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Theories of qualitative probability provide a justification for the use of numerical prob-
abilities to represent an agent’s degrees of belief. If a qualitative probability relation
satisfies a set of well-known axioms then there is a probability measure that is com-
patible with that relation. In the particular case of subjective probability this means
that we have sufficient conditions for representing an agent as having probabilistic
beliefs. But the classical results are not constructive; there is in no general method for
calculating the compatible measure from the qualitative relation. To address this prob-
lem this paper introduces the theory of computable qualitative probability. I show that
there is an algorithm that computes a probability measure from a qualitative relation
in highly general circumstances. Moreover I show that given a natural computability
requirement on the qualitative relation the resulting probability measure is also com-
putable. Since computable probability is a growing interest in Bayesian epistemology
this result provides a valuable interpretation of that notion.

1 Introduction

Bayesians assert that an agent’s beliefs should be representable by a probability mea-
sure. Critics object that while one might certainly feel more or less strongly about
whether some events will occur—say, whether it will rain tomorrow—it is a rather
large leap to say that these feelings have all the structure of a probability measure. I
am not sure which infinitely precise real number best represents my confidence that it
will rain tomorrow. If I can’t put a number on it, how can I ensure my beliefs are truly
coherent, the way a Bayesian says they ought to be? Or suppose I am a behavioral
scientist—how can I test whether human agents really are approximately Bayesian?

Clearly we need a system of measurement for belief. And we have such a system:
qualitative probability. This is a tradition with roots in the work of Ramsey ([1]),
Koopman ([2]), de Finetti ([3]), and Good ([4]), but extends into modern day research.
On this account, we assume that we have access to some set of probability judgments
of the form “B is at least as likely as A”. We can write this judgment as the formula
“A ⪯ B”. We then take the relation ⪯ itself as the object of study. Using the relation
we prove a representation theorem, a result of the form: given some axioms on ⪯
there corresponds a (sometimes unique) probability measure P such that A ⪯ B ⇐⇒
P (A) ≤ P (B). Many results have been proved in this vein ([5], [6]; see [7], [8] for
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an introduction). The result is a common set of agreed-upon axioms; any relation
satisfying these axioms is called a qualitative probability.

Qualitative probability seems to resolve our primary concerns. First, some authors
such as Koopman ([2]) and Good ([4]) take qualitative probabilities to be more fun-
damental than numerical probabilities. On this view, numerical probabilities serve as
a measurement scale for qualitative belief, much in the way that meters are a mea-
surement scale for distances. A representation theorem as sketched above justifies the
introduction of numerical probabilities as an appropriate measurement scale. So it is
no problem that I cannot put a precise number to my beliefs. If I can produce a set of
qualitative judgments that satisfy the axioms, then my beliefs can be represented prob-
abilistically. Second, it is empirically verifiable whether an agent’s judgments really
conform to the axioms of qualitative probability. One need only check whether an
agent’s judgments satisfy the axioms of qualitative probability.

Qualitative probability results do not settle all our issues. The classical theorems
tell us that, assuming ⪯ adheres to a (small) set of axioms, there is a corresponding
probability measure. These results do not tell us how to determine which probability
measure represents an agent’s beliefs. Suppose you are given an agent’s qualitative
probability relation ⪯ and an event A. Can you always determine P (A)? This question
is not resolved by the classical results. What is required is an algorithm that takes a
qualitative probability as input and outputs a probability measure. This suggests that
we should investigate computable qualitative probability structures.

A related (though independent) motivation for this study comes from a recent inter-
est in computable Bayesian agents in the philosophical literature. For example Zaffora
Blando ([9]) studies the Blackwell-Dubins “merging of opinions” theorem for agents
whose beliefs are given by a computable probability measure. Belot ([10], [11]) has
studied notions of “chance laws” for agents with computable beliefs. And Huttegger,
Walsh, and Zaffora Blando ([12]) have recently proved a wide range of martingale
“convergence to the truth” results for computable Bayesian agents. There is an open
question of interpretation: what does it mean to say that an agent’s beliefs are com-
putable? When can we truly say that an agent’s beliefs are computable? Is there a
precise method for delineating agents with computable beliefs from those without?

