ω. We can write the equations of motion in terms of this two-form:

ω(XH , ·) = dH where XH is the vector field associated with the Hamiltonian, which is

unique by the non-degeneracy of the symplectic two-form. The integral curves of XH

correspond to solutions.

We can also use this symplectic structure to define a two-form on the tangent bundle,

Ω = FL∗(ω). Ω is symplectic when FL is a (local or global) diffeomorphism. We can

then show that the Euler-Lagrange equations are equivalent to Ω(XE , ·) = dE where XE

is the vector field associated with the energy function E = FL(q̇i)q̇
i − L. The integral

curves of XE correspond to solutions.

The structure preserving maps of tangent space are given by point∗ transforma-

tions T∗f , defined as follows: given a diffeomorphism f : M1 → M2, T∗f : (q, v) →

(f(q), f∗(v)). Similarly, the structure preserving maps on cotangent space are given
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by point∗ transformations: given a diffeomorphism f : M1 → M2, T ∗f : (q, p) →

(f−1(q), f∗(p)).

Let us restrict ourselves to hyperregular models of Lagrangian and Hamiltonian me-

chanics. Define the functor F between a hyperregular model of Lagrangian mechanics

and a hyperregular model of Hamiltonian mechanics as F : (T∗Q,L) → (T ∗Q,E◦FL−1),

F : T∗f → T ∗(f−1).

Similarly, define the functor G between a hyperregular model of Hamiltonian mechan-

ics and a hyperregular model of Lagrangian mechanics asG : (T ∗Q,H) → (T∗Q, (θa(XH)a−

H) ◦ FH−1), G : T ∗f → T∗(f
−1) where θa is the canonical one-form such that ωab =

−daθb. These translation maps preserve empirical content, in the sense that they pre-

serve the base integral curves.4

Define the categories Lag and Ham in the following way:

1. An object in the category Lag is a hyperregular model (T∗Q,L). An arrow

(T∗Q1, L1) → (T∗Q2, L2) is a point∗ transformation T∗f : T∗Q1 → T∗Q2 that

preserves the Lagrangian in the sense that L2 ◦ T∗f = L1.

2. An object in the category Ham is a hyperregular model (T ∗Q,H). An arrow

(T ∗Q1, H1) → (T ∗Q2, H2) is a point∗ transformation T ∗f : T ∗Q1 → T ∗Q2 that

preserves the Hamiltonian in the sense that H2 ◦ T ∗f = H1.

Then:

Theorem (Barrett (2019)): F : Lag → Ham and G : Ham → Lag are

equivalences that preserve solutions.

The upshot is that as long as one is concerned with hyperregular Lagrangian and Hamil-

tonian models, there is a clear sense in which these theories are equivalent in terms of cat-

egorical equivalence. Indeed, the proof of the above theorem relies on hyperregularity in

several ways. First, notice that the functors F and G rely on the maps FL−1 and FH−1

4See Abraham & Marsden (1987, Theorem 3.6.2) for more details.
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in order to define a Hamiltonian model in terms of a Lagrangian model and vice versa.

These maps are only well-defined functions (globally) if FL and FH are (global) diffeo-

morphisms. Second, Barrett (2019) proves the above theorem by showing that F and

G are inverses in the sense that GF (T∗Q,L) = (T∗Q,L) and FG(T ∗Q,H) = (T ∗Q,H)

(and similarly are inverses on arrows). This relies on the fact that FL−1 = FH and

FH−1 = FL, which is only true in the hyperregular context.

Given the importance of hyperregularity in reaching the conclusion that the categories

of Lagrangian and Hamiltonian models are equivalent, one might conclude that the class

of irregular Lagrangian and Hamiltonian theories cannot be categorically equivalent.5

However, there are several physically important theories that do not have hyperregu-

lar, or even regular, models; most notably, gauge theories are such that the Legendre

transformation defines a submanifold of T ∗Q. It would be surprising, and significant,

if the class of Lagrangian gauge theories and the class of Hamiltonian gauge theories

were not equivalent. Therefore, it is worthwhile to consider whether one could set up an

equivalence result as strong as categorical equivalence in the context of gauge theories.

But to do this, we first need to define the models of the corresponding Lagrangian and

Hamiltonian gauge theories. So let us start by considering the way that gauge theories

are usually formulated.

3 The Irregular Case

We say that the Lagrangian is irregular when the Hessian Wij = ∂L
∂q̇iq̇j is not invertible

i.e. when it is singular. A class of irregular Lagrangian theories can be characterized by

the fact that the Legendre transformation FL(T∗Q) is a submanifold of T ∗Q called the

primary constraint surface Σp, defined by the satisfaction of a collection of (primary)

constraints φ(qi, pi) = 0. It is this class of irregular Lagrangian theories that we will

take to constitute the gauge theories.

5Indeed, in a footnote (16), Barrett (2019) says: “One can, of course, consider the more general case,
but I conjecture that there the theories will be inequivalent according to any reasonable standard of
equivalence.”
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Given that the Legendre transformation defines a submanifold of the cotangent space

in the context of gauge theories, it seems natural that we should formulate the Hamil-

tonian theory on this submanifold if we want to relate the two theories. Indeed, if we

start with a Hamiltonian theory on T ∗Q, then one can specify the theory on the primary

constraint surface. First, we can define an induced presymplectic two-form ω̃ = i∗ω

where i : Σp → T ∗Q is the inclusion map. The null vector fields of ω̃ are the vector fields

corresponding to the primary first-class constraints, which geometrically correspond to

the primary constraints whose vector field is tangent to the constraint surface (while

the second-class constraints are those constraint whose vector field is not tangent to the

constraint surface).

Using this presymplectic two-form, the equations of motion on this submanifold can

be written as ω̃(XH , ·) = dH where H is the Hamiltonian on T ∗Q restricted to the

constraint surface (this is sometimes called the Hamilton-Dirac equation). Notice that

since ω̃ is degenerate, the solutions to this equation of motion are not unique; we can

think of this fact as related to the gauge nature of the theory.

This provides a well-defined theory on the primary constraint surface. However, as

Dirac (1964) and others noticed, there are inconsistencies that might arise with this

theory. In particular, it may not be that the primary constraints hold at all points

along a solution, which corresponds to the fact that the vector fields XH that define the

solutions to this equation may not be tangent to the constraint surface. In order for the

solutions to be tangent to the constraint surface, it must be that ω̃(XH , Z) = dH(Z) = 0

for vector fields Z associated with the primary constraints. This may define a further

collection of constraints called secondary constraints, and we can think of these additional

constraints and leading to the specification of a further submanifold.

Continuing this process of requiring that the solutions to the equations of motion are

tangent to the constraint surface terminates in a final constraint surface, (Σf , ω̃f , H|Σf
),

defined by the satisfaction of the full collection of M + S constraints, where the null

vector fields of ω̃f are those M vector fields associated with the M first-class constraints,
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and S is the number of second-class constraints. The integral curves of the null vector

fields are called the gauge orbits. They are M -dimensional surfaces on the constraint

surface spanned by the null vectors. In this way, on the final constraint surface, the

gauge transformations are given by transformations along the integral curves of the null

vector fields associated with first-class constraints.

