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Abstract: Simpson’s paradox (SP) is a statistical phenomenon where the association between two 

variables reverses, disappears, or emerges, after conditioning on a third variable. It has been 

proposed (by, e.g., Judea Pearl) that SP should be analyzed using the framework of graphical 

causal models (i.e., causal DAGs) in which SP is diagnosed as a symptom of confounding bias. 

This paper contends that this confounding-based analysis cannot fully capture SP: there are cases 

of SP that cannot be explained away in terms of confounding. Previous works have argued that 

some cases of SP do not require causal analysis at all. Despite being a logically valid 

counterexample, we argue that this type of cases poses only a limited challenge to Pearl’s analysis 

of SP. In our view, a more powerful challenge to Pearl comes from cases of SP that do require 

causal analysis but can arise without confounding. We demonstrate with examples that accidental 

associations due to genetic drift, the use of inappropriate aggregate variables as causes, and 

interactions between units (i.e., inter-unit causation) can all give rise to SP of this type. The 

discussion is also extended to the amalgamation paradox (of which SP is a special form) which 

can occur due to the use of non-collapsible association measures, in the absence of confounding.  
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1. Introduction 

Simpson’s paradox (SP), in its most striking form, is a phenomenon where a statistical 

association between two variables X and Y in the entire group (or aggregate data) reverses in every 

sub-group (or disaggregate data). SP also includes cases where the association between X and Y in 

the entire group disappears in each sub-group, as well as cases where an association between X 

and Y appears in each sub-group even if they are unassociated in the whole group. Since we 

typically partition a group based on some third variable of interest Z (e.g., Sex), we may also say 

that SP occurs when the association between X and Y reverses, disappears, or emerges, after 

conditioning on Z. For a recent survey of SP, see Sprenger and Weinberger (2021). 

Two clarifications on the above definition of SP are needed. Firstly, following Hoover 

(2003) and Sprenger and Weinberger (2021), we understand SP primarily as a sample-level 

phenomenon that can be readily observed in statistical data. In this paper, the concept of sample 

association is distinguished from the concept of population (or probabilistic) correlation. Of 

course, if we have a case of SP in which sample associations between X, Y, and Z adequately 

indicate the probabilistic correlations between them, this will be a case of SP defined in terms of 

both association and correlation.5 Secondly, even though we agree that causality plays a key role 

 
4 We thank Xiuyuan An, Holly Andersen, Nancy Cartwright, David Danks, Yichen Luo, Tianqin Ren, Elliott Sober, 

Michael Titelbaum, Anqi Wang, and two anonymous reviewers for their helpful suggestions on earlier versions of this 

paper. 
5 In most cases, we can safely ignore the difference between sample associations and probabilistic correlations. Still, 

there are cases in which it is important that we separate them, as we shall see later in the paper. 
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in understanding many important cases of SP, the definition of SP we adopt in this paper does not 

stipulate that SP must be a causal phenomenon.6 

Probably the most well-known example of SP is the case of graduate admissions at the 

University of California, Berkeley in 1973 (Bickel, Hammel & O’Connell, 1975). It was recorded 

that at the university level, about 44 percent of the males and about 35 percent of the females were 

admitted. This means that being female was negatively associated with being admitted to the 

University of California, Berkeley, which suggests that there might have been discrimination 

against female applicants in the admissions process. However, if we break down the data, we will 

find that, in the majority of the departments, there was no significant bias against female applicants. 

In fact, in a few departments, females were even more likely to be admitted than males. This poses 

the question of whether there was truly sex discrimination that affected the admissions committee’s 

decisions. That is, if we want to identify the existence of sex bias in the admissions process, should 

we look at the university-level data or the department-level data? 

Although SP may seem like a purely statistical or probabilistic oddity, philosophers have 

long recognized its causal roots. Back in the 1980s, SP was posed as an important challenge to 

probability-raising accounts of causality (see, e.g., Cartwright, 1979). In this context, Cartwright 

rightly pointed out that the association between the cause-variable X and the third variable Z is 

essential for the occurrence of SP.7 To avoid SP, she proposed that we measure causal effects 

relative to the so-called ‘causally homogeneous’ populations or reference classes in which there is 

 
6 It has been suggested that SP, in its nature, is a causal phenomenon (e.g., Pearl, 2014; we shall come back to this 

later in the paper). For Pearl, a genuine case of SP must be embedded in a causal context. Apparent cases of SP that 

lack causal context are dismissed by him as not genuinely paradoxical (he calls such cases “Simpson’s reversal”). 

Although we think the distinction Pearl draws between Simpson’s paradox and Simpson’s reversal is well-motivated, 

we also find it somewhat ad hoc to stipulate that SP must be a causal phenomenon. We show in Section 3 that there 

are more principled reasons why cases of SP that lack causal context should be distinguished from those cases that 

have a causal context, without having to draw the distinction by stipulation. 
7 See also Sprenger and Weinberger (2021) for a detailed explanation of why an association between X and the third 

variable Z is necessary for SP to occur. 
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no association between X and Z, since Z can be seen to have been ‘held fixed’ in such homogeneous 

reference classes. However, this proposal, embedded in the probability-raising approach to 

causality, is subject to the approach’s inability to explicitly represent causal structures underlying 

the SP. As early as 1987, Irzik and Meyer had realized the inadequacy of Cartwright’s solution 

and suggested we analyze the causal structure of SP using tools of causal modelling (Irzik & Meyer, 

1987).8 The tool they used is the method of path analysis (invented by Sewall Wright around 1920), 

which is a precursor to the more powerful framework of graphical causal modelling developed 

later by Spirtes et al. (2000) and Pearl (2009). 

Proponents of the framework of graphical causal models propose to analyze SP in causal-

graphical terms (Pearl, 2009, 2014; Pearl et al., 2016; Pearl & Mackenzie, 2018; Spirtes et al., 

2000). Notably, Pearl et al. (2016) assert that they can “fully resolve Simpson’s Paradox by 

determining which variables to measure and how to estimate causal effects under confounding” (p. 

44). For Pearl et al., confounding is to be analyzed in terms of causally interpreted directed acyclic 

graphs (DAGs). Essentially, their proposal is that for all types of SP involving X, Y, and Z, the 

paradox can be resolved by construing the partitioning variable Z as a confounding variable 

relative to a causal DAG over {X, Y, Z}. We will explain this in more details in Section 2 (see 

especially Figure 1 there).  

