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Abstract

We show that the geometric structure of an arbitrary relativistic
spacetime can be determined by the transformation groups associated
with a collection of privileged coordinate systems.

Contents

1 Introduction 2

2 Privileged Coordinates 6

3 Adapted Coordinates for Relativistic Spacetimes 10

4 Recovering Structure from Local Lorentz Charts 15

5 Close 20

A Defining a Smooth Metric via Privileged Charts 22

B Defining a Connection via Privileged Charts 25

∗gomes.ha@gmail.com
†tm399.acu@pm.me
‡oliver.pooley@philosophy.ox.ac.uk
§james.read@philosophy.ox.ac.uk

1



1 Introduction

Can the geometric structure of an arbitrary relativistic spacetime be presented
via a collection of privileged coordinate systems? Recently, Barrett and Man-
chak (2024a) have argued that there are non-isometric relativistic spacetimes
that admit the same privileged coordinates. They take this to show that
privileged coordinates do not always fully disclose spacetime structure. But
their conclusion rests on a notion of privileged coordinates that is at once too
narrow and too permissive. It is too narrow in the sense that they work with
an unduly restrictive set of procedures to take one from privileged coordinate
systems to spacetime structure. It is too permissive in the sense that, for a
given structured space, any coordinate system on that space can count as
privileged, so long as one makes appropriate choices elsewhere.

If one is presented with a set of privileged coordinates on a space, and is
given no further information, how might one hope to recover the geometric
structure of that space? The option that Barrett and Manchak focus on is
recovery via a version of Klein’s Erlangen programme. According to this point
of view, the geometric structure of a space S is associated with a privileged
transformation group, i.e., a privileged group of bijections from that space to
itself. The geometry is identified as exactly the structure that is left invariant
by the group. A natural generalisation replaces the requirement of invariance
under a transformation group with invariance under a pseudogroup.1

What is the connection between such a group-theoretic characterisation
of a geometry and preferred coordinate systems? We consider this question
in more detail in the next section. For now, we simply note that coordinate
systems can serve as a way of singling out the privileged transformation
group (or pseudogroup) on S. Let ϕ : S → Rn and ψ : S → Rn be two global
coordinate charts on S.2 Let’s further stipulate that the ranges of ϕ and ψ
coincide. This means that the two charts define a bijection on S, namely,
ψ−1 ◦ ϕ. More specifically, we can stipulate that the range of both charts is
Rn itself, i.e., that the charts are bijections from S to Rn. Any collection of
global charts on S meeting this condition defines a unique transformation

1For details of this generalisation, see Wallace (2019, §3) and Barrett and Manchak
(2024a, §§2.2 and 3.2).

2We take a coordinate system on S, in the most general sense of that term, to be any
method of assigning a unique label to each point of S. It is a one-one function that maps a
point to its label. A global coordinate system on S is simply a coordinate system whose
domain is S. We use chart to denote a coordinate system that encodes the topological
and differential structure of S. (The relevant notion of encoding is discussed in the next
section.) In this article, the coordinate systems which we use are also charts, and so we
generally deploy the terms interchangeably.
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group on S.3

If the role of a privileged set of charts on S is merely to pick out a group
(or pseudogroup) on S, then the question of whether particular geometric
structure can be presented via such a set breaks down into two questions: (1)
Can the geometry be characterised in terms of a group (or pseudogroup)? (2)
Can the relevant group (or pseudogroup) be singled out via a privileged set
of charts?

Presenting geometric structure in this way (i.e., via privileged charts
whose only role is to pick out a group which in turn picks out the structure)
corresponds very closely to what Barrett and Manchak (2024b) call a Kleinian
presentation of the structure. We will refer to it as a BMK presentation of the
structure, partly because our characterisation does not exactly follow Barrett
and Manchak’s (the difference is explored in the next section), and partly
because we do not wish to suggest that this is in fact the correct ‘Kleinian’
understanding of the role of privileged coordinates.

As we review in the next section, because any transformation group on S
can be encoded via a set of privileged charts, the answer to question (2) is
“yes.” The question of whether geometry can be given a BMK presentation
thus reduces to question (1).4

In the Kleinian tradition, versions of question (1) have been extensively
explored, quite independently of coordinate charts. Various classes of highly
symmetric spaces are known to have group-theoretic characterisations. One
example comprises the spaces (“Klein geometries”) that, for some Lie group
G and closed subgroup H, can be identified with the space X = G/H.5

In such a case G acts as the automorphism group of the structure on X.
Since it acts transitively, the spaces are homogeneous: they ‘look the same’
everywhere. The generalisation to pseudogroups that act transitively yields

3An arbitrary set C of (not necessarily global) charts on a differentiable manifold S
will similarly define a subset Γ0 of the diffeomorphism pseudogroup on S. Let Dom(ϕ)
stand for the domain of ϕ and Ran(ϕ) stand for its range. Γ0 is then defined as the set
{ψ−1 ◦ϕ : ϕ, ψ ∈ C} where Dom(ψ−1 ◦ϕ) is ϕ−1[Ran(ϕ)∩Ran(ψ)]. While Γ0 automatically
satisfies the pseudogroup condition that Wallace (2019, p. 128) calls “Closure” and that
corresponds to axioms PG5 and PG6 in (Barrett and Manchak 2024a), it need not satisfy
the other pseudogroup axioms. Nevertheless, it determines a pseudogroup since there is a
unique minimal extension of Γ0 that satisfies both Barrett and Manchak’s axiom PG2 and,
crucially, the condition that Wallace (2019, p. 128) calls “Local definedness” (cf. Barrett
and Manchak’s axiom PG3).

4Theorem 4.2.1 in Barrett and Manchak (2024a, §4.2) is, effectively, a statement of this
equivalence for the special case of relativistic spacetimes.

5This case covers Minkowski spacetime, where G is the Poincaré group and H the
Lorentz group; n-dimensional de Sitter spacetime, where G/H = O(1, n)/O(1, n− 1) and
n-dimensional anti-de Sitter spacetime, where G/H = O(2, n− 1)/O(1, n− 1).
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locally homogeneous spaces: spaces that have a basis of open sets each member
of which is isomorphic to an open set in some Klein geometry.

Groups that do not act transitively on a space can also be discriminating
in the structure that they determine. An example that will play a crucial role
for us later is the structure of an n-dimensional real vector space V , which
can be defined in terms of its automorphism group, GL(n,R) (which does
act transitively on V \ {0}). Additional structure on a vector space, such as
an inner product, can be characterised by selecting an appropriate proper
subgroup as the automorphism group.6

All of these cases involve the characterisation of a highly symmetric
structured space in terms of its (correspondingly highly non-trivial) symmetry
group. Unsurprisingly, a structured space that lacks symmetries cannot
be characterised in terms of its symmetry group and therefore cannot be
given a BMK presentation. The crucial observation is that, for many types
of structure, there are non-isomorphic structures of that type that lack any
symmetry. Such structures cannot be distinguished in terms of their symmetry
groups since their symmetry groups are one and the same: the group whose
sole element is the identity map.

Let us specialise to the case where the structure in question can be
represented by a tensor field α on a smooth manifold M . In this case, a
diffeomorphism d will be a symmetry of the structure just in case d∗α = α. The
group of such diffeomorphisms is the automorphism group of the structure.
And one can say that the structure lacks any symmetry just in case the
only such diffeomorphism is the identity map.7 In this case the crucial fact
is that, for two tensor fields α, β of a given type (e.g., (0, 2)-tensor fields
symmetric in their action on vector fields), there are many cases where, for
d a diffeomorphism, (i) d∗α = α only if d = Id; (ii) d∗β = β only if d = Id;
but (iii) there is no d such that d∗β = α.8 Such structures are therefore not
characterised by their automorphism groups and so a fortiori cannot be given
a BMK presentation.

We opened this section with the question whether the geometric structure
of an arbitrary relativistic spacetime can be presented via a collection of
privileged coordinate charts. Barrett and Manchak’s principal punchline is
that, if the presentation is to be a BMK presentation, the answer is “no”

6Vector space structure is a central recurring example in (Wallace 2019, §2).
7More carefully, one should consider the sub-pseudogroup of the diffeomorphism pseu-

dogroup defined by the condition d∗α = α, now with d a diffeomorphism between open
subsets of M . The automorphism group of a structure without symmetries will be the
pseudogroup whose elements are all and only the identity maps on each open subset of M .

8We take this fact to be well known. The sceptical reader is invited to consider the
proof of Proposition 3.2.4 in (Barrett and Manchak 2024a).
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(see, in particular, Barrett and Manchak 2024a, Theorem 3.2.1). Despite the
fifteen pages of meticulous setup through which Barrett and Manchak take
their reader in order to get to this point, the result should not have come as
a surprise. Characterising a spacetime geometry via its symmetry group is
simply a non-starter when that spacetime lacks symmetries.