The equations of motion ω̃(XH , ·) = dH only definesXH up to arbitrary combinations

of null vectors when ω̃ is presymplectic. So following standard usage, let us define the

‘Total Hamiltonian’ as the equivalence class of Hamiltonians defined up to arbitrary

combinations of primary first-class constraints i.e. the equivalence class of Hamiltonians

on the primary constraint surface. Similarly, we define the ‘Extended Hamiltonian’ as

the equivalence class of Hamiltonians defined up to arbitrary combinations of primary

and secondary first-class constraints i.e. the equivalence class of Hamiltonians on the

final constraint surface.

Going forward, we will use the term ‘Total Hamiltonian formalism’ to refer to the

formulation of irregular Hamiltonian mechanics on the primary constraint surface and

‘Extended Hamiltonian formalism’ to refer to the formulation of irregular Hamiltonian

mechanics on the final constraint surface.6

4 Inequivalence Argument

In the previous section, we showed that a Hamiltonian gauge theory is naturally formu-

lated on the final constraint surface with the Extended Hamiltonian as the equivalence

class of Hamiltonians. However, we also pointed out that if we start with a Lagrangian

theory, the Legendre transformation defines the primary constraint surface, which corre-

sponds to the Total Hamiltonian being the right equivalence class of Hamiltonians (see

Figure 1). This fact has led some authors to conclude that Extended Hamiltonian for-

malism is inequivalent to the Lagrangian formalism, and that this is reason to think that

the Extended Hamiltonian formalism is mistaken.

6For further motivation, see Bradley (2024a,b).
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Figure 1: The irregular case.

For example, Gracia & Pons (1988) state:

“No “extended hamiltonian” is needed, since it would introduce new solu-

tions of the equations of motion that would break the equivalence between

Lagrangian and Hamiltonian formalisms”.

Similarly, Pitts (2014b) argues:

“The extended Hamiltonian breaks Hamiltonian-Lagrangian equivalence. Re-

quiring Hamiltonian-Lagrangian equivalence fixes the supposed ambiguity

permitting the extended Hamiltonian”.

Such claims have been used to argue that the right definition of a gauge transfor-

mation in the Hamiltonian formalism is not given by a transformation relating solutions

to the Extended Hamiltonian, but rather it is a transformation relating solutions to the

Total Hamiltonian. And one can show that the transformations relating solutions to

the Total Hamiltonian are not given by arbitrary combinations of first-class constraints

but rather by a particular combination of first-class constraints, contrary to the stan-

dard definition.7 Therefore, the claim that the Lagrangian formalism is equivalent only

to the Total Hamiltonian formalism has significant implications not only for how one

formulates Hamiltonian gauge theories but also for the characterization of the gauge

transformations themselves.

7For more discussion on this debate, see Pitts (2014b), Pons (2005), Pooley & Wallace (2022).
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However, to evaluate these claims, we ought to understand the sense of (in)equivalence

that is at stake. This hasn’t been discussed in detail in the literature; indeed, what one

finds are references to certain results that are taken to show that the solutions to the

Euler-Lagrange equations are equivalent to the solutions to the Hamilton-Dirac equations

on the primary constraint surface. One particular result that is widely cited is found in

Batlle et al. (1986), so let us spell out this result and consider the notion of equivalence

that it supports.

Theorem (Batlle et al. (1986)): If (qi(t), q̇i(t)) satisfies the Euler-Lagrange

equations, then FL(qi(t), q̇i(t)) satisfies the Hamilton-Dirac equations on the

primary constraint surface. Similarly, if (qi(t), pi(t)) satisfies the Hamilton-

Dirac equations on the primary constraint surface, then FL−1(qi(t), pi(t))

satisfies the Euler-Lagrange equations, where FL−1(qi(t), pi(t)) is constructed

via:

q̇i =
∂H

∂pi
+ va(qi, q̇i)

∂ϕa

∂pi

− ∂L

∂qi
=

∂H

∂qi
+ va(qi, q̇i)

∂ϕa

∂qi

where ϕa are the primary constraints and va(qi, q̇i) is arbitrary.
8

The theorem shows that the solutions to the Euler-Lagrange equations map to the

solutions to the Hamilton-Dirac equations on the primary constraint surface and vice

versa. But notice that the inverse Legendre transformation maps one point on the

primary constraint surface to multiple points on the tangent space since it is defined in

terms of arbitrary functions va. It therefore maps one solution on the primary constraint

surface to multiple solutions on tangent space. If these solutions are not considered

equivalent from the perspective of the Lagrangian formalism, then this result cannot

8See Batlle et al. (1986) for proof.
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establish that a Lagrangian gauge theory defined on tangent space and its corresponding

Hamiltonian theory defined on the primary constraint surface have equivalent solutions.

Moreover, even if we do interpret these points/solutions as equivalent, it seems that

the most that this theorem can tell us is that there is a dynamical equivalence between

Lagrangian mechanics and Hamiltonian mechanics on the primary constraint surface.

One cannot use Barrett’s result to establish categorical equivalence since we do not have

a way of translating the models and symmetries of one theory to those of the other. In

particular, it was important for Barrett’s result that FL−1 = FH, which followed from

these maps being global diffeomorphisms. The maps between tangent space and the

primary constraint surface do not satisfy this property. Therefore, the results in Batlle

et al. (1986) are not sufficient to infer theoretical equivalence between Lagrangian gauge

theories and Hamiltonian gauge theories defined on the primary constraint surface.

However, this theorem does provide the tools to infer that there is a dynamical, and

therefore theoretical, inequivalence between Lagrangian gauge theories and the Extended

Hamiltonian formalism: what the theorem shows is that the equivalence class of solutions

to the Euler-Lagrange equations on tangent space are in one-to-one corresponds to the

equivalence class of solutions to Hamilton’s equations on the primary constraint surface.

That is, once we take into account the symmetries of the equations of motion, then

the two formalisms agree about which solutions are distinct from one another. On

the other hand, the symmetries of Hamilton’s equations on the final constraint surface,

are wider than symmetries of Hamilton’s equations on the primary constraint surface

(there are distinct solutions of the Total Hamiltonian formalism that are equivalent in

the Extended Hamiltonian formalism). Therefore, the Lagrangian formalism and the

Extended Hamiltonian formalism are inequivalent because their equivalence classes of

solutions are different.

Indeed, it is this dynamical inequivalence that seems to be the core of the arguments

that the Extended Hamiltonian gets the gauge transformations wrong, from the perspec-

tive of the Lagrangian formalism: there is a mismatch of the symmetries of the equations
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of motion. However, there are some lingering puzzles.

First, there is a sense in which the Total Hamiltonian formalism is empirically equiv-

alent to the Extended Hamiltonian formalism: if we take secondary constraints to be

a physical requirement in the Total Hamiltonian formalism, then the solutions one gets

when one takes the solutions to the Total Hamiltonian and restricts to the final con-

straint surface are just the solutions to the Extended Hamiltonian on the final constraint

surface.9 Therefore, the fact that the equivalence classes of solutions are different doesn’t

seem to allow for the inference that the Extended Hamiltonian formalism is wrong with-

out some further reason to think that the Lagrangian equivalence class of solutions is

the right one. Another way to put this worry is that without an account of theoretical

equivalence, one cannot fully evaluate the claim that the Total Hamiltonian formalism

is the right formulation from the perspective of the Lagrangian formalism.