In this paper, we contend that this causal-graphical analysis of SP, despite offering genuine 

insight, is not complete and cannot fully resolve SP as Pearl et al. have claimed. We acknowledge 

that many important types of SP do arise from confounding; however, we do not think this is a 

universal feature of SP. For one thing, some cases of SP lack causal context, as has been argued 

by Bandyopadhyay et al. (2015). While acknowledging that Bandyopadhyay et al. raise a logically 

 
8 Irzik and Meyer’s (1987) analysis of SP is remarkably farsighted; its core idea is basically the same as Pearl’s 

confounding-based analysis of SP (see the illustrative example they give on p. 513). 
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valid objection against the completeness of Pearl’s causal-graphical analysis of SP, we will 

examine their argument from the perspective of scientific and statistical practice and show that, at 

least from this perspective, it poses no significant challenge to Pearl’s analysis. More importantly, 

we show that even if we narrow down our attention to cases of SP that do need a causal treatment, 

we can still find various types of SP that do not involve confounding of any sort. After carefully 

examining these types of SP, we conclude that SP should be seen as a symptom with many 

aetiologies and there appears to be no unified analysis that can capture all of them. 

The rest of the article proceeds as follows. In Section 2, we first present Pearl’s causal-

graphical analysis of SP and then point out its limitations which are to be further examined in 

subsequent sections. In Section 3, we argue that Bandyopadhyay et al.’s alleged counterexample 

to Pearl’s analysis (i.e., the Marble example) does not constitute a threatening objection to Pearl, 

because the example presupposes strong accidental associations which are unlikely to be 

encountered in ordinary life or scientific practices. Section 4 discusses three cases of SP which all 

require a causal analysis, but Pearl’s analysis does not apply. Specifically, in Section 4.1, we 

discuss a case of SP arising in an evolutionary context due to accidental associations (random 

genetic drift). Section 4.2 discusses a case of SP arising from the use of inappropriate aggregate 

variables as causes, and Section 4.3 discusses a case of SP arising from inter-unit causation 

(illustrated using a non-stationary time series example). Section 5 extends the discussion to a 

generalized version of ‘SP-type’ phenomena known as the amalgamation paradox (AP).9 It has 

been recognized by epidemiologists—but less known by philosophers—that some cases of AP can 

 
9 It is sometimes said that AP is “the most generalized version of [SP]” (Sprenger & Weinberger, 2021), and sometimes 

SP and AP are used as synonyms (as in, e.g., Hernán, Clayton & Keiding, 2011). Admittedly, this use of terminology 

is confusing. To avoid confusion, we make a clear distinction between SP and AP in this paper: AP is defined as a 

broader category than SP, with SP being a special case of AP. This distinction will be important for our discussion in 

Section 5. 



   

   

 

6 

occur without confounding; for this reason, we note that Pearl’s analysis of SP cannot be 

generalized to AP. Section 6 is a brief conclusion. 

2. The scope and limitations of the causal-graphical analysis 

In this article, we focus on Pearl’s (especially, 2014) causal-graphical analysis of SP since, 

to our knowledge, this is the most influential and systematic treatment of SP by far. At the centre 

of his analysis is the framework of graphical causal models. The first thing to note is that although 

Pearl’s analysis of SP is often referred to as the ‘causal analysis’, it is more accurate to call it the 

‘causal-graphical analysis’. This is not merely a verbal issue: while graphical modelling is 

undoubtedly an important tool in causal inference, a graphical model by no means captures 

everything interesting about a system’s causal properties (Cartwright, 2001; Dawid, 2010). 

Directed acyclic graphs (DAGs) are the most often used type of graphical models in causal 

inference. A causally interpreted DAG G consists of a set of vertices, which represent a set of 

causal variables V = {X, Y, Z, …}, and a set of edges, which represent direct causal relations 

between the variables. X is a direct cause of Y (relative to G) in the sense that it is possible to 

change the value of X through some atomic or ideal interventions such that the probability 

distribution of Y will change accordingly, when all other variables in the graph are held fixed by 

interventions (Pearl, 2009; Woodward, 2003). G is directed, which means that all the edges are 

single-headed arrows. We define a causal path between X and Y on G as a path on which the edges 

between X and Y are all directed in the same direction (e.g., X→Z→W→Y). G is also acyclic, which 

means that it contains no causal circle (i.e., causal path that starts and ends with the same variable, 

e.g., X→Z→X). Besides, G and its corresponding joint probabilistic distribution over V are 

assumed to satisfy the causal Markov condition (a modern successor of Reichenbach’s principle 

of common cause). This condition says that for any variable X in V, X is probabilistically 
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independent of every other variable except X’s descendants (i.e., X’s effects), conditional on X’s 

parents (i.e., X’s direct causes). 

DAGs have proven empirically fruitful in representing and analyzing the causal structure 

or data-generating process relevant to a causal investigation. They are particularly suited for 

handling the notorious problem of confounding in causal inference (Pearl et al., 2016; Shrier & 

Platt, 2008).10 The primary task of causal inference in many scientific domains (especially in high-

level sciences such as biology, sociology, epidemiology, etc.) is to identify and estimate causal 

effects. Confounding is an important type of systematic source of error that might occur during 

causal effect estimation. An error is systematic means that its occurrence is not accidental; that is, 

it does not occur by chance. For example, if we use the marginal association between X and Y in 

the observational data to measure the direct effect of X on Y, we may misestimate the effect when 

there are indirect causal paths between X and Y that bring about indirect effects of X on Y. For 

Pearl, such kind of discrepancy should be assessed using DAGs which can visually represent all 

the relevant causal assumptions. With these causal assumptions and the help of certain graphical 

rules (e.g., the back-door criterion), we can then eliminate confounding by adjusting for or 

conditioning on a (sufficient) set of confounding variables (Pearl et al., 2016). 

For our purposes below, it suffices to focus on the estimation of the direct effect of X on Y 

relative to a pre-specified DAG on {X, Y, Z}. Relative to a DAG on {X, Y, Z}, our estimation of 

the direct effect of X on Y will be confounded if and only if any of the following situations obtains: 

(a) we fail to adjust for Z when Z is a common cause of X and Y, (b) we mistakenly condition on 

Z when it is a common effect of X and Y (here Z is also called a ‘collider’ and this type of 

 
10 For various reasons, the term ‘confounding’ has been used in confounding ways (pun intended). For example, 

sometimes ‘confounding’ is used to refer merely to bias due to lurking common causes (cf. Hernan et al. 2011). Our 

usage here is much broader, following Pearl, Glymour, and Jewell (2016). On this broad usage, a confounding variable 

may also be a collider or a mediator; see our discussion below. 
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confounding is also known as ‘collider bias’), or (c) we fail to adjust for Z when Z is a mediator 

between X and Y (i.e., Z is on an indirect causal path between X and Y). Figure 1 illustrates these 

three cases of confounding with DAGs. 

 

   
Figure 1 Three possible cases of confounding in the estimation of the direct effect of X on Y. 