It is worth stressing that spacetimes lacking symmetries are well-known
to be the generic case. Barrett and Manchak cautiously conjecture that
“spacetimes determined by local isometry are much more the exception than
the rule” (2024a, p. 17). This is obviously correct. In Barrett and Manchak
(2024b, §3.2) they consider the condition of determination up to homothety
by local isometry and prove that at least every flat relativistic spacetime
satisfies this weaker condition. It is clear that spacetimes satisfying this
condition are also very much the exception. Here is an intuitive way of
seeing this: an isometry group is a finite-dimensional closed subgroup of the
infinite-dimensional group of diffeomorphisms, and a non-trivial isometry
implies the components of the metric are the same along the orbit of that
isometry. But components of the metric can be relatively arbitrary smooth
functions. Even if one imposes the Einstein field equations, as a field the
metric has two physical (i.e. unconstrained) degrees of freedom per spacetime
point. Therefore, starting from a metric with some isometry group, one
could intuitively consider infinitesimal disturbances of the metric at any point
along the isometry’s orbit, which would therefore spoil it. Indeed, we could
trace back to Ebin (1968, p. 1001) a proof, valid in the case of Riemannian
signature, that metrics with trivial isometries are generic (open and dense) in
any of the natural topologies of the space of metrics. But we suspect this fact
has a much older lineage; we would not be surprised if it can be traced back
to Riemann’s writings. Today a lot more is known about the structure of the
space of metrics. For instance, in the case of a closed spatial topology, Fischer
(1970) showed that metrics with isometry groups form stratified manifolds,
with those with more symmetry lying at the boundary of those with less
symmetry.

Although one cannot disclose generic relativistic spacetime structure via
a BMK presentation, it can be done via a natural generalisation of the
procedure. The structure of a particular Lorentzian manifold can be thought
of as a (point-by-point) deformation of Minkowski space, just as a Riemannian
manifold can be thought of as a (point-by-point) deformation of Euclidean
space. In this context, sets of privileged coordinates are naturally indexed to
particular points. The relevant question becomes whether one can recover
the geometric structure of the manifold given a privileged set of coordinates
for each point of the manifold (and given no other information!).

In §4, we describe how this can be done. While the recovery route is very

5



close in spirit to the one involved in a BMK presentation, it involves a crucial
generalisation. The privileged set of coordinates at a point p will single out a
transformation group not on a neighbourhood of p itself but on certain spaces
associated with p (such as its tangent space).9 Nevertheless, the essential
core remains: privileged structure associated with a point p is identified via
the condition that the structure is left invariant by a transformation group.
The geometrical structure of the manifold as a whole can then be thought of
as simply the sum total of these point-relative structures taken together.

In §4 we review the details, and in §5 we survey the prospects for further
philosophical application of this work. Before that, some further stage-setting
is appropriate. In §2, we clarify what it means for a set of coordinates to be
privileged. In §3, we review various types of privileged coordinate systems for
relativistic spacetimes.

2 Privileged Coordinates

The label ‘privileged coordinate systems’ is ambiguous. Does the privilege
attach, in the first instance, to the collection as a whole, or does the privilege
attach to each chart individually, with their intrinsic privilege determining
their membership in the collection?

In the previous section we were careful only to talk about privileged sets of
charts. We described how a set of global charts on a space is associated with
a privileged transformation group on that space. It is crucial to note that a
chart’s membership in such a set does not place any constraints on the chart
itself. Suppose that we wish to define a set of charts corresponding to a given
transformation group Γ on space S. Let ϕ be an arbitrary diffeomorphism
from S to Rn. In order for a set C containing ϕ to define Γ, we just need to
choose the right co-members. We simply stipulate that ϕ′ ∈ C if and only if
ϕ′ = ϕ ◦ γ for some γ ∈ Γ.10

Let us call a chart considered as belonging to such a set a symmetry-
specifying chart. Barrett and Manchak treat symmetry-specifying charts as
privileged but such charts are typically privileged only in a highly etiolated

9A different way of generalising Kleinian geometry to inhomogeneous spaces yields
Cartan geometries (see, e.g., Wise 2010). Although philosophically interesting, we won’t
discuss Cartan geometries further in this article.

10Suppose that Γ is instead a pseudogroup on S. There will be similarly arbitrary
membership conditions for any set C of local charts on S that encodes Γ via suitable
constraints on ψ−1 ◦ ϕ for ϕ, ψ ∈ C. In particular, for d an arbitrary diffeomorphism on
the value space of the charts, the set {d ◦ ϕ : ϕ ∈ C} will encode Γ in exactly the same
way as C. For one way to associate a pseudogroup with a set of charts, see Barrett and
Manchak (2024a, Definition 2.2.2).

6



sense. First, a symmetry-specifying chart taken by itself tells us nothing
about the group that it plays a role in defining. One needs two such charts to
identify a group element (other than the identity) and it is only the collection
of charts taken together that defines the group. Second, as we have just seen,
for any given target group any chart can be considered a symmetry-specifying
chart.

One therefore suspects that Barrett and Manchak’s conception of a privi-
leged chart does not correspond to what is normally meant by this term and,
indeed, a better candidate is ready to hand. A chart might be said to be
privileged because it is ‘adapted to’ or ‘encodes’ geometric structure. We will
call charts that are privileged in this sense adapted charts. The idea is best
illustrated by example.

Consider the simple case of the Euclidean plane, E2. A Cartesian coordi-
nate system on E2 is defined in terms of, and thus adapted to, the geometric
structure of E2. The coordinate axes are chosen to be straight, orthogonal lines,
and the coordinate values of a point are given by the (signed) distances from
the corresponding axis. The terms emphasized in the previous sentence all ad-
vert to the geometric structure of E2. The definition secures that the distance
d(p, q) between two points p and q with coordinates (xp, yp) and (xq, yq) is
encoded by the simple coordinate function d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Equivalently, one can think R2 itself as a structured space and think of√
(xp − xq)2 + (yp − yq)2 as the canonical metric on R2. A Cartesian coordi-

nate system is then just an isometry from E2 to R2. More generally, adapted
coordinate systems can be thought of as structure preserving maps from the
structured space S to Rn.

Such structure preserving maps normally will not be unique and it is this
non-uniqueness that provides the more usual connection between privileged
charts and a Kleinian definition of geometric structure. In our example, there
are many structure preserving maps from E2 to R2 understood as equipped
with its canonical metric. Such charts will be related by exactly the symmetry
group of the Euclidean plane. They therefore also constitute a collection of
symmetry-specifying charts.

When first presenting their formal machinery, Barrett and Manchak (2024a,
§2.1) relate a set of charts (their set C) to a transformation group on S (their
“coordinate transformation group”, Γ). They do not, however, (as we did
above) characterise C in terms of Γ. Rather, their direction of definition
is reversed. Γ is defined in terms of C which in turn is first characterised
group-theoretically (but non-uniquely), via a transformation group G on Rn.
Their compatibility condition on the members of C states: “if f ∈ C, then
f ′ ∈ C if and only if f ◦ f ′−1 ∈ G” (2024a, p. 4). Wallace (2019, p. 127) also
characterises the sets of coordinate systems to be associated with structure
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on the coordinatized space in terms of transformation groups on Rn.
Armed with the notion of adapted charts, we are in a position to see why

prioritising a group action on Rn is well-motivated from Wallace’s perspective
but not from Barrett and Manchak’s. A bijection between spaces induces a
natural map that carries structure from one space to the other.11 The map
induced by an adapted chart carries the structure on S onto a privileged
substructure of Rn. Let Γ be the transformation group on S that preserves
the structure of S. Let G be the transformation group on Rn that preserves
the privileged substructure of Rn. Let ϕ be an adapted chart (i.e., a structure
preserving map). It follows that ϕ ◦ γ will be an adapted chart if and only if
γ ∈ Γ (so the set of adapted charts is always a set of symmetry-specifying
charts), and that g ◦ ϕ will be an adapted chart if and only if g ∈ G.

One can see G as picking out the relevant substructure of Rn to be targeted
by an adapted chart. Rn is a highly structured space but one is interested
in only some of this structure, namely, just that structured preserved by the
relevant transformation group on Rn.12 This perspective allows one to view
privileged charts not as adapted to antecedently-given structure but rather
as defining such structure on S. The structure to be defined is the pullback
to S of exactly that structure preserved by G. Call charts conceived of as
privileged in this way structure-defining charts. Wallace (2019) can be read
as defending the propriety of this point of view. Structure-defining charts are,
of course, automatically adapted to the structures they are used to define.

As noted, Barrett and Manchak follow Wallace in defining their privileged
charts in terms of a transformation group (or pseudogroup) G defined on
Rn. They further consciously adopt Wallace’s terminology of “G-structured
spaces”. However, unlike Wallace’s, their privileged charts need not be adapted
charts. This is the case even if one views their charts as defining as structure
on S whatever structure is preserved by the coordinate transformation group
Γ defined by the charts. The charts need not be adapted because Barrett and
Manchak’s group G is not required to be an automorphism group of some
natural structure on Rn.13

It will be instructive to see how their more permissive notion of privileged
charts—charts that are symmetry-specifying but that need not be adapted—
are used in what they would call a Kleinian presentation of the geometry of
the Euclidean plane. Barrett and Manchak stipulate that the transformation

11If the bijection is a diffeomorphism, the induced map acting on geometric objects is
the pushforward map but this is just a specific example of a much more general concept.