Second, given that we have motivated two formulations of Hamiltonian mechanics in

the presence of gauge symmetry – the Total Hamiltonian formalism and the Extended

Hamiltonian formalism – it is natural to ask whether in the context of gauge theories, one

could also motivate a new formulation of Lagrangian mechanics whose equivalence class

of solutions matches the Extended Hamiltonian formalism. If we could, then this would

suggest that the dynamical inequivalence that we find between Lagrangian mechanics and

the Extended Hamiltonian formalism is an accident of the way we set up the Lagrangian

formalism in the first place.

These puzzles lead to the following questions: First, is there some empirically equiva-

lent formulation of Lagrangian mechanics that is dynamically equivalent to the Extended

Hamiltonian formalism? Second, can one provide a stronger account of theoretical equiv-

alence between formulations of Lagrangian and Hamiltonian gauge theories?

In what follows, I will argue that the answer to both questions is yes: we can both

reformulate Lagrangian mechanics in the presence of gauge symmetry such that the

resulting theory is dynamically equivalent to the Extended Hamiltonian formalism, and

9For a more detailed argument of this kind in the context of Electromagnetism, see Pooley & Wallace
(2022).
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one can set up a categorical equivalence result that renders these formulations equivalent.

This will refute the claim that from the perspective of (equivalence with) the Lagrangian

formalism, the Total Hamiltonian formalism is motivated over the Extended Hamiltonian

formalism.

More carefully, I will first demonstrate, drawing from Gotay & Nester (1979), that one

can formulate Lagrangian gauge theories on a constraint submanifold of tangent space,

and that the relationship between the Lagrangian constraint surface and the Hamiltonian

final constraint surface is the same as the relationship between tangent space and the

Hamiltonian primary constraint surface. I will use this to show that the equivalence

class of solutions of the reformulated Lagrangian theory match the equivalence class of

solutions of the Extended Hamiltonian formalism.10 Next, I argue that there is a way to

redefine the models of these theories using a process known as reduction such that one can

set up a categorical equivalence result between classes of models of the reduced theories.

This will demonstrate that there is a sense in which Lagrangian and Hamiltonian gauge

theories are theoretically equivalent, but not in a way that supports the view that the

Extended Hamiltonian formalism is wrong; to the contrary, it demonstrates that there

is a natural formulation of Lagrangian mechanics that is theoretically equivalent to the

Extended Hamiltonian formalism.

5 Lagrangian Constraint Formalism

To see how we can think of constraints in the Lagrangian formalism, let us start by

writing the Euler-Lagrange equations as:

Wij q̈
j +Ki = 0 (1)

10In Gryb & Thébault (2023, ch.8) it is argued that the symmetries of the Extended Hamiltonian
can be motivated from the Lagrangian perspective through careful consideration of Noether’s Second
Theorem. I take this to be complementary to the argument presented here. The reason for using the
formalism in Gotay & Nester (1979) is that it directly allows us to compare the geometric structure of
the two theories. However, it would be interesting to explore the extent to which the results here agree
with the analysis in Gryb & Thébault (2023).
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where Wij = ∂2L
∂q̇i∂q̇j is the Hessian and Ki = ∂2L

∂q̇i∂qj q̇
j − ∂L

∂qi . The singular case is

characterized by the vanishing of the determinant of Wij . Let us say that the rank of

Wij is n−m1 so that Wij has m1 null vectors, φµ, such that Wijφ
j
µ = 0. We call these

“gauge identities” because they hold at all points in T∗Q.

Contracting the equations of motion with the null vectors, we get:

χ(1)
µ = Kiφ

i
µ = 0 (2)

We call these the first m1 “Lagrangian constraints”. We now require for consistency

that these constraints are preserved under time evolution i.e. d
dtχ

(1)
µ = 0. This gives

rise to new Lagrangian constraints χ
(2)
µ′ . We can continue this process until we are left

with all of the Lagrangian constraints. As in the Hamiltonian case, there are certain

constraints whose time evolution allows one to determine some of the undetermined

accelerations; as we will see, these constraints correspond to the second-class constraints

on the Hamiltonian side.

It will be helpful to consider the picture more geometrically.11 We can define, as in

the regular case, the Lagrangian state space to be endowed with a two form Ω = FL∗ω

that is given in coordinate form by Ω = ∂2L
∂q̇i∂qj dq

i ∧ dqj + ∂2L
∂q̇i∂q̇j dq

i ∧ dq̇j . When the

Hessian Wij = ∂2L
∂q̇i∂q̇j is non-invertible, Ω is degenerate and so it is a pre-symplectic

two-form. We call this the irregular case.

The geometric equations of motion can be written as before as:

Ω(XE , ·) = dE (3)

Because Ω is not symplectic in the irregular case, there will not be a unique solution to

the equations of motion; indeed there may not be any solution at some points. However,

the null vector fields of Ω allow us to define a submanifold where one can solve the

equations at every point, in the following way. The null vector fields Z of Ω are such

11For details, see Gotay & Nester (1979).
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that Ω(Z, ·) = 0. So, in order for the equations of motion to hold, and be tangent to T∗Q,

we must have that dE(Z) = 0. This motivates restricting to the submanifold P1 defined

by dE(Z) = 0 for null vector fields Z. We can therefore think of dE(Z) as constraints.

Next, we require that the solutions to the equations of motion everywhere lie tangent

to P1 i.e. that the constraints hold at all points along a solution. But this is just to

require that dE(Y ) = 0 where Y is a null vector field of Ω restricted to P1, which we

can write as Ω1. So we should restrict to a submanifold where in addition dE(Y ) = 0.

Therefore, we can think of dE(Y ) as further constraints.

Reiterating this process, we find a constraint surface Pk for K constraints where

the solutions of the equations of motion Ωk(XE , ·) = dE are tangent to the constraint

surface.12 The null vector fields of Ωk correspond to the null vector fields of Ω and the

vector fields associated with the constraints. Therefore, we can think of this formalism

as providing a way on the Lagrangian side to associate constraints with gauge trans-

formations: the vector fields associated with the constraints generate (a subset of) the

gauge transformations, understood as transformations along the integral curves of the

null vector fields.

However, there are some constraints Kiφ
i
µ = 0 that are not accounted for by this

geometric procedure. These are the constraints that do not correspond to null vector

fields of the (induced) presymplectic two-forms. As Gotay & Nester (1980) show, these

constraints are determined by requiring that the equation of motion is second-order,

which corresponds to requiring that a solution to the equation of motion, written in

coordinate-dependent form as X = αi ∂
∂qi +βi ∂

∂q̇i , is such that αi = q̇i (this follows from

the two-form written in coordinate form above). If constraints of this kind arise, we can

find their time derivative and thereby determine potentially new constraints. So take

the final constraint surface to be given by (Pf ,Ωf , L|Pf
) where Pf is the sub-manifold

defined by the satisfaction of K + J constraints where J is the number of constraints

arising from the second-order condition.

