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Abstract

We discuss the (in)equivalence of various formulations of teleparallel grav-
ity, building upon recent work by Weatherall and Meskhidze (2024). We then
think about these different versions of teleparallel gravity from the point of
view of reduction/sophistication—a distinction drawn by Dewar (2019) in the
context of philosophical literature on symmetries—and along the way intro-
duce and scrutinise the resources of Cartan geometry and of higher gauge
theory.
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1. Introduction

In line with the orthodoxy in contemporary philosophy of physics, let the
symmetries of a physical theory be maps from the dynamical possibilities of that
theory to dynamical possibilities which preserve certain salient structure (see e.g.
(Belot 2013)). Without wishing to comment on whether this is part of the definition
of a symmetry transformation (see (Dasgupta 2016) for discussion on that front),
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the symmetry transformations which will be relevant for our purposes are those
which preserve empirical content (for more on this, see (Read and Møller-Nielsen
2020)).

Given a theory with symmetries of this kind—symmetries which, to be clear,
needn’t act as isomorphisms (more on this below)—how to articulate the ontological
commitments of symmetry-related models? In a seminal article addressing this
question, Dewar (2019) proposes three distinct means of tackling the issue:1

Reduction: Map orbits of symmetry-related models of the original theory to
unique models of some new, ‘symmetry-reduced’ theory.

External sophistication: Treat the symmetry-related models of the original the-
ory ‘as if’ they are isomorphic. Then, apply anti-haecceitism/anti-quidditism
in one’s interpretation of those models in order to justify their representing
the same physical states of affairs.

Internal sophistication: Mathematically reformulate the original theory in order
to ‘forget’ about structure such that symmetries now act as isomorphisms.
Then, apply anti-haecceitism/anti-quidditism in one’s interpretation of those
models in order to justify their representing the same physical states of affairs.

For more on this threefold distinction, see (Martens and Read 2020), in particu-
lar on the second interpretative step of both external and internal sophistication
which involves anti-haecceitism/anti-quidditism, which we won’t go into in any fur-
ther detail here. One would be perfectly within one’s rights to find puzzling (and
perhaps ‘metaphysically unperspicuous’) external sophistication as presented above
(again, see (Martens and Read 2020) for discussion); in our view, following March
(2024d), the correct way to understand this approach is in terms of inserting ‘extra’
morphisms into a theory understood categorically; we’ll return to this below.2

Here, let’s jump to an illustration of the difference between reduction and
sophistication: the well-known case of electromagnetism. Consider in particular
the following four formulations of source-free electromagnetism:3

EM1: Kinematical possibilities given by ⟨M, ηab, Fab⟩, where M is a differentiable
manifold, ηab is a Minkowski metric on M , and Fab is a 2-form on M .4 Dy-
namical possibilities given by daFbc = 0 and ⋆da ⋆ Fbc = 0, where ‘⋆’ denotes
the Hodge dual with respect to ηab.5

1Dewar (2019) in fact presents a few different ways of understanding the sophistica-
tion/reduction distinction—the way in which we cash out the distinction below, however, has
by now become canonical, and we’ll set aside other ways of understanding the distinction (e.g. in
terms of ‘changing the syntax’ versus ‘changing the semantics’).

2We don’t mean to suggest here that this way of understanding external sophistication affords
it the resources to evade the metaphysical unperspicuity charge.

3Nomenclature here is chosen to match that of Weatherall (2016c). Note also that Weatherall
does not mention the dynamics of EM3; we take this to be an unproblematic oversight given that
he mentions the dynamics of the other formulations of electromagnetism.

4Our index conventions here roughly follow (Weatherall 2016b): all indices are abstract unless
stated otherwise; we use lowercase Roman indices for tensor fields valued in the tangent/cotangent
spaces to a spacetime manifold, lowercase Greek indices for tensor fields valued in the total space
of a bundle, capital Fraktur indices for tensor fields valued in a Lie algebra, and capital Roman
indices for other vector spaces.

5See e.g. (Burke 1985) for background on differential forms and the Hodge dual.
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EM2: Kinematical possibilities given by ⟨M, ηab, Aa⟩, where M and ηab are as
before and Aa is a 1-form on M . Dynamical possibilities given by ⋆da⋆dbAc =
0.6

EM2′: Kinematical possibilities given by ⟨M, ηab, [Aa]⟩, where M and ηab are as
before and [Aa] is an equivalence class of 1-forms on M (as in EM2) related by
Aa 7→ Aa + daΘ, where Θ is an arbitrary scalar field. Dynamical possibilities
given by ⋆da ⋆ dbAc = 0, for each element of the equivalence class.

EM3: Kinematical possibilities given by ⟨M,P, ω, ηab⟩, where P is the total space
of the (unique, trivial) principal bundle U(1) → P

π→ M over Minkowksi
spacetime ⟨M, ηab⟩ and ω is a principal connection on P . Defining the curva-
ture of the connection as ΩA

αβ := Dαω
A
β , dynamical possibilities are given by

⋆Dα ⋆ ΩA
βγ = 0, where D is the exterior covariant derivative associated with

ω.

To each of these theories, there is at least one associated category, in which the
objects are the dynamical possibilities of the theory and the morphisms are chosen in
line with Table 1.7 In that table, χ : M → M ′ denotes a spacetime diffeomorphism
such that ηab 7→ χ∗ηab;8 Ψ denotes a principal bundle diffeomorphism (Ψ, χ), Ψ :
P → P ′, χ : M → M ′, again such that ηab 7→ χ∗ηab.9 Importantly, note that we
said above ‘at least one’ because, when understood categorically, one theory (say
EM2) might give rise to many distinct theories qua categories, depending upon
how morphisms are chosen (witness in particular the difference between EM2 and
EM2 depending upon whether morphisms include gauge transformations of the
vector potential—transformations which, to be clear, don’t act as isomorphisms of
the objects of the theory).

For our purposes, there are two key points to note about these theories. The
first has to do with the (in)equivalence of the above categories.10 There is a hier-
archy here: EM2 has more structure than any of the other categories, and so is
inequivalent to them. EM1, EM2, and EM2′, on the other hand, are all categor-
ically equivalent to each other and therefore have the same amount of structure.11

EM3 has the least amount of structure and is categorically inequivalent to any of
the other theories.12

The second point to note here comes back to reduction and sophistication:
EM1 and EM2′ are both reduced theories associated with EM2 (for, recall, classes

6The second Maxwell equation, dadbAc = 0, is a mathematical (Bianchi) identity in EM2. We
return to this in §6.2.

7Here, again, we follow the terminology of Weatherall (2016a,c). For a justification of these
being the morphisms of EM2′, see Weatherall (2016a, lemma 5.3); cf. (Nguyen et al. 2018), which
we’ll discuss further briefly below. Note also that dynamical equations are suppressed in Table 1
for clarity.

8i.e. χ is a map which witnesses an isometry, in the sense of Weatherall (2018b). For more on
different notions of isometry, see (Menon and Read 2023).

9See (Weatherall 2016c, p. 1046).
10In §4 we rehearse the definition of categorical equivalence, following the lead of Weather-

all (2016a,c). For now, we just recall the standard verdicts in the literature on the categorical
(in)equivalence of these various formulations of electromagnetism.

11Note that these equivalence claims can break down on different manifold topologies; see Chen
(2024) for a detailed theorem of categorical inequivalence given different topologies.

12See (Weatherall 2018a).
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Ob Mor

EM1 ⟨M, ηab, Fab⟩ Fab 7→ χ∗Fab

EM2 ⟨M, ηab, Aa⟩ Aa 7→ χ∗Aa

EM2 ⟨M, ηab, Aa⟩ Aa 7→ χ∗ (Aa + daΘ)

EM2′ ⟨M, ηab, [Aa]⟩ [Aa] 7→ [χ∗Aa]

EM3 ⟨M,P, ω, ηab⟩ ω 7→ Ψ∗ω

Table 1: Objects and morphisms for various formulations of electromagnetism,
understood categorically. χ : M → M ′ denotes a spacetime diffeomorphism such
that ηab 7→ χ∗ηab; Ψ denotes a principal bundle diffeomorphism (Ψ, χ), Ψ : P → P ′,
χ : M → M ′ such that ηab 7→ χ∗ηab.

of models of EM2 are mapped to unique models of EM1 and EM2′), although the
former is an ‘intrinsic’ formulation of electromagnetism (i.e., one which doesn’t for-
mulate its models in terms of equivalence classes) whereas the latter is not (for more
on intrinsic versus extrinsic formulations of physical theories, see (March 2024d));
EM3 is an internally sophisticated theory associated with EM2 (for, recall, mov-
ing from EM2 to EM3 mathematically reformulates the former theory such that
that the symmetries act as isomorphisms in EM3, but not in EM2).13 EM2 is
best understood as a theory which is externally sophisticated since it merely in-
serts more morphisms into the category without any mathematical reformulation
of the objects.14 Hence we see that (a) reduction might or might not involve taking
equivalence classes—this point was already made by March (2024d), who points out
that taking equivalence classes is in fact orthogonal to reduction/sophistication; (b)
reduction and sophistication needn’t be unique;15 (c) a sophisticated theory might
or might not be categorically equivalent to a reduced theory—in this case, EM3 is
in fact not categorically equivalent to (say) EM1.

All of this by way of introduction. In this article, we’ll show that there are
analogous theories in the case of relativistic spacetime physics; moreover, verdicts
on sophistication and categorical equivalence broadly (but not exactly) carry over
this new context.16 To be specific, we consider in this article the relationship be-
tween general relativity (GR) on the one hand, and ‘teleparallel gravity’ (TPG) on
the other: the latter is a spacetime theory dynamically equivalent to GR, but in
which curvature degrees of freedom are traded for torsion.17 Recently, Weatherall
and Meskhidze (2024) have argued that GR and TPG are not categorically equiva-
lent; while we don’t disagree with their verdict for the version of TPG which they

13For more on this, see (Jacobs 2023).
14EM2 therefore counts as a version of electromagnetism which is not ‘literally interpreted’—see

(March 2024b).
15As further illustration of this, note that (i) the holonomy interpretation of electromagnetism

(endorsed by Healey (2007)) constitutes another reduced version of electromagnetism, and (ii) yet
another sophisticated theory (without equivalence classes) could be found by availing oneself of
the ‘bundle of connections’. For discussion of both of these, see again (Jacobs 2023).

16The story here is likely to be complicated further once one brings into the picture consid-
erations of e.g. boundaries: this issue is discussed by Wolf and Read (2023). We’ll set such
complications aside in this article.