12This is why Norton (1999) describes Klein’s approach as a “subtractive strategy.”
13While not required for what they call Kleinian presentability, some of their examples

do involve adapted charts. See, in particular, the examples in (Barrett and Manchak 2024b,
§2).
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group G on Rn to be associated with the geometry should be a subgroup of
the diffeomorphism group of R2. We therefore restrict to diffeomorphisms
from E2 to R2; let f be one such bijection (and therefore a chart). Generically,
in such a chart the components gij of the metric tensor of E2 will be smooth
but otherwise arbitrary functions of position, in principle varying wildly from
point to point. Coordinate intervals in f bear no obvious relation to actual
distances in E2, and there is no sense in which f is adapted to the geometry
of E2.

Nevertheless, we can use f to define a non-standard metric f∗gab on
R2, where gab is the metric tensor on E2.14 We then define G to be the
subgroup of the diffeomorphism group of R2 that preserves this non-standard
distance function on R2. (G will be isomorphic as a group to E2 but it will
correspond to a non-standard realization of E2 on R2.) Next, we consider the
full set C of coordinate systems on E2 related to f via Barrett and Manchak’s
“compatibility condition”: f ′ ∈ C if and only if f ◦ f ′−1 ∈ G. Finally, we can
use this set to define a transformation group Γ on E2: Γ = {c−1 ◦d : c, d ∈ C}.

By construction, Γ is the standard Euclidean group on E2, but this fact is
doubly obscure if all one is presented with is the set C. First, as has already
been stressed, each individual chart in C tells us nothing about the geometric
structure of the space that it coordinatizes. All elements of C ‘represent’
the distance function on E2 in the same way: its component functions on R2

are identically the same in all such coordinate systems. But these functions
will typically be a complicated mess exhibiting no identifiable regularity or
pattern. Second, since G is a non-standard realization of E2 on R2, that
Γ is the Euclidean group will not be evident from simple inspection of the
functional form of the transition functions c ◦ d−1 ∈ G, c, d ∈ C.

The somewhat involved nature of this construction prompts one to ask
why Barrett and Manchak (2024a) tacitly forgo adapted charts.15 When
dealing with generic relativistic spacetime structure, one might have supposed
that one has no choice. Given that the structure of a generic Lorentzian
geometry lacks any symmetries, there will be no way to encode its structure
in terms of simple relationships between coordinate values. To put the point

14Here we are considering R2 just as a differentiable manifold and ignoring the rest of
its structure.

15Things become even more cumbersome when generalising to pseudogroups and to a
space S that is not diffeomorphic to Rn. In such a case one cannot simply push forward
the structure of S to Rn. The reader is invited to acquaint themselves with the proofs
of Lemmas 3.2.1 and 3.2.2 in (Barrett and Manchak 2024a) for Barrett and Manchak’s
solution to this problem, in terms of their notion of a ‘representation’ of a spacetime on
Rn. The root cause of the unnaturalness stems from starting with a group or pseudogroup
on Rn, despite eschewing adapted charts. Defining a condition on a set of charts directly
in terms of the automorphism (pseudo)group on S might avoid some of the difficulties.
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another way, the structure of a generic Lorentzian geometry is not isomorphic
to any ‘natural’ structure definable on R4. If adapted charts are required
to map the structure of the spacetime to natural structures on R4, generic
Lorentzian geometries lack adapted charts.

In another sense, however, adapted charts still exist, so long as the
adaptation is localised and relativised to a point.16 It is adapted charts of
this kind that can be naturally thought of as a window (really a family of
infinitesimal windows) on relativistic spacetime structure. The next section
reviews some of the standard ways localised notions of adapted charts can be
defined. We then consider how spacetime structure can be recovered from
such sets of charts.

3 Adapted Coordinates for Relativistic Space-

times

Let (M, g) be a four-dimensional relativistic spacetime.17 M ’s global topology
might preclude global charts. But for each p ∈ M , there will be an open
neighbourhood Up of p such that there is a diffeomorphism ϕ from Up into
R4. Such a diffeomorphism is a chart for Up.

We can think of ϕ as a family of four coordinate functions : four smooth
real scalar functions, xµ, µ = 0, 1, 2, 3, defined on Up; ϕ maps q in Up to
(x0(q), x1(q), x2(q), x3(q)) in R4. In these terms, we can define two notions
that will be useful in what follows.

Level surfaces of a coordinate: A level surface of a coordinate function
defined on Up is a maximal set of points in Up that are all assigned the
same value by that function. The level surfaces of a given coordinate
partition Up into 3-dimensional submanifolds.18 The elements of the
partition can be parameterised by the value of the relevant coordinate
on each surface.

Coordinate curves: The intersection of three such surfaces, defined by
particular values of three of the four coordinates, is a 1-dimensional
submanifold of Up. We can think of this manifold as the image of a
curve parameterized by the fourth, non-constant coordinate. Again, the

16Since we will not need it, we set to one side the possibility of relativisation to subman-
ifolds, such as that involved in, e.g., the definition of Fermi normal coordinates.

17The restriction to four dimensions is simply for ease of exposition.
18This follows because dx0 ∧ dx1 ∧ dx2 ∧ dx3 ≠ 0 implies, for any subset of three

coordinates, that dxi ∧ dxj ∧ dxk ̸= 0.
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family of curves associated with a given coordinate partitions Up. To
take a concrete example, consider the coordinate curves associated with
x0. The various possible constant (but in general differing) values of xi,
i = 1, 2, 3 parameterise the elements of the partition. The parameter
value of any point q on any given curve is just x0(q).

We now proceed to characterise seven distinct notions of adapted coordi-
nate system and to spell out the logical relationships between them. In what
follows p is an arbitrary point of M .

3.1 Local Lorentz and Local Conformal Charts

In the previous section, Cartesian coordinates on E2 were the paradigm exam-
ple of adapted coordinates. They diagonalise the Euclidean metric and set the
values of its diagonal elements to 1. Similarly, in Lorentz charts on Minkowski
spacetime, the metric everywhere takes the canonical form diag(−1, 1, 1, 1).
In a non-flat Lorentzian spacetime, we cannot choose coordinate systems such
that the metric gab everywhere takes this form. But we can always choose a
coordinate system such that this condition holds at a point. Call a chart {xµ}
defined on Up a local Lorentz chart for p iff (i) xµ(p) = 0 (µ = 0, 1, 2, 3) and
(ii), at p, gµν = ηµν .

19,20 In other words, local Lorentz charts for p diagonalise
the metric at p (as well as implement the convention that, at p, x0 is the time
coordinate).

The metric at a point defines the relative lengths of (and (pseudo-)angles
between) tangent vectors at that point but it also defines a notion of ‘absolute’
length (which can be understood as simply encoding a path-independent
notion of the relative lengths of vectors at different points). This notion of
absolute length is encoded in local Lorentz charts by the condition that the
absolute value of the diagonal elements of the metric is unity. Relaxing this
condition, and just requiring that (at p) gµν = ληµν for some λ ∈ R+, yields
the local conformal charts (for p).

19We use ηµν to refer to the µν-components of the numerical matrix diag(−1, 1, 1, 1).
Note that the role of (i) is simply to fix a common origin for the class of coordinate systems.
It plays no role in characterizing properties of the metric. In the case of normal coordinates
(described below), (i) also holds but is not an independent stipulation.

20Ehlers calls such coordinates “locally inertial” at p (Ehlers 2007, p. 94). Since ‘inertial’
suggests a connection to force-free motions, and hence to geodesic structure, we prefer a
different label.
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3.2 Locally Affine and Locally Projective Charts

Call a chart locally affine at p iff (i) xµ(p) = 0 and (ii) the connection
coefficients, Γµ

νλ, vanish at p.21 Geometrically, this requires that the chart be
adapted to the geodesic structure of (M, g) in the ‘infinitesimal neighbourhood’
of p. More specifically, a necessary and sufficient condition for the connection
coefficients to vanish is that each coordinate curve is (a) ‘geodesic at p’ (i.e.,
both straight and affinely parameterized at p) and (b) parallel to all the curves
corresponding to the same coordinate in the infinitesimal neighbourhood of p,
which should also be affinely parameterized in that neighbourhood. Let ∂µ
be the vector field corresponding to the coordinate xµ, i.e., the xµ coordinate
curves are integral curves of ∂µ. The two conditions then correspond to the
condition ∇∂ν∂µ = 0 at p, with (a) corresponding to the case ν = µ and (b)
corresponding to the case ν ̸= µ. But since ∇∂ν∂µ =: Γρ

µν∂ρ, this condition
is just what is required for all the connection coefficients to vanish.

If one relaxes the condition that the coordinate curves should be affinely
parameterized, one obtains the locally projective charts at p and the corre-
sponding condition on the covariant derivatives of the coordinate curves at p
becomes ∇∂ν∂µ = λ∂µ.

3.3 Lorentz Affine Charts

Whilst the condition of being a local Lorentz chart is strictly stronger than
the condition of being a local conformal chart, and whilst being locally affine
is strictly stronger than being locally projective, these two pairs of conditions
are logically independent from one another. A chart might be a local Lorentz
chart for p without being locally affine at p. And a chart might be locally
affine at p without being a local Lorentz chart for p. This observation leads
to our next notion of adapted coordinates: we call charts that satisfy both
conditions (locally) Lorentz affine charts for p.22

An alternative characterisation of Lorentz affine charts is as ones in which
(i) xµ(p) = 0, (ii) the metric is diagonalised at p, and (iii) the first derivatives
of the metric vanish at p. The equivalence of the third condition with the
condition that the connection coefficients vanish follows from the connection
in question being the unique (torsion-free, symmetric) compatible connection.
Given that ∇ρgµν = 0, gµν,ρ = 0 iff Γα

µρ = Γα
νρ = 0.