This paper answers both motivations: (i) how to determine an agent’s beliefs from
their qualitative judgments, and (ii) how to interpret the “computability” aspect of
computable Bayesian agents. In particular I develop the theory of computable qual-
itative probability. I introduce a natural computability assumption on qualitative
probability structures. The main result (Theorem 2) shows that given this assumption
(together with the classical axioms of qualitative probability) there exists a unique
computable probability measure that represents a computable qualitative probability
structure (answering motivation (ii)), and moreover one can compute this probability
measure from the qualitative probability (answering motivation (i)).

In §2 I review the classical results from the theory of qualitative probability. My
proof strategy for the main result is a computable variant of the classical proof strategy.
§3 introduces the definition of computable qualitative probability. In §4 I show that one
can compute finite partitions of equally probable sets which themselves have important
computability properties. Finally, §5 uses these partition results to prove the main
theorem. I conclude with a discussion of future directions for this work.
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2 Classical Results

We begin with a discussion of the classical results in qualitative probability.
Definition 1. Let A be a σ-algebra of subsets of some set Ω. Let ⪯ be a relation
on A . Assume (i) ⪯ is a total preorder with initial element ∅ and terminal element
Ω; and (ii) if B1 ∩ B2 = ∅ and if A1 ⪯ B1 and A2 ⪯ B2 then A1 ∪ A2 ⪯ B1 ∪ B2.
Moreover if in one of the first two inequalities ⪯ is replaced with ≺, then the last one
holds with ⪯ replaced with ≺. Then we call ⪯ a qualitative probability. If both A ⪯ B
and B ⪯ A then we write A ∼ B.
Definition 2. Let ⪯ be a qualitative probability on a σ-algebra A . We say that ⪯ is
monotonely continuous if given a monotone increasing sequence An ↑ A and an event
B such that for all n, An ⪯ B, then A ⪯ B.

Monotone continuity was introduced by [6] to ensure that the resulting probability
measure is countably additive. To simplify exposition we will only be interested in
countably additive measures, so we follow Villegas in assuming monotone continuity
in the results that follow.
Definition 3. If A is a σ-algebra and ⪯ is a monotonely continuous qualitative
probability, then we call (A ,⪯) a qualitative probability σ-algebra.

The end goal of qualitative probability is to show that there is a probability measure
that is compatible with the relation, that is, the measure preserves the ordering.
Definition 4. Let (A ,⪯) be a qualitative probability σ-algebra. Let P be a
probability measure on A . P is compatible with ⪯ if for all A,B ∈ A ,

P (A) ≤ P (B) ⇐⇒ A ⪯ B.

The rest of this section outlines the classical strategy for proving the existence of
a compatible probability measure.

First, as with probability measures, monotone continuity implies nice convergence
properties for qualitative probabilities. The following is due to Villegas ([6], Lemma
3.2); it says, roughly, that if in a sequence of events each event has at most half the
probability of the previous event, then this sequence converges to a null event.
Lemma 1. If (A ,⪯) is a qualitative probability σ-algebra, and {An}n∈ω is a mono-
tone decreasing sequence of events, such that An+1 ⪯ An \ An+1, then limn→∞ An ∼
∅.

All previous work on qualitative probability assumes some form of atomlessness.
Analogous to atomless probability measures, a qualitative probability is atomless if
every set of positive probability has a subset of positive probability.
Definition 5. Let (A ,⪯) be a qualitative probability algebra. We say that (A ,⪯)
is atomless if for every A ∈ A such that A ≻ ∅ there is B ⊂ A such that B ≻ ∅.

Atomlessness ensures that the resulting probability measure is unique; while a
qualitative probability need not be atomless, we will in general only consider the
atomless case.