17For background on TPG, see (Aldrovandi and Pereira 2013; Bahamonde et al. 2023).
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consider, in fact in the physics literature there is a very diverse variety of different
formulations of TPG which are not obviously (in)equivalent to each other; in our
view continuing this project with respect to the broader space of TPG formulations
is a worthwhile exercise. In addition to this, we have a number of further aims in
carrying out the work of this article:

1. To show that it possible to construct theories in the relativistic spacetime
context which are both sophisticated and which are reduced, and to show
that the pattern of reduced/sophisticated theories broadly carries over from
other contexts (specifically, that of electromagnetism discussed above).18

2. To enrich philosophers of physics’ toolkits with the powerful equipment of
both Cartan geometry and of higher gauge theory. The former constitutes
the mathematical wherewithal needed to formulate TPG in the manner of
Huguet et al. (2021a,b) and Le Delliou et al. (2020a,b); the latter constitutes
the wherewithal needed to formulate TPG in the manner of Baez and Wise
(2015).

3. To connect up the literature on theoretical equivalence in
electromagnetism/Yang-Mills with that on theoretical equivalence in
spacetime physics. Links between these fields have already been noted by
e.g. Weatherall (2016a), but we contend that they in fact run much deeper
than has been appreciated hitherto.

Our article is structured as follows. In §2, we provide a self-contained intro-
duction to mathematics underlying the different formulations of TPG which we
consider in this article. In §3, we remind readers of the basics of both GR and
TPG, the latter in its various formulations as they appear in the physics litera-
ture. For each of these theories, we present the relevant category (as done above
for versions of electromagnetism) in terms of its objects and morphisms. In §4, we
prove a number of propositions regarding the (in)equivalence of these categories,
securing thereby a map of their relative amounts of structure. In §5, we consider
whether these spacetimes theories can be regarded as reduced/sophisticated versions
of one another, and whether the interaction between these verdicts and categorical
(in)equivalence results carries over from the case of electromagnetism (broadly but
not exactly speaking, it does). In §6, we step back a little, and assess the virtues of
formulating physical theories as Cartan or higher gauge theories. In §7, we consider
the prospects for developing—following the lead of Baez and Wise (2015, §4.5)—a
novel version of TPG based upon Cartan 2-geometry, and assess the virtues of this
formulation.

18The issue of reduction/sophistication in the context of TPG is also addressed briefly by
Weatherall and Meskhidze (2024, §6); again, we don’t disagree with their verdicts, but rather in-
tend our work here to add to and further the discussion. (As an aside, Weatherall and Meskhidze
(2024) maintain that the structure of GR is the structure ‘common’ to GR and TPG—we agree
with this verdict too (at least for the version of TPG which they consider), for the reasons given by
March et al. (2024); these reasons are somewhat different to the reasons given by Knox (2011) for
the same conclusion—Knox’s reasons have been called into question by Mulder and Read (2023)
and Wolf et al. (2024).)
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2. Mathematical preliminaries

In this section, we provide the relevant mathematical background to (i) ‘Pala-
tini TPG’ (§2.1), (ii) TPG as a ‘standard’ gauge theory (§2.2),19 (iii) TPG as a
Cartan gauge theory (§2.3), and (iv) TPG as a higher gauge theory (§2.4). The full
details of all of these version of TPG will follow in §3.

2.1. Palatini TPG. Just as kinematical possibilities of GR can be taken to be
Lorentzian manifolds ⟨M, gab⟩,20 so too can the kinematical possibilities of Pala-
tini TPG be taken to be triples ⟨M, gab,∇⟩, where M is a differentiable manifold
(assumed connected, Hausdorff, paracompact, and parallelizable), and ∇ is a flat,
torsionful derivative operator compatible with gab. Unlike the Levi-Civita deriva-
tive operator (which is the unique torsion-free derivative operator compatible with
gab), a torsionful derivative operator is not fixed by gab, and so needs to be specified
in the models in addition to ⟨M, gab⟩.21 The nomenclature ‘Palatini TPG’ here is
chosen in order to allude to the ‘Palatini approach’ (on which see e.g. (Wald 1984,
pp. 454–5)), in which the connection is treated as a dynamical variable independent
of gab.

2.2. TPG as a gauge theory. Next, let’s turn to TPG understood as a ‘standard’
gauge theory—one can find something resembling this presentation of the theory
in classic sources such as (Aldrovandi and Pereira 2013; Bahamonde et al. 2023;
Krššák et al. 2019), although here we will be somewhat more explicit about the
geometrical commitments of this approach to setting up the theory.22

First, let M be as above, and let Gl(n,R) → LM
π→ M denote the frame

bundle over M . Let V be an n-dimensional vector space, and fix a representation ρ of
Gl(n,R) and a Lorentzian metric ηAB on V .23 Given this structure, we can construct
the associated bundle LM×GlV , which is isomorphic (as vector bundles) to TM . A
coframe field (or solder form) e is just a choice of isomorphism e : TM → LM×GlV .
Such a choice of isomorphism can be represented as a smooth equivariant V -valued
one-form eAa on LM , with inverse eaA, which defines, at each p ∈ LM , a linear
bijection between TπL(p)M and V .24

Together with the fact that M is parallelizable, e and ηAB induce a reduction
of the structure group of LM to SO(1, n− 1,R).25 For this, note that we can pull
back ηAB via e to a Lorentzian metric e

gnm on M as follows: for any p ∈ M and any
19Here, ‘standard’ is to be taken with a pinch of salt, since as Wallace (2015) notes and as we’ll

discuss further below, TPG is not a ‘standard’ gauge theory in the sense of being a Yang-Mills
gauge theory.

20In this article, we’ll drop explicit reference to matter and its associated stress-energy tensor.
21For further recent discussion of this point, see (Weatherall and Meskhidze 2024).
22We use textbook machinery of e.g. (Kobayashi and Nomizu 1963).
23More generally, one can consider an arbitrary smooth n-manifold S equipped with a right

Gl(n,R) action and a flat Lorentzian metric. Of course, one is always free to take V = Rn and ρ
as the fundamental representation of Gl(n,R).

24Alternatively (and equivalently), it can be represented by a V -valued one-form on M which
defines, at each p ∈ M , a linear bijection between TpM and the fibre of LM ×Gl V at p, though
we won’t discuss this representation of e in what follows.

25Recall that a manifold being parallelizable entails that it is orientable.
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ξa, κa ∈ TpM we define

e
gnmξ

nκm = ηNMeNn e
M
m ξnκm. (1)

Then, as usual, the bundle SO(1, n− 1,R) → LMSO
πL→ M of oriented orthonormal

frames with respect to e
gnm is a principal SO(1, n− 1,R) bundle and is a reduction

of LM via the subspace embedding, which is equivariant in the required sense. In
particular, note that we can pull back the coframe to LMSO via this embedding; the
result is an equivariant one-form which defines, at each p ∈ LMSO, a linear isometry
between TπL(p)M and V . In what follows, we’ll think of e as defined on LMSO in this
way, though note that this somewhat in tension with the idea (often encountered in
the TPG literature) that e is supposed to be a dynamical variable, which defines the
reduction of the structure group of LM to LMSO under consideration (which will
differ from model to model). Note also that ρ and ηAB induce a representation of
SO(1, n− 1,R) on V , so that we can construct the associated bundle LMSO ×SO V .
Similarly, we’ll elide the distinction between ρ and the induced representation of
SO(1, n−1,R) going forward, though again, this is somewhat in tension with taking
e as a dynamical variable, for analogous reasons to those given above.

We now have all the structures in place to define models of the gauge-theoretic
approach to TPG. These are structures ⟨M,LMSO, πL, LMSO ×SO V, e, ω, ηAB⟩,
where LMSO, V , e, and ηAB are as above, and ω is a flat principal connection
on LMSO.26 To connect this up with Palatini TPG, recall first that any coframe
field e induces a metric on M via (1). Likewise, any connection ω on LMSO induces

a covariant exterior derivative
ω

D on LMSO and hence a covariant derivative oper-
ator

ω

∇ on LMSO ×SO V . We can then pull this back via e to obtain a connection
on TM . Explicitly, given the flat connection ω and coframe field e on LMSO, the

Weitzenböck connection
e,ω

∇ on TM is defined as follows:27 if κa is any vector field
on M (i.e. any section of TM), then for any p ∈ M and any ξa ∈ TpM at p,

eAm(ξ
n
e,ω

∇nκ
m) = ξn

ω

∇n(e
A
mκ

m). (2)

2.3. TPG and Cartan geometry. TPG theorists such as Aldrovandi and Pereira
(2013) and Pereira and Obukhov (2019) declare explicitly that they wish the theory
to be understood as a ‘gauge theory of translations’; to this end, they invoke (usually
but not always implicitly) a principal translation bundle as the appropriate means of
encoding such a gauge theory geometrically. As Le Delliou et al. (2020a,b) argue,
however, the attempt to assimilate the coframe field e into a gauge field in the
standard framework of gauge theory, namely viewing e as (part of) an ‘ordinary’
principal (i.e. Ehresmann) connection, is met with difficulties.28 According to the
authors, this is because the principal bundle of translations can only be trivial,
i.e. isomorphic to the product space M × Rn, and the base manifold would only
have the trivial frame bundle, which would be too restrictive as a framework for
GR (or any geometric alternative to GR, including TPG). The details and the
implications of this argument are contested by Pereira and Obukhov (2019), but

26Note that the fact that M is parallelizable entails that such a connection exists.
27See (Baez and Wise 2015, p. 168).
28For the definition of an Ehresmann connection, see e.g. (Wise 2007, p. 135).
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in any case it’s at least reasonable to agree with Le Delliou et al. (2020a,b) that
the mathematical content of TPG as a gauge theory for translations is prima facie
unclear. To remedy this problem, the authors instead propose defining e as (part
of) a Cartan connection, which requires a turn to Cartan geometry.

Let’s recall the basic picture of Cartan geometry. According to Cartan geome-
try, every space is characterized locally by a homogeneous space, of which Euclidean
space, Minkowski space, de Sitter and anti de Sitter spaces are examples. The no-
tion of a homogeneous space is in turn built upon Klein geometry, according to
which every homogeneous space is characterized by a Lie group quotient over a
closed subgroup. For example, if we consider a Lie group SO(3) and its subgroup
SO(2) (together with an embedding), then the quotient group SO(3)/SO(2) is iso-
morphic to the two-sphere S2.29 As a more relevant example, Minkowski spacetime
is characterized by the quotient of the Poincaré group by the Lorentz group. Letting
G be the larger Lie group in a Klein geometry and H its closed subgroup, for the
case of Minkowski spacetime we have30

G = ISO(1, n− 1) = SO(1, n− 1)⋉Rn, H = SO(1, n− 1).

