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Abstract

This paper contends with the widespread belief that the methods of ma-
chine learning (ML) have the capacity to radically disrupt the nature of
scientific knowledge or practice on the grounds that these methods enable
a form of theory-free inductive inference. Such views about scientific ML
flow directly from what I term a theory-free ideal in science: a scientific
meta-narrative according to which the influence of theory on scientific
knowledge-production should be minimised, if not altogether eliminated.
By means of two case studies, I argue that this theory-free ideal, like its
normative corollary, has a deleterious effect on the epistemic standing of
ML-based science.

1 Introduction

The prospects of machine learning (ML) for science have opened wide in the last
decade, in which time ML-based methods were adopted in the Large Hadron Col-
lider at CERN for sorting the significance of particle collision events (Duarte et
al., 2018) and DeepMind released its AlphaFold, AlphaFold 2.0, and AlphaFold
3.0 (Jumper et al., 2021), capable of predicting tertiary and quaternary protein
structure from amino acid sequence data, effectively solving one of biology’s
most complex and enduring open problems. The rapidity and ubiquity of ma-
chine learning uptake across all sectors of public life, in particular, science, has
sparked an onslaught of speculation concerning its nature and the downstream
consequences of its widespread use.

Such speculation has issued from cultural commentators, journalists, and
media personalities, from the researchers and engineers producing the tools of
ML and the scientists deploying them and from philosophers, in both academic
and popular venues. Responses focussed on the epistemic status of ML and its
projected impact on science have echoed statements to the effect that machine
learning differs radically from prevailing modelling, statistical, or scientific meth-
ods in ways that are projected to change the landscape of scientific discovery or
the nature of the epistemic fruits of scientific enterprise.
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These interlocutors predict that ML will instigate profound—even “revo-
lutionary”—changes to the nature of science and the knowledge it produces
(Anderson, 2008; Boge, 2022; Hey et al., 2009; Mayer-Schönberger & Cukier,
2013; Society & Institute., 2019; Spinney, 2022; Srećković et al., 2022). Call this
view the disruption claim. According to this perspective, ML methods are seen
as holding the potential to retire or else displace the role of theorising in science
(Anderson, 2008; Mayer-Schönberger & Cukier, 2013; Spinney, 2022; Srećković
et al., 2022). Desai et al. (2022) refer to this conception of an ML-enabled sci-
entific paradigm as “the epistemically revolutionary new frontier raised by data
science: the so-called ‘theory-free’ paradigm in scientific methodology.” Some
of these statements regarding the scientific usage of ML echo proclamations
that were once made of classical statistical method: that big data analytic tools
promise to allow the raw data to “speak for themselves” (Levins & Lewontin,
1985).

These claims of disruption could be understood as instances of ML or AI
hype—they issue from spokespeople swept up in a wave of drastically overselling
the capabilities of presently existing ML techniques 1. Indeed, Hansen & Quinon
(2023) argue that AI hype is principally responsible for belief in the possibility
of theory-free science. While cultural misapprehensions of AI no doubt play a
role, I argue that the root of such beliefs runs far deeper, and is in fact grounded
in a conception of scientific objectivity.

Dating back to the first articulations of the modern scientific method, gen-
erally located in the writings of Francis Bacon (1878), the notion of objectivity
has reigned supreme. Bacon advocated a kind of empiricism which, according
to modern scholarship, sought to minimise the role of both normative values
and theoretical considerations on scientific knowledge-production. The view
that the influence of normative values should be eliminated from the scientific
enterprise has been dubbed a value-free ideal, and critiqued on the grounds of
both its in-principle untenability and its negative influence on science in prac-
tice Douglas (2009). In the present work, I will argue that its twin, what I dub
a theory-free ideal, is both epistemologically ill-founded and pernicious in its
practical influence.

This theory-freedom is intended as a negation of theory-mediation, theory-
drivenness, theory-involvement, and theory-ladenness. It is also, we will see
from an examination of the source literature, a denial that methods rest essen-
tially on domain-knowledge or prior conceptualisation of the target phenomena,
or that they should be understood as representing features of target systems in
any epistemically salient respect. “Theory” is hence to be understood in a broad
and colloquial sense, as incorporating domain knowledge or conceptualisation
of target phenomena. Subscribers to the theory-free ideal seek to purge science
of what they see as epistemically compromising arbitrariness and subjectivity.
This subjective element is brought on board when human critical thinking or
conceptualisation of target phenomena play an essential role in shaping an em-

1 Often, though not always, because such individuals stand to materially benefit from this
widespread cultural misperception
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pirical research programme.
Claims about the theory-freedom and revolutionary potential of scientific

ML have been, in part, motivated by a concern for the future of science. If
the scientific process becomes automated, purged of theory, and overtaken by
uninterpretable black-box algorithms with human domain experts pushed out of
the loop, this third category worries that the epistemic products of science may
cease to be accessible to human interpreters. Interestingly, whether motivated
by optimism or pessimism for the future of science, assessments of the role of ML
in science have converged upon the same essential thesis: science will undergo
drastic change with the advent of ML-based methods, because such methods are
theoretically unmoored or conceptually impoverished in a way that sets them
fundamentally apart from existing methods in statistics or applied mathematics.
I dub this second claim the distinctness claim.

If, indeed, the procedure of science or the status of knowledge produced in
science are set to radically change, this merits serious engagement by scientists
and philosophers of science. If, instead, as I will argue, these are misplaced
beliefs—which has established a foothold in not only the public consciousness
but in communities of relevant experts—this narrative ought to be challenged,
for it will lead scientists and the public astray. Claims of the epistemic dis-
tinctness of ML, I contend, latch onto real novelty in some instances of ML
deployed toward scientific ends: potential for misuse and lack of methodological
standards. Instead of identifying this as the epistemic problem it represents,
however, claims of epistemic distinctness and theory-freedom function to reify
the (potential) misuse of ML-based tools into an account of how these tools
normally function, how they necessarily function, or even how they normatively
ought to function.

In the course of this paper, I will attempt to construct the most unassailable
version of these theses of disruption and distinctness before turning to assail
them with the realities of scientific applications of ML. In the interlude, I will
delve into what I diagnose as the root cause of these misapprehensions: the
theory-free ideal. The perniciousness of this theory-free ideal is illustrated via
two case studies in the scientific application of ML.

2 Disruption & distinctness

2.1 The beliefs of working scientists

Although talk of AI or ML bringing about “revolutions in science” receives its
most hyperbolic declarations from journalists, it echoes—or is echoed in—the
words of working scientists. A monograph titled “The AI revolution in scientific
research,” released jointly by The Royal Society and the Alan Turing institute,
offers scientists’ own assessments of anticipated changes to scientific practice
spurred by the involvement of ML (Society & Institute., 2019). Summarising
the opinions of the assembled scientists, the authors write that “AI” is set to
have “a disruptive influence on the conduct of science”(Society & Institute.,
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2019, p.10). Such pronouncements appear to be underpinned by a conception
of the workings of ML in science as a theory-free enterprise, given the authors’
description of the normal function of ML and data scientific methods. The
standard way to apply ML in science, they write, is “to start from a large data
set, and then apply machine learning methods to try to discover patterns that
are hidden in the data—without taking into account anything about where the
data came from, or current knowledge of the system” (Society & Institute.,
2019, p.9). The authors explicitly contrast this use case with the potential for
more theory-driven research techniques, à la PINNs (physics-informed neural
networks). However, it is clear from the exposition that a theory-agnostic con-
ception of the typical function of ML models informs the authors’ predictions
of disruption.