The classical proof strategy, e.g. followed by [6],[7],[5], and others, is roughly as
follows. One begins by showing that the qualitative probability can partition the space
in a nice way. In particular one shows that for any event A in the σ-algebra A there is
a partition of A into two equally likely events B,C. This equipartition process can be
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applied recursively to Ω to produce a binary tree structure. We can then assign any
given point x ∈ Ω a binary code σx, the code for the “branch” of events containing x.
In effect we map our qualitative probability σ-algebra (A ,⪯) to a qualitative version
of Cantor space with Lebesgue measure. From there we map Cantor space to the
unit interval using the standard bijection between reals r ∈ [0, 1] and their binary
expansions. Thus we have a qualitative version of the unit interval with Lebesgue
measure. We call the map from A to the unit interval with (qualitative) Lebesgue
measure a uniform random variable:
Definition 6. A function X : Ω → [0, 1] is a uniform random variable if whenever
I, J ⊆ [0, 1] are intervals with |I| ≤ |J |, X−1(I) ⪯ X−1(J);

These steps are formalized in the following proposition.
Proposition 1 ([6], Theorem 3.5). In a qualitative probability σ-algebra A the
following are equivalent:

1. (A ,⪯) is atomless;
2. every event can be partitioned into two equally probable events;
3. there is a uniform random variable.

We then use the uniform random variable to define our probability measure. The
important details are provided in the following sketch of the proof due to Villegas.
Proposition 2 ([6], Theorem 5.3). If a qualitative probability σ-algebra (A ,⪯) is
atomless then there is a unique compatible probability measure, and it is countably
additive.

Proof. We give the important details. By Proposition 1, since A is atomless, there is
a uniform random variable X. Given a number x ∈ [0, 1] consider the event F (x) :=
X−1[0, x]. Clearly F (0) = ∅, F (1) = Ω and F (x) is a monotone function of x. It is also
continuous in the sense that if xn → x then limn→∞ F (xn) = F (x). By a continuity
argument it can be shown that given an event A there is a unique a ∈ [0, 1] such that
A ∼ X−1[0, a]. We then define P (A) = a, i.e., A ∼ X−1[0, P (A)]. It is quick to show
that P so defined is additive.

To show that it is unique, sinceX is a uniform random variable note that the events

{ω | (i− 1)/n ≤ X(ω) ≤ i/n}

for i = 1, . . . , n constitute a uniform partition of Ω. For any rational a and any
compatible probability measure Q,

Q{ω | 0 ≤ X(ω) ≤ a} = a = P{ω | 0 ≤ X(ω) ≤ a}.

Finally, P is countably additive because it is compatible with (A ,⪯) and it is
monotonely continuous.

In what follows we will be concerned with countably generated σ-algebras, i.e., σ-
algebras A for which there is a countable algebra R such that A = σ(R). Countably
generated σ-algebras are perhaps the most common setting for probability theory (e.g.
[13], [14]), so this is not a restrictive assumption. Moreover they have nice properties,
as the following two results demonstrate.
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Lemma 2. Let (A ,⪯) be an atomless qualitative probability σ-algebra. Let P be the
induced probability measure on A . Let A ∈ A . Then for any dyadic rational q ∈ [0, 1]
there is an event B ⊆ A such that P (B) = qP (A).

Proof. Suppose q = n/2m. By Proposition 1.2, there is a partition of A into 2m-
many equally likely events {An}, so for any n ≤ 2m, P (An) = P (A)/2m; then set
B :=

⋃n
i=1 An.

The following is a basic result in measure theory (see for example [15], Theorem
1.3.11). We present a standard proof in order to highlight a particular case that will
be important in what follows.
Proposition 3. Let (Ω,A , P ) be a probability space, and let R be an algebra such that
σ(R) = A . For any ϵ > 0 and A ∈ A there is a set B ∈ R such that µ(A∆B) < ϵ.

In particular, suppose A ∈ A , C ∈ R, A ⊆ C, and ϵ > 0. Then there is a subset
B ⊂ C such that B ∈ R and µ(A∆B) < ϵ.

Proof. Let G be the closure of R under countable unions. Since P is montonely con-
tinuous, for any U :=

⋃∞
n=1 Un with Un ∈ R for all n there is N > 0 such that

P (U)− P (
⋃N

n=1 Un) < ϵ, so the result holds for G .
For arbitrary F ∈ A , note that

P (F ) = inf{P (G) | G ∈ G ∧G ⊇ A},

in which case we can approximate F via some sequence {Gn} of elements of G , and
each Gn can itself be approximated by a sequence {Un

m} of members of R.
For the second statement, relativize the above proof as follows. Approximate A via

sets {Gn ∩ C}, which are themselves approximated by sets {Un
m ∩ C}, each of which

is a member of R.