Given a Klein geometry (G,H), a Cartan geometry is then characterized by
a principal H-bundle H → P

π→ M equipped with a g-valued Cartan connection
ωc. To define the Cartan connection, let ω be a principal connection on the bundle
P ×H G. Now let f : P → P ×H G be a reduction of the structure group. If the
pullback of f ∗ω is, at each p ∈ P , a linear isomorphism between the tangent space
TpP and the Lie algebra g, then ωc := f ∗ω is a Cartan connection on P .

This makes it clear that compared to an ‘ordinary’ principal connection, a
Cartan connection has the following unique features along with usual properties
such as being H-equivariant:

1. It takes values in a larger algebra g ⊃ h of G ⊃ H than that of the gauge
group of the bundle.

2. It is, at each p ∈ P , a linear isomorphism between the tangent space TpP and
the Lie algebra g.

Both properties call for some elaboration. To explain the geometric intuition un-
derlying them, let us use Wise’s analogy of a hamster in a ball in the simple case
of SO(3)/SO(2). Consider a hamster in a ball atop a Riemann surface (see (Wise
2010, p. 12), which also includes helpful illustrations). The hamster, while moving
in the ball, is always at the point of tangency between the ball and the surface.
The configuration of the hamster at a time can be specified by a triple of numbers:
two specifying the point of tangency and the third being the hamster’s orientation.
The transformation group of the hamster at a point is thus SO(2). The motion
of the ball is determined by the hamster, i.e., without slipping and twisting. The

29The elements of SO(3) can be thought of rotations of orthonormal frames with three legs, and
the equivalence relation can be thought of rotating the frames with one leg fixed. The resulting
quotient is then a three-dimensional rotation of a unit vector (the fixed leg), namely S2.

30Note that the fonts used for the Cartan groups are distinguished from those used in the cross-
module definition of a 2-group, found below. In the Cartan context, the relevant H for teleparallel
gravity is SO(1, n− 1), while in the cross-module definition for Tel(1, n− 1) 2-group, H refers to
R1,n−1, so these should be properly distinguished.
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transformation group of the ball’s configurations is SO(3). The quotient group
SO(3)/SO(2) is exactly S2, which is isomorphic to the ball. As can be expected,
SO(3)/SO(2) describes a Klein geometry, and the Riemann surface together with
(and surveyed by) the rolling ball is an analogy for a Cartan geometry.

There are important things to notice in this analogy which illuminate the
unique properties of a Cartan connection. Although it might seem superficially
that the hamster’s possible motions are more restrictive than the ball’s possible
motions, the hamster’s location at the surface together with its infinitesimal motion
determines the infinitesimal motion of the ball, which is obvious based on our
physical intuition about the scenario. This reflects the second property above,
which says that the tangent space of a bundle with the smaller structure group
is isomorphic to the Lie algebra of the larger group. Relatedly, we also see more
intuitively how a Cartan connection can take value in the Lie algebra of a larger
group than the gauge group of the principal bundle, just as the ball configurations
at each point of any trajectory are completely determined by the trajectory together
with the hamster configurations, constrained by the smaller gauge group of SO(2).

What does this have to do with TPG? Here is the idea. As mentioned above,
a simple characterization of TPG consists of a flat principal connection ω, which
can be represented by an so(1, n − 1)-valued one-form ωA

α on P , together with a
coframe field eAa , which can be represented as a V ∼= Rn-valued one-form on P .
Since the Poincare group ISO(1, n− 1) is a semidirect product of SO(1, n− 1) and
Rn, and similarly the Lie algebra of the former is isomorphic to a semidirect sum
of the those of the latter, we can combine the two fields into an iso(1, n− 1)-valued
connection, and thus make the coframe field part of a Cartan connection.

More formally, for any reductive Cartan geometry (of which G = H ⋉ G/H is
a special case), the Cartan connection ωc can be decomposed uniquely into ω and
θ, where ω is an ordinary principal connection on the principal H-bundle, and θ is
a g/h-valued one-form on the H-bundle (Huguet et al. 2021a, p. 3).31 θ is akin to e
in being a ‘translation-valued’ one-form, but at this point they are technically still
different. However, we now have everything we need to obtain the ordinary coframe
field e; to see this, we appeal to the following result from Wise (2007, pp. 162–3):

Proposition 1. The following two definitions of generalized coframe field e are
equivalent, given a principal H-bundle P and an Ehresmann connection on P :

1. e : TP → g/h.

2. e : TM → P ×H g/h.

For a proof, see (Wise 2007, pp. 162-3). Here e in definition (1) is exactly θ. As a
special case, P can be the bundle LMSO, in which case definition (2) amounts to the
ordinary definition of the coframe field. Since we are indeed given an Ehresmann
connection on the H-bundle, namely ω, we have recovered the ordinary coframe
field e through this equivalence. That is, we have recovered the ordinary tetrad
field e, and thus the requisite objects with which to construct a version of TPG,
from the reductive Cartan connection ωc = ω + θ. In this way, the idea of making
teleparallel gravity a gauge theory for translations has thus been made rigorous by
Le Delliou et al. (2020a,b).

31A Cartan geometry is reductive just in case there is an H-module decomposition g = h ⊕ p
(Sharpe 2000, p. 197).
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2.4. TPG as a higher gauge theory. Finally, let’s introduce the resources
needed to understand TPG as a higher gauge theory, which is the formulation of the
theory proposed and preferred by Baez and Wise (2015). Just as ordinary Yang-
Mills gauge theory involves gauge transformations construed as maps between con-
nections on a principal bundle, higher gauge theory involves gauge transformations
between higher connections on a higher principal bundle. The geometric picture
behind these higher connections is that they encode facts about the parallel trans-
port not just of vectors (as for standard connections) but also of higher-dimensional
objects—for more on this geometric picture, see (Baez and Huerta 2011).

Just as a standard principal bundle can be defined as a quadruple ⟨P,M,G, π⟩,
where P is the total space, M is the base space, G is the structure Lie group, and
the usual projection π : P → M is a smooth surjective map,32 a strict principal
2-bundle can be likewise be defined as a quadruple ⟨P,M,G,π⟩, save that now G is
a 2-group, P is a right G 2-space, and the projection π : P → M is a smooth map.
To understand a 2-bundle, then, evidently it is crucial to understand the notions of
2-groups and 2-spaces.

A Lie 2-group G is a category which involves two groups: the manifold of
objects G0 (a Lie group), and the manifold of morphisms G1 (also a Lie group). A
Lie 2-group G also involves further structure given by the ‘source’ and ‘target’ maps
s, t : G1 → G0, and the identity-assigning map i : G0 → G1. Usefully, a 2-group
can also be seen as a ‘crossed module’, which is a pair of groups G,H connected
by a homomorphism t : H → G together with a stipulation of the action of G as
automorphisms of H—see (Baez and Wise 2015, p. 159). We can obtain the latter
from the former by letting G = G0, H = Hom(1, ·), where 1 is the identity element
in G0, and for each g ∈ G0 and each h ∈ Hom(1, g), t : h 7→ g, and finally the action
of G on H is defined through the conjugation in G1 by the identity morphism 1g
for g ∈ G0.

Just as Lie groups can act on manifolds, Lie 2-groups can act on Lie groupoids.
A Lie groupoid consists of two smooth manifolds G and M , two surjective sub-
mersions s, t : G → M (called, respectively, ‘source’ and ‘target’ projections), a
map m : G(2) := {(g, h)|s(g) = t(h)} → G called the ‘multiplication map’ (define
gh := m(g, h)), a map u : M → G called the ‘unit map’ (define 1x := u(x)), and
a map i : G → G called the ‘inversion’ map (define g−1 := i(g)), such that (a) the
composition satisfies s(gh) = s(h) and t(gh) = t(g) for every g, h ∈ G for which
the composition is defined, (b) the composition is associative, so g(hl) = (gh)l for
every g, h, l ∈ G for which the composition is defined, (c) u works as an identity, i.e.
s(1x) = t(1x) = x for every x ∈ M and g1s(g) = g and 1t(g)g = g for every g ∈ G,
and (d) i works as an inverse, i.e. g−1g = 1s(g) and gg−1 = 1t(g) for every g ∈ G.

With this definition of a Lie groupoid in hand, we can then define a strict right
G 2-space to be a Lie groupoid X equipped with a map α : X×G → X satisfying
the usual axioms for a right group action. (Mutatis mutandis for a strict left G
2-space.) Then we can define two important 2-groups: the Poincaré 2-group and
the Teleparallel 2-group (the crossed module version):

• Poincaré 2-group: G = SO(1, n− 1), i.e., the Lorentz group; H = Rn, i.e.,
the translation group of Minkowski spacetime. t : H → G is trivial (maps all
h ∈ H to the identity element).

32See (Weatherall 2016b, p. 2414) for a philosophical primer.

10



• Teleparallel 2-group: G = IO(1, n− 1), i.e., the Poincaré group; otherwise
the same. t is the inclusion map.

Let’s now turn to 2-connections. Just as in ordinary gauge theory with group
G a connection can be seen locally as a g-valued 1-form A, in a higher gauge theory
based on a crossed module t : H → G, a 2-connection can be seen locally as a
g-valued 1-form A and an h-valued 2-form B on M which together are constrained
to obey the ‘fake flatness condition’, which imposes that t(B) equal the curvature
of A (where t : h → g is the differential of the map t) (Baez and Wise 2015, p.
154).33 In the context of TPG, this allows us to encode the connection ω, which
locally can be seen as a g-valued 1-form, and its torsion dωe, which locally can be
seen as an h-valued 2-form, into one unified geometric object (Baez and Wise 2015,
p. 155).34

TPG can, then, be characterized by a 2-connection on a Teleparallel 2-bundle,
which is defined as follows. To prepare, first define the fake tangent bundle T → M
to be a vector bundle isomorphic (albeit not canonically) to the tangent bundle
TM → M .35 As before, a coframe field e is defined as an isomorphism from TM
to T . Let T be equipped with a metric of signature (1, n − 1) (in analogy with
the metric ηAB introduced above). From the fake tangent bundle, we can build a
principal SO(1, n− 1) bundle F → M called the fake frame bundle, which at each
point x ∈ M consists of linear orientation-preserving isometries R1,n−1 → Tx.36

Next, we define the Teleparallel 2-bundle to be the principal Tel(1, n − 1)
2-bundle Tel(F) → M , where

Tel(F) = F ×SO(1,n−1) Tel(1, n− 1) (3)

Note that here, ×SO(1,n−1) determines an associated 2-bundle, defined as follows.
If P → M is a principal G-bundle, and F is a left G 2-space, then (P ×G F)i
(i = 0, 1) is equal to Pi × Fi modulo the equivalence relation (xg, f) ∼ (x, gf), for
x ∈ Pi, g ∈ Gi, f ∈ Fi. F ×SO(1,n−1) Tel(1, n − 1) is indeed well-defined since F
is a principal SO(1, n− 1)-bundle and the 2-group Tel(1,n-1) is a left SO(1, n− 1)
2-space.