12Here, the energy function E should be thought of as the energy function on T∗Q restricted to the
points of the constraint surface Pk.
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6 Relationship between Final Constraint Surfaces

We have seen that we can construct submanifolds of the tangent bundle in a similar way

to the construction of submanifolds in the Hamiltonian formalism through constraints,

and that we can write the equations of motion intrinsically on these submanifolds. So the

natural question is whether the theory defined on the final constraint submanifold on the

Lagrangian side is equivalent to the theory defined on the final Hamiltonian constraint

manifold. To present an equivalence result of this kind, we will start by using the results

in Gotay & Nester (1979) to show that the relationship between the models on the final

constraint manifolds is the same as the relationship between the original Lagrangian

model and the model on the primary constraint surface.13

We will restrict ourselves, following Gotay & Nester (1979), to almost regular La-

grangian models. An almost regular Lagrangian model is associated with two assump-

tions. First, FL is a submersion onto its image i.e. its differential is surjective. Second,

the fibers FL−1(FL(q, q̇)) are connected submanifolds of T∗Q. These two assumptions

guarantee that FL∗H = E defines a single-valued Hamiltonian, since they imply that

the energy function E is constant along the fibers FL−1(FL(q, q̇)). We can think of the

almost regular Lagrangian models as characterizing the Lagrangian gauge theories: they

are the models of Lagrangian mechanics for which there is a well-defined corresponding

Hamiltonian theory on the primary constraint surface.

We also assume that we have no ineffective constraints,14 which means that there is

a clear separation between first-class and second-class constraints i.e. a first-class con-

straint does not become second-class when considering its time derivative and vice versa.

To start, we will assume that we just have first-class constraints on the Hamiltonian side

and constraints that correspond to null vector fields on the Lagrangian side.

Let us first consider the relationship between T∗Q and the corresponding primary

13Although the results in this section can be found in Gotay & Nester (1979), they do not discuss in
detail the kind of equivalence that these results imply, nor do they draw the implications that we do
here for the debate about the Total vs. Extended Hamiltonian.

14An ineffective constraint is one whose gradient vanishes weakly. For discussion, see Gotay & Nester
(1984).

17



Hamiltonian surface Σp. Take ip to be the inclusion map ip : Σp → T ∗Q. Then we can

define the Legendre transformation between T∗Q and Σp as ip ◦ FLp = FL where FL :

T∗Q → T ∗Q is the Legendre transformation. Since FL is assumed to be a submersion

onto its image and its image is precisely Σp, FLp is also a submersion.

Proposition 1: If Z is a null vector field on T∗Q, then FLp∗(Z) is well-

defined and is a null vector field on Σp. Similarly, if Y is a null vector field

on Σp, then FL∗
p(Y ) is a null vector field on T∗Q.15

Proposition 1 tells us for every null vector field on tangent space, there is a corre-

sponding null vector field on the primary Hamiltonian constraint surface and vice versa.

Notice that this does not mean that there is a one to one correspondence between null

vector fields. In fact, the relationship between null vector fields is many to one from the

Lagrangian side to the Hamiltonian side, with the difference in dimension of null vector

fields being given by the dimension of Ker(FLp∗) (the kernel of FLp∗ i.e. the null vector

fields of the pushforward of the Legendre transformation). The dimension of Ker(FLp∗)

is equal to the number of primary first-class constraints. This is as expected, since we

know that FLp is a surjective submersion.

It turns out that the same relationship holds between the final constraint surfaces Pf

and Σf . Define the induced Legendre transformation between these spaces as follows.

Define iL : Pf → T∗Q to be the inclusion map from the final Lagrangian constraint

surface to the tangent space and iH : Σf → T ∗Q to be the inclusion map from the final

Hamiltonian constraint surface to the cotangent space. Then FLf : Pf → Σf is given

implicitly by iH ◦ FLf = FL ◦ iL.

Proposition 2: If Z is a null vector field on Pf , then FLf∗(Z) is well-defined

and is a null vector field on Σf . Similarly, if Y is a null vector field on Σf ,

then FL∗
f (Y ) is a null vector field on Pf .

16

15See Appendix for proof.
16See Appendix for proof.
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Proposition 2 tells us that the relationship between null vector fields on the final

constraint surfaces is such that the number of null vector fields on Pf is equal to the

number of null vector fields on Σf plus the dimension of Ker(FLf∗). One can also show

that Ker(FLf∗) = Ker(FLp∗), and so Ker(FLf∗) has dimension equal to the number

of primary first-class constraints.

We can also show that the solutions to the equations of motion are related in a similar

way:

Proposition 3: Take a solution XE to the equations of motion Ωf (XE , ·) =

dE. Then FLf∗(XE) is well-defined and satisfies ω̃f (FLf∗(XE), ·) = dH.

Similarly, ifXH satisfies ω̃f (XH , ·) = dH, then FL∗
f (XH) satisfies Ωf (FL∗

f (XH), ·) =

dE.17

Proposition 3 implies that every solution to the Lagrangian equations of motion on

the final constraint surface corresponds to a solution to the Hamiltonian equations of

motion on the final constraint surface and vice versa. Moreover, there is not a one-to-one

correspondence of solutions in the same way that there is not a one-to-one correspondence

of null vector fields. To see this, notice that if XL satisfies the Lagrangian equations of

motion, then XL +XN satisfies the equations of motion where XN ∈ Ker(FLf∗). But

since XN ∈ Ker(FLf∗), FLf∗(XL + XN ) = FLf∗(XL). This means that FL∗
f (XH)

does not define a unique vector field on Pf .

This shows that the relationship between the Lagrangian and Hamiltonian theories

defined on the final constraint surfaces is the same as the relationship between the theory

defined on T∗Q and the theory defined on the primary constraint surface: we can map

solutions to solutions, but only up to symmetries on the Lagrangian side, where the

symmetries are generated by null vector fields. Therefore, we can say that the theories

formulated on the final constraint surfaces are dynamically equivalent, in the sense that

they agree on the equivalence class of solutions. This provides a a partial response to

the claim that the Extended Hamiltonian formalism is inequivalent to the Lagrangian

17See Appendix for proof.

19



formalism: there is in fact an alternative formulation of Lagrangian gauge theories that

is dyanmically equivalent to the Extended Hamiltonian formalism in the same way that

the original formulation of Lagrangian gauge theories is dynamically equivalent to the

Total Hamiltonian formalism (see Figure 2).

Figure 2: Relationship between final constraint surfaces.

However, we do not yet have a way to provide a (stronger) theoretical equivalence

result.18 In particular, we need a way of characterizing the claim that XL is equivalent

to XL + XN , or more generally, we need a way of characterizing the structure of the

theories that includes the transformations generated by the null vector fields. Moreover,

although we have defined a map from the final Lagrangian constraint surface to the final

Hamiltonian constraint surface, and we can use this to pull-back structures from the

Hamiltonian model to the Lagrangian model, we do not yet have the tools to set up a

categorical equivalence result analogous to the result in Barrett (2019), since it is not

the case that the induced Legendre transformation is related to the fiber derivative of

the Hamiltonian on the constraint surface in the right way.

Before turning to how we might set up a categorical equivalence result, let us consider

how the situation changes when we also have second-class constraints on the Hamiltonian

side. Since we assumed that there are no ineffective constraints, this means that we only

need to consider the case where we have primary second-class constraints, since the time

18Gotay & Nester (1979) suggest that Propositions 2 through 4 do suffice for equivalence between
almost regular Lagrangian models and the corresponding Hamiltonian models. However, they spell out
equivalence in terms of Proposition 3, i.e. as dynamical equivalence, which we are taking to be weaker
than theoretical equivalence.
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derivative of these constraints will generate any additional second-class constraints.