3 Computable Qualitative Probability σ-Algebras

In this section we define a computable qualitative probability σ-algebra, our primary
object of study. We start with the standard notion of a computable algebra.1

Definition 7. Let R be a countable Boolean algebra, and fix some enumeration {Rn}
of elements of R. We say that R is computable if, given Rn, Rm ∈ R, the Boolean
operations

Rn ∩Rm = Rl

Rn ∪Rm = Rj

¬Rn = Rk

1We use standard definitions from computable analysis; see [16].
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are uniformly computable in n,m, i.e., there are total computable functions f, g, h
such that

f(n,m) = l

g(n,m) = j

h(n) = k.

In general the σ-algebra A of interest is uncountable, so this definition will not
suffice for our purposes. Instead we will work with countably-generated σ-algebras,
and assume that they are generated by a computable algebra.
Definition 8. A computable qualitative probability σ-algebra is a tuple (A ,R,⪯)
where

(1) (A ,⪯) is an qualitative probability σ-algebra;
(2) R = {Ri}i∈ω is a computable countable Boolean algebra such that σ(R) = A ;
(3) for all i ∈ ω,

(←, Ri) = {Rj ∈ R | Rj ≺ Ri}
(Ri,→) = {Rj ∈ R | Ri ≺ Rj}

are c.e. sets uniformly in i.2

As in the classical case, the goal is to show that for any computable qualitative
probability σ-algebra there is a unique compatible probability measure—but in this
case, we wish to show that this probability measure is itself computable. To this end
we must define a notion of computability for probability measures.
Definition 9. A real number r ∈ R is computable if there is a uniformly computable
sequence of rationals {qn}n∈ω such that for all n, |r − qn| ≤ 2−n. We call the sequence
{qn}n∈ω a fast Cauchy sequence. Let (A ,R,⪯) be a computable qualitative probabil-
ity σ-algebra, and suppose P is a compatible probability measure on A . Then P is a
computable probability measure if for all R ∈ R, P (R) is a computable real uniformly
in R.3

The algebra R consists of the “simple” sets with nice computability properties. In
particular the unique compatible probability measure maps these sets to computable
real numbers; this fact is reflected in axiom 3, which parallels the fact that strict
inequality (<) is a c.e. relation on computable reals. We can also define a kind of set
that is not itself a member of R but is sufficiently like R to be useful for constructing
partitions. We call these sets “almost-computable”, and it will turn out that these sets
are also assigned computable measure.
Definition 10. Let

U :=
⋃
i∈I

Ri

2This definition extends that of [17], which defines a “computable σ-algebra´´ as a structure (A ,R) such
that A and R satisfy (2).

3One can show that this definition is equivalent to the standard definition of “computable probability
measure´´ as given, for example, by [18], [19].
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where Ri ∈ R for all i, and suppose its complement V = Ω \ U is of the form

V :=
⋃
j∈J

Rj

where again Rj ∈ R for all j. If I, J ⊆ ω are c.e. sets then we say that U, V are
almost-computable sets.
Lemma 3. Almost-computable events are closed under computable unions.

Proof. Immediate from the fact that c.e. sets are closed under computable unions.

The following lemma says, qualitatively, that the compatible probability measure
assigns computable reals to almost-computable sets. We formulate this qualitatively
by noting that strictly inequality (<) is a c.e. relation on computable reals.
Lemma 4. Let U be an almost-computable event with complement V . Then the sets

{Rk | Rk ≺ U}

and

{Rk | U ≺ Rk}

are c.e.

Proof. Let U =
⋃

i∈I Ri and V =
⋃

j∈J Rj . If Rk ≺ U then there is some finite subset
I0 ⊆ I such that

Rk ≺
⋃
i∈I0

Ri ≺ U

and the first relation is a c.e. condition since ⪯ is a computable qualitative probability.
For the other case, U ≺ Rk if and only if Ω \ Rk ≺ Ω \ U = V . Then there is some
finite subset J0 ⊆ J such that

Rk ≺
⋃
j∈J0

Rj ≺ V

and the first relation is a c.e. condition.