One can then prove that a 2-connection on Tel(1, n − 1) 2-bundle consists
of the following: (a) a flat connection ω on F , (b) a T -valued 1-form e, and (c)
the T -valued 2-form dωe (Baez and Wise 2015, theorem 32). These, of course, are
precisely the objects which one needs in order to write down the dynamics of TPG;
now, however, they are encoded in one specific geometric object. Going forward,
we’ll denote this Teleparallel 2-connection by ω̄.

33The nomenclature ‘fake flatness’ derives from the theory of ‘fake curvature’, on which see
(Breen and Messing 2005).

34This geometric unification clearly also arises in the case of TPG as a Cartan gauge theory,
introduced in the previous subsection. In the sections to follow, we’ll compare these two approaches
with respect to geometric unification.

35Baez and Wise (2015, p. 166) motivate working with the fake tangent bundle T rather than
the associated bundle LMSO×SO V considered above by claiming that doing so allows one to drop
the topological constraint that the manifold be parallelizable. The distinction won’t much matter
going forward.

36One might question why one needs to work in this context with the fake frame bundle F rather
than the ‘real’ frame bundle. As far as we can tell, the motivation stems from considerations to
do with Cartan geometry—see (Gielen and Wise 2013). But again, the details won’t much matter
going forward.
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3. General relativity and teleparallel gravity

With the relevant mathematics in hand, we can now consider GR and various
distinct formulations of TPG, and their categorical equivalence (or otherwise). In
this article, we’ll work with a number of prima facie distinct theories:37

GR: Kinematical possibilities given by Lorentzian manifolds ⟨M, gab⟩; dynamical
possibilities given by the Einstein equation.38

TPG∇: Kinematical possibilities given by ⟨M, gab,∇⟩ for some torsionful connec-
tion ∇ compatible with the Lorentzian metric gab; dynamical possibilities
given by the teleparallel equivalent of the Einstein equation.39

TPGe,ω: Kinematical possibilities given by ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩;
dynamical possibilities given by the teleparallel equivalent of the Einstein
equation written in terms of e and ω.

TPG[e,ω]: Kinematical possibilities given by ⟨M,LMSO, π, LMSO×SOV, [e, ω], ηAB⟩,
where [e, ω] denotes an equivalence class elements of which are related by
vertical principal bundle automorphisms e 7→ Ψ∗e, ω 7→ Ψ∗ω. Dynamical
possibilities given by the teleparallel equivalent of the Einstein equation (for
each pair in the equivalence class).40

TPGωc : Kinematical possibilities given by ⟨M,LMSO, π, LMSO ×SO V, ωc, ηAB⟩,
where ωc is a reductive Cartan connection on LM ; dynamical possibilities
given by the teleparallel equivalent of the Einstein equation written in terms
of the constituent objects of ωc = ω + θ.

BW: Kinematical possibilities given by ⟨M,Tel(F), ω̄⟩, where Tel(F) is a
Tel(1, n − 1) 2-bundle and ω̄ is a Tel(1, n − 1) 2-connection. Dynamical
possibilities given by the TPG equations written in terms of the constituent
objects of Tel(F).41

Here, ‘BW’ refers to Baez and Wise (2015), who developed the version of TPG
whereby it is understood as a higher gauge theory; TPG∇ is nothing other than the
Palatini version of the theory introduced above; likewise, TPGωc is nothing other
than the verison of TPG understood as a Cartan gauge theory, also introduced
above. In general, it is crucial to appreciate that different authors in the physics lit-
erature work with different versions of TPG. For example, authors who work on the
‘geometric trinity’ of gravity (on which see (Beltrán Jiménez et al. 2019)—the third
node of said ‘trinity’ being ‘symmetric teleparallel gravity’, in which gravitational
degrees of freedom are represent neither by curvature nor by torsion, but instead by
non-metricity) typically work using TPG∇ (the reason of course being that it is more

37Just as in the case of electromagnetism (specifically EM2) considered above, understanding
these theories as categories will give rise to yet further versions of TPG, as we’ll discuss below.

38To repeat: in this article we drop reference to matter, just as earlier we worked with source-free
electromagnetism.

39On which see e.g. (Aldrovandi and Pereira 2013).
40For more on this ‘equivalence class’ formulation of TPG, see (Hohmann 2022) or (Krššák et al.

2019, p. 20).
41See (Baez and Wise 2015, p. 177).
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natural to use a metric formalism to represent non-metricity!). On the other hand,
those who prefer to think of teleparallel gravity as a ‘gauge theory of translations’,
e.g. Aldrovandi and Pereira (2013), typically work with TPGe,ω since it is easiest to
understand such ‘gauging’ in terms of transformations enacted upon a coframe field
e. (Whether this formalism is really most appropriate for understanding TPG as a
‘gauge theory of translations’ is of course another matter—this, indeed, is precise
what motivates Le Delliou et al. (2020a,b) to move to the framework of Cartan
connections.) Those who also work in this ‘gauge theory’ paradigm but who worry
about redundancy in ⟨e, ω⟩ might prefer to work with TPG[e,ω]—see e.g. (Hohmann
2022; Krššák et al. 2019) for something like this approach. And then we have BW,
the construction of which was motivated by attempts to find physical applications
of higher gauge theory.42

We should be clear at this point that this list of formulations of TPG is by
no means exhaustive: three other formulations of TPG which are of particular
conceptual interest in their own right are (i) a ‘gauge fixed’ version of TPGe,ω, in
which the components of the connection ω are set to vanish (this version of TPG,
sometimes called ‘pure tetrad TPG’, was used widely in the earlier literature on the
topic—see (Krššák et al. 2019) for some more recent discussion), (ii) a version of
TPG in which one redefines e → h such that it is ‘dressed’ to be invariant under local
translations and/or Lorentz transformations (see e.g. dressing via the introduction
of the fields A and B by Aldrovandi and Pereira (2013))43—as we have already
alluded to above and as we’ll discuss in more detail below, TPGωc and BW can be
understood to be ways of making mathematically precise this desideratum of TPG
being a ‘gauge theory of the translations’, and (iii) a version of TPG built in analogy
with the programme of ‘pre-metric electromagnetism’ of Hehl and collaborators
(see (Hehl and Obukhov 2003) for a detailed exposition of this approach), in which
the TPG field equations are formulated in analogy with the ‘pre-metric Maxwell
equations’, and different ‘constitutive relations’ (used to fix the metric in the case
of electromagnetism) yield a variety of distinct torsionful theories—see (Krššák et
al. 2019, §9.4) or (Itin et al. 2017).44 To render the narrative manageable, in this
article we’ll set aside all three of (i)–(iii).

In order make further progress in understanding the equivalence (or otherwise)
of GR and the versions of TPG listed above, we can again avail ourselves of some
resources from category theory. As in the case of electromagnetism, to each of these
theories we can associate a category (potentially multiple categories, as we’ll see),
objects and morphisms of which are given in Table 2.45 In that table, χ : M →
M ′ denotes a spacetime diffeomorphism, Ψ denotes a principal bundle morphism
(Ψ, χ). Ψ : LMSO → LM ′

SO, χ : M → M ′, and χ̃ denotes the lift of a spacetime
diffeomorphism χ : M → M ′ to LMSO, defined as follows. First, recall that the
coframe field e was originally defined on LM (see §2.2). Let χ : M → M ′. Then
we can define LM ′

SO to be the bundle given by the reduction of the structure group
42Developing some elegant mathematics and then reverse-engineering some physical application

for said mathematics might strike one as questionable methodology. In any case, we discuss in
detail in §§6 and 7 the virtues of formulating TPG as a higher gauge theory.

43For recent philosophical literature on dressing, see (François 2019).
44This provides an interesting heuristic for the generalisation of TPG. For recent philosophical

discussion of pre-metric electromagnetism, see (Chen and Read 2023).
45As before (i.e. for the case of electromagnetism considered previously), dynamics are sup-

pressed in this table.
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Ob Mor

GR ⟨M, gab⟩ gab 7→ χ∗gab

TPG∇ ⟨M, gab,∇⟩ gab 7→ χ∗gab

TPGe,ω ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ e 7→ χ̃∗e; ω 7→ χ̃∗ω

TPGe,ω ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ e 7→ Ψ∗e; ω 7→ Ψ∗ω

TPG[e,ω] ⟨M,LMSO, π, LMSO ×SO V, [e, ω], ηAB⟩ [e, ω] 7→ [χ̃∗e, χ̃∗ω]

TPGωc ⟨M,LMSO, π, LMSO ×SO V, ωc, ηAB⟩ ωc 7→ Ψ∗ωc

BW ⟨M,Tel(F), ω̄⟩ ω̄ 7→ Ψ̄∗ω̄

Table 2: Objects and morphisms for GR and various formulations of TPG, under-
stood categorically.

induced by χ̃∗e, where χ̃ is the unique lift of χ to LM . Then the restriction of χ̃
to LMSO is a principal bundle isomorphism LMSO → LM ′

SO. (Why? Because some
p ∈ LMSO will be an oriented orthonormal frame with respect to e

gab iff χ̃(p) is an
oriented orthonormal frame with respect to

χ̃∗e
g ab.) By abuse of notation, we denote

this map χ̃, which we can then use to push forward e.g. ω from LMSO to LM ′
SO.

Evidently, there is a sense in which TPGe,ω is analogous to EM2, TPGe,ω

is analogous to EM2, and TPG[e,ω] is analogous to EM2′. However, it is impor-
tant to note there are also disanalogies here: the morphisms of EM2 exhaust the
isomorphisms of its objects; not so for TPGe,ω, as the isomorphisms of its objects
are in fact the morphisms of TPGe,ω. By contrast, the morphisms of EM2 include
transformations (the gauge transformations of the vector potential) which are not
isomorphisms of its objects. Accordingly, TPG[e,ω] is somewhat less natural than
EM2′, for why be motivated to take equivalence classes of geometric objects which
are already understood as being isomorphic?

In any case, with these categories in hand, let’s now consider whether or not
they are equivalent.