In their “AI for Science” technical report, Stevens et al.. (2020) similarly
collect the wisdom of scientists from a diverse array of disciplines about the
integration of AI/ML tools in their research processes. The scientists quoted in
the technical report broadly endorse the disruption claim, writing that “grand
challenges have emerged in the earth, environment, and climate disciplines that
could be revolutionized through application of AI methods,” p.28 that “AI will
revolutionize the development of process scale models” in earth and environ-
mental sciences p. 34, that “AI can revolutionize synthetic biology” p. 38, that
AI has the capacity for “revolutionizing human health” and “AI has the poten-
tial to extend the average human life” p.43, that AI “promises a revolutionary
understanding of complex materials and chemical processes across the entire hi-
erarchy of relevant length and time scales” p.135, that “AI techniques that can
optimize the design of complex, larger scale experiments could completely rev-
olutionize the way experimental nuclear physics is done” p.63, and that “[t]]he
already successful ongoing efforts using AI in cosmology along with new—and
possibly unexpected—approaches will come together in the next 10 to 15 years
to revolutionize our understanding of the universe and help answer some of the
deepest questions in physics” p. 47.(Stevens et al., 2020).

A second report from The Royal Society, this one spanning a full 108 pages,
is entitled “Science in the age of AI: How artificial intelligence is changing the
nature and method of scientific research.” The monograph details avenues of
impact on all fronts of scientific research, from epidemiology to materials science
(Leontidis, 2024). While not all of the outlined pathways to disruption rest
on the supposition of the epistemic distinctness of machine learning methods,
several do. The adoption of deep learning methods in the scientific workflow is
argued to be “transforming data analysis and knowledge generation” in the way
it is used “to automatically extract and learn features from raw data” (Leontidis,
2024).

Chubb, Cowling, and Reed (2022) conducted a survey of identified leaders
across various scientific fields concerning the adoption of AI/ML based methods
within their research practices. A consistent theme amongst the researchers
surveyed was the sentiment that “AI could prompt ‘unforeseen’ outcomes, po-
tentially leading to a reframing of disciplines, modes and methods of knowledge
production” (Chubb et al., 2022, 1442), and that “AI could be used in the
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near future to bypass traditional means of knowledge production” (Chubb et
al., 2022, 1445). One interviewee explained the difference between “traditional”
and AI-based methods as follows: “[n]ormally the scientific progress goes like
this, so you have a hypothesis and then you collect data and try to verify or
falsify the hypothesis, and now you have the data and the data, so to say, dic-
tates you what hypothesis you can find. So, this is how methodologies, scientific
methods are changing” (Chubb et al., 2022, 1446).

These overviews of scientists’ perceptions of the place of AI in science, and
its potentially transformative role, paint a relatively coherent picture. Scien-
tists across disciplines widely conceptualise of the work of “normal” science as
conforming to a roughly hypothetico-deductive template. Machine learning, or
“AI,” enables scientists to carry out their work in a far more data-driven, and
far less theory-driven capacity. Certainly, some research paradigms (or stages
within a research pipeline) are more exploratory than others. A distinction
between exploratory (broadly, data-driven) and explanatory (broadly, theory-
driven or involving) research strategies has been a part of how scientists con-
ceptualise of their work for decades. The picture these assembled voices paint,
however, seems to point to a lessened overall need for theoretical input within
scientific discovery.

Articulations of distinctness and disruption claims emanating from science
journalists à la Anderson (2008), (Hey et al., 2009), Mayer-Schönberger &
Cukier (2013), and (Spinney, 2022) no doubt represent far more sensational-
ist visions for the role of ML in science than most working scientists would
assent to. The average scientist would likely deny that AI/ML will soon alto-
gether obviate the need for theory, preconception, or domain-expertise within
scientific knowledge-production. Nevertheless, the overarching perception that
the methods of science can or should be rendered free from theory exerts a force
on the research practices of working scientists. Funding for grants and for new
research centers, as well as industry sponsorship for conferences, awards, and
similar often hinges on scientists conveying the novelty and disruptive potential
of their methods which, increasingly, is tied to an ideal of theory-freedom.

2.2 A philosophical defense

Philosophers have been quick to respond to assertions that the rising tide of
ML-adoption will enable a “post-theory science”—what Desai et al. (2022)
refer to as “the epistemically revolutionary new frontier raised by data science:
the so-called ‘theory-free’ paradigm in scientific methodology” (Desai et al.,
2022). Some philosophers have critiqued this vision of ML-infused science, some
endorsed it, while others have simply acknowledged its ubiquity (Alvarado &
Humphreys, 2017; Beisbart & Räz, 2022; Boge et al., 2022; Boon, 2020; Creel,
2020; Desai et al., 2022; Duede, 2023; Hansen & Quinon, 2023; Kawamleh,
2021; Kitchin, 2014; Leonelli & Zalta, 2020; Pietsch, 2021, 2022; Pigliucci, 2009;
Rowbottom et al., 2024, 2023; Sullivan, 2022; Srećković et al., 2022).

Rafael Alvarado and Paul Humphreys (2017) take stock of observations on
ML and big data from scholars hailing from a range of disciplinary backgrounds.
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These scholars describe the widespread adoption of ML and “big data” an-
alytic methods resulting in “a common epistemological effect” (Alvarado &
Humphreys, 2017, 739). The primary manifestation of this “epistemological
shift” being that “[t]heory...at the level of how knowledge is produced and
structured...[has] been replaced by information stored in databases too large
to read and processed by algorithms too complex to understand”(Alvarado
& Humphreys, 2017, 739). If ML or big data analytic methods are indeed
“interpretation-free,” Alvarado and Humphreys write, this will entail “a perma-
nent change in the way that science is pursued”(Alvarado & Humphreys, 2017,
744). In a treatment of the representational status of ML in science and its
relation to the scientific realism debate, Rowbottom, Curtis-Trudel, and Peden
(2023) begin from the premise that scientific ML “contrasts with traditional
scientific modelling, where explicit theories and models are used” (Rowbottom
et al., 2024, 172).

In a 2021 paper, Eamon Duede writes that philosophers and scientists alike
have widely made claims of the epistemic distinctness of ML and its disruptive
potential for science. Duede observes that “to scientists and science funding
agencies alike, artificial intelligence both promises and has already begun to
revolutionize...science” and that “nearly every empirical discipline has already
undergone some form of transformation as a result of developments in and im-
plementation of deep learning and artificial intelligence”(Duede, 2023, 1089).
But, as Duede notes, philosophers and scientists, while agreeing on the rev-
olutionary potential (or actuality) of AI/ML in science, have made separate
meaning of it. Duede sets out to address these discrepancies, attributing what
he perceives as philosophical pessimism concerning the role of ML in science, in
large part, to “a failure on the part of philosophers to attend to the full range
of ways that deep learning is actually used in science”(Duede, 2023, 1090). In
his critique of philosophical reactions to disruption and distinction claims, how-
ever, Duede leaves these theses unchallenged. I will argue that the failure Duede
documents on the part of philosophers to account for how ML might actually
be implemented in empirical research strategies is ultimately responsible for
philosophical endorsement of disruption and distinctness claims.