In the next section I prove a series of lemmas showing that we can compute
equipartitions of almost-computable sets, thus providing an effective version of the
standard proof strategy. The following is an obvious but important fact about
almost-computable events: it simply says that they can be partitioned at all.
Lemma 5. If U is almost-computable and ∅ ≺ U then one can compute B,C ∈ R
such that {B,C} is a partition of U , ∅ ≺ B,C, and B ≺ C.

Proof. This follows immediately from the fact that U is a union of R-elements and
(R,⪯) is atomless.
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4 Computing Partitions

In this section I show (Lemma 11) that almost-computable sets can be computably
partitioned into two equally likely almost-computable sets. To show this we need to
do two things: first, I show that the relevant sets always exist, and second, I show that
we can effectively find them. In many cases existence is an immediate consequence of
classical versions of these results.

The following lemma is an existence result. It says, roughly, that for any posi-
tive probability simple event there exists a subset of that event whose probability is
bounded by two other simple events.
Lemma 6. Let (A ,R,⪯) be a computable qualitative probability σ-algebra. Let
A,B,C ∈ R with A ≺ B ⪯ C. Then there is an event D ∈ R such that D ⊂ C and
A ≺ D ≺ B.

Proof. Theorem 2 implies that there is a unique probability measure P : A → [0, 1].
Thus P (A) < P (B) ≤ P (C). Let r = P (B)−P (A). Let δ > 0 and fix a dyadic rational
q such that ∣∣∣(P (A) +

r

2

)
− qP (C)

∣∣∣ = ∣∣∣(P (B)− r

2

)
− qP (C)

∣∣∣ < δ. (1)

In words, q is less than δ away from the midpoint P (A)+
r

2
= P (B)− r

2
of the interval

(P (A), P (B)). Then by Lemma 2 there is an event D′ ⊆ C such that P (D′) = qP (C).

Let ϵ =
r

2
− δ. By Proposition 3 there is an event D ∈ R such that D ⊂ C and

P (D∆D′) < ϵ, which implies that

P (D) ∈
(
qP (C)−

[r
2
− δ
]
, qP (C) +

[r
2
− δ
])

. (2)

By (1) we have (
P (A) +

r

2

)
− δ < qP (C) <

(
P (B)− r

2

)
+ δ. (3)

Combining (2) with (3) we have

P (D) ∈
(
qP (C)−

[r
2
− δ
]
, qP (C) +

[r
2
− δ
])

⊆
([

P (A) +
r

2
− δ
]
−
[r
2
− δ
]
,
[
P (B)− r

2
+ δ
]
+
[r
2
− δ
])

= (P (A), P (B)) ,

that is, A ≺ D ≺ B.

The next lemma says that if we are given a partition of some event and each element
of the partition has probability bounded away from zero, then that partition is finite.
Finiteness is, of course, an extremely useful property if we wish to compute partitions.
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Lemma 7. Let (A ,R,⪯) be a computable qualitative probability σ-algebra. Let {An}
be a partition of an event A ≻ ∅. If for all n,An ≻ B ≻ ∅, then {An} is finite.

Proof. Again by Theorem 2 let P denote the unique probability measure on A . Then
for all n we have P (An) > P (B) > 0, and so there must be only finitely many An.

From here I follow the proof strategy due to Fishburn, specifically §14.2. In the
following results (Lemmata 8, 9, 10, and 11) we assume that (A ,R,⪯) is an atomless
computable qualitative probability σ-algebra. Each of these results has a classical
analogue proved by [7], so we need not worry about existence.
Lemma 8. Suppose that A,B ∈ R and A ≺ B. Then one can compute a finite
partition {Cn} of Ω such that ∀i ≤ n,Ci ∈ R and A ∪ Ci ≺ B.