4. Categorical equivalence

In this section, after recalling some background on categorical equivalence in
the philosophy literature (§4.1—skippable for cognoscenti), we consider the categor-
ical (in)equivalence of the versions of TPG presented (as categories) in the previous
section (§4.2).

4.1. Background on categorical equivalence. Weatherall (2016a) proposed a
criterion of equivalence of physical theories, according to which two given theories
are equivalent just in case (a) their associated categories of models are equivalent,
and (b) the functors realising said equivalence preserve empirical content. The
category of models associated with a theory T is a category the objects of which
are models of T , and the morphisms of which relate models regarded as having the
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‘same structure’.46

What is it for two categories to be equivalent? Two categories A and B are
equivalent just in case there exist functors F : A → B and G : B → A such that
FG ∼= 1B, and GF ∼= 1A.47 Equivalently, the categorical equivalence of A and B
amounts to the existence of a functor relating them which is:

Full: For all objects a, b ∈ A, the map (f : a → b) 7→ (F (f) : F (a) → F (b)) in-
duced by F is surjective.

Faithful: For all objects a, b ∈ A, the map (f : a → b) 7→ (F (f) : F (a) → F (b))
induced by F is injective.

Essentially surjective: For every object x ∈ B, there is some object a ∈ A and
arrows f : F (a) → x and f−1 : x → F (a) such that f ◦ f−1 = 1x.

A functor ‘forgets structure’ just in case it is not full; ‘forgets stuff’ just in case it
is not faithful, and ‘forgets properties’ just in case it is not essentially surjective.48

4.2. Categorical equivalence of TPG formulations. Let us now consider the
categorical (in)equivalence of the theories (i.e., GR and various versions of TPG)
presented as categories in §3.

Begin with GR and TPG∇, and consider a functor F1 : TPG∇ → GR which
takes each object ⟨M, gab,∇⟩ to ⟨M, gab⟩ and each arrow to an arrow generated by
the same diffeomorphism. We have then the following proposition:

Proposition 2. F1 forgets (only) structure.

Proof. See (Weatherall and Meskhidze 2024, p. 16).

From this, it follows that GR is categorically inequivalent to TPG∇. This
is the main result of Weatherall and Meskhidze (2024). But what of our other
formulations of TPG?

Before we get to the issue of categorical equivalence with respect to these other
formulations of TPG, we note first that the relationship between models of TPG∇
and TPGe,ω is given by the following pair of propositions:

Proposition 3. Let ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ be a model of TPGe,ω.

Then there exists a unique metric
e
gab and connection

e,ω

∇, as defined in equations

(1) and (2), such that ⟨M,
e
gab,

e,ω

∇⟩ is a model of TPG∇.

46This will be an interpretative matter—see e.g. (March 2024a). For relevant background on
category theory, see (Mac Lane 1998). Recently, a number of authors have proposed refinements
of the categorical equivalence programme—see e.g. Hudetz (2019) and March (2024c)—in order
to accommodate concerns raised by inter alia Hudetz (2019) and Weatherall (2018c). We will set
aside these issues in what follows.

47Two categories A and B are equivalent just in case their skeletons sk(A) and sk(B) are
isomorphic, where isomorphic objects in A are equal in sk(A), mutatis mutandis B.

48For more detail on the interpretation of ‘structure’, ‘stuff’, and ‘properties’, see (Baez et al.
2004).

15



Proposition 4. Let ⟨M, gab,∇⟩ be a model of TPG∇, and fix a vector space V
of dimension n, a representation ρ of Gl(n,R) and a (flat) Lorentzian metric
ηAB on V . Then there exist a coframe e and connection ω on LMSO such that

gab =
e
gab, ∇ =

e,ω

∇, where
e
gab and

e,ω

∇ are as defined in equations (1) and (2), and
⟨M,LMSO, π, LMSO×SOV, e, ω, ηAB⟩ is a model of TPGe,ω. Moreover, the pair ⟨e, ω⟩
is not unique. If ⟨e, ω⟩ is any such pair, then so is ⟨e′, ω′⟩ iff ⟨e′, ω′⟩ = ⟨φ∗e, φ∗ω⟩
for some vertical principal bundle automorphism φ : LMSO → LMSO.

For proofs, see Appendix A. Note that vertical principal bundle automorphisms
of LMSO correspond to local Lorentz transformations in the TPG literature; the
usual expressions for the behaviour of the coframe and connection under such a
transformation can, as ever, be recovered by fixing a (local) trivialisation of LMSO

and computing expressions for the (local) representatives of e and ω. Note also that
we have explicitly set aside non-uniqueness of the pair ⟨V, ηAB⟩ in proposition 4.

We also make use of the following result:

Proposition 5. Let M∇ = ⟨M, gab,∇⟩ be a model of TPG∇ and let χ : M → M ′

be a diffeomorphism. Let Me,ω = ⟨M,LMSO, πL, LMSO ×SO V, e, ω, ηAB⟩, M′
e,ω =

⟨M ′, LM ′
SO, π

′
L, LM

′
SO×SOV, e′, ω′, ηAB⟩ be any two models of TPGe,ω corresponding

to M∇, χ∗M∇ respectively in the sense of proposition 4. Then there exists a unique
bundle morphism (Ψ, χ) such that ⟨e′, ω′⟩ = ⟨Ψ∗e,Ψ∗ω⟩.

Again, see Appendix A for proofs. With these propositions in hand, consider
then TPGe,ω, and now consider a functor F2 : TPGe,ω → TPG∇ which takes each
object of TPGe,ω to the corresponding object of TPG∇ as given in proposition 3,
and each arrow (χ̃, χ) 7→ χ. Then we have:

Proposition 6. F2 forgets (only) structure.

Proof. F2 is essentially surjective by proposition 3 and faithful by the proof of
proposition 5. But it is not full. To see this, consider an object M∇ = ⟨M, g,∇⟩ of
TPG∇, and let Me,ω, M′

e,ω be any two distinct objects in TPGe,ω which correspond
to M∇ in the sense of proposition 3 (such exist, by proposition 4). Then the arrow
idM ∈ homTPG∇(M∇,M∇) is not the image of any arrow in homTPGe,ω(Me,ω,M

′
e,ω)

under F2.

So, TPGe,ω has more structure than TPG∇. What about TPGe,ω? Consider
the functor F3 : TPGe,ω → TPG∇ which sends objects of TPGe,ω to their corre-
sponding objects of TPG∇ given in proposition 3, and takes each arrow (χ̃∗φ, χ)
to χ. Then we have:

Proposition 7. F3 forgets nothing.

Proof. F3 is essentially surjective by proposition 3 and full and faithful by proposi-
tion 5.

The next category to consider is TPG[e,ω]. Consider a functor F4 : TPG[e,ω] →
TPG∇ which takes morphisms of the former category (i.e., diffeomorphisms χ such
that [e′, ω′] = [χ̃∗e, χ̃∗ω] to χ.

Proposition 8. F4 forgets nothing.
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Proof. F4 is essentially surjective by proposition 3 and full and faithful by the proof
of proposition 5.

Note that this matches the fact that EM2′ and EM2 are categorically equiv-
alent, on which see (Weatherall 2016a, p. 1084).49

The next version of TPG to which we turn is TPGωc . Again, we begin with a
pair of propositions:

Proposition 9. Let ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ be a model of TPGe,ω.
Then there exists a unique reductive Cartan connection ωc = ω + e such that
⟨M,LMSO, π, LMSO ×SO V, ωc, ηAB⟩ is a model of TPGωc.

Proof. See theorem 2 of (Kobayashi 1956).

Proposition 10. Let ⟨M,LMSO, π, LMSO ×SO V, ωc, ηAB⟩ be a model of TPGωc.
Then there exists a unique coframe field-connection pair (e, ω) such that ωc = ω+ e
and ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ is a model of TPGe,ω.

Proof. See theorem 2 of (Kobayashi 1956).

Next, note that since the decomposition of the reductive Cartan connection
ωc = ω + e is Ad(SO(1, 3))-invariant, bundle isomorphisms Ψ : LMSO → LM ′

SO
have the following action on e and ω:50

e 7→ e′ = Ψ∗e,

ω 7→ ω′ = Ψ∗ω.
(4)

Consider, then, a functor F5 : TPGe,ω → TPGωc which takes each object in
TPGe,ω to its corresponding object of TPGωc as given in proposition 9, and arrows
in TPGe,ω to an arrow generated by the same principal bundle diffeomorphism.

Proposition 11. F5 forgets nothing.

Proof. F5 is essentially surjective by proposition 9, and full and faithful by con-
struction given equation 4.

This just leaves BW. First, we note the following pair of propositions:

Proposition 12. Let ⟨M,Tel(F), ω̄⟩ be a model of BW. Then there exists a unique
pair (e, ω) such that ω̄ = (ω, e, T ) and ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ is a
model of TPGe,ω.

Proof. See proposition 27 of (Baez and Wise 2015).

Proposition 13. Let ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ be a model of TPGe,ω.
Then there exists a unique ω̄ = (ω, e, T ) such that ⟨M,Tel(F), ω̄⟩ is a model of
BW.

49Thinking about morphisms for categories the objects of which include equivalence classes is a
little delicate, as noted in the case of electromagnetism by Nguyen et al. (2018). We won’t discuss
this issue further in this article.

50For discussion related to this, see (Wise 2010, §3.4).
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Proof. See proposition 27 of (Baez and Wise 2015).

Next note that bundle automorphisms of Tel(F) can be shown to be equivalent
to the maps (Baez and Wise 2015, eq. 6):

e 7→ e′ = Λe+ dω′v + a,

ω 7→ ω′ = ΛωΛ−1 + ΛdΛ−1,

T 7→ T ′ = dω′e′.

(5)

Now, in the terminology of Baez and Wise (2015), a gauge transformation of the
Teleparallel 2-bundle is ‘strict’ just in case a = 0; otherwise, it is ‘weak’. As Baez
and Wise (2015, p. 178) also note, neither strict gauge transformations with dω′v ̸= 0
nor weak gauge transformations preserve the TPG action written in terms of the
Teleparallel 2-connection; hence, they do not preserve dynamical possibilities. We’ll
return later to the philosophical significance of this fact; for the time being, we note
that this motivates the introduction of a new category B̃W, in which morphisms
of BW associated with transformations for which dω′v ̸= 0 and a ̸= 0 are excluded.
That this can be done consistently is a consequence of the fact that the dω′v = 0
and a = 0 bundle automorphisms are precisely those bundle automorphisms of
Tel(F) induced by strict bundle automorphisms of 2F = F ×SO Poin(1, n − 1);
since Tel(F) = 2F ×Poin(1,n−1) Tel(1, n − 1), we can take the arrows of B̃W to
be principal 2-bundle isomorphisms Tel(F) → Tel(F ′) induced by strict principal
2-bundle isomorphisms 2F → 2F ′. Such bundle automorphisms are in one-to-one
correspondence with bundle automorphisms of LMSO, since SO(1, n− 1) is the Lie
groupoid of objects of Poin(1, n− 1) (Baez and Wise 2015, §2.7).