21There is a minority, although established, practice of labelling these charts “normal
coordinates”. We follow more standard practice in reserving this label for the proper
subclass of locally affine charts described in §3.4.

22These charts are sometimes called Lorentz (or even Riemann) normal coordinates. See,
e.g., Fletcher and Weatherall (2023, p. 7) and Barrett and Manchak (2024a, p. 20). We
reserve this label for the strictly stronger condition described in §3.5. Cf. footnote 21.
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3.4 Normal Charts

Our next two notions of adapted charts are much more restrictive than the
ones so far surveyed. They use the exponential map, a coordinate-independent
(but connection-dependent) diffeomorphism from a neighbourhood U0 of the
zero-vector of the tangent space TpM at p, to a neighbourhood Up of p. The
map is used to project a coordinate system on TpM (given by some set of
basis vectors) onto Up.

The exponential map associates each geodesic through p with the one-
dimensional linear subspace of TpM that contains the tangent vector to that
geodesic. Let λ(s) be a specific geodesic through p with affine parameter s
such that λ(0) = p. We denote its tangent vector at p as λ̇p. The exponential
map is then defined as the map that takes sλ̇p ∈ TpM to λ(s) ∈ M . In
particular, λ̇p is mapped to λ(1). When every point in Up, the image of
U0 ⊂ TpM under the exponential map, is connected to p by exactly one
geodesic, the map is a bijection (and in fact a diffeomorphism) from U0 to Up.
Up is then called a normal neighbourhood of p.23

Given any basis {e0, e1, e2, e3} for the tangent space TpM at p we can
use the exponential map to define a chart for any normal neighbourhood Up

related to that basis. We simply assign to a point in Up the components of
the vector that the exponential map sends to that point. In other words, if
sλ̇p = Xaea, the corresponding chart maps λ(s) to {X0, X1, X2, X3}. Such
coordinate systems constitute all and only the normal charts for p.

It is straightforward to establish that normal charts are locally affine
charts, i.e., that the connection coefficients vanish at their origin. But they
are a very special subclass of locally affine charts. The geodesics through
p have a very simple coordinate expression everywhere in the domain of
any such chart, namely as xµ(s) = saµ, where each aµ is a constant. The
coordinate transformation between any two such charts is linear, i.e., the
coordinate transformation group is GL(4).24

23This is a slight abuse of terminology, since ‘normal neighbourhood’ refers in the first
instance to U0 rather than to its image under the exponential map (see, e.g., Sachs and
Wu 2012).

24More precisely, for a given point p ∈M , the transition functions between its normal
charts result from restricting GL(4) to the ranges of the charts. (Note that, while two
normal charts for p need not share a domain, the intersection of their domains is always the
domain of another normal chart.) The union of the all the ranges of the charts is fixed by
the action of GL(4) on R4. Note that the collection of all the transition functions between
normal charts for the given point p does not form a pseudogroup on this subspace of R4

because, e.g., the domains of the transition functions must always include the origin of R4.
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3.5 Lorentz Normal Charts

Just as the conditions of being a local Lorentz chart for p and being locally
affine at p can be combined, to give us the notion of a Lorentz affine chart,
so one can supplement the condition of being normal at p with the condition
of being a Lorentz chart at p. This gives us the set of Lorentz normal charts
for p. They correspond exactly to the coordinate systems that are definable
using the exponential map when one restricts to orthonormal bases for TpM
(with, by convention, e0 as the timelike basis vector).

Since Lorentz normal charts are a proper subset of normal coordinates,
the coordinate transformations will be a proper subgroup of GL(4). Lorentz
normal charts are related by exactly Lorentz transformations.25

3.6 Summary

We have surveyed seven distinct types of adapted coordinates systems de-
finable in relativistic spacetimes. All are centred on a particular (arbitrary)
point.26 Five of these—local conformal charts, local Lorentz charts, locally pro-
jective charts, locally affine charts, and local Lorentz affine charts—involved
adaptation of the chart to the geometric structures only in the infinitesimal
neighbourhood of that point: a given chart’s meeting the condition imposes
no constraints on the coordinate values assigned to any point other than p
in Up.

27 Intuitively, given any chart meeting the relevant condition, one can
mess around arbitrarily with the chart outside of any finite neighbourhood
of the point and the result will still meet the condition. More specifically,
suppose ϕ is a chart defined on Up meeting one of the conditions at p. Let d
be a diffeomorphism on R4 and let ϕ′ be the chart defined via ϕ′ = d ◦ ϕ. ϕ′

will also meet the condition if (but not only if) d reduces to the identity on
a neighbourhood of (0, 0, 0, 0). That neighbourhood can be as small as one
likes. So, for any q ̸= p in Up, one can choose a neighbourhood of (0, 0, 0, 0)

25More precisely, their transition functions are the result of restricting O(1, 3) on R4 to
the ranges of all such charts for the given point p (cf. the previous footnote). For further
recent philosophical discussion of these normal coordinate constructions via the exponential
map, see (Linnemann et al. 2024).

26Not all adapted charts for a variably curved spacetime need be centred on a partic-
ular point. Examples that do not privilege a particular point include Gaussian normal
coordinates (see, e.g., Wald 2010, p. 42) and what one might simply call spacetime charts:
coordinates where the level surfaces of x0 are everywhere spacelike and where all of the x0

coordinate curves are everywhere timelike.
27All the charts that we consider are, of course, adapted in the same way to the local

differentiable structure at each point in the chart’s domain. This follows from our initial
choice to consider only bijections from Up to R4 that are diffeomorphisms.
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Figure 1: The logical relationships between: (C) conformal charts; (L) Lorentz
charts; (P) projective charts; (A) affine charts; (LA) Lorentz affine charts;
(N) normal charts; and (LN) Lorentz normal charts.

that does not contain ϕ(q). And for any x ̸= (0, 0, 0, 0) in R4 one can choose
a d that preserves the coordinate condition but that sends ϕ(q) to x.

The two types of coordinate system based on the exponential map were
adapted to certain geometric structures not definable purely in the infinitesimal
neighbourhood of p (which curves at q are geodesic at q depends on the
geometric structure in the infinitesimal neighbourhood of q, and which of
those curves is a geodesic curve connecting q to p depends on the geometric
structure around every point on the curve between q and p). Nevertheless,
they still privilege geometric structure at p.

Some of the logical relationships between these types of coordinate system
are summarised in figure 1. We now turn to the task of reconstructing
geometric structure from such charts.

4 Recovering Structure from Local Lorentz

Charts

As we saw in §1, privileged charts understood as symmetry-specifying charts
might fail to provide a BMK presentation of the geometry of a Lorentzian
spacetime. This is because, while one can always find charts that determine the
geometry’s isometry pseudogroup, that pseudogroup might fail to determine
the geometry. Having fastidiously established this result, Barrett and Manchak
(2024a, §5) pose the question whether there might be a better choice of
privileged charts from which to seek to recover the geometry. One option that
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they consider is given by (what we have labelled) the Lorentz affine charts.28

Their assessment is that if this is one’s choice of privileged charts then “one
is forced to dramatically change the procedure with which one recovers the
structure of (M, gab)” (2024a, p. 20).

In a subsequent paper, they consider the recovery of the geometric structure
of a spacetime (M, g) from its Lorentz affine charts in a little more detail
(Barrett and Manchak 2024b, §4.2). They first consider applying their version
of the Kleinian method by using such charts to define a pseudogroup on M .
Unsurprisingly this fails, since the Lorentz affine charts were not designed
to be symmetry-specifying charts in the sense of §2. The pseudogroup that
they define is not the isometry pseudogroup of the metric to which they are
adapted.

Barrett and Manchak then consider a route by which one can successfully
recover (M, g) from its Lorentz affine charts: for each p ∈M pick an arbitrary
Lorentz affine chart for p. Use that chart alone to explicitly define the metric
at p (we review this process in more detail below). Doing this for every p
defines g.

Their verdict on this procedure is that “it does not represent a victory for
proponents of Kleinian methods.” This is because they hold that:

Kleinian methods are distinctive because they employ a variety of
implicit definability, looking to those structures that are ‘invariant
under symmetry’. [. . . ] The method of presentation suggested
[. . . ] is not Kleinian in this sense. (2024b, p. 16)

We agree that, in order to merit the label ‘Kleinian’, a method of presenting
structure via privileged charts must identify the structure via its invariance
under a group or pseudogroup defined by the charts. We do not agree that
Lorentz affine charts cannot be employed in such a manner. The rest of this
section explains how they can be so used, but the basic idea is straightforward.
Rather than considering the totality of the charts in order to define a single
pseudogroup, one instead considers the groups and related structures defined
by the charts centred on each point of M considered separately.