Sreckovic, Berber, and Filipovic (2022) differentiate machine learning tech-
niques from standard practices in statistical modelling, arguing that statisticians
employ theoretical assumptions, while machine learners do not (Srećković et al.,
2022). Sreckovic, Berber, and Filipovic (2022) evaluate what they hold to be the
key differences between traditional modelling approaches and machine learning
methods in terms of the explanatory capacity of both and their capacity to
elucidate causal relationships. Sreckovic et al. diagnose the methods of ma-
chine learning as uninterpretable, and not resting on theoretical considerations.
This, according to the authors, prevents the practice from getting at underlying
causes and furnishing explanations of natural phenomena. The ability of ML
techniques to provide prediction in the absence of explanation is projected by
the authors to alter the landscape of how we conduct science.

“In contrast to explanatory-focused statistical models,” Sreckovic et al. ar-
gue, “ML models reach predictions without the theoretical backup that supple-
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ments the correlations found in the data with a potential causal interpretation”
(Srećković et al., 2022, 160). Machine learning, they argue, is “theory-agnostic”
in that “there are no a priori assumptions concerning the mechanism of the tar-
get phenomenon” (Srećković et al., 2022, 165). While the authors acknowledge
a sort of disappearing line between ML and traditional statistical techniques,
their emphasis is on drawing out broad characterisations of the two disciplines
and what separates them. Whereas for “traditional statistics, standard models
rely on the representation of underlying causal mechanisms, and they are used
for retrospective testing of an already existing set of causal hypotheses...ML
models are constructed based on data instead of theoretical assumptions about
the target system. The purpose of such models is primarily forward-looking, i.e.
to predict new observations” (Srećković et al., 2022, 166). Here, the contrast
the authors draw between broadly “data-driven” and “theoretically-motivated”
methods is telling. This distinction is not one the authors have introduced: such
a divide between theory-driven or hypothesis-driven research and data-driven
research is held widely among engineers and scientists. Sreckovic et al. merely
provision a philosophical exposition and justification thereof.

In a similar vein, Florian Boge (2022) speculates that a revolution in either
scientific practice or its epistemic footing may be in store owing to the adoption
of machine learning—specifically deep learning—methods. Boge’s argument
rests on the idea that deep learning is both instrumental in an idiosyncratic sense
among modelling approaches in the sciences, and that it exhibits a novel kind
of epistemic opacity to its deployers. These identifying facets of deep learning
pose an impediment to understanding and explanation (in the scientific sense),
especially when deployed in exploratory settings where the successful results
of scientific enquiry will require novel concept-formation. Owing to their di-
vergence from standard mathematical modelling practices in the sciences, Boge
claims, ML modelling techniques “have the potential to profoundly ‘change the
face of science’” (Boge et al., 2022, p.71).

Boge urges that the distinction between the procedure of classical mathemat-
ical modelling or computer simulation in science and the application of machine
learning methods is that the former procedure begins with a conceptualisation
of the target phenomenon under investigation, while this step is absent in the
use of ML. “The difference,” Boge writes, “between CS [computer simulation]
and DL [deep learning] may be summarized as follows: The former begins with
a conceptualization of the target, and from that predicts ‘hypothetical data’.
The latter begins with a conceptualization of data” (Boge et al., 2022, p.59).
Especially in exploratory modelling contexts, the lack of background theory or
conceptualisation of the target phenomenon is taken as an impediment to un-
derstanding. While Boge grants that DL models might represent, he holds that
they fail to be explanatory for lack of theoretical context and conceptual content,
writing that a “DL model...is conceptually too poor to provide an understand-
ing of underlying mechanisms” (Boge, 2022, 57). Boge takes after de Regt in his
stance on the relation between representational status and explanatory status:
“for representational models to explain, they must also be constructed under the
principles of an intelligible theory, where a theory is intelligible if it has certain

7



qualities that ‘provide conceptual tools for achieving understanding’ (de Regt,
2017, p. 118)”(Boge, 2022, 54). Boge predicts profound changes to the practice
and epistemic products of science because ML-based tools will fail to provide
understanding or explanations due to their lack of theoretical or conceptual
motivation and content.

Mieke Boon (2020) signs on to the thesis of the epistemic distinctness of
ML, but on this basis denies disruption. Boon argues against the thesis that
machine learning methods will obviate the need for auxiliary or intermediary
human conceptual apparatus in the generation of scientific knowledge. She ar-
gues that the reason that we grant any sort of a priori plausibility to statements
to the effect that big data will usher in a scientific revolution flows from a shared
implicit view of how science works—one which she argues to be in error. She
labels this erroneous conception of science a “strict empiricism.” Her goal is to
“make plausible that on an empiricist epistemology the elimination of any hu-
man contribution to scientific knowledge is in fact already built in as a normative
ideal...strict empiricist epistemologies indeed support the claim that objective,
although opaque, data-models produced in machine learning processes can re-
place and may even be preferable to human-made scientific knowledge” (Boon,
2020, 46).

Boon advocates for the necessity of human capacities for conceptualisation,
abstraction, and interpretation in every aspect of collecting, preparing, and ma-
nipulating data: “not only when setting up the data-generating instrumentation
and seeing to its proper functioning, but also in assessing and interpreting the
data, drawing relationships between data from different sources, and for making
the distinction between ‘real’ phenomena and artifacts” (Boon, 2020, 59). Fur-
ther, “[t]he necessity to prepare data that are about something in the real world
also implies that phenomena are crucial in scientific practices, even when only
aiming at the generation of data for machine-learning processes” (Boon, 2020,
57). As evidenced in these passages, Boon clearly takes data provenance and
processing to be an interpretive affair. But for her argument against would-be
empiricist dogma to work, she must take it axiomatically that data and data
models are objective and worldly. This is part and parcel of the misconception
of scientific process and products which I believe Boon seeks to argue against—
the misconception which I am, in this paper, chiefly arguing against. Namely,
the misconception of data as being raw, objective, and worldly—unmediated by
human theorising and conceptual grasp on the target.

If we banish the idea that data is objective and worldly from the start,
instead viewing data collection, cleaning, processing, and interpretation in an
inference-licensing capacity as a fundamentally theory-mediated affair, Boon’s
contentions with empiricist epistemologies appear to dissipate. Perhaps the
stumbling block is most easily seen in Boon’s in-passing characterisation of the
role of idealisation in mathematical representation. Boon claims that “machines
are not confined by the kinds of idealizations and simplifications humans need to
make in order to fit data into comprehensive mathematical formalisms” (Boon,
2020, 51). The idea that the role of idealisation in scientific representation
ultimately serves the human-interpretability of our representations—and that
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idealisations are evitable or eliminable—is not, of course, novel or idiosyncratic
to Boon. It is, however, revelatory of her commitments to the representational
properties of applied mathematics. Mathematical representation is conceptual
work. Idealisation is essential to it. Use of ML-based tools in science thus
cannot escape the necessity of idealisation.