Consider a functor F6 : TPGe,ω → B̃W which each object in TPGe,ω to its
corresponding object of B̃W as given in proposition 13, and takes bundle auto-
morphisms of LMSO to restricted bundle automorphisms of Tel(F) in the sense
discussed above. In this case, we have:

Proposition 14. F6 forgets nothing.

Proof. It is clear from the above discussion that there is a one-to-one correspondence
between the objects and morphisms between the two categories.

How does BW compare with the other formulations of TPG given in this
article in respect of its amount of structure? This, indeed, is our final question
to address when it comes to the categorical equivalence (or otherwise) of GR and
the various versions of TPG considered in this article. In order to answer this
question, note first that the weak/strict gauge transformations with (respectively)
a ̸= 0 or dω′v ̸= 0 transcend the symmetries of the formulations of TPG considered
previously—moreover, these transformations do not preserve the spacetime metric,
as illustrated straightforwardly for the case of strict gauge transformations with
dω′v ̸= 0:

gab = ηMNe
M

ae
N
b

7→ ηMN(e
M

a + (dω′v)Ma)(e
N
b + (dω′v)Nb)

= ηMN(e
M

a + dav
M + ω′ M

a Ov
O)(eNb + dbv

N + ω′ N
b Pv

P )

= ηMNe
M

ae
N
b + · · ·

(6)
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(The same is true for weak gauge transformations with a ̸= 0.) The key point is that
both of these gauge transformations are not metric-preserving. So now consider a
functor F7 : GR → BW which takes objects of GR to their corresponding objects
of BW via propositions 4 and 13, and isometries of gab to bundle automorphisms
of Tel(F):

Proposition 15. F7 forgets (only) structure.

Proof. It is clear that the distinct isometries of gab in GR are mapped to dis-
tinct bundle automorphisms of Tel(F) in BW—to see this, note that χ∗gab =
ηMNχ∗e

M
aχ∗e

N
b; eMa and χ∗e

M
a are distinct but will be associated to a bundle

automorphism of Tel(F), and any distinct such transformation of the coframes will
correspond to a distinct bundle automorphism. It is also clear that all objects in
BW, which are determined by some ω and e, are mapped onto by F7. So, the func-
tor is faithful and essentially surjective. But for dω′v ̸= 0 and a ̸= 0, the morphisms

between ⟨M,Tel(F), ω̄⟩ and ⟨M,Tel(F),
v,a

Ψ̄∗ω̄⟩ are not mapped onto (where
v,a

Ψ̄ is
the bundle automorphism associated with v, a), for we have seen above that such
transformations are not metrically equivalent (even up to isometry). So, the functor
F7 is not full.

Let’s take stock. Our conclusions from this section regarding the categorical
equivalence (or otherwise) of GR and the various formulations of TPG considered
in this article (all understood categorically) are as follows:

1. Of all the theories considered in this article, TPGe,ω has the most structure.

2. TPG∇, TPGe,ω, TPG[e,ω], TPGωc , and B̃W all have equal amounts of
structure, and are all categorically equivalent.

3. GR has less structure than the theories in (2).

4. BW has less structure than GR; it has the least amount of structure of any
of the theories considered in this article.

So much for categorical equivalence. Let’s now consider whether these theories are
reduced or sophisticated versions of each other.

5. Reduction and sophistication

How does the pattern of reduced/sophisticated theories carry over to the case
of teleparallel gravity from the case of electromagnetism? There are several points
to make here:

A. We have already seen that one can map many models of TPG∇ to the same
GR model—namely, that with the same metric g. As such, one sees that GR
is a reduced theory associated with TPG∇.

B. TPG∇ is categorically equivalent to TPGe,ω; moreover, both of these theories
have as their morphisms all the automorphisms of their objects. As such, these
equivalent theories are both internally sophisticated.
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C. As already discussed, TPGe,ω is a somewhat unnatural theory as its mor-
phisms do not exhaust the automorphisms of its objects. Without the mor-
phisms associated with local Lorentz transformations, one regards those trans-
formations as relating distinct (but empirically equivalent) states of affairs.
In this case, one can just insert more morphisms in the category—those as-
sociated with the local Lorentz transformations—in order to arrive at a new
category, TPGe,ω. While this might look like a case of external sophistica-
tion, it is in fact also a case of internal sophistication, for the morphism-related
models are already isomorphic, without the need for any mathematical refor-
mulation.

D. TPG[e,ω] is also already a sophisticated theory; however, as already men-
tioned above, it is also somewhat unnatural, as typically one does not take
equivalence classes of objects which are already isomorphic.

E. TPGωc and BW are also already internally sophisticated versions of TPGe,ω,
because every morphism in the category is an isomorphism of the objects in
the category.

F. Despite B̃W being equivalent to TPG∇, TPGe,ω, TPG[e,ω], and TPGωc , it
is a theory which is sophisticated with respect to the bundle automorphisms
corresponding to local Lorentz transformations, but not with respect to bundle
automorphisms corresponding to strict gauge transformations with dω′v ̸= 0
or to weak gauge transformations. As before, one could insert further arrows
here, thereby both externally and internally sophisticating, and thereby arrive
at BW.

Let’s compare again with the case of electromagnetism. There, one could
reduce EM2 in order to arrive at EM1; alternatively, one could take equivalence
classes of vector potentials in order to arrive at EM2′—also a reduced theory, albeit
not one formulated ‘intrinsically’ (cf. (March 2024d)). One could also externally
sophisticate in order to arrive at EM2, or internally sophisticate in order to arrive
at EM3.

The situation is somewhat similar in TPG, but there are important differences.
Beginning with TPGe,ω, one can sophisticate this theory to arrive at TPGe,ω,
but as stressed above this case of external sophistication is also a case of internal
sophistication, for the additional morphisms are isomorphisms of the objects in
the category anyway! One can take equivalence classes per TPG[e,ω], but unlike
moving from EM2 to EM2′ this does not yield an internally sophisticated (but not
intrinsically formulated) theory, because the theory was internally sophisticated to
begin with! And in the case of TPG, we see with TPGωc and BW that there are
multiple different ways to sophisticate the theory, which have varying amounts of
structure.

Here are two important upshots from these observations. First: inserting
arrows between objects in a category when those objects are not isomorphic counts
as a case of (merely) external sophistication (again, cf. (March 2024d)); however, if
a category lacks arrows between objects which are isomorphic, then adding those
arrows counts as a case of external sophistication (‘regarding as equivalent...’) which
is also a case of internal sophistication (‘...which are isomorphic’). And second—
to repeat—sophistication (or reduction!) needn’t be unique: we see this in the
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case of TPGωc and BW, where one can ‘forget’ structure’ such that symmetries
are isomorphisms, but one can in addition forget about varying degrees of further
structure to yield distinct resulting theories.

6. Assessing TPG as a Cartan or higher gauge theory

With the above, we take ourselves to have given some decisive and fair exhaus-
tive verdicts on equivalence, reduction, and sophistication in teleparallel gravity.
Let’s now step back, and interrogate why one might be interested in formulating
TPG as a Cartan or higher gauge theory to begin within. In particular, in this
section we’ll consider four different answers to this question which one might offer:
(i) those to do with the Yang-Mills analogy (§6.1), (ii) those pushing the virtues
of sophisticated theories (§6.2), (iii) those to do with theoretical unification (§6.3),
and (iv) those to do with symmetry principles in physics (§6.4).

6.1. The Yang-Mills analogy. Given that TPG can be formulated as a theory
about a connection (or connection and coframe field) on a principal bundle, one
might ask to what extent TPG can be thought of as a ‘gauge theory’ which is
analogous to Yang-Mills theories (on which, for recent philosophical discussion, see
(Wallace 2015)), and if so, as a gauge theory for which group. Here, it is helpful to
recall several features of ‘standard’ Yang-Mills type theories (for some gauge group
G):

1. The gauge fields are pullbacks of a (principal) connection G connection ω on
a principal G bundle to the tangent space.

2. The field strengths are the curvature two-forms associated with a principal G
connection ω.

3. The action is G-invariant.

Now, if one takes G = SO(1, n − 1), i.e. the Lorentz group, then the standard
gauge-theoretic approach to TPG satisfies (3) but not (1) or (2). This is because
this formulation of TPG also includes as a gauge field the coframe e, and the
torsion as a field strength. Meanwhile, none of the other formulations of TPG we
have discussed here satisfy any of (1)-(3) for this choice of G.

Alternatively, if one takes G = SO(1, n − 1) ⋊ Rn (motivated by the desire
to understand TPG as a gauge theory of the translation group), then the Cartan
approach to TPG satisfies (2) but not (3), and it is unclear how to assess (1). This is
because the main principal bundle of interest in the Cartan approach is still LMSO

(and the Cartan connection is not a principal connection on LMSO), but one does
have the bundle LMSO ×SO (SO(1, n − 1) ⋊ Rn) ‘in the background’, so to speak,
on which the Cartan connection is a principal connection.51

Finally, if one takes G = Tel(1, n − 1), then the approach of Baez and Wise
satisfies (1) but not (2) (since the 2-curvature of the teleparallel 2-connection van-
ishes identically, or alternatively, since the relevant field strength, i.e. the torsion is
now in fact part of the connection), nor does it satisfy (3). For this reason, on no

51Note also that the TPG action in the Cartan formalism is an instance of the Yang-Mills action
Ω∧⋆Ω, providing one uses a suitably-defined ‘internal’ Hodge dual—see Lucas and Pereira (2008).
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(existing, to our knowledge) approach to TPG can the theory be understood as a
‘standard’ gauge theory.

6.2. Virtues of sophisticated theories. One of the by-now well-known advan-
tages of internally sophisticating in the case of electromagnetism is that certain
equations of motion become mathematical identities—for example, the Maxwell
equation daFbc = 0 in EM1 becomes the Bianchi identity dadbAc = 0 in EM2.52

This, the thought goes, leaves less to be explained in the resulting theory. This
raises the question of whether there could be any advantage to the use of TPGe,ω

or TPGωc or BW on similar grounds. This question warrants careful assessment,
for it could provide reasons which militate in favour of the use of TPG on conceptual
grounds (obviously, while accepting the trade-off that some of these theories have
more structure than GR). One possible illustration of a result like this is that the
‘fake flatness condition’ in BW constrains at the level of kinematics the spacetime
connection to be flat—one does not seem to get this constraint ‘for free’ in anything
but this sophisticated approach to the theory.