 

Consider a concrete example. If we are interested in the effect of Paxlovid pills in reducing 

deaths from COVID-19, we cannot simply compare the death rate in a group of COVID-19 patients 

who took the pills with the death rate in another group who did not. This estimation of the drug’s 

effectiveness is confounded since patients at a higher risk of dying from COVID-19 are also much 

more likely to receive the pills. In other words, risk factors for Covid-19 such as age or chronic 

diseases, if unadjusted for, will lead to confounding (of type (a) mentioned above) in the effect 

estimation. 

Pearl (2014) suggests that we use DAGs to analyze causal structures that are at work behind 

various cases of SP. In his analysis, SP is diagnosed as a peculiar consequence of confounding. 

The basic idea is the following. The reason we find SP ‘paradoxical’ is that we think how X (e.g., 

Sex) affects Y (e.g., Admission) should not depend on the level at which the influence is measured. 

If the associations between X and Y in the large group and in the sub-groups disagree with each 

other, they cannot both indicate the ‘true’ effect of X on Y—at least one of the associations must 

be ‘spurious’. For it violates our causal intuition to say that depending on the way we look at the 
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data, the applicant’s sex can both influence, and not influence, admissions. Pearl’s key insight is 

that the kind of spurious association that leads to SP should be seen as resulting from confounding. 

If we can eliminate the confounding responsible for a case of SP (assuming that the relevant causal 

structure is known), we will obtain an unconfounded estimation of the true effect of interest. The 

paradoxicality and counter-intuitiveness of SP will then be explained away. 

Pearl (2014) identifies a group of causal structures that can give rise to SP, together with a 

group of causal structures that cannot. Here we consider one example representative of each type. 

First, consider the DAG in Figure 2a, which depicts the putative causal structure responsible for 

the example of Berkeley’s graduate admissions.11 Note that there are two causal paths from Sex to 

Admission, which means that, relative to this DAG, Sex is both a direct and an indirect cause of 

Admission. This type of causal structure is prone to generating SP, because the causal influence 

that Sex has on Admission along the direct causal path and the indirect one could be in opposite 

directions. 

 

  
 

Figure 2 A comparison of a causal structure that can generate SP and a causal structure that 

(allegedly) cannot generate SP. 

 

 
11 This causal graph is adapted from Pearl and Mackenzie (2018, p. 312, Fig. 9.4). Pearl and Mackenzie also considered 

more complicated causal structures, but these complications are not essential for our discussion here. 
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More specifically, Sex will have a direct effect on Admission if sex bias does exist in the 

admissions process (e.g., being female causes one to be discriminated against in this process).12 

At the same time, one’s sex may influence one’s department choice, which can further affect one’s 

chance of being admitted by the university because some departments are harder to get in than 

others. Thus, Sex also has an indirect effect on Admission, which is mediated by Department. In 

this case, the association between Sex and Admission in the university-level data, without adjusting 

for Department, gives us an estimation of the sum of the direct and indirect effect (i.e., the total 

effect) of Sex on Admission. To examine whether there is sex bias against female applicants—that 

is, whether Sex has a direct effect on Admission—we should instead look at the association 

between Sex and Admission when Department is adjusted for, given that the decision to admit an 

applicant was processed within each department. In other words, we should rely on the association 

between Sex and Admission in the department-level data to infer whether female applicants were 

discriminated against in the admissions process. If one tries to identify sex discrimination using 

university-level data, the estimation will be confounded. 

In contrast, the causal structure in Figure 2b is claimed by Pearl to be unable to give rise to 

SP. His reason is that, in this DAG, Z cannot bring about any of the three aforementioned types of 

confounding: Z is not a common cause, a collider, or a mediator. Given the causal Markov 

condition, the DAG implies that X and Z are probabilistically independent. Under the assumption 

that probabilistic independence implies statistical independence, X and Z should be found 

unassociated in the data. It is this assumed absence of association between X and Z that justifies 

Pearl’s claim that SP will not arise for this DAG. However, this assumption does not always hold. 

It is still possible that X and Z, despite being causally and probabilistically independent, are 

 
12 Note that the direct effect of Sex on Admission only reflects possible sex biases during the admissions process. This 

cannot tell us anything about structural sexism. 
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accidentally associated in the data we collected, especially when the sample size is small; in such 

cases, we may still encounter SP in the absence of confounding. Fortunately, this type of situation 

is unlikely to arise in sufficiently large samples. Additionally, note that both associations arising 

from chance and associations resulting from confounding are ‘spurious’ in the sense that they do 

not reflect true causal effects. The difference between them, however, is that in statistical practices, 

the latter is much more robust and common. This is also why Pearl simply disregards the possibility 

of accidental associations in his discussion. We will come back to these points in Section 3. 

Undoubtedly, Pearl’s causal-graphical analysis of SP contains genuine insight and covers 

a broad range of cases of SP. That said, we believe this analysis is inadequate in important ways. 

His analysis focuses on those cases of SP in which the associations involving X, Y, and Z are 

supposed to be explained by positing an underlying causal structure over {X, Y, Z}, represented 

using a DAG. However, it is well-known that DAGs make certain assumptions about the causal 

structures they represent which do not necessarily hold in practice.13  In particular, a standard DAG 

presupposes at least two things. Firstly, the causal variables have been well-chosen. Poor choices 

of variables, for instance, using variables that are inappropriately defined or logically connected, 

may bring trouble to causal inference (see Woodward, 2016). Secondly, an association between 

two variables can always be causally explained, either as a result of genuine causation or as that 

of confounding.14 As we shall see later, these assumptions, while making DAGs expedient to use, 

may not always hold. 

 
13 Broadly speaking, our point here aligns with Spanos’ claim that Pearl’s “causal explanation of the paradox largely 

ignores some of these empirical issues by viewing it as a purely probabilistic conundrum … when models are estimated 

using actual data, one needs to secure the validity of the model assumptions vis-a-vis the data before any causal 

information can be utilized reliably” (Spanos, 2021, p. 608). In other words, investigators run the risk of introducing 

unwarranted causal information into the model when those model assumptions are not examined for their validity. 
14 It must also be acknowledged that these assumptions may be made by other approaches to causal inference as well. 

For example, that causal variables should be in some sense well-chosen is a prerequisite not just for graphical causal 

modelling but also for the potential-outcomes approach to causal inference. 
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It follows that Pearl’s causal-graphical analysis of SP will not apply in either of the 

following two types of cases: 

 

Case 1: The occurrence of SP does not require the existence of any causal 

relationships among the relevant variables (i.e., X, Y, and Z). That is, none of the 

associations between X, Y, and Z in this case of SP needs to be generated by 

causation among these variables. To make sense of this type of SP, causal 

information is irrelevant. 

 

Case 2: SP occurs in a context in which the effect of X on Y is queried, prompting 

an investigation into the causal story underlying SP. Moreover, this causal story is 

required for explaining away SP in this case. However, the presence of this type of 

SP does not result from confounding; its root lies somewhere else. 