Boon is a vocal proponent of a theory-laden conception of data. Yet her
analysis of the prospects for machine learning in science appear to reveal in-
consistencies in her view. Like Boge and Sreckovic et al.., Boon concludes that
applications of ML in science will fall short of providing understanding or ex-
planation in virtue of being conceptually impoverished. This, on her view, sets
applications of ML to scientific research intrinsically apart from “real science.”
“‘[R]eal science’ and machine learning technologies,” she writes, “operate in very
different domains and must not be regarded as competing” (Boon, 2020, 58).
If data is necessarily theory-laden and conceptually-mediated, however, then
it cannot be the case that ML-facilitated science is a theory-free or concept-
free epistemic activity, because the use of ML in science will be necessarily
inflected by the theoretical and conceptual commitments inherent to the data.
This account, therefore, appears to conflate potential misuse with the necessary
operation of ML in science.

Boon, Boge, and Sreckovic et al. each sign onto the idea that ML methods
are in some sense theory-free or devoid of conceptual content, and hence distinct
from canonical modelling methods in science nad traditional statistics. Boge and
Sreckovic et al. further contend that the widespread adoption of ML methods
will catalyse disruptive change in science, while Boon argues that the theory-
freeness of ML methods rules them out as viable tools for science. These scholars
take the perceived differences between “normal science” or even “real science”
and machine learning to amount to the degree to which they are theory-laden,
theory-driven, or conceptually rich. As I will demonstrate in the subsequent
sections, no use of ML in science is “theory-free,” and those that aspire to this
ideal tend to result in poor scientific practice.

3 Conceptions of scientific objectivity

The concept of objectivity is central to modern science, both as this denotes
an abstract construct or pursuit-worthy ideal and as set of human practices
spanning several centuries. A philosophical debate concerning the variety of
objectivity scientists ought to strive for is as old as modern science itself, and
has remained active throughout its history. One thread of this debate concerns
the extent to which scientific practices and the knowledge that they produce are
ineliminably structured by human values. Another concerns the extent to which
such practices and outputs are necessarily structured by theory, in the sense of
conceptual content, or prior commitment to the nature of the subject-matter.

Philosophical conceptions of objectivity are rooted in doctrine concerning
the ultimate nature and possibility of empirical knowledge. They are highly ab-
stracted from on-the-ground empirical practices and have little direct influence
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on them. But scientists in modernity have operated with their own, albeit of-
ten implicit, conceptions of scientific objectivity. These have permeated public
conceptions of science which, in turn, feed back into scientists’ self-conceptions
of their work and its epistemic foundations. Thus philosophical conceptions of
scientific objectivity and meta-narratives of scientific objectivity come apart.

3.1 The value-free ideal

A recent literature on values in science has offered an extensive treatment of the
philosophical conception of objectivity as freedom from normative influence and
its corrollary meta-narrative: the value-free ideal. Few historical interlocutors
have put forward explicit defense of objectivity as total value-agnosticism. In-
stead, it has been argued that science strives to minimise the impact of human
values and to constrain their influence to appropriate venues and junctures. A
mostly implicit ideal of total value-freedom, however, is widespread and influ-
ential in scientific practice, as well as in the public’s reception of the outputs of
science, in science education, and in the interplay of science and public policy
(Douglas, 2009). Various incarnations of both value-freedom qua philosophical
doctrine and meta-narratives of value-freedom have emerged over the history of
modern science.

The nineteenth century German social scientist Max Weber is widely held
to be history’s strongest proponent of a scientific objectivity rooted in value-
agnosticism (Douglas, 2009; Proctor, 1991). Weber argued that the sciences—
at least the social sciences, with which he was most intimately in contact—
should strive for wertfreiheit or werturteilsfreiheit (value-neutrality or freedom
from value judgement). This was the end of the era of gentlemen scientists
and the beginning of the professionalisation of science with the ascendance of
the German university. Sociology in 1800s Germany was deeply culturally-
biased. The ideal of value-neutrality Weber sought to promote was intended to
make scientists aware of their positionality, their cultural background, and their
normative commitments, so that they might, to the extent possible, reduce
or compensate for their biases in relation to the subject matter. Thus the
positive articulation of objectivity as value-freedom holds up value-neutrality
as a means of excising from scientific practice or the interpretation of scientific
results inappropriate value-impingement.

Twentieth and twenty-first century philosophers of science, however, have ar-
gued that the end goal of total freedom from normative influence is unachievable
on both practical and in-principle epistemic grounds. Denying the necessary in-
fluence of values on science, moreover, merely cements them, lends them an
air of objectivity, and renders them unavailable to critical scrutiny (Douglas,
Longino, Elliott). Heather Douglas (2009) delivers a careful analysis of two
major twentieth century disputes over science’s credentials and the appropri-
ate role of science in public life: the Science Wars, which concerned whether
scientific knowledge was discovered in the world or socially constructed, and
the dispute over the appropriate role of science in governing (United States)
public policy, which revolved centrally around the validity of the distinction
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between sound science and pseudoscience. Douglas concludes that what she
refers to as the value-free ideal of science is pernicious, threatening both the
credibility and utility of science. The meta-narrative that tells us that science
is value-free effectively serves to conceal loci of normative input and reifies the
implicit norms of uncritical scientists. Value-freedom, however, is not the only
criterion invoked in philosophical conceptions of objectivity, nor is it the only
conception of objectivity which holds sway over scientific practice in the form
of meta-narratives.

Francis Bacon’s Novum Organum (1620) is taken to be the first thorough
articulation of the methods, aims, and scope of modern science. It also contains
the loci classici for our modern conceptions of scientific objectivity. In the expo-
sition of his idols of the mind, Bacon writes that “human understanding is like a
false mirror, which, receiving rays irregularly, distorts and discolors the nature
of things by mingling its own nature with it” (Bacon, 1878). One approaches
objectivity by casting off these distorting “idols.” Dear’s (1992) history of the
early-modern conception of objectivity begins by claiming that the concept must
be understood as antonymous to the “distorting mirror” of subjectivity, a clear
nod to the Baconian passage (Dear, 1992). Bacon’s conception of objectivity
is widely taken to have involved minimising the influence of human values and
cultural biases on the production of scientific knowledge (?)(Proctor, 1991). In-
deed, Proctor attributes to Bacon the genesis of the ideal of value-freedom in
science.

3.2 The theory-free ideal

Of no lesser import to the attainment of scientific objectivity, Bacon urged
minimisation of the influence of preconception, or theory. Wilson (1998) sum-
marises the Baconian view of science as the “gathering of large numbers of
facts and the detection of patterns. In order to obtain maximum objectivity,
we must entertain only a minimum of preconceptions” (Wilson, 1998). In a
history of the Baconian conception of Objectivity, Daston (1994) writes that
“[w]hat Baconian facts seemed to promise was neither consensus nor freedom
from all bias, but simply freedom from theoretical bias” (Daston, 1994). Indeed,
“theory-freedom” or “alleged neutrality with respect to theory” is taken to be
the defining feature of Bacon’s conception of scientific objectivity and, hence,
the genre of empiricism he endorsed (Daston, 1994)..