6.3. Unification. One might claim that there is some advantage to working with
TPGωc or BW due to the fact that e and ω are unified into one object—either ωc

or ω̄. But to what extent is this a genuine virtue of these approaches to the theory?
One worry on this front is that there is no physical correlation between the objects
being unified, in the sense that e.g. there is no further non-trivial coupling between
said objects in some mutual dynamics. According to Maudlin (1996), this kind of
physical correlation (which he calls “nomic correlation”) is one of the key criteria
required in order to regard a theory as being unificatory. So, following Maudlin’s
lead, we would suggest that there is no unification in either of these formulations
of TPG in a ‘true’ physical sense.53

6.4. Earman’s principles. Following Jacobs (2021), define ‘value space symme-
tries’ as automorphisms of the value space (i.e., the spaces in which the physical
fields take their values—for us, this will include the relevant bundles), and ‘inter-
nal symmetries’ as solutionhood-preserving transformations of a theory’s models
induced by bijections of the value space.54 Then here, again following Jacobs (2021,
§7.4), are the ‘value space’ versions of Earman’s famous ‘symmetry principles’, SP1
and SP2:55

SP1: If φ induces an internal symmetry, then it is a value space symmetry;

SP2: If φ is a value space symmetry, then it induces an internal symmetry.

Now, given these principles, one might worry about their status in TPG. In
particular, as Baez and Wise (2015, p. 178) acknowledge, strict gauge transforma-
tions with dω′v ̸= 0 and weak gauge transformations are not symmetries of the TPG

52Also EM2, but that isn’t a sophisticated theory.
53This isn’t to deny that (e.g.) high gauge theory might possibly be useful in shedding light on

unification in the standard model, possibly in dialogue by recent work by Gomes (2024). This,
however, is evidently a topic for another day.

54Arguably, ‘dynamical symmetry’ would be more perspicuous terminology here, but in what
follows we’ll continue to use Jacobs’ nomenclature.

55Cf. (Earman 1989, §3.4).
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action! Therefore, there seem to be value space symmetries which are not internal
symmetries, violating SP2 in what Belot (2000) would (we expect) disparage as a
case of “arrant knavery”.

In our view, this violation of Earman’s principles is a serious problem for BW.
Curiously, however, Baez and Wise (2015) do not regard this as being a problem
for their formulation of the theory, appealing to the fact that their formulation can
be understood in the language of Cartan geometry:

In short: in a physical theory based on Cartan geometry, we expect
to see a G connection for some Lie group G, but gauge invariance
only under some closed subgroup H. In the Palatini example we have
G = IO(1, n − 1) and H = SO(1, n − 1), but this general pattern is
ubiquitous in attempts to describe gravity as a gauge theory by com-
bining the connection and coframe field into a larger connection, such
as MacDowell–Mansouri gravity and related theories. (Baez and Wise
2015, p. 179)

Of course, however, to say that a phenomenon is ubiquitous is hardly to explain
or to justify it. Before we get to that, let’s elaborate on the example presented in
the above quote (further discussion of this example is provided by Wise (2007,
ch. 11)). In GR, each tangent space is isomorphic to Minkowski spacetime. In
Cartan geometry, we notice that Minkowski spacetime is ISO(1, 3)/SO(1, 3), where
ISO(1, 3) is the Poincaré group and SO(1, 3) is the Lorentz group. However, in
the Cartan geometric approach to GR we do not treat ISO(1, 3) as the dynamical
symmetry group, but only SO(1, 3).56

The general point seems to be that, in the Cartan approach, one can still
avail oneself of the structure of the group H by which one is quotienting, despite
this having more structure than one would expect from the automorphisms of the
overall Cartan geometry. On the one hand, this seems mathematically coherent.
But on the other hand, we remain perturbed by it—for to avail oneself of the (more
restricted) group H would nevertheless appear not to respect the symmetries of the
overall structure. More physically, using the resources of Cartan geometries or of
higher gauge theory to render TPG a ‘gauge theory of the translations’ would seem
to achieve this only in a very weak sense, if the resulting theory is such that those
translations do not even preserve dynamical possibility, are metrically inequivalent
(in which case TPG is—even more!—questionably the ‘teleparallel equivalent of
GR’), etc.57

This violation of SP2 seems to us to be a steep price to pay for a formulation
of TPG which, as discussed above, has (apparently) only marginal other advantages
in terms of e.g. unification. (Though, to repeat, its being a mathematically coherent
way to understand TPG as being a gauge theory of translations clearly also consti-
tutes some advantage of this approach; likewise for the Cartan-geometric approach
of Le Delliou et al. (2020a).) In any case, though, the fact that violations of SP2
are ubiquitous in the Cartan geometric approach is clearly conceptually interesting,

56Our thanks to John Baez for discussing this case with us.
57Appeal to the above-mentioned ‘dressing fields’ of e.g. Aldrovandi and Pereira (2013) might

seem to help here. But there are problems with that approach too—on which see (Dürr and Read
2024).
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and in our view is worthy of further foundational attention going forward.58 To that
end, we now consider this issue in a little more detail, by considering the prospects
for constructing a version of TPG based upon Cartan 2-geometries.

7. TPG as a Cartan 2-geometry

Given that we’ve seen that TPG can be formulated either as a Cartan geometry
(per TPGωc) or as a higher gauge theory (per BW), one might wonder whether
these approaches can be combined; such a question is also asked by Baez and Wise
(2015, §4.5). Here, we explore the issue further, both technically and from the point
of view of subsequent philosophical appraisal, especially with respect to the issues
raised in the previous section.

The rough idea of construing TPG as theory based upon a Cartan 2-geometry
can be explained straightforwardly given our presentation in §2 of both higher gauge
theory and of Cartan geometry. By replacing the relevant groups in Cartan geom-
etry with 2-groups, we obtain a Cartan 2-geometry. In our case, the relevant larger
2-group G should be the Tel(1, n−1) 2-group, and the relevant subgroup H should
be the Poinc(1, n− 1) 2-group. Thus, a Cartan 2-geometry for teleparallel gravity
would consist of a principal H-bundle, F ×O Poinc(1, n− 1), equipped with a Car-
tan connection valued in the relevant Lie algebras of Tel(1, n− 1) 2-group, namely
an iso(1, n− 1)-valued one-form on the H-bundle that satisfies the properties of a
Cartan connection and an R1,n−1-valued two-form that satisfies suitable conditions.

But this, of course, is but a sketch of the formalism assuming that a Cartan
connection is well defined in this way and consists of the data for TPG such as an
Ehresmann connection on the Tel(1, n− 1)-bundle, which has not yet been shown
explicitly. From §2.3, we know that the iso(1, n− 1)-valued one-form on the frame
bundle does encode an Ehresmann connection ω and—with some derivation—the
tetrad field e. We still need to show that the R1,n−1-valued two-form in question
indeed encodes the torsion for TPG, and whether they indeed satisfy the fake flat-
ness condition, formulated in terms of Cartan geometry. It is explained by Wise
(2007, p. 137) that the curvature of a Cartan connection is defined just as in the
Ehresmann case, so the fake flatness condition can be expressed in the same way
as before (namely F (A) = t(B), where A, B are respectively the g-valued one-form
and h-valued two-forms that locally constitute a 2-connection in the cross-module
terms). What remains to be seen is whether the corresponding forms in Cartan
2-geometry should satisfy this condition. But this is by no means obvious, since to
make this precise we need to define explicitly a Cartan 2-connection more rigorously
than in the previous sketch. Specifically, we need to show that:

Conjecture 1. There is a Cartan 2-geometry modelled on two 2-groups (Tel(1,n-
1), Poinc(1,n-1)) with a Cartan 2-connection that determines the 2-connection on
Tel(1, n− 1) 2-bundle.

This conjecture makes use of the following definition:

Definition 1. (Incomplete) A Cartan 2-geometry modelled on 2-groups (G,H),
where G = (G0, K, t, α),H = (H0, K

′, t′, α′) ⊂ G is a H-bundle P → M equipped
58For another—distinct but interesting—violation of Earman’s principles in modern geometric

approaches to spacetime physics (in this case twistor theory), see (Gajic et al. 2024, §4.5).
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with a Cartan 2-connection A which consists of a g0-valued 1-form A on the H0-
bundle P0 and (P0 ×H0 κ)-valued 2-form B on M such that:

(1) F (A) = t(B),
(2) for every h ∈ H0, (Rh)

∗A = Ad(h−1)A.
(3) for every p ∈ P, A is a linear isomorphism between TpP and the Lie

algebra g0.

To complete this definition would amount to a substantial development of Cartan
2-geometry, which is beyond the scope of this paper—and as far as we know, there
is no established result in the literature. In particular, we do not yet have an
adequate grip of B and its properties, unlike the corresponding two-form in the
higher gauge theory (‘parallel transporting’ along a surface in M), or an ordinary
Cartan connection (the rolling of a hamster ball).

Nevertheless, we have some reasonable hope that this proposal can eventually
be worked out given the relationship between TPG and ordinary Cartan geometry
studied by Huguet et al. (2021a,b), Le Delliou et al. (2020a,b), and Wise (2007,
2010), as well as the suggestive similarity between higher gauge theory and Cartan
geometry pointed out by Baez and Wise (2015, §4.5), even if the details are currently
unclear.59 Thus, henceforth we will assume the feasibility of this proposal and turn
to a philosophical appraisal. Let’s call the anticipated theory for TPG formulated in
terms of a Cartan 2-connection BWc, where morphisms in the category are bundle
automorphisms of the Poinc(1, n− 1)-bundle.

The disparity problem of symmetry groups mentioned in §6.4 is at least for-
mally dissolved in this approach. Since BWc models are based on a principal
Poinc(1, n − 1)-bundle, the bundle automorphisms are restricted to the Lorentz
group, which is exactly the relevant physical gauge symmetry group. Although this
formalism still involves two symmetry groups in some sense, this feature applies to
Cartan geometry in general, which should not be ruled out on this ground alone.
Also, if Le Delliou et al. (2020a,b) are correct that the Cartan formulation of TPG
is the most attractive formulation which renders the theory a mathematically rig-
orous gauge theory of translations, then the benefit of this feature might offset its
cost (if any, which remains unclear). In that case, the involvement of two gauge
groups is not a bug but rather a characteristic feature of the approach.