 

The sort of counterexample to Pearl’s analysis in Case 1 has been extensively examined 

by Bandyopadhyay et al. (2015), which will be the focus of our discussion in the next section. As 

Bandyopadhyay et al. argue, at least in some cases, SP need not be analyzed in causal terms. We 

agree with them that their counterexample shows that Pearl’s analysis cannot adequately account 

for all possible instances of SP. Nevertheless, we believe it is equally important to explore 

counterexamples in the line of Case 2. For one thing, while Bandyopadhyay et al.’s 

counterexample, as an instance of Case 1, constitutes a logically valid objection to Pearl’s analysis, 

we believe that it is not a practically strong challenge. As we shall explain, the occurrence of their 

counterexample is extremely rare in ordinary and scientific contexts. In our view, it is 
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counterexamples in the line of Case 2 that offer a stronger ground against the adequacy of Pearl’s 

analysis. 

For another, Case 2 has received limited attention in the literature, although the question 

of whether there are causal grounds of SP that do not involve confounding and thus are not subject 

to Pearl’s analysis is evidently important. Pearl’s causal-graphical analysis regards confounding 

as an indispensable condition for SP and considers confounding adjustment as sufficient for 

resolving SP. This, if true, implies that practitioners of causal inference need not worry about 

possible instances of SP if no confounding is present. In this paper, we show that this is not the 

case. SP can arise in causal contexts where confounding is absent. In Section 4, we offer three 

cases of SP that fall under Case 2. As we shall see, for all three cases, although causal information 

plays a key role in explaining away the paradox, none of them involves confounding. 

3. Simpson’s paradox without causation? A statistical-practice perspective 

Bandyopadhyay et al. (2011, 2015) (and more recently, Sarkar & Bandyopadhyay, 2021) 

defend a non-causal, “logic-based” analysis of SP. According to them, at least in some cases, SP 

is fundamentally an arithmetic oddity, whose nature has nothing to do with causality. In their view, 

SP “involves the reversal of the direction of a comparison or the cessation of an association when 

data from several sets are pooled” (Bandyopadhyay et al., 2015, p. 13; note that this is essentially 

equivalent to the definition of SP we give at the beginning of this paper). Importantly, 

Bandyopadhyay et al. emphasize that the satisfaction of these conditions need not presuppose any 

causal relations among X, Y, and Z. Moreover, causal information is also unnecessary for 

explaining why data patterns satisfying these conditions can give us a feeling of puzzlement (and 

thus be regarded as “paradoxical”). 
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Therefore, Bandyopadhyay et al. claim, it is not the case that SP can only be explained 

away by positing causal relations among the relevant variables. Note that they do not deny that 

sometimes we need to analyze SP causally. However, “SP has to do with causality only if we ask 

the what-to-do question”—the question of “What should one do when confronted with a typical 

case of the paradox?” (Bandyopadhyay et al., 2015, p. 14; emphasis added). In other words, the 

causal structure underlying an instance of SP becomes relevant only in circumstances where one 

is considering what decision should be made in view of the associations exhibited in this instance 

of SP. For example, when we encounter a situation where it appears that the effect of a treatment 

reverses after conditioning on sex, the question of how such ‘contradictory’ evidence should guide 

the use of the treatment arises. In cases where no such decision-making concern arises, according 

to Bandyopadhyay et al., there would be no need to understand SP through a causal lens. 

 

Red Marble Rates Bag 1 Bag 2 Total 

Big Marbles 180/200 = 90% 100/300 = 33% 280/500 = 56% 

Small Marbles 480/600 = 80% 10/100 = 10% 490/700 = 70% 

 

Table 1 The Marble example with fictitious data (adapted from Bandyopadhyay et al., 2015, 

Table 5). 

 

Bandyopadhyay et al. use the Marble example to illustrate their point. Suppose there are 

two bags of marbles with different sizes and colours. Table 1 reports how many marbles of a 

specific size-colour pair there are in each bag. It is observed that within both bags (Bag 1 and Bag 

2), big marbles are more likely to be red, compared with small marbles. Given this, it seems 

reasonable to expect that the same pattern will hold once we merge all the marbles together. 

However, this expectation cannot be fulfilled: the association between Size and Colour reverses in 

the aggregate data. We find this result surprising, peculiar, or perplexing because it violates our 
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expectation. According to Bandyopadhyay et al., “[t]here are no causal assumptions made in this 

example” regarding how Size, Colour, and Bag are related to one another (Bandyopadhyay et al., 

2015, p. 19). This implies that no confounding can be appealed to in accounting for why this 

instance of SP occurs. Granted that this is the case, Bandyopadhyay et al. contend that at least in 

this example, SP has a purely arithmetic root, which implies that “SP is not basically causal” (p. 

13). Thus, Pearl’s causal-graphical analysis cannot be a universal treatment of SP. 

We agree that Bandyopadhyay et al.’s Marble example is a genuine case of SP: the example 

does involve the kind of association reversal characteristic of SP, and therefore, conforms to the 

definition of SP we give at the beginning of this paper.15 In addition, we agree that the example 

does stimulate our intuitive perplexity and that the perplexity can be explained away without 

invoking any causal postulates involving the relevant variables. Indeed, the example is designed 

in this way in order to constitute a counterexample to Pearl’s causal-graphical analysis. 

Nevertheless, we find the Marble example inadequate in an important sense. From a 

statistical-practice perspective (as opposed to a purely ‘logic-based’ or ‘arithmetic’ one), this 

example presupposes a highly uneven distribution of marbles in the two bags. In particular, in Bag 

1, ¾ of the marbles are small, whereas in Bag 2, ¾ of the marbles are big, which means there is a 

strong association between Size and Bag. This distribution of the marbles is extremely rare from 

a statistical practice perspective. This is because, assuming that the causal Markov condition is 

satisfied, these variables are not expected to be found highly associated in almost all the data we 

 
15 Pearl would give a different response to the Marble example: he would think that this is not a genuine case of SP at 

all but merely a case of Simpson’s ‘Reversal’ (see footnote 6). For Pearl, it is essential for a genuine case of SP that it 

violates our causal intuition. If we understand him correctly, he seems to think that the violation of the causal intuition 

(as we talked about in Section 2) should be a defining feature of SP. Although we agree with Pearl that cases of SP 

that violate this causal intuition are the exemplars of SP, and we also agree on the explanatory significance of this 

causal intuition, we hesitate to make this feature definitional of SP. After all, the definition of SP we give in Section 

1—which is also widely used in the literature—is not formulated in causal terms. Besides, many of our concepts have 

both typical and atypical cases. The Marble example seems to be better conceived as a less typical case of SP. 
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may encounter in practice (given the relatively large sample size in this example) unless we posit 

causal connections among them. In fact, under the hypothesis that there is no causation (and thus 

no correlation) between Size and Bag in the Marble example, the probability of observing a 

difference in the proportions of big marbles between the two bags is 50% (i.e., 300/400 – 200/800) 

or more is lower than 0.000001: it happens less than once in a million times. Similarly, the strong 

association between Colour and Bag presented in Table 1 is also extremely rare, assuming that 

Colour and Bag are not correlated. 