We have shown that we can relate the first-class constraints to null vector fields on

the Lagrangian side. But since second-class constraints do not correspond to null vector

fields, we cannot relate them to a Lagrangian constraint in the same way. However, it

turns out that for every (distinct) primary second-class Hamiltonian constraint, there

is a corresponding (distinct) Lagrangian constraint whose associated vector field is not

null. In particular, the additional Lagrangian constraints are the pullback under the

(induced) Legendre transformation of the time derivative of a second-class Hamiltonian

constraint.19 Generalizing, the final Lagrangian constraint surface will be reduced in

dimension by the number of second-class constraints on the Hamiltonian side.

7 Reduction and Equivalence

Although we now have a picture under which both the Lagrangian formalism and the

Hamiltonian formalism can be written intrinsically on constraint manifolds that are

systemically related, we do not yet have a theoretical equivalence result. Recall that

the barrier is that we do not have a way to define a translation from Lagrangian to

Hamiltonian models and vice versa via the relationship between FL,FL−1, FH and

FH−1 since the final constraint submanifolds are not of the same dimension.

However, there is an indication that we should be able to set up an equivalence result:

while the dimensions of the final constraint surfaces are different, the difference seems to

be due to arbitrariness in the Lagrangian formalism coming from the null vector fields

in the kernel of FL∗. Indeed, if we take null vector fields to generate symmetries, then

there is an argument that once we have accounted for all of the symmetries, the two

formalisms are in complete agreement. One way of thinking about ‘accounting for the

symmetries’ is to consider whether there is a way to characterize the theories in terms of

the equivalence class of states along the integral curves of the null vector fields. In fact,

there is a well-known construction for specifying a Hamiltonian theory in terms of the

19For details, see Batlle et al. (1986), Pons (1988).

21



equivalence class of states called reduction: the process of reduction defines a manifold

that “quotients out” the gauge transformations. This is not a construction that one

often finds discussed for a Lagrangian theory.20 However, we have shown that we can

think of a Lagrangian gauge theory in an analogous way to the Hamiltonian formalism

as defined on a pre-symplectic manifold. This suggests that we should be able to equally

construct a reduced space for the final Lagrangian constraint surface. The question

then becomes: are the reduced versions of Lagrangian and Hamiltonian gauge theories

categorically equivalent?

The reason that reduction will help us to set up a categorical equivalence result is that

one can show that reduction induces a symplectic two-form on the reduced space. Recall

that being symplectic means that the Lagrangian/Hamiltonian models are regular : the

two-form is non-degenerate and so we can, at least locally, define the inverse of the fiber

derivatives. Therefore, if we can show that the Legendre transformation of a reduced

Lagrangian model gives rise to a reduced Hamiltonian model and vice versa, then this

suggests that we can set up an equivalence result in an exactly analogous way to Barrett

(2019), if we restrict to the hyperregular reduced models.

In order to show that this is indeed possible, we will show that the the dimensions

of the reduced spaces related by FLf are the same, that the structures defined on this

space can be inherited from the final constraint surface in a natural way, and that

the image of the Legendre transformation of the reduced Lagrangian space is precisely

the corresponding reduced Hamiltonian space. These will provide the tools to prove

categorical equivalence between classes of models of the reduced theories.

Consider first a presymplectic Hamiltonian manifold (Σ, ω̃,H) that is foliated by the

gauge orbits at each point. We can define a smooth, differentiable manifold Σ̄ by taking

the quotient of Σ by the kernel of ω̃ i.e. the null vector fields of ω̃. Recall that the

integral curves of the null vector fields define the gauge orbits, and so the points of the

quotient manifold are just the equivalence class of points along the gauge orbits. This is

20An exception is Pons et al. (1999).
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well-defined since the gauge orbits foliate the constraint surface in such a way that one

can define a transverse manifold that meets each leaf of the foliation in at most one point

i.e. through each point there is only one gauge orbit.21 Recall that on the final constraint

surface, the dimension of the gauge orbits is the number of first-class constraints M and

the dimension of Σf is 2N − M − S where N is the dimension of configuration space

and S is the number of second-class constraints. So the quotient manifold of the final

Hamiltonian constraint surface Σ̄ has dimension 2N − 2M − S.

Define an open, surjective projection map π : Σf → Σ̄ such that we define the

reduced two-form ω̄ via ω̃f = π∗(ω̄), which acts according to ω̄(X̄, Ȳ ) = ω̃f (X,Y ) where

X = π∗(X̄). One can show that ω̄ is well-defined and is symplectic.22 We can also define

a reduced Hamiltonian H̄ as the value of H on the equivalence class of points along the

gauge orbits i.e. H = π∗(H̄). This is well-defined because H is constant along the gauge

orbits on the final constraint surface (since the solutions to the equations of motion are

tangent to the final constraint surface). We can therefore write the equations of motion

on the reduced space in terms of the reduced Hamiltonian H̄, and the solutions are just

the projection of the solutions to the equations of motion on Σf to Σ̄: they are just the

solutions defined for the gauge-invariant quantities.

To summarize, there is a well-defined Hamiltonian theory on the reduced space of

the final Hamiltonian constraint surface in terms of a symplectic two-form and a reduced

Hamiltonian function. However, this only required that we had a presymplectic manifold

with a foliation induced by the null vector fields of the associated two-form and that the

Hamiltonian function was constant along the gauge orbits. Given that the same is true

for the Lagrangian final constraint surface, we can do the same reduction procedure on

the Lagrangian side to produce a reduced Lagrangian space. This will have dimension

2N−2K−J where K is the number of Lagrangian constraints associated with null vector

fields and J is the number of additional Lagrangian constraints. As in the Hamiltonian

21See Souriau (1997) §5 and §9 for details.
22It is well-defined since the value of ω̃f doesn’t depend on which point along the gauge orbit one

considers. It is closed since ω̃f is closed and π is a surjective submersion, and it is non-degenerate since
Ker(ω̄) = Ker(ω̃f )/Ker(ω̃f ) = 0.
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case, the equations of motions are well-defined because the energy function E is constant

along gauge orbits on final constraint surface, and so the reduced Lagrangian function

L̄ will be well-defined as well.

Let us now turn to the relationship between the models of the reduced theory. First,

let us consider the relationship between the dimensions of the reduced spaces corre-

sponding to models on the final constraint surfaces Pf ,Σf that are related via FLf .

Recall that the dimension of the Lagrangian final constraint surface Pf is equal to the

dimension of the Hamiltonian final constraint surface Σf plus the number of primary

first-class constraints. But recall also that the dimension of the kernel of Ωf is equal to

the number of first-class constraints plus the number of primary first-class constraints.

Therefore, the dimension of the reduced Lagrangian space P̄ is equal to the dimension of

the Hamiltonian constraint surface Σf minus the number of first-class constraints. But

this is just the dimension of the reduced Hamiltonian space, Σ̄. Therefore, the dimen-

sions of the reduced Lagrangian final constraint surface and the reduced Hamiltonian

final constraint surface are equal.