Proof. For any Ci ∈ R the condition

A ∪ Ci ≺ B (4)

is c.e. If we were working with a probability measure we could rewrite (4) in terms of
P (Ci) as P (Ci) < P (B) − P (A). But working qualitatively we cannot do this, since
we do not assume A ⊆ B (in which case it could be that B \A′ = ∅). To fix this, note
that by assumption A ≺ B ⪯ B, so by Lemma 6 there is a subset A′ ⊆ B, A′ ∈ R
such that

A ≺ A′ ≺ B. (5)

To find the elements of the partition we use the following algorithm:

1. Begin enumerating Ci ∈ R that satisfy condition (4). Let C1 be the first such set
enumerated.

2. Check if A ∪ (Ω \
⋃n

i=1 Ci) ≺ B, where n is the largest integer such that Cn has been
defined.
(a) If yes, define Cn+1 := A ∪ (Ω \

⋃n
i=1 Ci). Halt.

(b) Else compute Cn+1 ∈ R such that
(i) Cn+1 ⊆ (Ω \

⋃n
i=1 Ci) (a computable condition since R is a computable

algebra);
(ii) C1 ≺ Cn+1 ≺ B \A′.

3. Return to 2.

First we show that Step 2.(b) is well-defined. By the argument preceding the algorithm,
if the initial condition of Step 2 has not been satisfied then B \ A′ ≺ (Ω \

⋃n
i=1 Ci).

But then, by Lemma 6, there must exist Cn+1 ⊆ (Ω \
⋃n

i=1 Ci) such that

C1 ≺ Cn+1 ≺ B \A′, (6)

which implies

A ∪ Cn+1 ≺ A′ ∪ Cn+1 ≺ B. (7)

Importantly, condition (6) is a c.e. condition uniformly in Cn+1, and condition (7) is
the desired property for elements of the partition.
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Finally we show that the resulting set {Cn} is a finite partition of Ω. By (i) the
Cn are disjoint. By (ii) and Lemma 7 the set {Cn} is finite. Therefore Step 2.(a) will
be satisfied at some finite stage and the algorithm halts.

Lemma 9. If A,B,C ∈ R are pairwise disjoint with A ⪯ B, B ≺ A ∪ C, then one
can compute D ⊆ C such that ∅ ≺ D and B ∪D ≺ A ∪ (C \D).

Proof. Clearly ∅ ≺ C. It follows from Lemma 8 that there one can compute D1 ∈ R,
D1 ⊆ C such that ∅ ≺ D1 and B ∪D1 ≺ A ∪ C. By Lemma 3 D1 can be computably
partitioned into D,D′ ∈ R with ∅ ≺ D ≺ D′. Therefore

B ∪D ∪D′ ≺ A ∪ (C \D) ∪D,

which implies B ∪ D′ ≺ A ∪ (C \ D). Thus since D ≺ D′, B ∪ D ≺ B ∪ D′, so
B ∪D ≺ A ∪ (C \D).

Lemma 10. If A,B ∈ R are such that ∅ ≺ A,B and A ∩ B = ∅ then B can be
computably partitioned into C and D such that C ⪯ D ⪯ A ∪ C.

Proof. By Lemma 8 compute a finite partition {Gn} such that ∀i ≤ n, ∅ ≺ Gi ≺ A.
It follows classically from Lemma 10 that there is m such that

⋃m
1 Gi ⪯

⋃n
m+1 Gi ⪯⋃m+1

1 Gi (see Fishburn 14.C7, p. 196). We want to show that this m can be effectively
found.

Since
⋃m

1 Gi ≺
⋃m+1

1 Gi, there are three possibilities:

1.
⋃m

1 Gi ≺
⋃n

m+1 Gi ≺
⋃m+1

1 Gi;

2.
⋃m

1 Gi ∼
⋃n

m+1 Gi ≺
⋃m+1

1 Gi;

3.
⋃m

1 Gi ≺
⋃n

m+1 Gi ∼
⋃m+1

1 Gi.

To compute m we begin enumerating the following four c.e. sets:

Γ0 = {m ≤ n |
m⋃
1

Gi ≺
n⋃

m+1

Gi},

Γ1 = {m ≤ n |
m⋃
1

Gi ≻
n⋃

m+1

Gi},

∆0 = {m ≤ n |
n⋃

m+1

Gi ≺
m+1⋃
1

Gi},

∆1 = {m ≤ n |
n⋃

m+1

Gi ≻
m+1⋃
1

Gi}.