Suppose that, for some particular relativistic spacetime (M, g), one is
presented with all and only the adapted charts corresponding to one of the
conditions described in the previous section. Call this set C. Two questions
naturally arise. First, provided only with this information, can one identify
the condition satisfied by all the charts in C? Second, can one further recover
the structure of (M, g) from the charts and their transition functions?29

28As noted in footnote 21, they refer to these as Lorentz normal charts.
29Note that, because there is a set of adapted charts for every point of M , the collection
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The answer to the first question is ‘yes’. By design, each chart is adapted
to the geometrical structure around the point at the origin of the chart. There
is therefore a crucial, and easily defined, partition on C. The elements of the
partition are indexed by the points of M , with two charts belonging to the
same element just in case they assign (0, 0, 0, 0) to the same point. In terms
of transition functions, ϕ, ψ ∈ C belong to the same element if and only if
ψ ◦ ϕ−1 : (0, 0, 0, 0) 7→ (0, 0, 0, 0).

In order to see which coordinate condition the charts implement, one
need only attend to the transition functions between charts in the same
partition element. For each condition, these transition functions will satisfy a
characteristic constraint. In the case of normal and Lorentz normal charts, we
have already said what these are in §3.4 and §3.5. The constraints associated
with local Lorentz charts will be described shortly. The constraints associated
with locally affine charts are described in Appendix B.

Having identified the nature of the charts, can one recover the structure
of (M, g)? The answer depends on which condition the charts implement.
From, e.g., the local conformal charts one can at most hope to recover the
conformal structure of (M, g). But this will not allow one to determine all
the structure of (M, g) because non-isometric spacetimes can share their
conformal structure. As Barrett and Manchak note, the Lorentz affine charts
do allow one to recover all structure. But they do so because the local Lorentz
charts already suffice to recover all structure, as we shall now spell out.

First, note that a chart ϕ defined on a neighbourhood of p defines a
corresponding coordinate system on TpM , the tangent space at p. The tangent
vectors ∂µ|p to the coordinate curves at p provide a basis, the coordinate basis,
for TpM . Recall that a basis for a 4-dimensional vector space, V , is just
a way of specifying a bijection from V to R4 that qualifies as an adapted
coordinate system in the sense of §2. It is an invertible linear map from V
to R4 considered as a vector space. To say that TpM ∋ X = Xµ∂µ is just to
say that the coordinates of X in the induced adapted coordinate system are
(X0, X1, X2, X3).

If p is in the domain of chart ϕ, let Tϕp : TpM → R4 be the corresponding
adapted induced coordinate system for TpM . This slight abuse of notation
can be justified as follows. Associated with the map ϕ : Up → R4 there is
an induced map Tϕ : TUp → TR4, call it the tangent map, from the tangent
bundle over Up to the tangent bundle over R4. For any point q ∈ Up, this
map gives us an isomorphism, Tϕq, from TqM , the tangent space at q, to
Tϕ(q)R4, the tangent space at ϕ(q). If we identify the latter with R4 in the

of all such sets is an atlas for M and therefore we are always able to recover M ’s differential
structure.
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canonical way, this is just our adapted coordinate system for TqM .
Let Cg

p be the set of local Lorentz charts of (M, g) at p. Recall that these
are all and only the charts that send p to the origin of R4 and in which
gµν |p = ηµν . This means that, as Barrett and Manchak (2024b, p. 16) note,
there is an easy way to recover gab from the set of all local Lorentz charts
{Cg

p : p ∈ M}. gab is just an assignment of a Minkowski inner product to
the tangent space of every point of M . Each and every member of Cg

p can
be used to explicitly define the relevant inner product on the tangent space
at p. Let ϕ ∈ Cg

p and let Xµ be the components of X ∈ TpM according to
Tϕp. Then for any X, Y ∈ TpM , g(X, Y ) := −X0Y 0+X1Y 1+X2Y 2+X3Y 3.
Repeating this definition for every point in M gives us the inner product on
every tangent space and therefore recovers gab.

Associated with the explicit definition of this structure there is a corre-
sponding Kleinian characterisation of this structure. The explicit definition
effectively uses Tϕp to pull back to TpM (one of) the natural definition(s) of
the Minkowski inner product on R4. The transformation group on R4 that
preserves this inner product is just the Lorentz group, O(1, 3). Hence if d is a
diffeomorphism on R4, the coordinate system d◦Tϕp will define the same inner
product on TpM if and only if d ∈ O(1, 3). In other words, in line with the
approach of Wallace (2019), we can think of the set TCg

p := {Tϕp : ϕ ∈ Cg
p}

as a set of adapted charts on TpM , where any two ϕ, ϕ′ ∈ Cg
p will satisfy the

group-theoretic constraint Tϕ′
p ◦ (Tϕp)

−1 ∈ O(1, 3). If xµ are the coordinate
functions of ϕ, and yµ those of ϕ′ (with yµ understood as functions of xµ) we
can rewrite this condition as ∂yν

∂xµ |p ∈ O(1, 3).
Alternatively, in the spirit of Barrett and Manchak’s version of the Kleinian

approach, we can think of the set TCg
p as symmetry-specifying charts and

characterise the inner product on TpM as exactly that structure left invariant
by the transformation group on TpM defined via Γ = {(Tϕp)

−1 ◦Tϕ′
p : ϕ, ϕ

′ ∈
Cg

p}.
We take the foregoing to demonstrate clearly how an arbitrary Lorentzian

metric can be recovered just from the full set of its local Lorentz charts in a
manner clearly in the spirit of the Kleinian approach. Notably, no further
restriction to locally affine charts is required. For those to whom this might
still seem magical, we offer a couple of additional observations.

First, it is worth stressing that, in being provided with the full set of
local Lorentz charts for some metric, one is provided not only with (i) the
transition functions between charts in the same point-indexed equivalence
classes but also (ii) the transition functions between charts from different
equivalence classes whose domains nevertheless intersect. Only (i) is used in
ascribing an inner product to the tangent space of each point but (ii) is crucial
in distinguishing between different Lorentzian geometries on the manifold.
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With only (i) all we have is a collection of manifolds diffeomorphic to R4,
each containing a single point on the tangent space of which a Minkowski
inner product is defined. To recover both the single manifold and its unique
metric field, we need to know how these manifolds knit together.

Second, one might consider how the local Lorentz charts allow one fairly
directly to fix the metric via an identification of a privileged class of curves.
For each curve, simply ask whether, at each point on the curve, there is at
least one local Lorentz chart such that the curve’s tangent vector at that
point has coordinates (1, 0, 0, 0). This condition is satisfied by all and only
everywhere timelike curves parameterised by proper time. And the class of
such curves fixes the metric.30

Up until this point we have assumed an antecedently-given relativistic
spacetime (M, g). We have reviewed how certain charts, in particular the
local Lorentz charts, can be adapted to its structure and described how that
structure can in turn be recovered from those charts. We now consider a more
ambitious project. Can one characterise in coordinate-based terms properties
that are sufficient for a collection of charts to define a relativistic spacetime
structure?

The shape of a positive answer to these questions is already evident from
our description of the recovery process from local Lorentz charts. The question
effectively becomes: what are the necessary and sufficient conditions for a set
of charts on M to constitute the set of all the local Lorentz charts for some
metric g defined on M?

We start by definingM ’s differential and topological structure via a choice
of maximal atlas A for M . Next, consider the sub-atlas A0 defined via the
condition that its charts include the origin of R4 in their range. That is,
A0 = {ϕ : ϕ ∈ A and for some p ∈ M,ϕ(p) = (0, 0, 0, 0)}. We now define a
double partition of A0. At the first level, charts are grouped according to
which point is at the origin of the charts. At the second level, each element
of the first partition is further partitioned according to the inner product
induced on the tangent space of the point at the origin of the charts.

In more detail, the elements of the first partition are indexed by the
points of M . We denote the partition as {Cq : q ∈ M}, where a chart
is in the equivalence class Cq just in case q is at the origin of that chart:
Cq := {ϕ : ϕ ∈ A0 and ϕ(q) = (0, 0, 0, 0)}.

We now consider the further partition of the elements of {Cq : q ∈ M}.
Consider a specific element Cp of the partition and consider the relation

30See (Malament 2012, p. 125). The class of smooth timelike curves gives the conformal
structure of spacetime; the preferred parameterisation of those curves yields a volume
element which, in conjunction with the conformal structure, suffices to fix the metric.
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defined on its charts via

ϕ ∼ ϕ̄ iff (T ϕ̄p) ◦ (Tϕp)
−1 ∈ O(1, 3) ⊂ GL(4), (1)

with ϕ, ϕ̄ ∈ Cp. This relation is obviously an equivalence relation and so
defines a partition on Cp.

Any chart ϕ in Cp defines a Minkowski inner product ηϕ on TpM via the
condition: if X, Y ∈ TpM and the components of X and Y in Tϕp are X

µ and
Y µ, then ηϕ(X, Y ) = −X0Y 0 +X1Y 1 +X2Y 2 +X3Y 3. As described above
(see also Appendix A), any two charts in Cp define the same inner product if
and only if they stand in the equivalence relation defined by condition (1).
We will index the elements of the second-level partition by the inner product
that their charts define. That is, we will denote an element of this partition as
C

η(p)
p where η(p) is the inner product defined on TpM by any chart in C

η(p)
p .31

The upshot is that we can define a metric on M by picking, for each point
q ∈ M , an element C

η(q)
q of the second-level partition of the corresponding

element Cq of the first-level partition. In other words, a family {Cη(q)
q : q ∈M},

where η(q) is also dependent on q, corresponds to a metric over M . Moreover,
each distinct such family corresponds to a different metric on M , and each
metric on M corresponds to exactly one such family.