Now define an induced transformation F̄ : P̄ → Σ̄ that satisfies πH ◦ FLf = F̄ ◦ πL

where πH : Σf → Σ̄ and πL : Pf → P̄ are the projection maps. This provides a way

to map from the reduced Lagrangian space to the corresponding reduced Hamiltonian

space. Moreover, notice that since L̄ is regular (since the induced two-form is symplectic),

the Legendre transformation on P̄ will be a local diffeomorphism. And since P̄ and

Σ̄ have the same dimension, the induced transformation F̄ is precisely the Legendre

transformation on P̄ , FL̄. That is, F̄ : P̄ → Σ̄ is the Legendre transform on T∗Q,

FL, projected to the reduced space. Similarly, since H̄ is regular, the fiber derivative

of H̄, FH̄, will be a local diffeomorphism and it will map Σ̄ to P̄ . Using the reduced

Legendre transformation, one can also show that the reduced symplectic two-forms are

related via FL̄∗(ω̄) = Ω̄ and the reduced Hamiltonian and energy function are related

via FL̄∗(H̄) = Ē.23

23To see this, notice that π∗
L(F̄L

∗
ω̄) = FL∗

f (π
∗
H ω̄) = FL∗

f ω̃f = Ωf . Since πL is a surjective submer-

sion, this implies that FL̄∗(ω̄) = Ω̄. The second follows by similar reasoning.
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Finally, since (Pf , Lf ) is, by assumption, an almost regular system, (P̄ , L̄) will also

be almost regular. This implies that FL̄ is injective.24 Moreover, the image of FL̄ is Σ̄

by construction so FL̄ is surjective. But this means that FL̄ is a global diffeomorphism,

and so (P̄ , L̄) is in fact a hyperregular system. Therefore, we can define the inverse

FL̄−1 : Σ̄ → P̄ . This allows us to define H̄ = Ē ◦ FL̄−1.

Therefore, for an almost regular Lagrangian model defined on the final constraint

surface we can construct a reduced model such that this model is hyperregular and its

Legendre transformation is precisely the (hyperregular) reduced model of the correspond-

ing Hamiltonian final constraint surface. This implies that as long as we are concerned

with almost regular Lagrangian models and their corresponding Hamiltonian models, the

reduced formulations of these theories bear exactly the same relationship as hyperregular

models of Lagrangian and Hamiltonian mechanics (see Figure 3).

Figure 3: Relationship between reduced spaces.

We are now at the point where we can set up an equivalence result. Recall that in

order to do so, we need to define the models and symmetries of the associated theo-

ries. In the hyperregular case given by Barrett (2019), the symmetries were the point-

24The reason is that for an almost regular system the image of the Legendre transformation is the
leaf space of the foliation generated by the kernel of the pushforward of the Legendre transformaiton.
When a system is regular, this kernel is zero, and so it must be injective.
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transformations that preserved the Lagrangian/Hamiltonian. However, in order for the

point-transformations to be well-defined for the reduced theories, we need that the re-

duced state space has the form of a (co)tangent bundle. This is not guaranteed by the

above; at least, it will depend upon the particular nature of the constraints and the

gauge transformations.25 On the other hand, we do have that the reduced spaces are

symplectic manifolds. Therefore, it seems that the natural notion of symmetry is rather

given by symplectomorphisms: diffeomorphisms that preserve the symplectic two-form

on the reduced space (and preserve the Lagrangian/Hamiltonian).

So let us define the category LagR as having objects (P̄ , Ω̄, L̄) and take the arrows

between objects (P̄1, Ω̄1, L̄1) and (P̄2, Ω̄2, L̄2) to be given by symplectomorphisms i.e.

diffeomorphisms f : P̄1 → P̄2 such that f∗(Ω̄2) = Ω̄1, that preserve the Lagrangian in

the sense that f∗L̄2 = L̄1.

Similarly, define the category HamR as having objects (Σ̄, ω̄, H̄) and take the arrows

between objects (Σ̄1, ω̄1, H̄1) and (Σ̄2, ω̄2, H̄2) to be given by symplectomorphisms g :

Σ̄1 → Σ̄2 such that g∗(ω̄2) = ω̄1, that preserve the Hamiltonian in the sense that

g∗H̄2 = H̄1.

Define the functor J that takes the object (P̄ , Ω̄, L̄) to (Σ̄, Ω̄ ◦ FL̄−1, Ē ◦ FL̄−1) and

that takes the arrow f : P̄1 → P̄2 to FL̄2 ◦f ◦FL̄−1
1 . Similarly, define the functor K that

takes models (Σ̄, ω̄, H̄) to (P̄ , ω̄ ◦FH̄−1, (θ̄a(XH̄)a − H̄) ◦FH̄−1) where θ̄ is the reduced

one form, and arrows g : Σ̄1 → Σ̄2 to FH̄2 ◦ g ◦ FH̄−1
1 .

Proposition 4: J : LagR → HamR and K : HamR → LagR are equiva-

lences that preserve solutions.26

25Moreover, even if one could think of the reduced state space as having the structure of (co)tangent
space, it isn’t clear that one would want the symmetries to be given by point-transformations. As Barrett
(2015) shows, there are point∗-transformations that don’t preserve an arbitrary symplectic two-form on
T∗Q. One might conclude from this that point∗-transformations are not the relevant symmetries to
consider for the reduced Lagrangian models, since the symplectic two-form is an integral part of the
construction of these reduced models.

26See Appendix for proof.
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8 Upshots

Proposition 4 tells us that there is a formulation of irregular Lagrangian mechanics that

it is theoretically equivalent to a formulation of irregular Hamiltonian mechanics. More

precisely, it tells us that the the categories of hyperregular reduced models of the final

constraint surfaces are equivalent. This is significant for several reasons.

First, we discussed in Section 4 the view that the correct Hamiltonian formulation

is the Total Hamiltonian formalism on the basis that it is equivalent to the Lagrangian

formalism in the context of gauge theories. But our arguments have suggested that in fact

the Extended Hamiltonian formalism can be motivated in a similar, and even a stronger,

way: there are reasons to move to the final Lagrangian constraint surface from the

perspective of the Lagrangian formalism, and not only can the models formulated on the

Lagrangian final constraint surface be said to be dynamically equivalent to models of the

Extended Hamiltonian formalism, one can also give a stronger, theoretical equivalence

result between the reduced versions of such models.

In order to deny that such results provide support for the Extended Hamiltonian

formalism, one would have to maintain that there is something mistaken about the

Lagrangian constraint formalism that we presented. One avenue might be to argue

that we shouldn’t think of Lagrangian constraints as imposing a restriction on the state

space of Lagrangian mechanics: they should be thought of as dynamical constraints

and not kinematical constraints, and therefore they should place a restriction only on

the dynamically possible models and not the kinematically possible models. On this

view, the correct formulation of the kinematically possible models is given by the usual

tangent bundle formulation and the formulation on the Hamiltonian primary constraint

surface. In further support for this view, one might point to the fact that the categorical

equivalence result that we presented goes through for this characterization of irregular

Lagrangian and Hamiltonian models: it corresponds to the special case where there are

no Lagrangian/secondary constraints.27

27Although, such an equivalence result is complicated by the fact that the solutions to the equations
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Although this response highlights interesting questions about the role of kinematics

vs. dynamics in evaluating constraints, I think that there are good reasons to think

that this distinction is not significant. For one, the dynamical solutions that we get

are the same whether we define the equations of motion intrinsically on the final con-

straint surface or we consider the equation of motion on the tangent bundle and then

impose the constraints. Therefore, there isn’t any clear empirical difference between

these formulations. Second, there is a natural sense in which the formulations on the

final constraint surfaces have less structure: there are more symmetries of the theories

formulated on the final constraint surfaces than on the tangent bundle/primary con-

straint surface since there are more null vector fields.28 And so, if one is motivated by

parsimony considerations, it is natural to think that the final constraint surface is the

right intrinsic formulation of the theory.