Note that Bandyopadhyay et al. cannot explain the strong association between Size and 

Bag and that between Colour and Bag in Table 1 by appealing to a biased process of 

disproportionally sorting more small marbles and red marbles into Bag 1. This is because, in that 

case, the Marble example would require a causal analysis, since this biased sampling process is 

actually an instance of collider bias (see Section 2 for more on collider bias). That is, if the size 

and colour of a marble affect which bag it will be put into, then Bag will become a collider whose 

value is affected by both Size and Colour. Now that a causal structure behind the data has been 

introduced, the Marble example will no longer be a counterexample to Pearl’s causal-graphical 

analysis. 

Therefore, the associations in the Marble example can only be ‘chancy’ or accidental in 

the sense that they are a result of very rare random fluctuations in the process of sorting marbles 

into bags. These accidental associations, especially the one between Size and Bag, play a key role 

in generating SP in this example: if we were to render the proportions of big marbles in both bags 

roughly the same, SP would not occur. The fact that the occurrence of SP in the Marble example 

depends on strong accidental associations implies that, statistically speaking, this kind of SP (Case 

1) is far less common or robust, compared to typical cases of SP such as the Berkeley admissions 
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example. We have very little reason to expect that data patterns similar to the Marble example will 

be ever observed in statistical practice. By contrast, in the Berkeley example, there is a causal 

structure that robustly generates associations among Sex, Department, and Admission. This causal 

structure may also be found in other years or places. For this reason, we may expect to find similar 

occurrences of SP in the admissions processes in the years after 1973 at UC Berkeley or other 

universities. 

We think Bandyopadhyay et al.’s discussion of SP does not give due emphasis to the fact 

that instances of SP generated by robust causal structures and those generated by chancy 

fluctuations are not on a par with respect to their importance in scientific practice. In most contexts, 

scientists collect and analyze data in order to reveal underlying causal structures (or for other 

causally relevant goals, including explanation, prediction, understanding, and control). 16  The 

connection between a causal structure and the associations it robustly generates allows scientists 

to infer the former from the latter. However, when associations seem to provide ‘contradictory’ 

evidence for the underlying causal structure, as we saw in the Berkeley admissions example, it can 

be particularly puzzling; this is why SP as a statistical phenomenon has received so much scientific 

attention. 

Importantly, since accidental associations may mislead causal inference, scientists will take 

various measures (e.g., collecting more data, and conducting significance tests) in attempts to 

reduce the possibility that the evidence they observe comes from an accidental association in a 

particular dataset. These measures enable scientists to quickly discover and discard, to their best 

 
16 Notably, there are data-generating processes that are non-causal but remain scientifically significant. For example, 

nonlocal quantum correlations that violate Bell inequalities are usually considered not subject to a causal interpretation 

(cf. Myrvold et al., 2024). Despite this, these correlations have been robustly observed in well-designed Bell 

experiments, which is why they are of great scientific significance. See Frisch (2020) for a brief survey of this issue; 

see Wood & Spekkens (2015) and Näger (2022) for recent discussions. However, because the literature on SP has 

almost exclusively focused on high-level sciences where quantum effects can be safely ignored, we will also set aside 

quantum correlations in this paper. We thank an anonymous reviewer for suggesting this point. 
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knowledge, accidental associations due to chancy fluctuations in sampling. For this reason, SP 

arising from accidental associations is of minimal scientific relevance.17 Therefore, we claim, it is 

mainly through a causal lens that scientists come to see cases of SP as intellectually intriguing and 

practically significant. In contrast, although the Marble example successfully demonstrates that 

Pearl’s causal-graphical analysis is not a universally valid treatment of SP, its dependence on an 

extremely rare random fluctuation precludes it from being a scientifically and practically 

significant counterexample. 

Lastly, we disagree with Bandyopadhyay et al. (2015) that causality only matters when 

decision-making questions are asked regarding a case of SP. One may still want to conduct a causal 

inquiry about how an instance of SP is generated when one’s goal is purely epistemic, such as 

explanation or understanding. It is quite often that people scrutinize data merely for the sake of 

gaining an understanding of its underlying data-generating process, without immediate concern 

for decision-making. For instance, one might have a purely epistemic interest in the historical 

question of whether there was truly sex bias in Berkeley’s 1973 graduate admissions process, even 

if she does not want to make any decisions. 

Interestingly, we do find a type of SP that arises due to an accidental association between 

X and Z, and at the same time, has a more visible scientific significance. Unlike the Marble example, 

however, this new type of SP needs to postulate causal relations among the relevant variables. So, 

these two types of SP, despite both relying on accidental associations, are importantly different: 

 
17 Note that we are not denying the value of investigating ‘outliers’ or ‘exceptional’ data points. As pointed out by an 

anonymous reviewer, there are ample examples in medicine where paying attention to ‘exceptional responses’ to a 

treatment in clinical trials led to important medical progress (Mukherjee, 2015). However, as Mukherjee also made 

clear, the rarity of these cases is due to complex interactions between numerous causal factors. These factors are of 

scientific interest because if we can discover and control these factors, we will be able to robustly generate these 

‘exceptional’ cases. Therefore, they are not ‘chancy’ fluctuations in the statistical sense which are not generated by 

any interesting causal factors. 
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one is situated in a causal context whereas the other need not be. This is why we will leave the 

discussion to Section 4. 

4. Simpson’s paradox with causal contexts but beyond confounding 

This section aims to demonstrate that even among cases of SP that are embedded in a causal 

context, some of them cannot be analyzed as a consequence of confounding. Note that we are not 

saying that these cases should not be analyzed causally, nor are we saying DAGs are no longer 

useful for analyzing them. Our claim is specifically that these cases need to be treated in a careful 

and nuanced manner which goes beyond what Pearl’s (2014) analysis can offer. 

4.1. Accidental associations 

The previous section discussed a form of SP free of causal context, as illustrated using the 

Marble example. In this section, we shall see that similar to the Marble example, accidental 

associations can also play a key role in generating SP when the instance of SP is situated in a 

causal context. More specifically, an accidental association between X and Z can generate SP over 

{X, Y, Z} when they form a causal structure like the following: X → Y ← Z (see Figure 2b). Recall 

that in Section 2, we noted that this causal structure cannot generate SP, only on the assumption 

that there is no accidental association between X and Z. But if X and Z are, in fact, accidentally 

associated, SP can still arise in this causal structure. 

Consider the following example (see Table 2; adapted from Sober, 2024, p. 44) about how 

being selfish or altruistic may affect the expected number of offspring of an individual (i.e., fitness). 