In general, a metric defined in this way will not be smooth or even
continuous. For each p ∈ M , our choice of element in the partition of Cp

was entirely unconstrained by our choices of elements in the partitions of
Cq, q ̸= p. A metric that is not continuous is of very limited use.32 It is
thus natural to ask what further coordinate conditions might be imposed to
ensure that a metric defined in this way is smooth or at least continuous. We
address this question in Appendix A. In Appendix B, we provide a parallel
implicit definition of an affine connection in terms of privileged charts (but
leave smoothness as an exercise to the reader).

5 Close

The connection between Lorentzian spacetimes and charts meeting the con-
dition just described (i.e., a family of charts of the form {Cη(q)

q : q ∈ M})
is both a uniqueness and an existence result. A set of charts meeting the
condition always corresponds to the set of local Lorentz charts for a unique

31Writing ‘η(p)’ rather than just ‘η’ might seem to clutter notation, but it will aid clarity
in Appendix A.

32For example, one cannot use it to define arc lengths along curves.
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Lorentzian spacetime.33 That it is an existence result is worth stressing. We
have shown that if one begins with a set of local Lorentz(-like) charts without
having antecedently specified a Lorentzian metric, one can always construct
such a metric.

It is natural to ask whether similar results could be achieved via a different
set of charts (a set that is not merely a proper subset of the local Lorentz
charts). There is at least one natural candidate. For a given spacetime one
could take the set of all of its local conformal charts that are also locally
projective charts. This set will not be a subset of the local Lorentz charts.
From it one will be able to recover both conformal and projective structure.
One can then appeal to the uniqueness result famously demonstrated by Weyl
(1921), that a Lorentzian metric g can be recovered, up to homothety, from
its associated projective and conformal structure.34

That gives us a uniqueness result—the Lorentzian geometry that can be
recovered from the conformal projective charts of a spacetime is unique—but
what about a corresponding existence result? There is a precedent in the
literature for such existence results: famously, Ehlers et al. (2012) purported
to demonstrate that a Lorentzian metric can be fixed by projective and
conformal structures, together with a ‘compatibility’ condition and other
auxiliary assumptions. It would be interesting to translate this approach into
a chart-based construction and, in particular, to consider what it takes, in
chart-based terms, for the conformal structure specified by one set of charts
and the projective structure specified by another to be compatible.35

Stepping back somewhat, we see some quite significant philosophical ap-
plications of this work. The programme of ‘regularity relationalism’ due
to Huggett (2006) seeks to offer a Humean reduction of some elements of
spacetime structure. As per Lewis (1973), dynamical laws are reduced to the
simplest and strongest codifications of the local matters of fact constituting
the Humean mosaic. Huggett’s innovation is to reduce in addition elements
of spacetime structure to the structure preserved by the coordinate transfor-
mations relating preferred coordinate expressions of those laws. It is therefore
a way of making precise (and providing a metaphysical underpinning for) a
recurrent idea that physical geometry might be given a Kleinian reduction in
terms of the symmetries of the dynamical laws.36

33“Proposition 6” in Barrett and Manchak (2024b) is a corresponding uniqueness claim
for Lorentz affine charts. We have highlighted that the restriction of the Lorentz charts to
locally affine charts does no work.

34For a modern presentation of this result, see (Malament 2012, ch. 2); for further recent
discussion, see (Adlam et al. 2024).

35Again, for recent discussion of the result of Ehlers et al. (2012), see (Adlam et al. 2024).
36See, e.g., (Anandan 1980; Brown 2005). Pooley (2013, §6.3.2) argues that Brown’s
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This approach, however, applies most naturally to global dynamical sym-
metries and thus to globally homogeneous spaces. There remains a challenge
regarding whether (if at all) it can be applied to theories such as general
relativity.37 The machinery developed in this article should provide much
of the technical wherewithal to make good on this project. The idea, quite
naturally, would be to regard some subset of the local Lorentz charts as picked
out via codifications of local goings-in a Humean mosaic, and then to use an
existence result of the kind mentioned above in order to obtain a Lorentzian
metric. Evidently, though, this is but a sketch; we will make good on that
particular project elsewhere.

A Defining a Smooth Metric via Privileged

Charts

As described in §4 above, a family of charts Cη = {Cη(q)
q : q ∈M}, where η(q)

is also dependent on q, corresponds to a metric over M , but this metric is not
necessarily smooth. In order to obtain smoothness directly from conditions
on coordinate charts, we need to impose further constraints.

Picking out a point p ∈M and a chart ϕp ∈ C
η(p)
p ∈ Cη at that point, pick

another p′ ̸= p in the domain of ϕp and consider ϕp′ ∈ C
η(p′)
p′ ∈ Cη. Let xµ

be coordinates for ϕp and xµ
′
be coordinates for ϕp′ . The latter chart gives

vectors tangent to its coordinate curves at its origin: {∂µ′|p′ ∈ Tp′M}, and
this basis will have coordinate components in ϕp, which we write as a 4× 4
component matrix: Mµ

µ′ (p′), which we index with the point p′, as this will
be useful for the construction that follows. We then of course have

Mµ
µ′ (p

′) =
∂xµ

∂xµ′ (p
′) ∈ GL(4). (2)

In what follows, we will have to track many different coordinate systems,
so it pays to write this matrix abstractly without explicit coordinates as the
invertible linear transformation:

M(p′) := ((Tϕp)p′)
−1 ◦ (Tϕp′)p′ (3)

Note that, in an expression such as (Tϕp)p′ , the first subscript means that
the chart is adapted to the point p, i.e. is an element of Cp, and the second

view should be interpreted in this manner. The framework is explored further by Stevens
(2020).

37See, e.g., (Dewar 2020).
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tells us that we are considering the restriction of the tangent map of that
chart to the point p′.

Now to our main definition, of smoothness of a family of charts:

Definition 1 (Smoothness of a family {Cη(q)
q , q ∈M}) Given a smooth

curve wholly within the domain of a chart ϕp ∈ C
η(p)
p , i.e. an embedding

γ : I → (ϕp)
−1(R4) ⊂M , such that γ(0) = p, a given 1-parameter family C

η(t)
γ(t)

is smooth along γ iff for each t there exists a ϕγ(t) ∈ C
η(t)
γ(t) with C

η(0)
γ(0) = C

η(p)
p

and ϕγ(0) = ϕp such that the corresponding 1-parameter family of matrices
M(γ(t)) ∈ GL(4) is smooth, where:

M(γ(t)) := ((Tϕp)γ(t))
−1 ◦ (Tϕγ(t))γ(t), (4)

such that M(γ(0)) = Id.

We would like to use this notion to define smoothness for metrics corre-
sponding to families of inner products as described by {Cη(q)

q : q ∈M}.

Theorem 1 A given family of {Cη(q)
q : q ∈ M} corresponds to a smooth

metric iff the restriction of this family to any smooth curve γ is smooth
according to Definition 1.

Proof: Take p, p′ ∈ M . Now define ⟨X, Y ⟩p′ := −X0Y 0 + X1Y 1 + X2Y 2 +
X3Y 3, where X(p′) = Xµ′

(p′)∂µ′ |p′ and Y (p′) = Y µ′
(p′)∂µ′ |p′ for xµ

′
the

coordinates of ϕp′ ∈ Cη
p′ and, as before, ∂µ′|p′ ∈ Tp′M . It is clear from (1) that

any such metric depends only on the family {Cη(p′)
p′ : p′ ∈M}. The challenge

now is to represent the metric at each point not according to a chart adapted
to that point, but rather according to one single chart, for which we can show
smoothness.

In the chart ϕp ∈ C
η(p)
p , we rewrite ∂µ′ |p′ = Mν

µ′ ∂ν |p′ , where, as before,
∂ν |p′ now refers to the chart ϕp. We obtain

⟨∂µ′ , ∂ν′⟩|p′ := ηµ′ν′|p′ = ηµ′ν′ =Mµ
µ′M

ν
ν′ ⟨∂µ, ∂ν⟩|p′ . (5)

We get the inner product at p′ for a basis that is not adapted to p′ as
ηµν |p′ := ⟨∂µ, ∂ν⟩p′ in (5). Thus,

ηp
′

µν := ⟨∂µ, ∂ν⟩p′ = (M−1)µ
′

µ(M
−1)ν

′

νηµ′ν′ , (6)

which gives the inner product in a coordinate chart adapted to p in terms of
an inner product in a coordinate chart adapted to p′. Setting p′ = γ(t), the
metric in (6) is smooth along a curve iff the matrices M are smooth along
that curve.