Many debates in the intervening centuries, in natural philosophy, episte-
mology, and philosophy of science have chiefly concerned the extent to which
observation is necessarily theory-laden, empirical knowledge necessarily shaped
by preconception, and strong assumptions or conceptual infrastructure required
to get inductive inference off the ground. Working scientists in various disci-
plines have, too, in their own ways, debated the proper role of theory in science.
There have even been moments in scientific history during which scientists took
the doctrine of expunging theoretical bias too far, resulting in an ill-conceived
empiricism.

Theory-freedom appears to have been a motivating factor in the specific
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methodologies chosen by early phrenologists and eugenecists. Francis Galton,
pioneering figure of the eugenics movement, believed that good research prac-
tice should consist in “gathering as many facts as possible without any theory
or general principle that might prejudice a neutral and objective view of these
facts” (Jackson et al., 2005). Karl Pearson, statistician and fellow purveyor
of eugenicist methods, approached research with a similar ethos: “theorizing
about the material basis of heredity or the precise physiological or causal sig-
nificance of observational results, Pearson argues, will do nothing but damage
the progress of the science” (Pence, 2011). In collaborative work with Pearson,
Weldon emphasised the superiority of data-driven methods which were capable
of delivering truths about nature “without introducing any theory” (Weldon,
1895).

Beyond isolated and intermittent episodes like this, the meta-narrative of
theory-freedom has not historically held much sway over the practices of working
scientists. This is, at least, until the last 50 years. Theory-freedom, I argue,
was only to become a widespread motivating factor in scientists’ conceptions
of their work in the 20th century. The acceptance of such an ideal hinges on
the ubiquity of domain-generic statistical methods and “data-driven” research
in the special sciences. However it would not become prevalent and pernicious
until the age of “big data” and with the adoption of machine learning in the
sciences. Until ML-assisted science became a reality or, at least, an imminent
potential, the idea that science should or could be rendered free from theory
was not seriously entertained in either philosophical or scientific communities.

With the advent of ML-assisted science, however, belief in the narrative of
theory-freedom has become commonplace. Leonelli (2020) observes that one
of the dominant responses to the rise of ML and big data analytic methods in
science is to see it as a championing of what I have here dubbed the theory-
free ideal: “[one] way to interpret the rise of big data is as a vindication of
inductivism in the face of the barrage of philosophical criticism levelled against
theory-free reasoning over the centuries” (Leonelli & Zalta, 2020).

No doubt, the deep incorporation of ML methods into empirical research
pipelines brings about changes to where domain knowledge and theoretical con-
siderations come to bear on the scientific process and its outputs. The case
studies reviewed in Section 6 are revelatory of some of these differences. Fun-
damental changes to the nature and loci of theory-impingement, however, have
occurred continuously throughout the history of science. The development of
computer simulation, sampling methods, or the formal apparatus for statistical
analyses essentially shifted where theoretical considerations came into play in
the inferential process. So, too, for that matter, did the Newtonian style of
mathematical thought-experimentation and his method of fluxions. Novel con-
ceptual tools entail novelty to the nature of conceptual influence on the brute
work of empirical inference. None can obviate the need for conceptual infras-
tructure, nor can they open up novel pathways to knowledge of the world.
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4 The necessity of theory

Even the most simplistic of experimental designs reveals the nature and extent
to which data, and scientific practice at large, are “theory-laden.” The very act
of investigation involves commitment to the existence and in-principle measure-
ability of some phenomenon. If we are making measurements and performing
quantitative analyses thereon, we are further committed to the phenomenon
being amenable to quantitative representationa and analysis. How we choose
to measure and analyse records of a phenomenon generally includes a commit-
ment to its quantitative ontology, e.g., is it categorical, ordinal, or cardinal?
Measurement cannot be total, and therefore there is always a commitment as
to what to look at experimentally and what to exclude. The very design of
our instruments of measure and their calibration includes various commitments
to the nature of the worldly phenomena under investigation. There is always,
for instance, a commitment to the appropriate level of abstraction at which to
study the phenomenon in question, which manifests in settings on instruments
of measure, such as degree of magnification or periodicity of sampling. In fun-
damental physics, when we cool our instruments to reduce the contamination
of our measurements by thermal noise, it is our prior theoretical grasp on the
target phenomena, the physical systems under study, that motivates us to do
so.

Crucially, “data” does not refer to physical phenomena. “Data” refers to
abstract, formalised representation of the results of direct observation or mea-
surement. Data must be capable of serving an evidential role in licensing in-
ferences about natural phenomena. Given that data is a form of mathematical
representation, it does not intrinsically hold semantic meaning or refer to em-
pirical phenomenon. The meaning that data holds for scientific inference exists
in virtue of human interpretation and empirical grounding. For the use of any
mathematical analysis—including the modes of analysis enabled by ML—to
ground any scientific inference, it must be given conceptual content. This is
already an essential form of theory-ladenness. The parameters of any machine
learning model and its outputs are a step removed from input data, but are
likewise mathematical representation. The data-derived parameter weights of a
neural network, for instance, capture salient statistical patterns in the training
data which are then leveraged to regress or classify the data on which they are
tested or deployed. They represent abstract features of the training data. The
representational status of neural network models is derivative of the represen-
tational status of the data on which they are parameterised.

A number of philosophers have provided strong rationales for rejecting the
possibility of theory-free science. Leonelli (2012, 2018, 2020) stresses the es-
sential theory-ladenness of data, and decrying the popular conception of data
as “raw” and “objective.” Leonelli (2018) investigates “the different extents
to which theory—understood broadly as a set of theoretical commitments and
goals—impinges on inferential processes from data” (Leonelli, 2019b, 22). In
several book-length treatments of the use and interpretation of data in scien-
tific practice (e.g., (Leonelli, 2018, 2019a; Leonelli & Tempini, 2020; Leonelli &
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Beaulieu, 2021)), Leonelli concludes that there is no place in scientific practice
in which we have data that is not already, to some degree, shaped by our existing
conceptual or theoretical grasp on the phenomenon, commitments to epistemic
goals and questions to be answered, idealisations, and auxiliary assumptions.

This view is a rejection of “[t]he näıve fantasy that data have an immediate
relation to phenomena of the world, that they are ‘objective’ in some strong,
ontological sense of that term, that they are the facts of the world directly
speaking to us” (Longino, 2020, 391). Bogen (2016) argues that it is the very
fact that data is not raw, that it is, in a sense, “impure” that makes it able to
serve the meaningful epistemic role it does. Boyd (2018); Boyd & Bogen (2009)
argues further that it is not in spite of, but owing to the theory-ladenness of
data that empirical science garners us its epistemic results.