There are two groups, A and B, each containing two traits: being selfish, or being altruistic.18 A 

trait’s fitness in a group is defined by how many offspring individuals of the trait in that group 

produce on average. For example, in group A, there are 200 selfish individuals, and they have 800 

 
18 For the sake of simplicity, let us assume asexual reproduction, no mutation, and no migration. 
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offspring in total, so the fitness of selfishness in group A is 800/200=4. As shown in the table, 

being selfish is positively associated with fitness in both group A and group B. However, the 

association between selfishness and fitness reverses once the two groups are analyzed as a whole 

(i.e., as a metapopulation). This is paradoxical if we interpret fitness as representing the causal 

propensity of a trait in producing offspring. 

 

Fitnesses Group A Group B Total 

Selfish 800/200 = 4 1600/800 = 2 2400/1000 = 2.4 

Altruistic 2400/800 = 3 200/200 = 1 2600/1000 =2.6 

 

Table 2 A hypothetical example of SP involving the fitness of being selfish or altruistic.  

 

The paradoxicality of this example is primarily due to the existence of a very strong 

association between variables Selfish and Group: in our example, group A is dominantly altruistic 

whereas group B is dominantly selfish. Without this association, SP would not be possible. But 

where does this association come from? It might be because having a particular trait causes one to 

be in a certain group—making this case of SP similar to the Berkeley example.19 But what we 

want to show below is that the association need not necessarily come from a causal source. 

 

 

Figure 3 A causal graph for the SP involving Selfish, Group and Offspring, without positing a 

causal relation between Selfish and Group. 

 
19 This situation also seems to be what Sober (2024, Sect. 3.2) has in mind. 
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Even if we assume that Selfish and Group are causally independent (as depicted in Figure 

3Figure 3), we may still be able to accidentally observe a strong association between them. 

Regarding our example specifically, such a strong association may have resulted from genetic drift, 

such as the founder effect (Dobzhansky & Pavlovsky, 1957). That is, by pure chance, two 

relatively small groups of individuals may happen to have highly uneven distributions of altruism 

and selfishness upon being separated from the larger group. Put differently, the association 

between Selfish and Group in the above example can be seen as a result of random fluctuations. 

Clearly, this chancy association is not a result of confounding, since Selfish and Group 

have been assumed to be causally independent. Still, this accidental association can mislead causal 

effect estimation and lead to SP. Therefore, if we are to estimate the fitness of selfishness reliably, 

we need to first make sure that genetic drift does not generate a significant accidental association 

between Selfish and Group in the data. 

4.2. Aggregate variables 

An important type of scenario that can supply ‘paradoxical’ associations needed for SP but 

cannot be analyzed away in terms of confounding involves the use of aggregate or summed 

variables as causes. An aggregate variable is one that can be written as the sum of two or more 

other variables (e.g., X=X1+X2). It is known that an aggregate variable may have an ambiguous 

effect on an outcome of interest, if the variables it sums up have heterogenous effects on the 

outcome (Spirtes & Scheines, 2004). A well-known example of such kind of aggregate variable is 

total cholesterol (TC). TC consists of both low-density lipoprotein (LDL) and high-density 

lipoprotein (HDL), which have opposite effects on cardiovascular diseases (CVD). The ambiguity 

in the effects of such kind of aggregate variables, as we shall see, opens a door for SP. 
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Imagine that we have a group of patients in which levels of total cholesterol are 

unassociated with the incidence of cardiovascular diseases, which suggests the prima facie result 

that TC has no effect on CVD. However, if we condition on levels of HDL, surprisingly, TC 

becomes positively associated with CVD (i.e., a higher level of TC is associated with a higher CVD 

rate, conditional on HDL). So, a positive association emerges upon conditioning the third 

variable—making this a case of SP. Table 3 represents the results of a fictitious dataset for this 

example. It shows that CVD is unassociated with levels of TC in the entire study group (50% vs. 

50%). However, within both sub-groups, having a high level of TC seems to make the patients 

more likely to develop cardiovascular disease. How should we explain this paradoxical result? 

 

CVD Rates Low HDL High HDL Total 

Low TC 40/70 = 57.1% 20/50 = 40% 60/120 = 50% 

High TC 80/130 = 61.5% 120/270 = 44.4% 200/400 = 50% 

 

Table 3 Fictitious data for the incidence of cardiovascular disease among sub-groups (with low 

and high levels of HDL) and among the whole group. 

 

Due to the non-causal (specifically, logical) relationship among TC, HDL, and LDL (i.e., 

TC=LDL+HDL), including these three variables in a single causal graph may cause trouble. So, to 

say the least, caution is needed if one attempts to provide a graphical analysis of the above example. 

In particular, it is helpful to represent non-causal relationships using dashed arrows so as to 

distinguish them from causal relationships (see Figure 4). Besides, in the DAG we draw, there is 

no need to draw a causal arrow from TC to CVD, given that all the work TC appears to be doing 

is in fact done by LDL and HDL. 
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Figure 4 A ‘mixed’ DAG containing both non-causal relations and causal relations. 
 

However, the sort of mixed graph in Figure 4 is nothing like a standard DAG. It is widely 

acknowledged and observed in causal inference practice that variables in a standard DAG should 

not stand in non-causal relationships. Therefore, there is no standard DAG representation for the 

causal structure underlying the type of SP we are discussing here. In particular, HDL in Figure 4 

is not a confounding variable since it is not even a cause of TC. This means that Pearl’s causal-

graphical analysis cannot handle this type of SP. 

How should we explain away and avoid this type of paradox then? The answer is simple: 

TC should not be used as a cause of CVD to begin with, because its ‘effect’ on CVD is ambiguous. 

Instead, we should use HDL and LDL as causes when investigating the incidence of cardiovascular 

diseases. So, it turns out that the genuine source of SP in this case is not confounding but a bad 

choice of causal variables, that is, the use of inappropriately summed variables as a cause. 

4.3. Inter-unit causation 

Following the broader point behind Section 4.2, we now present another type of SP that 

can arise due to inappropriate variable choice instead of confounding. This type of SP has its root 

in having chosen a set of variables which are defined on a group of units that causally interact with 

each other. This phenomenon is known as inter-unit causation (Spirtes et al., 2000, p. 296; J. 

Zhang & Spirtes, 2014) or interactions among units (C. Zhang et al., 2022). As we shall see, inter-
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unit causation may create an association between two causally independent variables, giving rise 

to SP. This type of SP is not due to confounding, and thus falls outside of Pearl’s (2014) analysis; 

a more nuanced causal analysis is needed. 

Such type of SP can be found, for example, in non-stationary time series data, a series of 

data whose statistical properties (e.g., mean) depend on the time when the data are collected.20 Let 

us consider a concrete example (adapted from Hoover, 2003), which we call ‘Height&Math’: 

 

Height&Math: Choose a class of 20 six-year-old children in the US and a class of 20 six-

year-old children in China. Each year, we first measure the heights of the US children 

(Height) and order the data in the alphabetic order of their last names, and then measure 

the mathematical knowledge of the Chinese children (Math) using a standard diagnostic 

test, and order data in the same way.21 Collect the data annually for six years. 