23



To see that smoothness of the metric in this chart-dependent definition
depends only on membership of the family {Cη(q)

q : q ∈M}, suppose we have

a second family of charts {ϕ̃q ∈ C
η(q)
q : q ∈M}. By definition (1),

((T ϕ̃p′)p′)
−1 ◦ ((Tϕp′))p′ = Λ(p′) ∈ O(1, 3), (7)

understood in terms of the R4 coordinates, i.e. such that

Λµ
µ̃Λ

ν
ν̃ηµν = ηµ̃ν̃ . (8)

For p′ within the domain of both ϕ̃p and ϕp, we can write:

M̃(p′) := ((T ϕ̃p)p′)
−1 ◦ (T ϕ̃p′)p′

= ((T ϕ̃p)
−1 ◦ (Tϕp)) ◦ ((Tϕp)

−1 ◦ (Tϕp′)) ◦ ((Tϕp′)
−1 ◦ (T ϕ̃p′)p′)

= Λ(p)M(p′)Λ(p′)−1.

(In the middle line, some of the outer p′ subscripts have been suppressed
for legibility.) It follows from this and (8), that for the tilded version—i.e.
adding tildes to all the super and subscripts, including the primed ones—of
equation (6), which defines the metric at all points in the domain of a chart,
Λ(p′) acts on the inner product in a coordinate chart adapted to p′, leaving
that inner product invariant. Thus

ηp
′

µ̃ν̃ = (M̃−1)µ̃
′

µ̃(p
′)(M̃−1)ν̃

′

ν̃(p
′)ηµ̃′ν̃′

= Λ(p)µµ̃Λ(p)
ν
ν̃(M

−1)µ
′

µ(p
′)(M−1)ν

′

ν(p
′)Λ(p′)µ̃

′

µ′Λ(p
′)ν̃

′

ν′ηµ̃′ν̃′

= Λ(p)µµ̃Λ(p)
ν
ν̃(M

−1)µ
′

µ(p
′)(M−1)ν

′

ν(p
′)ηµ′ν′ ,

where we inserted dependence on p′ for clarity. Thus dependence on p′

amounts only to that already contained in M (recall that ηµ′ν′ is just the
diagonal matrix with Minkowski signature). Moreover, it is easy to verify
that, since M(p) = Id (and Λ(p) ∈ O(1, 3)), we still get

ηpµ̃ν̃ = Λ(p)µµ̃Λ(p)
ν
ν̃ηµν = ηµ̃ν̃ , (9)

as required by consistency.
So, as far as the metric dependence on p′ goes, we can still use the same

matrices M , but with tilded indices, i.e. indices understood as elements of
the tilded family of charts.

This shows that the metric in (6), written with respect to a chart, is
smooth iff the matrices M in (3) are smooth, for any family of charts adapted

to {Cη(q)
q : q ∈M}. □
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B Defining a Connection via Privileged Charts

The methods applied to local Lorentz charts in §4 can be applied to charts
adapted to other kinds of structure. Here we briefly examine the case of affine
structure.

B.1 Recovery

Let (M,∇) be a manifold equipped with an affine connection. Let ϕ and ϕ̄
be two charts defined on neighbourhoods of p ∈M with p at the origin. Let
xµ and x̄µ be their corresponding coordinate functions. Recall from §3.2 that
a chart is locally affine at p ∈ M if the connection coefficients vanish at p,
the origin of the chart. Suppose that ϕ is a locally affine chart at p. Recall
that the transformation for the connection coefficients is given by:

Γ̄i
kl =

∂x̄i

∂xm
∂xn

∂x̄k
∂xp

∂x̄l
Γm

np +
∂2xm

∂x̄k∂x̄l
∂x̄i

∂xm
(10)

It follows that ϕ̄ will also be locally affine at p iff:

∂2x̄µ

∂xν∂xρ

∣∣∣∣
p

= 0. (11)

When recovering an inner product at a point from local Lorentz charts,
we provided an explicit definition in terms of an arbitrarily selected chart
centred on that point. We do the same in this case. We define the derivative
operator ∇ϕ associated with a chart ϕ via:

∇ϕ
XY := (Xµ∂µY

ν)∂ν . (12)

Equation (11) is then just the condition that actions of the derivative operators
associated with charts ϕ and ϕ̄ agree at p. Since a connection is defined by
its action at every point, we recover ∇ from the full set of locally affine charts
as the connection the action of which agrees at each point p ∈ M with the
actions of the connections defined by the locally affine charts at p.

B.2 Construction

Next, again following the approach of §4, we ask what conditions can be
imposed on a set of charts in order for those charts to define a connection.
We start with the same first-level partition {Cq : q ∈M} of the atlas A0. But
now, instead of defining a second-level partition via condition (1), we invoke,
for each p ∈M , equation (11). It is straightforward to verify that this defines
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an equivalence relation on charts and thus also defines a partition on each Cp.

Consider now a specific element, which we label C
∇(p)
p , of this second-level

partition of Cp. We can define affine connections associated with each chart

in C
∇(p)
p via equation (12). As we have just seen, their actions will all agree

at p. Thus a choice of element from the second-level partition for each p ∈M
defines a family of charts {C∇(p)

p : p ∈M} that determines a unique covariant
derivative operator at each point p ∈M . Such a family thus defines an affine
connection on M .

As before, nothing guarantees the smoothness of such a family. As a
result, the connection that it defines might lack some desirable features.38

In Appendix A we described a condition on a family {Cη(p)
p : p ∈ M} that

guaranteed the smoothness of the metric that it defines. One might wish to
define an analogous condition (perhaps in terms of the charts to be described

in the next section) on the family {C∇(p)
p : p ∈M} to ensure the smoothness

of the connection that it defines. We leave this as an exercise for the interested
reader.

B.3 The Kleinian Perspective

There is a natural group-theoretic characterisation of the condition relating
the coordinate transformations between two local Lorentz charts, namely:
∂yν

∂xµ |p ∈ O(1, 3). Associating the coordinate transformations between charts
with a group played a vital role in connecting the charts to the symmetry
group of the structure defined by the charts. In other words, it was vital to a
Kleinian interpretation of the charts. Our statement above of the condition
relating locally affine charts, namely equation (11), was not group-theoretic.
We now show how a group-theoretic characterisation can be given.

Whereas a metric field on M involves assigning structure to the tangent
space at each point of M , an affine connection can be thought of as assigning
structure to the tangent space at every point of the tangent bundle TM of M ;
i.e. it concerns the ‘double’ tangent bundle. We first describe this structure
before relating its symmetry group to coordinate transformations.39

For ease of comparison with our treatment of local Lorentz charts, let M
be a 4-dimensional manifold. TM is then 8-dimensional, as is the tangent
space T(p,v)(TM) at each point (p, v) ∈ TM , p ∈ M, v ∈ TpM . Elements in
this space are tangent to the doublet of curves, (γ(t), X(t)) ∈ TM , γ(t) ∈

38For example, there might be no smooth curves in M the tangent vectors of which are
everywhere auto-parallel according to the defined connection.

39Indeed, given any vector bundle E over M , we can define TE as another vector bundle
over M ; see (Michor 2008, §8.12).
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M,X(t) ∈ Tγ(t)M that go through (p, v) at t = 0. In virtue of the construction
of TM , each space T(p,v)(TM) has a privileged 4-dimensional subspace V(p,v),
the vertical subspace, consisting of all and only vectors that are tangent to
TpM considered as a submanifold of T(p,v)(TM); this is generated by curves
(γ(t), X(t)) for which γ(t) = p for every t.40 A horizontal subspace, H(p,v), is a
choice of 4-dimensional subspace such that H(p,v) ⊕ V(p,v) = T(p,v)(TM).41 In
these terms, an affine connection on M corresponds to a choice of horizontal
subspace for each T(p,v)(TM).42 Given a choice of horizontal subspace, we
can write elements of T (TM) as (p, v, Y, Z), with

(p, v, Y, 0) ∈ H(p,v) ; (p, v, 0, Z) ∈ V(p,v). (13)

In our characterisation of a metric in terms of local Lorentz charts, we
exploited the fact that, for any given chart ϕ defined on Up ∈M , there are
natural coordinatisations of the tangent spaces TqM , q ∈ Up, i.e., those given
by the coordinate basis at each point (comprised of the tangent vectors to
the coordinate curves at each point). In other words, each chart is associated
with a coordinatisation of the tangent bundle TUp over its domain. In turn,
this coordinatisation of TUp is associated in exactly the same way with a
coordinatisation of T (TUp), which is what we will use here.

In slightly more detail, each chart ϕ provides a natural basis for T(p,v)(TM)
with p ∈ Dom(ϕ) and v ∈ Tp(M). At any such point (p, v), 4 of these 8
basis vectors will be tangent to Tp(M). These span the vertical subspace of
T(p,v)(TM). The other 4 basis vectors define the horizontal subspace that
define the chart’s connection at that point. Any transformation of charts that
doesn’t mix coordinates of the vertical subspaces with those of the adapted
horizontal subspaces will therefore preserve the horizontal subspace.

More specifically, suppose xµ are the coordinate functions of ϕ, then the
coordinates vµ of a tangent vector v are given by vµ∂µ. In other words, we
map an element (p, v) ∈ TM to its coordinates (xµ, vµ) ∈ R4 × R4. These

40One can see the vertical subspace as the pullback of the projection T (TM) → TM
over the zero section.