However, even if the BWc models introduce no additional costs to this proposal
from Le Delliou et al. (2020a,b), the question remains regarding what we gain
by endorsing this 2-geometry approach over the latter. If there is nothing to be
gained, then introducing the complexities of higher gauge theory and Cartan 2-
geometry would be an idle intellectual exercise. On this point, perhaps it is worth
recalling again how Baez and Wise (2015) arrived at this approach.60 Unlike Le
Delliou et al. (2020a,b), who sought a mathematically well-defined gauge theory of
translations, Baez and Wise (2015) were first acquainted with the Poincaré 2-group
and only then looked for its physical interpretation (see also (Baez et al. 2012)).
They then realized that the Poincaré 2-group 2-connection describes exactly the

59We are hopeful that Conjecture 1 is true if Definition 1 can be suitably completed. In (Wise
2007, p.141), it is explained that, given a Cartan geometry modelled on (G,H) we can split the
curvature F of the Cartan connection A into a g part and g/h part, and the g/h part corresponds
to the torsion. In the Cartan 2-geometry formulation of teleparallel gravity, the two-form B, if
considered as a two-form on H0-bundle, is precisely valued in R1,n−1 = g0/h0.

60Cf. footnote 42.
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quantities relevant for TPG.61 There was for those authors evidently great pleasure
to be found in discovering that significant mathematical properties are embodied
by physical entities—how the physical reality ‘conforms’ to the concepts created by
our mind.

That background aside, what distinguishes this approach from that of Le Del-
liou et al. (2020a,b) is that the 2-connection not only encodes the Weitzenböck
connection, the tetrad field, and the torsion, but also the fact that the connection
is flat, which is the physical interpretation of the fake flatness condition required
for 2-connections. In this sense, the fact that teleparallel gravity invokes a flat
torsionful connection is explained by that the primary field of teleparallel gravity
is a 2-connection field—a point already made above in §6.2. This arguably gives
a non-arbitrary way of delineating the kinematics and the dynamics of teleparallel
gravity, which is otherwise problematic; it also means that a Cartan 2-geometry
approach to TPG would seem to maximise theoretical virtues, in the sense that
Earman’s principles are satisfied, the theory is a gauge theory of translations, and
flatness of the connection is explained.
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A. Proofs of various propositions

Proposition 3. Let ⟨M,LMSO, π, LMSO ×SO V, e, ω, ηAB⟩ be a model of TPGe,ω.

Then there exists a unique metric
e
gab and connection

e,ω

∇, as defined in equations

(1) and (2), such that ⟨M,
e
gab,

e,ω

∇⟩ is a model of TPG∇.

Proof. For this, note that (1) and (2) determine the action of e
gab and

e,ω

∇ uniquely.

Flatness of
e,ω

∇ follows from the fact that ω is flat. And to show that
e,ω

∇ is compatible
with e

gab, let ηa be any vector field on M . We have
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= 0

61This is mentioned in (Baez and Wise 2015), but the more elaborate story can be found in
Baez’s blog entries on the n-category café Teleparallel Gravity as a Higher Gauge Theory and
Klein 2-Geometry XII.
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Proposition 4. Let ⟨M, gab,∇⟩ be a model of TPG∇, and fix a vector space V
of dimension n, a representation ρ of Gl(n,R) and a (flat) Lorentzian metric
ηAB on V . Then there exist a coframe e and connection ω on LMSO such that

gab =
e
gab, ∇ =

e,ω

∇, where
e
gab and

e,ω

∇ are as defined in equations (1) and (2), and
⟨M,LMSO, π, LMSO×SOV, e, ω, ηAB⟩ is a model of TPGe,ω. Moreover, the pair ⟨e, ω⟩
is not unique. If ⟨e, ω⟩ is any such pair, then so is ⟨e′, ω′⟩ iff ⟨e′, ω′⟩ = ⟨φ∗e, φ∗ω⟩
for some vertical principal bundle automorphism φ : LMSO → LMSO.

Proof. First, note that given any metric gab we can always find a coframe field e

such that (1) holds.62 Then given e, we can (uniquely) define a flat connection
ω

∇
on the associated bundle LMSO ×SO V via (2). Since any flat connection on the
associated bundle is (uniquely) determined by some flat principal connection ω,63

this establishes existence.
We now move on to establish non-uniqueness. For the ‘if’ direction, let

⟨M,LMO, πL, LMSO×SOV, e, ω, ηAB⟩ be a model of TPG, and let φ : LMSO → LMSO

be a vertical principal bundle automorphism. First, we show that
φ∗e,φ∗ω

∇ =
e,ω

∇. So
let κa : M → TM be any vector field, and consider any p ∈ M and any ξa ∈ TpM .
We know that for any section τA : M → LMSO ×SO V ,

ξn
φ∗ω

∇ nτ
A = φ∗(ξn

ω

∇nφ∗τ
A).

Here, φ∗vA(x) = vA(φ(x)) for all points vA : π−1
L (p) → V in LMSO ×SO V , and

φ∗τ
A(p)(φ(x)) = τA(p)(x), where p ∈ M and x ∈ π−1

L (p). The remainder is just
some computation:

φ∗eAm(ξ
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Since φ∗eAm is invertible, we can conclude that ξn
φ∗e,φ∗ω

∇ nκ
m = ξn

e,ω

∇nκ
m and hence

that
φ∗e,φ∗ω

∇ =
e,ω

∇. It remains to show that
φ∗e
g nm =

e
gnm. Let ξa, κa ∈ TpM and let

62See e.g. (Tecchiolli 2019).
63See e.g. (Michor 2008).
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x ∈ π−1(p). We have
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For the ‘only if’ direction, suppose that ⟨e′, ω′⟩ is another pair satisfy-
ing the stated conditions. It follows that ηNMeNa e

M
b = ηNMe′Na e′Mb so that

ηNMe′Nn e′Mm enAe
m
B = ηAB and hence that for each x ∈ LMSO, (e′An )x(e

n
B)x =

(ρ(g(x)))AB for some (smooth) assignment g(x) ∈ O(1, n − 1,R). Thus (e′Aa )x =
(ρ(g(x)))AN(e

N
a )x = (eAa )xg(x), so defining φ(x) = xg(x) (which is a vertical principal

bundle automorphism) we have that (e′Aa )x = (eAa )φ(x) = (φ∗eAa )x. Finally, we know

that eaNξ
n
ω

∇ne
N
mκ

m = e′aNξ
n
ω′

∇ne
′N
m κm = φ∗eaNξ

n
ω′

∇nφ
∗eNmκ

m for all ξa, κa. But we

already know that eaNξ
n
ω

∇ne
N
mκ

m = φ∗eaNξ
n
φ∗ω

∇ nφ
∗eNmκ

m for any vertical principal

bundle automorphism, so we have φ∗eaNξ
n
ω′

∇nφ
∗eNmκ

m = φ∗eaNξ
n
φ∗ω

∇ nφ
∗eNmκ

m and

hence
ω′

∇ =
φ∗ω

∇ . Since any connection on the associated bundle is (uniquely) the lift
of some principal connection, we have ω′ = φ∗ω.

For proposition 5, we first prove a lemma:

Lemma 1. Let M be a differentiable manifold (assumed connected, paracompact,
and Hausdorff), and let LM

π→ M be the frame bundle over M . Let (Ψ, χ) be
a principal bundle morphism, where Ψ : LM → LM ′ and χ : M → M ′ are dif-
feomorphisms. Then there exists a unique vertical principal bundle automorphism
φ : LM ′ → LM ′ such that Ψ = χ̃∗φ, where χ̃ : LM → LM ′ denotes the (unique)
lift of χ to LM .

Proof. Let Diff(M) denote the diffeomorphism group of M , Aut(LM) the group
of principal bundle automorphisms of LM , and Ver(LM) the group of vertical
principal bundle automorphisms of LM . Note that Ver(LM) is a normal subgroup
of Aut(LM). Then we have the following split exact sequence:

1 Ver(LM) Aut(LM) Diff(M) 1i j

l

Here, i : Ver(LM) → Aut(LM) is the group homomorphism taking each element
of Ver(LM) to itself, j : Aut(LM) → Diff(M) is the group homomorphism taking
each pair in Aut(LM) (Ψ, χ) 7→ χ, and l : Diff(M) → Aut(LM) is the group
homomorphism taking each diffeomorphism χ 7→ (χ̃, χ), where χ̃ is the unique lift
of χ to LM . It follows that Aut(LM) ∼= Diff(M)⋉Ver(LM), from which the result
follows.
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Proposition 5. Let M∇ = ⟨M, gab,∇⟩ be a model of TPG∇ and let χ : M → M ′

be a diffeomorphism. Let Me,ω = ⟨M,LMSO, πL, LMSO ×SO V, e, ω, ηAB⟩, M′
e,ω =

⟨M ′, LM ′
SO, π

′
L, LM

′
SO×SOV, e′, ω′, ηAB⟩ be any two models of TPGe,ω corresponding

to M∇, χ∗M∇ respectively in the sense of proposition 4. Then there exists a unique
bundle morphism (Ψ, χ) such that ⟨e′, ω′⟩ = ⟨Ψ∗e,Ψ∗ω⟩.
Proof. First, consider the bundle morphism (χ̃, χ), where χ̃ : LMSO → LM ′

SO is the
lift of χ to LMSO, and let χ∗Me,ω denote the lift of Me,ω via (χ̃, χ). By construction,
χ∗Me,ω is a model of TPGe,ω corresponding to χ∗M∇ respectively in the sense
of proposition 4. It follows from proposition (4) that there exists some vertical
principal bundle automorphism φ : LM ′

SO → LM ′
SO such that φ∗(χ∗Me,ω) = M′

e,ω,
and hence that (χ̃∗φ, χ) is a principal bundle morphism satisfying the conditions of
the proposition.

For uniqueness, suppose that (χ̃∗φ′, χ) is another diffeomorphism satisfying
the stated conditions (that we can restrict attention to diffeomorphisms of this
form is a consequence of lemma 1). Then χ̃∗eAa = (φ′ ◦ φ−1)∗χ̃∗eAa i.e. (χ̃∗eAn )xv

n =
(χ̃∗eAn )φ′◦φ−1(x)v

n = (χ̃∗eAn )xg−1(x)g′(x)v
n = (ρ(g−1(x)))AN(ρ(g

′(x)))NM(χ̃∗eMn )xv
n for all

x ∈ LM ′
SO and all va ∈ Tπ′

L(x)
M ′. It follows that (ρ(g−1(x)))AN(ρ(g

′(x)))NB = δAB
and hence that (ρ(g′(x)))AB = (ρ(g(x)))AB and g′(x) = g(x). Since this holds for all
x ∈ LM ′

SO, we have φ′ = φ.
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