Kitchin (2014) echoes that features of data collection and processing ren-
der data essentially theory-laden, in light of culturally-shared and ubiquitous
background theoretical understanding of phenomena. Further, data deprived
of all semantic meaning would be uninformative, that is, unable to serve their
essential epistemic role of scaffolding inference. In a similar spirit, Frické (2015)
argues that theory must guide the selection of data to scaffold algorithm-assisted
inference. Hansen & Quinon (2023) argue that ML-assisted science can never be
made theory-free, as theoretical considerations necessarily enter in at the junc-
tures of problem-formulation, data collection and curation, data pre-processing,
as well as model-selection and validation. Desai et al. (2022) note that the
theory-ladenness of observation makes it impossible to make observations or
take measurements without the guidance of background theory. Desai et al.
echoe common sentiments among philosophers about the prospects of a wholly
predictive science: such a view of the process of arriving at empirical knowledge
is a näıve one, and ignores that one of the primary aims of science is explanation
or understanding of the world.

The conclusion that an inference procedure cannot be rendered theory-
neutral is overdetermined when we consider accounts from philosophy of science
and theoretical computer science of constraints on inductive generalisation. In-
ductive inference is the procedure of gaining knowledge by extrapolating from
a limited number of instances to a more general class—the fundamental task
of ML. According to Norton (2003), an account which he dubs the material
theory of induction, successful inductive inference is never licensed by universal,
domain-generic formal rules, but always proceeds by the application of local
rules warranted by hard-won empirical—in Norton’s words, “material”—facts
tied to a specific line of research (Norton, 2003). There is no one inductively-
valid formula to rule them all. Learning theory has itself independently discov-
ered the impossibility of a universally valid domain-generic inference rule: the
no free lunch theorems (Wolpert & Macready, 1997). While these results ob-
tain only in a very artificial setting, the moral they deliver is an important one
for ML in practice: inductive inference only works in virtue of having learned
domain-specific inductive biases.
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5 Theory-ladenness in scientific ML

I have argued that the notion that widespread adoption of the methods of ML
in science will obviate the need for theorising is 1. widespread, 2. symptomatic
of a theory-free ideal in science, and 3. untenable. In the final section of
this paper, I will attempt to illustrate its perniciousness by means of two case
studies, which concern instances of actual application of modern ML methods
in scientific practice. The first case study concerns a use case for ML in science
that is deeply theory-laden and self-aware in its theory-ladenness. This use of
ML in science has marked a scientific breakthrough, and been a resounding
epistemic success. The second study concerns a use case for ML in science that
is marketed as bypassing the need for theory. This application of ML has been
decried as statistical malpractice, its results at best uninformative, at worst,
dangerously misleading. With these cases I aim to show the unavoidability of
theoretical work in scientific applications of ML, and the deleterious effects of
the ideal of theory-freedom on scientific practice.

5.1 The unreasonable effectiveness of AlphaFold

Far and away the most impressive result that ML methods have achieved for
science is AlphaFold 2.0. To appreciate the unprecedentedness of the AlphaFold
results, we must first appreciate the scientific problem it is confronted with. The
problem of protein folding is notoriously difficult. There is very little that we
can say from the genotypic specification of a particular protein about how it will
fold. Mapping from sequences of adenines, cytosine, guanines, and thymines to
a menagerie of amino acids is straightforward, as is predicting the polypeptide
chains these amino acid sequences will form. What mess of three-dimensional
spaghetti those amino acid chains will assume once synthesised, however, is
another matter entirely. This is an essential problem for the biomedical sci-
ences. The three-dimensional anatomy of protein structure is determinative of
its function and is thus a crucial object of scientific inference.

To truly comprehend the difficulty of the protein folding problem—and how
the methods of machine learning were able to get around it—I have to recognise
that protein structure is understood at four levels. DNA is a string composed of
four alternative base pairs. It encodes information in sequence. When proteins
are assembled, that DNA is read, codon by codon, and a polypeptide chain
is built up from twenty amino acids on the basis of these instructions. These
amino acid sequences are dubbed the “primary structure” of a protein. All
amino acids are composed of the same base molecular structure of 9 atoms,
which will bond together to form the backbone of the polypeptide chain. From
this molecular backbone extends the R-group or side chain, the determinant of
the amino acid’s “flavour.” The secondary structure of a protein refers to the
morphology that polypeptide chains take on on their own, owing to bonding
patterns in the backbone. The morphology of these peptide chains results from
local interactions between adjacent and semi-adjacent molecules in the back-
bone of the peptide chain. Owing to the periodicity of the placement of amino
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acids with certain valences (and other molecular-bond determining features) in
the chain, they will typically either form what are known as α helices or β
sheets. Up until this point things have remained relatively straightforward, as
biological problems go: we have a basic, repeated molecular structure and its
self-interaction in the form of hydrogen bonding.

The tertiary structure of a protein is determined by the R-groups of the
amino acids. Recall that these come in twenty flavours. Recall that virtually all
forms of non-covalent bonding are available to these molecules now. Recall that
amino acids can exhibit hydrophobic and hydrophilic proclivities. If a protein
is composed of more than one polypeptide chain, it will have a quaternary
structure as well. At the tertiary and quaternary levels of protein structure, we
have advanced from assembling text from bit strings to attempting to predict
all of the ways in which several distinct kinds of spaghetti thrown together in
a pot can cohabitate, given six dimensions along which spaghetti substructures
may or may not like to interact.

At first blush, this seems like an unsolvable problem. The initial trick—the
trick that gets existing bioinformatic solutions off the ground—lies in noting that
when we have a variant in one amino-acid we can see what non-local variants
tend to co-vary along with it. This begins to tell us something about what
might be touching what in the tertiary and quaternary protein structures. Still a
difficult problem, but more manageable. These associations of covarying amino-
acid substitutions lend us what is known as a protein contact map which further
lends us a multiple sequence alignment (MSA).

The AlphaFold team created their own database of protein structures—now
the largest existing database of its kind—by scraping2 existing publicly-available
databases. DeepMind’s AlphaFold 2.0 runs queries on an amino acid sequence
in its pre-processing stage to obtain a multiple sequence alignment (MSA). Any
modern approach to predicting protein structure begins with an amino acid
sequence as input. As we have noted, given the state of modern biological
knowledge, it is trivial to determine amino acid sequences given the protein’s
genetic blueprint. To construct the inputs, AlphaFold queries protein structure
databases to assemble an MSA. In addition to the primary amino acid sequence
and MSA, AlphaFold was also supplied as input database-derived templates—
three-dimensional atomic maps—for a small number of sufficiently similar ho-
mologous protein structures. The templates and the MSA are rendered together
to create what the AlphaFold team dubs a pair representation.

AlphaFold treats the prediction of 3-dimensional protein structure from these
pair representations and MSAs as a graphical problem, rendering the represen-
tations in the primary trunk of the model architecture into gradated bitmaps.
The problem formulation for the Deepmind team was to “view the prediction
of protein structures as a graph inference problem in 3D space in which the
edges of the graph are defined by residues in proximity” (Jumper et al., 2021,
585). The core structure of AlphaFold 2.0 is a transformer—a form of DNN ar-
chitecture which is easier to train and outperforms competing architectures by

2 I.e., automatically extracting web data.
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parallelising and better attending to higher-level contextual factors in the train-
ing data. AlphaFold passes both the MSA and the pair representation back
and forth through the trunk of the model for a set number of iterations (48
blocks), progressively refining the representations, and allowing the two distinct
representations (MSA and pair representation) to influence one another as each
is refined. The output of this refinement procedure is then, in the final stage,
fed to a generative neural network which produces a plausible candidate 3-D
protein structure. The 3D protein structure is then passed, with MSA and pair-
representations, back through the trunk. This is repeated for three iterations
until a final predicted 3D protein structure is achieved.