41In other words, it corresponds to a choice of projection V̂ : T (TM) → V (cf. Michor
2008, §17.3). Here we are extending the definition of V(p,v) to every (p, v): this forms a

sub-bundle V ⊂ T (TM). Then a projection V̂ : T (TM) → V is such that V̂ ◦ V̂ = V̂ and
Im(V̂ ) = V .

42Heuristically, this is because a connection gives us a way to compare vectors in the
tangent spaces at ‘infinitesimally separated points’. The choice of a horizontal subspace
makes this precise as follows. Curves in TM whose tangent vectors lie everywhere within
a vertical subspace ‘live’ inside the tangent space of a point, and so cannot ‘thread’ the
tangent spaces belonging to neighbouring points. The complementary horizontal subspaces
provide a threading of the vector spaces; for each path in M they provide a linear map
between the tangent spaces of the points on the path.
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are coordinates for TM , seen as manifold, and we can repeat the process for
T (TM), obtaining a map:

TTϕ : T (TUp) → R4 × R4 × R4 × R4

ζ 7→ (xµ, vµ, Y µ, Zµ), (14)

which could, for mnemonic reasons, also be written as:

(xµ, ∂xµ, δxµ, δ∂xµ), (15)

where ∂ if the tangent map going from p ∈M to TpM , and δ is the tangent
map going from (p, v) ∈ TM to T(p,v)(TM). Vertical vectors can be locally
written as those with δxµ = 0.43

We now consider how a change of coordinates affects the decomposition
(14), i.e. we consider transformations on T(p,v)(TM) induced by a transforma-
tion between two charts whose domains both contain p. To shorten notation,
let us call the composition ψ := ϕ−1 ◦ ϕ̄ : R4 → R4. So, in coordinates, we
have:

ψ′ :=
∂x̄µ

∂xν
: R4 → R4, (16)

ψ′′ :=
∂2x̄µ

∂xν∂xρ
: R4 × R4 → R4, (17)

which acts on components written in unbarred indices. Now we write the
induced transition for the double tangent bundle (omitting indices for now),
taking the decomposition according to ϕ to that according to ϕ̄:

(TTψ)(x, v, Y, Z) = (ψ(x), ψ′(x)(v), ψ′(x)(Y ), ψ′′(x)(v, Y )+ψ′(x)(Z)). (18)

Clearly, a transition function will preserve the vertical space: if a vector in
T(p,v)(TM) has no horizontal component according to ϕ, i.e. Y = 0 as per
(13), then ψ′(x)(Y ) = 0, meaning it has no horizontal component according to
ϕ̄.44 But generally this transition will not preserve the horizontal complement
to the vertical space. That is, given one vector and two charts, the horizontal
parts of that vector according to the two charts are related by an element of
GL(4), but the entire vector may be horizontal in one chart and not in the
other. Mathematically, while Z = 0, Z̄ can be non-zero; the vector which
lacked a vertical component according to ϕ acquires one according to ϕ̄. The

43Cf. footnote 42.
44Which is as it should be, since the vertical space is defined canonically: if a vector in

T(p,v)(TM) has no horizontal part, so that Y = 0, it is purely vertical according to every
decomposition into vertical and horizontal.
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term in the transition function (18) that mixes vertical and horizontal vectors
is

ψ′′(x)(v, Y ) =
∂2x̄µ

∂xν∂xρ
vνY ρ. (19)

Therefore, when (11) is satisfied ψ′′ vanishes and the horizontal subspace is
preserved. In this case, it follows that Z̄µ = Λµ

νZ
ν for Λ ∈ GL(4). So we

could define adapted charts at a point as those whose both horizontal and
vertical components are individually related by GL(4).

In sum, the transformation group acting on T(p,v)(TM) for some v ∈ TpM
associated with transformations between the set of locally affine charts at p has
the form GL(4)×GL(4) (rather than a subgroup of GL(8) that only preserves
the vertical subspace). The horizontal subspace defined via the criterion of
invariance under this group is just the subspace associated with the connection,
and the set of the subspaces picked out in this way for each v ∈ TpM , defines
the action of the connection at p. We can therefore regard the privileged
charts associated with a connection—the locally affine charts—as defining
their connection via a natural generalisation of the Kleinian method.

References

Adlam, Emily, Linnemann, Niels, and Read, James (2024). Constructive
Axiomatics for Spacetime Physics. Oxford University Press.

Anandan, Jeeva (1980). “On the hypotheses underlying physical geometry”.
Foundations of Physics 10.7-8, pp. 601–629.

Barrett, Thomas William and Manchak, JB (2024a). “On Coordinates and
Spacetime Structure”. Philosophy of Physics. doi: 10.31389/pop.131.

— (Aug. 2024b). On Privileged Coordinates and Kleinian Methods. url:
https://philsci-archive.pitt.edu/23773/.

Brown, Harvey R (2005). Physical Relativity. Oxford: Oxford University Press.
Dewar, Neil (2020). “General-Relativistic Covariance”. Foundations of Physics

50.4, pp. 294–318. doi: 10.1007/s10701-019-00256-0.
Ebin, David G. (1968). “On the space of Riemannian metrics”. Bulletin of

the American Mathematical Society 74.5, pp. 1001–1003.
Ehlers, J. (2007). “General Relativity”. In: Lecture Notes in Physics. Springer

Berlin Heidelberg, pp. 91–104.
Ehlers, Jürgen, Pirani, Felix AE, and Schild, Alfred (2012). “Republication

of: The geometry of free fall and light propagation”. General Relativity
and Gravitation 44.6, pp. 1587–1609.

29

https://doi.org/10.31389/pop.131
https://philsci-archive.pitt.edu/23773/
https://doi.org/10.1007/s10701-019-00256-0


Fischer, Arthur Elliot (1970). “The Theory of Superspace”. In: Relativity.
Ed. by Moshe Carmeli, Stuart I. Fickler, and Louis Witten. Boston, MA:
Springer US, pp. 303–357. isbn: 978-1-4684-0721-1.

Fletcher, Samuel C. and Weatherall, James Owen (2023). “The Local Validity
of Special Relativity, Part 1: Geometry”. Philosophy of Physics 1.1.

Huggett, Nick (2006). “The regularity account of relational spacetime”. Mind
115.457, pp. 41–73.

Lewis, David K. (1973). Counterfactuals. Malden, Mass.: Blackwell.
Linnemann, Niels, Read, James, and Teh, Nicholas J. (2024). “The Local

Validity of Special Relativity From a Scale-Relative Perspective”. British
Journal for the Philosophy of Science. doi: 10.1086/732151.

Malament, David B (2012). Topics in the foundations of general relativity
and Newtonian gravitation theory. University of Chicago Press.

Michor, Peter W. (2008). Topics in differential geometry. Graduate studies in
mathematics volume 93. Includes bibliographical references (pages 479-488)
and index. Description based on print version record. Providence, Rhode
Island: American Mathematical Society. 1510 pp. isbn: 9781470411619.

Norton, John D (1999). “Geometries in collision: Einstein, Klein and Rie-
mann”. In: The symbolic universe. Geometry and physics. Oxford Univer-
sity Press, USA, p. 128. isbn: 0198500882. url: http://www.pitt.edu/

~jdnorton/papers/Geometries.pdf.
Pooley, Oliver (2013). “Substantivalist and Relationalist Approaches to Space-

time”. In: The Oxford Handbook of Philosophy of Physics. Ed. by Robert
W Batterman. Oxford University Press.

Sachs, Rainer Kurt and Wu, H-H (2012). General relativity for mathematicians.
Vol. 48. Springer Science & Business Media.

Stevens, Syman (Mar. 2020). “Regularity Relationalism and the Constructivist
Project”. The British Journal for the Philosophy of Science 71.1, pp. 353–
372.

Wald, Robert M (2010). General Relativity. University of Chicago press.
Wallace, David (2019). “Who’s afraid of coordinate systems? An essay on the

representation of spacetime structure”. Studies In History and Philosophy
of Science Part B: Studies In History and Philosophy of Modern Physics,
pp. 125–36.

Weyl, Hermann (1921). “On infinitesimal geometry: relationship with projec-
tive and conformal concepts”. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse 1921, pp. 99–
112. url: https://www.neo-classical-physics.info/uploads/3/4/
3/6/34363841/weyl_-_inf._geom..pdf.

30

https://doi.org/10.1086/732151
http://www.pitt.edu/~jdnorton/papers/Geometries.pdf
http://www.pitt.edu/~jdnorton/papers/Geometries.pdf
https://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/weyl_-_inf._geom..pdf
https://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/weyl_-_inf._geom..pdf


Wise, Derek K. (June 2010). “MacDowell–Mansouri Gravity and Cartan
Geometry”. Classical and Quantum Gravity 27.15, p. 155010. issn: 0264-
9381. doi: 10.1088/0264-9381/27/15/155010. (Visited on 05/16/2022).

31

https://doi.org/10.1088/0264-9381/27/15/155010

	Introduction
	Privileged Coordinates
	Adapted Coordinates for Relativistic Spacetimes
	Recovering Structure from Local Lorentz Charts
	Close
	Defining a Smooth Metric via Privileged Charts
	Defining a Connection via Privileged Charts