Second, showing that there is an equivalence between Lagrangian and Hamiltonian

gauge theories suggests that it is wrong to view one formulation as more fundamental

than the other since they have the same underlying structure. This is interesting because

the usual way of setting up the Hamiltonian formalism in the presence of constraints is by

starting with a Lagrangian formulation and using it to define the primary constraints and

Total Hamiltonian, which suggests that the Lagrangian formulation is more fundamental.

On the other hand, the equivalence result suggests that one can instead start with a

Hamiltonian theory with constraints, reduce the final constraint surface, and use this to

define the corresponding Lagrangian theory.

Moreover, it is often assumed that in order to find the gauge-invariant degrees of

freedom, one ought to use the Hamiltonian formulation. For example, Earman (2002)

says: “Is there then some non-question begging and systematic way to identify gauge

freedom and to characterize the observables? The answer is yes, but specifying the de-

tails involves a switch from the Lagrangian to the constrained Hamiltonian formalism.”

of motion are not tangent to the constraint surface in the case where there are Lagrangian/secondary
constraints that are not represented in the structure of the state space, and so the reduced equations of
motion are not well-defined. See Pons et al. (1999) for further discussion.

28This is spelt out for the Hamiltonian case in Bradley (2024b).
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The reason is that the constrained Hamiltonian formulation clearly draws out the con-

nection between constraints and gauge-symmetry: the gauge transformations are those

transformations generated by arbitrary combinations of first-class constraints, and we

can define the observables as just those quantities whose Poisson bracket with the first-

class constraints is zero. On the usual way of expressing the Lagrangian formulation, we

find the symmetries by using Noether’s second theorem, which doesn’t directly connect

the idea of constraints and observables. But the geometric formulation shows that if

the focus is on the null vector fields of the associated two-form, then the Lagrangian

formulation draws out the gauge transformations in the exact same way.

However, there are several subtleties with the equivalence result given by Proposition

4. For one, we restricted to a subset of the Lagrangian models, the ‘almost regular’ ones,

and then considered the corresponding Hamiltonian models defined via the Legendre

transformation. While we were able to show that the almost regular Lagrangian models

have hyperregular reduced models, and therefore that the Hamiltonian models defined

from these models also have hyperregular reduced models, we did not show that this

exhausts the class of hyperregular reduced models. It would therefore be interesting

to consider whether there are hyperregular reduced models that cannot be thought of

as coming from a ‘gauge theory’ in the sense of being an almost regular Lagrangian

model or its corresponding Hamiltonian model. Moreover, ‘almost regularity’ referred

to the Lagrangian model, but there doesn’t seem to be a clear Hamiltonian analogue:

the fiber derivative of the Hamiltonian on the primary/final constraint surface does

not construct an almost regular Lagrangian model. Therefore, it seems that we need

some alternative way to characterize the relevant class of gauge theories in Hamiltonian

terms.29 These subtleties suggest that there is more work to be done in motivating the

physical reasonableness of restricting to hyperregular reduced models to show equivalence

between irregular models of Lagrangian and Hamiltonian mechanics.

29For example, is it the case that any regular Hamiltonian theory with the addition of constraints give
rise to a constraint surface model that is the Legendre transformation of some almost regular Lagrangian
model?
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Another subtlety of the equivalence result is that symplectic reduction can lead to

counter-intuitive conclusions, which has led several authors to argue that once should

not reduce gauge theories (at least in certain contexts). The most notable example of

this is the Problem of Time: when one reduces theories that are time reparameterization

invariant, one ends up with a theory with no meaningful notion of evolution. If one

finds these arguments convincing, then one might think that the equivalence result given

by Proposition 4 is irrelevant; what matters is not whether the reduced theories are

equivalent, but whether the unreduced theories are.

I take this to be an important limitation of the arguments presented here. However,

one response is to point out that all one has done by moving to the theory formu-

lated on the reduced space is to equivocate between states/solutions that are symmetry-

related in the theory formulated on the final constraint surface. Therefore, if we interpret

symmetry-related states/solutions as equivalent, then arguably the theories defined on

the final constraint surface and on the reduced space have the same (symmetry-invariant)

content. This suggests that even if one doesn’t have a categorical equivalence result di-

rectly between classes of models on the final constraint surface, one can infer that they

are equivalent from the fact that the reduced theories are equivalent.30

There is an interesting connection here to another strand of literature: the difference

between ‘reduction’ and ‘sophistication’ (Dewar (2019)). A sophisticated version of a

theory is, broadly, one where the all the transformations that we take to be symmetries

are isomorphisms of the models of the theory. Dewar (2019) conjectures that the sophis-

ticated and the reduced versions of a theory are categorically equivalent. Here, we have

defined and compared the reduced versions of Lagrangian and Hamiltonian gauge the-

ories. But what does the corresponding sophisticated versions of the theories look like?

Arguably, the theories formulated on the final constraint surfaces are ‘sophisticated’, in

the sense that the symmetries – the gauge transformations – are isomorphisms of the

30Indeed, I think one could spell out a categorical equivalence result directly between classes of models
on the final constraints surface. However, setting up such a functor is less clear than it is for the reduced
theories, which is why this was not the approach taken in this paper.
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models of the final constraint surface.31 Whether it is correct to characterize the theories

formulated on the final constraint surfaces as the sophisticated version of the theory is

a question that I hope to consider in future work.

9 Conclusion

To conclude, I have argued that there is a sense in which Lagrangian and Hamiltonian

gauge theories are equivalent by showing that one can formulate these theories geo-

metrically on a presymplectic constraint manifold such that the hyperregular class of

reduced models of these constraint models are categorically equivalent and agree dy-

namically. This provides an extension to the result in Barrett (2019) that hyperregular

Lagrangian and Hamiltonian theories are categorically equivalent. Moreover, this exten-

sion sheds light on philosophical debates regarding the definition and interpretation of

gauge transformations. In particular, in showing that one could motivate a formulation

of Lagrangian gauge theories that is equivalent to Extended Hamiltonian formalism,

we thereby demonstrated that the Extended Hamiltonian can be motivated from the

perspective of the Lagrangian formalism, contrary to claims found in the literature.

However, this equivalence result relied on several important assumptions that are

not relevant in the case considered by Barrett (2019). First, it depended on how we

understand the role of constraints in the construction of the models of the theories.

Second, it depended upon an interpretation of the null vector fields of a presymplectic

two-form as generating the (gauge) symmetries of the theory. Finally, it depended upon

reduction, and restricting to the class of hyperregular reduced models, being justified.

Inasmuch as all of these assumptions are disputable, there remain interesting questions

regarding the relationship between Lagrangian and Hamiltonian gauge theories.