Let us draw out what is salient about this scientific procedure for our anal-
ysis. Our aim is to show that theoretical considerations are playing an essential
role at the stage of data provenance and engineering, the stage of architecture
design, hyperparameter selection and model training, and at the stage of model
evaluation and interpretation.

Theory integration comes in at the level of the data in terms of what the data
ultimately represents and how it is imbued with that representational content.
Taking on board the notion of theory-laden measurement, we understand that
the data on which AlphaFold is trained is richly structured by existing empirical
knowledge of the target domain and our theoretical understanding thereof. Al-
phaFold sits atop a wealth of domain knowledge about the form and function of
proteins. Theory also comes into play in how the data is handled for the specific
task in question and how it is made to serve as evidence in this task. AlphaFold
is, at its core, an instance of (semi-)supervised learning. The exercise is premised
on the idea that the rules of association between amino acid sequences and three
dimensional protein structure lie latent in cross-taxa protein structure data. It
is further premised on the supposition that the systematic breakdown in protein
structure and function resultant from certain amino acid substitutions can be
leveraged to learn the complex bonding affinities governing 3-dimensional pro-
tein structure. Part of what is noteworthy in this case study is the insight to
take the publicly available data and turn it into novel representational forms in
multiple places: combining MSAs and templates to create pair representations,
and projecting those into effective heatmaps of sequence-structure associations
so that the inference task could be treated like a graphical problem.

The architecting of the various model components utilised in AlphaFold 2.0
was similarly bound to theoretical considerations. AlphaFold is not a domain-
generic model; the model architecture is hand-tailored to the specific task of
learning to predict three dimensional protein structure from MSAs and pair
representations—a novel representational form for the task. AlphaFold 2.0 em-
ploys a transformer network that is designed to iteratively refine progressively
more accurate guesses at the true protein structure. The transformer trunk
utilised in AlphaFold was created to combine and refine representations of the
specific form it is fed in a novel training and deployment procedure. Perhaps
the most strikingly theory-laden aspect of AlphaFold 2.0 is the engineering of
specially tailored loss functions. In training a DNN, a loss function governs
how the distance metric is calculated between present output and desired out-
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put of the model (in a typical neural network training regime, the error is then
back-propagated through the network to update the model’s parameters). In
specifying the loss function, machine learners are able to express precisely what
it is that they are interested in learning for a particular task. In AlphaFold 2.0,
the loss function is heavily tailored to the problem of predicting folded protein
structure from amino acid sequences. The researchers employed “a loss term
that places substantial weight on the orientational correctness of the residues”
(Jumper et al., 2021, 585). Loss terms specific to the learning of various struc-
tural features of protein folding along a number of dimensions were employed
at all stages of training and fine-tuning: “satisfaction of the peptide bond ge-
ometry is encouraged during fine-tuning by a violation loss term” (Jumper et
al., 2021, 586-587).

Finally, model-evaluation, that is, judging the success of the trained model
and interpreting its results requires integrating the resulting predictions of Al-
phaFold into existing biological knowledge. We can only judge the success of
such a model when it is understood against the backdrop of our prevailing sci-
entific accounts. We can likewise only put the results of such a modelling effort
to use when we have accomodated them within a theoretical framework.

5.2 Transcriptomics

Single-cell transcriptomics is a method for inferring cellular-level gene expres-
sion. The technique is utilised for identifying cell populations, modelling tran-
scription dynamics, inferring the developmental trajectories of cellular popu-
lations, and monitoring changes in cell populations relative to health status.
Single-cell transcriptomics emerged with the availability of massive quantities
of high throughput RNA sequencing and expression data. It is typical in such
exercises to be working with datasets which possess hundreds of thousands of
feature dimensions; for this reason, researchers typically employ dimensionality
reduction techniques. Dimensionality reduction is a (unsupervised ML) method
of mapping a high-dimensional dataset to a lower-dimensional space—or em-
bedding higher-dimensional data in a lower-dimensional space. Dimensionality
reduction techniques are used to distill essential patterns from large datasets,
make analyses tractable, and isolate signal from noise.

A now well-established workflow in single-cell transcriptomics involves apply-
ing dimensionality reduction techniques sequentially to high-throughput RNA
expression data; first linear methods which reduce the dataset to tens of di-
mensions using principle component analysis (PCA) or analogous techniques of
dimensionality reduction, followed by one of two purpose-built two-dimensional
nonlinear reductions: UMAP or t-SNE. The method produces visualisations
for exploratory data analysis. A scientist cannot very well eyeball a 250,000-
dimensional manifold and distill from it useful and meaningful information (or
eyeball it at all). A two-dimensional embedding, however, might very well reveal
visually intuitive information about cell populations and trajectories. However,
as Chari and Pachter (2021) demonstrate, this now standardised procedure in
single-cell transcriptomics lacks theoretical motivation, represents poor statisti-
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cal practice, and is effectively incapable of providing meaningful biological infor-
mation; instead it creates the opportunity for erroneous interpretation (Chari
& Pachter, 2021).

In a series of analyses, the researchers demonstrated that the practice of
repeated application of dimensionality reduction techniques introduced heavy
distortions and was incapable of preserving the interpretively salient features
of the datasets under investigation: local and global structure, distance, and
continuousness (Chari & Pachter, 2021). Interpretive practices surrounding the
resultant visualisations, they concluded, led to erroneous or conflicting conclu-
sions. Chari and Pachter (2021) found that the combined use of supervised and
unsupervised ML methods in single-cell transcriptomics was haphazard:

“[T]he same k-nearest neighbor (knn) graph constructed from the
higher dimensional PCA space is passed to both the clustering al-
gorithm and the embedding algorithm...the embedding is then not
an independent assessment of clustering results and is likely to form
clusters that match the knn graph even if that graph does not rep-
resent the ‘original’ underlying manifold. Together, the use of such
embeddings to imply or infer continuous relationships then becomes
an arbitrary endeavour, with a user unable to trust seemingly dra-
matic connections or isolated populations, and likely to choose what
seems most appealing” (Chari & Pachter, 2021, 14).

In one particularly striking example, Chari and Pachter projected transcrip-
tomics datasets onto arbitrary shapes (a flower, von Neumann’s elephant) and
found that they preserved the interpretively salient features—local and global
structure, distance, and continuousness—commensurate with, or better than,
the resultant embeddings from PCA → t-SNE or PCA → UMAP workflows
(Chari & Pachter, 2021).