 

In every single year, a US child’s height and a Chinese child’s mathematical knowledge 

are expected to be unassociated. The fact that a US child is of a certain height (e.g., 43 inches) 

should indicate nothing about what score the counterpart Chinese child earns on the math test, and 

vice versa. Yet, over the years, as the US children grow taller, the Chinese children also learn more 

math in school. As a result, in the data of all six years, both Height and Math will increase 

monotonically, producing a strong association between them. As illustrated in Figure 5, by treating 

the six years as a whole group and every single year as a sub-group, we see that an association 

 
20 Perhaps the most well-known example of this type is Sober’s (2001) Venetian sea levels and British bread prices 

example (cf. Hoover, 2003; Steel, 2003). However, it is not easy to intuitively demonstrate why Sober’s example is a 

case of SP: when we fix the year in which sea levels and bread prices are measured, the sample size reduces to 1, 

which makes it hard to show that the association between them disappears when conditioning on year. 
21 It is not a necessary feature of this example that the data be ordered by children’s names. As long as we choose an 

ordering that is ‘random’ and use it consistently throughout the data collection process, SP can arise. 
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absent at the sub-group level (Figure 5a) emerges at the group level (Figure 5b), making this 

example a case of SP. 

 

  

Figure 5 An illustration of the Height&Math example. 

 

Looking at this example, one might be tempted to posit Year as a common cause; doing so 

would allow this SP to be explained in terms of confounding. However, we believe this idea cannot 

stand scrutiny. Here, we agree with Yule (1926) and Steel (2003)—as well as J. Zhang and Spirtes 

(2014)—that it is ill-motivated to treat time as a cause. We are not saying this is uncontroversial, 

but given this broad consensus in the literature, the burden of proof is on those who think otherwise. 

The graph in Figure 6a is, therefore, not an appropriate representation of the causal structure behind 

the Height&Math example. 
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Figure 6 Two DAGs for the Height&Math example. 

 

We believe the best diagnosis of how SP arises in this example is as follows (see Spirtes et 

al., 2000, p. 296; J. Zhang & Spirtes, 2014). So far, we have used ‘height’ and ‘mathematical 

knowledge’ as two ordinary random variables, which are measured over several years on the 

chosen children. However, a child’s height (or math knowledge) in one year is causally relevant 

to the child’s height (or math knowledge) in the next year, because the child in one year grows (or 

learns) based on the last year’s height (or math knowledge). The original unit choice and variable 

choice thus induce ‘inter-unit’ causation, meaning that there is a causal relation between how one 

unit instantiates the relevant properties and how another unit instantiates them. In other words, the 

statistical units selected for analyzing a set of variables causally interact with each other. This 

creates trouble for standard statistical and causal analysis because inter-unit causation leads to the 

violation of the IID (independent and identically distributed) assumption in the sampling process. 

Causal analysis, built upon statistical analysis, is designed to capture intra-unit causation, not 

inter-unit causation (J. Zhang & Spirtes, 2014). 

Given the above diagnosis, the solution is to redefine height and mathematical knowledge 

as two series of variables: Heightt = {Height1, …, Height6} and Matht = {Math1, …, Math6}, 

where each variable is indexed to a year. This new unit choice and variable choice induces no 

inter-unit causation, and also successfully captures the underlying causal story. The resulting DAG 

is shown in Figure 6b, which represents increases in height and mathematical knowledge using 

two parallel but separate causal chains. Comparing Figure 6b against Figure 6a makes it clear that 

“[i]t is the inter-unit causation that propagates an initial coincidence into [an] association”, as J. 

Zhang and Spirtes (2014, p. 247) summarize. 
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In our opinion, we need a DAG at least as complex as the one in Figure 6b to accurately 

depict the causal structure behind the kind of SP involved in the Height&Math example, and in 

general, any SP due to inter-unit causation.22 Note this causal analysis has gone far beyond what 

Pearl’s analysis can offer. Rather than simply drawing a DAG among the three given variables 

(i.e., Height, Math and Year) involved in the case of SP in the Height&Math example, what the 

new analysis demands is a redefinition of the variables and a reselection of units such that inter-

unit causation is avoided. 

5. The amalgamation paradox and the non-collapsibility of odds ratio 

All cases of SP discussed in the previous two sections share the common feature that the 

X-variable is associated with the partitioning variable Z (e.g., Size is associated with Bag; Selfish 

with Group, etc.). As mentioned earlier, the presence of this association is necessary for SP to 

occur. However, if we shift our focus from SP to its more generalized form, the amalgamation 

paradox (AP), the association between X and Z would no longer be necessary.23 

AP is the statistical phenomenon in which the marginal or unconditional association of two 

variables, X and Y, falls outside the range of the conditional associations with respect to a third 

variable, Z. To illustrate this definition, consider an example from Greenland (2021). Suppose that 

a study on a medical treatment with high mortality has 50 males and 100 females in both the 

treatment and the control group. The two groups are relatively homogeneous in their medically 

relevant features such that no factor other than the treatment and sex can account for the difference 

 
22 Of course, this more complicated DAG is still a simplified representation of the true causal structure. For example, 

a child’s current math knowledge is influenced by not only her math knowledge in the previous year, but also the 

amount of education she received during the year. Representing these extra causes will make the DAG more complete 

and more accurate, but will not affect our conclusion that time should be understood as what the variables are indexed 

to, rather than a causal variable on its own. 
23 As noted by Samuels (1993, p. 84), AP was first identified and defined by Good and Mittal (1987) who pointed out 

that SP implies AP: all cases of SP are cases of AP. See also Sprenger and Weinberger (2021) for a definition of AP 

and its relationship with SP. 
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in outcomes between the two groups. That is, in this example, Treatment is unassociated with Sex, 

and Sex is not a confounder (but an effect modifier; more below). Results show that among treated 

patients, 45 of 50 males and 30 of 100 females died, whereas, among untreated patients, 30 of 50 

males and 10 of 100 females died (see Table 4). 

 

 Males Females Total 

Treated Untreated Treated Untreated Treated Untreated 

Totals 50 50 100 100 150 150 

Died 45 30 30 10 75 40 

Risks/Proportions 0.90 0.60 0.30 0.10 0.500 0.267 

Risk differences 0.30 0.20 0.233 

Odds 9/1 3/2 3/7 1/9 1/1 4/11 

Odds ratios 6.0 3.9 2.75 

 

Table 4 This table demonstrates a case of AP relative to the odds ratio (OR) measure: the 

marginal association between Treatment and Death in the total group is 2.75, which is smaller 

than conditional associations in both males and females (6.0 and 3.9 respectively). For 

comparison, AP does not arise when risk difference is the association measure. 