Moreover, while categorical equivalence suggests that we can move back and forth

interchangeably between Lagrangian and Hamiltonian gauge theories, there were several

subtleties regarding the way that we defined the categories of models of these theories

31This is proved in Bradley (2024b).
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that suggest possible avenues for maintaining that one framework is a more natural ex-

pression of gauge theories than the other. For example, the (pre)symplectic structure of

Lagrangian mechanics was motivated by thinking about the Hamiltonian (pre)symplectic

structure, and the class of Hamiltonian models for which categorical equivalence held

were defined in terms of the Lagrangian models that they were related to. Whether one

should think that being (pre)symplectic is faithful to the structure of Lagrangian me-

chanics, and whether one can motivate the class of Lagrangian gauge theories in terms of

Hamiltonian quantities, are open questions that would further deepen the understanding

of the relationship between Lagrangian and Hamiltonian gauge theories.

10 Appendix

10.1 Proposition 1

First, notice that because FLp is a submersion, we can not in general push forward

vector fields on the Lagrangian side. However, null vector fields are such that they

define the same vector at points along the integral curves of Ker(FLp∗). That is, if

FLp(x) = FLp(y) for points x, y ∈ T∗Q then Z(x) = Z(y) where Z is a null vector field

on T∗Q. The reason is that Ω(Z, Y ) = 0 for Y ∈ Ker(FLp∗), which means that the flow

of Z along the intergral curves of Y is 0 i.e. Z is constant along the intergral curves

of Ker(FLp∗). Therefore, the pushforward of null vector fields on T∗Q under FLp is

well-defined. Indeed, for any vector field tangent to T∗Q, we can define its pushforward

in this way, since Ker(FLp∗) ⊂ Ker(Ω).32

Suppose that Z is a null vector field on T∗Q. This means that

0 = Ω(Z, ·) = FL∗
pω̃p(Z, ·) (4)

since Ω = FL∗(ω). Now we can define Z as FL∗
p(FLp∗(Z)) since the push-forward

of Z is well-defined. So:

32This can be seen through the definition of Ω.
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0 = FL∗
p(ω̃p(FLp∗(Z), ·)) (5)

Since FL∗
p(ω̃p(FLp∗(Z), ·)) is defined by ω̃p(FLp∗(Z), ·) ◦FLp and FLp is a submer-

sion, the above implies that ω̃p(FLp∗(Z), ·) = 0. But this just means that if Z is a null

vector field of Ω, then its pushforward along FLp is a null vector of ω̃p.

Second, we want to show that if X is a null vector field of ω̃p, then its pullback

along FLp is a null vector field. We can see this as follows: If ω̃p(X, ·) = 0 then

ω̃p(X, ·) ◦ FLp = 0 i.e. FL∗
p(ω̃p(X, ·)) = 0. But since FL∗

p(ω̃p) = Ω, this implies that

Ω(FL∗
p(X), ·) = 0 i.e. the pullback of X is a null vector field.

This shows that the pushforward of every null vector field on T∗Q is a null vector

field on Σp and every null vector field on Σp can be pulled back to a null vector field on

T∗Q. Notice that this is not the same as saying that the spaces have an equal number of

null vector fields. Indeed, they do not: what the above shows is that the number of null

vector fields on T∗Q is equal to the number of null vector fields on Σp+ the dimension

of Ker(FLp∗), since FLp is a submersion.

10.2 Proposition 2

In order to use the same proof that was used for Proposition 1, we need that FLf is a

submersion. To see why this is the case, notice that Proposition 1 implies that if dE(Z)

is a Lagrangian constraint where Z is a null vector field on T∗Q, then dH(FLp∗(Z)) is

a Hamiltonian constraint. Similarly, if dH(X) is a Hamiltonian constraint where X is a

null vector field on Σp, then dE(FL∗
p(X)) is a Lagrangian constraint. Moreover, dE(Y )

for Y ∈ Ker(FLp∗) is automatically zero, since by assumption of almost regularity E

is constant along the fibers FL−1(FL(q, q̇)). This means that there will be a one to

one correspondence between first generation Lagrangian constraints of this kind and

the first generation of secondary Hamiltonian (first-class) constraints. Reiterating, the

same will be true of all further constraint submanifolds, and so since each constraint

reduces the dimension by one, the relationship between Pf and Σf will be the same
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relationship as between T∗Q and Σp: the induced Legendre transformation FLf will be

a submersion, where Ker(FLf∗) = Ker(FLp∗) has dimension equal to the number of

primary first-class constraints.

Therefore, we can use the same proof as the proof for Proposition 1 to show that

every null vector field on Pf can be pushed forward to a null vector field on Σf , and every

null vector field on Σf can be pulled back to a null vector field on Pf , where the number

of null vectors on Pf is equal to the number of first-class constraints + the dimension of

Ker(FLf∗).

10.3 Proposition 3

Take a solution XL to the equations of motion Ωf (XL, ·) = dE. This is equivalent to

FL∗
f ω̃f (XL, ·) = d(FL∗

f (H)). Since XL is tangent to the constraint surface, we can write

this as FL∗
f (ω̃f (FLf∗(XL), ·)) = FL∗

f (dH) since the pushforward is well-defined. Since

FLf is a submersion, this means that FLf∗(XL) satisfies ω̃f (FLf∗(XL), ·) = dH which

is the equation of motion on the final Hamiltonian constraint surface. The other direction

is similar: if XH satisfies the Hamiltonian equations of motion, then its pullback satisfies

the Lagrangian equations of motion.

10.4 Proposition 4

To show that J is a functor, we need to to show that J takes objects of LagR to objects

of HamR and arrows to arrows. The first is trivial. To show the second, take an

arrow f between objects (P̄1, Ω̄1, L̄1) and (P̄2, Ω̄2, L̄2). Since f is a symplectomorphism,

f∗Ω̄2 = Ω̄1. Since Ω̄ = FL̄∗ω̄ by construction, this means that f∗(FL̄2
∗
ω̄2) = FL̄1

∗
ω̄1.

We want to show that FL̄2 ◦ f ◦ FL̄−1
1 is an arrow in HamR. That is, we want to show

that (FL̄2 ◦ f ◦FL̄−1
1 )∗ω̄2 = ω̄1 and (FL̄2 ◦ f ◦FL̄−1

1 )∗(Ē2 ◦FL̄2
−1

) = Ē1 ◦FL̄−1
1 . The

first follows from the fact that f∗(FL̄2
∗
ω̄2) = FL̄1

∗
ω̄1. The second follows from the fact

that f∗Ē2 = Ē1 since f∗L̄2 = L̄1. Similar reasoning can be used to show that K is a

functor.
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Since FL̄ and FH̄ are global diffeomorphisms, one can define the inverse FL̄−1 = FH̄

and FH̄−1 = FL̄. This implies that the functors J and K are inverses on objects and

similarly on arrows. That J and K preserve solutions follows from the fact that FLf

preserves solutions (Proposition 3), and that the solutions that are equivocated through

reduction are just the gauge-related solutions.
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Théorique’, Vol. 32, pp. 1–13.

Gotay, M. J. & Nester, J. M. (1984), ‘Apartheid in the dirac theory of constraints’,

Journal of Physics A: Mathematical and General 17(15), 3063.

Gracia, X. & Pons, J. (1988), ‘Gauge generators, dirac’s conjecture, and degrees of

freedom for constrained systems’, Annals of Physics 187(2), 355–368.
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