These techniques fall under the heading of what I term Rorschach research
methods or intuition laundering : interpreters of the results of these data analysis
methods are free to cast upon them whatever intuitive interpretation appeals to
them, wielding the graphics to lend supposed empirical support to their claims.
Such poor practices are likely to emerge anywhere the methods of ML are em-
ployed without adequate theoretical grounding and statistical literacy. Chari
and Pachter (2021) demonstrate that semi-supervised learning methods and tar-
geted embeddings for specific featural dimensions are capable of elucidating far
more than the näıve methods they critique. Such approaches, however, require
domain expertise, critical thinking, and being able to both identify and (sta-
tistically) articulate what you are looking for—characteristics markedly absent
from the t-SNE/UMAP workflows under scrutiny.

5.3 Takeaways for ML in scientific practice

AlphaFold is a case of resounding success; perhaps the greatest win for ML
in science to date. No other application of ML to science has achieved quite
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so stark an advantage over pre-existing techniques. Many applications of the
tools of ML to science, by contrast, have been run of the mill: automating
laborious processes, achieving minor gains in efficiency or accuracy over human
classification or “analogue” statistical techniques without notable breakthroughs
in what sort of knowledge could be gained by their use. Many scientists have also
faced great frustrations in incorporating computational tools into their research
paradigms, either because they were attempting to utilise ML in an untenable,
“theory-free” manner or because they faced difficulty in their attempts to imbue
ML-based tools with the requisite theory or domain knowledge.

Researchers in the biomedical sciences bemoan the fields’ recent infatuation
with the tools of ML in operation with its longstanding “theory-aversion”—what
I have termed a theory-free ideal in science (Coveney et al., 2016). Incorporating
theoretical principles into ML-assisted and big data-fueled research can prove
difficult, and is unlikely to happen when institutional and publishing incentives
overwhelmingly favour the collection of higher volumes of data and the adop-
tion of novel computational tools over critical thinking and principled research
design (Coveney et al., 2016). In fundamental physics, by contrast, the need for
theoretically-informed models is more apparent and is met with less resistance.
Karniadakis et al. review methods of incorporating physical principles into ap-
plications of DL in physics (Karniadakis et al., 2021). Incorporating theory into
ML-assisted scientific practice is no simple matter, but work of this kind reveals
both its possibility and its necessity.

The use of unsupervised learning in physics is now concentrated on “physics-
informed” architectures—forcing the model to conform to the form of a known
e.g., physical, principle. These methods, unlike “näıve” unsupervised cluster or
regression techniques, which can only occupy relatively simplistic intermediary
calculational or bookkeeping roles, can play a far more central role in research.
This is precisely because they have the conceptual resources to serve a meaning-
ful role in empirical research. In this sense, the conclusion I reach aligns with
some of the reasoning in Boge, Srećković et al., and Boon: theory-involvement
is a requisite feature of our conceptual instruments in science for them to be
able to elucidate previously unknown features of our natural world from data.
The issue is that the perfectly theory-free vision of ML (or DL, or unsupervised
DL) in science, which is the target of these scholars’ critiques, either singles out
a strawman or a failure case.

6 Conclusion

It is widely believed of the methods of ML—as reflected in the texts coun-
tenanced in this paper—that if loosed on enough data, they are capable of
discovering meaningful patterns, natural joints, or mind-independent truths of
their own accord, sans input from human theorising or conceptualisation of the
target system. There is a näıve version of this view that only those unfamiliar
with the ins and outs of applying ML methods could hold onto. However, a
more sophisticated version of the thesis also exists and is commonly held even
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by engineers, researchers, and practitioners building and deploying ML-based
tools. This is the idea that unsupervised learning tools are capable of discover-
ing mind-independent natural patterns or boundaries in a “principled” manner
without arbitrarity or human input. If we believe this, and if we also believe
the techniques of ML to be “opaque” or “uninterpretable” in some novel way—
in a way that sets them fundamentally apart from existing conceptual tools or
instruments in science—then what is learned via these tools will be inscrutable
to human scientists. If these tools are then adopted widely in scientific practice,
this will then entail radical change to the varieties of epistemic outputs science
is capable of generating. As I have argued in this text, the ideal of theory-free
learning via ML from “raw data” is a confused one. Incorporation of domain
expertise is crucial for epistemically responsible deployments of ML, within and
without science proper.

Advancing the state of the discourse away from false dichotomies and mis-
directed concerns is essential, for there is both much that is interesting and po-
tentially novel about ML/DL and much at stake in its appropriate use. Where
to localise theoretical considerations in DL-based scientific workflows appear to
differ substantively, along various dimensions, from a certain canonical mode
of scientific modelling. On a received, roughly hypothetico-deductive view of
experimental science and statistical modelling, we are typically formulating hy-
potheses and going out to collect data capable of adjudicating between our
hypotheses. Thus the ways in which our conceptual grasp on the target phe-
nomena come into play in how the data represents the target are specific to
the epistemic concerns of a particular scientific/modelling exercise. In big data
analysis and applied ML, we are often handed data corpora or else construct
them from amalgamations of preexisting datasets. This means that a signifi-
cant amount of the interpretive work, the work of mapping the data onto target
phenomena—imbuing it with representational status and content—is work done
before we are ever in contact with the data. This practice stands in stark de-
fiance of Bogen and Woodward’s (1988) claim that data are limited to serving
an evidentiary role in a particular experimental context (Bogen & Woodward,
1988). Theoretical or interpretive work typically comes in again in the problem
formulation, in the engineering of a model architecture and specification of loss,
and in training. Theoretical considerations further come in at the level of model
evaluation, in our formal assessments of the success of the exercise. Finally, such
considerations come into play in what we take ourselves to have learned from
the model output and, effectively, in how the model is wielded. Undoubtedly,
the accelerating adoption of ML-based methods will bring about changes to on
the ground research practices, including changes to the loci of theoretical input
thereon. Such changes, however, will have to be not only domain-specific, but
specific to the role with which ML methods are saddled.

The landscape of science is also undergoing significant changes today, which
are worthy of philosophical scrutiny in their own right. Changes to the social,
institutional, governmental, and economic infrastructures that support science,
and to the knowledge economies it results in, are a rich philosophical subject.
These include the fragmentation and specialisation of science, the procedurali-
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sation of science, its automation, the progressive increase in the distribution of
intellectual labour it involves, the extraction of the knowledge of domain experts
and its mechanisation and codification into operational formulae. Reactions to
the adoption of ML in science have largely framed ML as catalyst to these
changes. I wish to counter that we can instead view ML as symptomatic of a
much older and deeper trend in the development of scientific practice, one which
often replicates the form of the society in which scientific practice is embedded
in its social structure, its economic model, and its governance. The causal arrow
runs at least as much from the automation of scientific practice to the adoption
of the tools of ML in science as it does in the reverse.

To make sense of the present day landscape of science and the directions in
which it is evolving, we will require a philosophy of science of machine learn-
ing. This must, however, be a philosophy of science willing to cast off an out-
dated, monolithic, and overly-restrictive conception of scientific methods and
the epistemic outputs of science. This must be a philosophy of science willing
to weigh-in on debates and draw boundaries between admissible practices and
the pseudo-scientific or pseudo-statistical. It must be a philosophy of science
that is not conned by the hyperbolic narrative of the inscrutability of machine
learning methods; that is willing and able to comprehend the techniques and
how they are wielded to empirical ends.
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