 

The above results indicate that the medical treatment has effects of different magnitudes 

on mortality among males and females. This is true regardless of whether the effect measure is 

odds ratio (OR) or risk difference—both are widely used in epidemiology. But there is something 

counterintuitive about OR in the above example. When OR is the chosen measure, we have 

OR(Treatment, Death) < OR(Treatment, Death | Sex = Female) < OR(Treatment, Death | Sex = 

Male). This implies that the marginal association between Treatment and Death cannot be 

expressed as a weighted average of the two conditional associations with respect to Sex. That is, 

the marginal association falls outside the range of the conditional associations; this makes the 

example an instance of AP. Note that what gives rise to AP in the above example is the use of the 
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odds ratio measure, which has been known to be non-collapsible (Hernán et al., 2011).24 By 

contrast, no such peculiarity is present when the chosen measure is risk difference, which is a 

collapsible measure, meaning that on this measure, the marginal association falls between the 

conditional associations.25 

More broadly speaking, the peculiarity of AP lies in the fact that it violates our expectation 

that the association between two variables at the level of the entire group should be bounded by 

their conditional associations in the sub-groups (Hernán et al., 2011). This intuition comes from 

the seemingly plausible presupposition—which is not always true—that the marginal association 

should be a weighted average of the conditional associations. As a special case, SP violates a 

categorical or qualitative version of this intuition; namely, we expect that if two variables are 

conditionally unassociated or positively/negatively associated in each sub-group, they should 

likewise be unassociated or positively/negatively associated in the entire group. So, in cases of SP, 

not only the marginal association between X and Y falls outside the range of associations 

conditional on Z, but the marginal and the conditional associations are in opposite directions (e.g., 

the former is positive whereas the latter are non-positive). This is why SP, defined as association 

 
24 See also Cummings (2009) for more discussions on the non-collapsibility of odds ratios. 
25 The notion of (non-)collapsibility used here refers primarily to a property of an association measure. A measure, m, 

of the association between X and Y is collapsible across Z, if and only if the measured marginal association m(X, Y) 

can be expressed as a weighted average of the measured conditional associations, m(X, Y | Z) (cf. Pearl, 2009, p. 193; 

Huitfeldt et al., 2019). Risk difference, for instance, is a collapsible association measure in this sense. In contrast, odds 

ratio is a non-collapsible measure because there are datasets (such as the one represented in Table 4) where OR(X, Y) 

cannot be expressed as a weighted average of OR(X, Y | Z). One can also use collapsibility in a derivative sense that 

describe datasets. A dataset, D, is collapsible relative to a chosen association measure, m, if and only if the measured 

marginal association, m(X, Y), reported in D can be expressed as a weighted average of the measured conditional 

associations, m(X, Y | Z), in D. The dataset represented in Table 4 is non-collapsible relative to odds ratio in this sense. 

Moreover, Bandyopadhyay et al.’s (2015) notion of collapsibility states that a dataset is collapsible if and only if the 

marginal association between X and Y has the same direction as their conditional associations on Z. Since the marginal 

association being able to be expressed as a weighted average of the conditional associations implies that the marginal 

and the conditional associations are in the same direction, Bandyopadhyay et al.’s notion of (dataset) collapsibility 

encompasses the notion of (dataset) collapsibility as defined here in terms of weighted average. We thank an 

anonymous reviewer for prompting us to clarify this point. 
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reversal, disappearance, or emergence, is a special form of AP. In light of this, it is natural to 

extend our attention to AP and ask the following questions: how can AP arise in a causal context, 

and when it does, what should we do? Attempts at answering these questions will help delineate 

the scope of the application of Pearl’s causal-graphical analysis of SP. 

What is particularly noteworthy is that the kind of AP due to a choice of non-collapsible 

association measure typically occurs in the presence of effect modification.26 Effect modification 

occurs when a causal effect is sensitive to the value of a third variable.27 That is, Z is a modifier of 

the effect of X on Y when the effect varies across levels of Z (cf. Hernán & Robins, 2020). 

Importantly, a modifier is not a confounding variable. In our above example, Sex is a modifier of 

the treatment effect, but it is not a confounding variable since it is not associated with Treatment. 

This means that AP can occur in the absence of confounding. For this reason, Pearl’s analysis of 

SP cannot be generalized to AP. To be fair, we are not claiming that this is an intrinsic difficulty 

with Pearl’s analysis of SP, since to our knowledge, he does not claim that his analysis can be 

extended to dealing with AP. Still, we believe our discussion here helps us see the scope of Pearl’s 

analysis. 

Given that non-collapsibility is necessary for the type of AP discussed in this section, a 

general solution is to avoid using non-collapsible effect measures such as odds ratios without well-

justified reasons. As for circumstances where we do want to use the odds ratio, we should be aware 

that compared with causal effect at the whole-group level, the effect of X on Y measured in the 

sub-groups stratified on the modifier Z conveys more accurate causal information about how X 

 
26 In other words, the combination of effect modification and non-collapsibility offers an important and typical causal 

context for the presence of AP in the data. However, this is not to say that effect modification is a necessary condition 

for the presence of AP. It is possible that the marginal odds ratio between X and Y differs from the conditional odds 

ratios when the latter two are equal. Nevertheless, the occurrence of AP without effect modification is much less 

frequent in real life, as well as less impressive, compared to cases in which AP is present due to effect modification. 
27 It is not easy to represent the presence of effect modification using standard DAGs; but see Weinberg (2007) for 

attempts of clarifying effect modification using (nonstandard) DAGs. 
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influences Y in a specific causal background. Thus, when the data display a pattern of AP due to 

non-collapsibility in the presence of effect modification, we should report sub-group-specific 

effect estimations (although this does not imply that effect estimation at the whole-group level is 

biased or meaningless). 

6. Conclusion 

In this article, we have argued that Pearl’s causal-graphical analysis of SP, which diagnoses 

SP as essentially a peculiar consequence of confounding, cannot capture the full spectrum of the 

phenomenon. We show that there are good reasons to believe that SP is a generic term 

encompassing a wide range of distinct phenomena. Confounding is by no means the only source 

of SP, even if we admit that it is probably the most common and important one. Importantly, we 

do not claim that we have identified all possible sources of SP. There is nothing surprising about 

this, given that spurious associations observed in statistical data may come from a variety of 

sources: confounding, inappropriate variable aggregation, inter-unit causation, or sheer chance. 

The multiplicity of the sources of spurious association necessitates the multiplicity of the sources 

of SP. Thus, contra Pearl et al. (2016), we find it untenable that a confounding-based analysis can 

resolve all cases of SP. As far as we can see, the plurality of the sources of SP, and thereby the 

plurality of its resolutions, are here to stay. 
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