If (1) holds then m is eventually enumerated into Γ0 and ∆0, and the process halts.

If (2) holds then m is eventually enumerated into ∆0. And, for ℓ < m,
⋃ℓ

1 Gi ≺⋃n
ℓ+1 Gi, and for L > m,

⋃L
1 Gi ≻

⋃n
L+1 Gi. Therefore m is the unique number that
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is not enumerated into either Γ0 or Γ1; since n is finite, m can be determined by
elimination after finitely many steps.

Similarly if (3) holds then m is eventually enumerated into Γ0 and is the unique
number that is not enumerated into either ∆0 or ∆1, and so can be determined after
finitely many steps.

Therefore we can compute m ≤ n satisfying
⋃m

1 Gi ⪯
⋃n

m+1 Gi ⪯
⋃m+1

1 Gi. Thus
C :=

⋃m
1 Gi ∈ R and D :=

⋃n
m+1 Gi ∈ R can be computed and satisfy C ⪯ D ⪯

Gm+1 ∪ C; since Gm+1 ≺ A by construction, we have C ⪯ D ≺ A ∪ C.

A nice consequence of the above argument is: if there is some union of partition
elements that is “half the measure” (equally as likely as its complement), then we
can effectively find this union. More precisely, let A ∈ R, ∅ ≺ A, and let {Bn} be
a finite computable partition of A. If there is some set I ⊆ {0, 1, . . . , n} such that⋃

i∈I Bi ∼
⋃

i/∈I Bi then I is computable. Put this way it’s quite obvious, since there
are only finitely many such I to check and each of them is finite, so we can simply use
a brute-force search.
Lemma 11. If A is almost-computable and ∅ ≺ A then A can be computably
partitioned into almost-computable sets B,C with B ∼ C.

Proof. It follows from Lemma 3 that A can be computably partitioned into
B1, C1, D1 ∈ R such that B1 ⪯ C1 ∪ D1 and C1 ⪯ B1 ∪ D1. If B1 ∼ C1 ∪ D1 or
C1 ∼ B1 ∪D1 then this can be determined effectively, and we’re done.

So instead assume that B1 ≺ C1 ∪D1 and C1 ≺ B1 ∪D1. Thus ∅ ≺ D1. Assume
without loss of generality that B1 ⪯ C1. Then Lemma 9 implies that we can compute
C2 ∈ R such that C2 ⊆ D1, ∅ ≺ C2, and C1 ∪ C2 ⪯ B1 ∪ (D1 \ C2) (see Figure 1).
Then ∅ ≺ D1 \ C2, so by Lemma 10, D1 \ C2 can be computably partitioned into
B2, D2 ∈ R with

B2 ⪯ D2 ⪯ C2 ∪B2.

Since by assumption B1 ⪯ C1 we have

B1 ∪B2 ⪯ C1 ∪D2 ≺ C1 ∪D2 ∪ C2.

We then let B2 := B1∪B2 and C2 := C1∪C2. Repeating this process we can compute
a sequence of three-part partitions {Bn, Cn, Dn} such that for all n,

1. Bn, Cn, Dn ∈ R;
2. Bn ≺ Cn ∪Dn and Cn ≺ Bn ∪Dn;
3. Bn ⊆ Bn+1, Cn ⊆ Cn+1, Dn+1 ⊆ Dn;
4. Dn+1 ⪯ Dn \Dn+1.

By (4) and Lemma 1 we have Dn ↓ ∅.
Now let B :=

⋃∞
n=1 Bn, C := (

⋃∞
n=1 Cn)∪(

⋂∞
n=1 Dn). {B,C} is clearly a partition,

and B,C are almost-computable. Below we reiterate Fishburn’s argument that B ∼ C,
but note that the effective content is finished—we have already shown that B and C
can be computed.
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Fig. 1 A diagram of the partition procedure described in Lemma 11
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Suppose toward a contradiction that B ≺ C. Then B ≺
⋃∞

n=1 Cn since Dn ↓ ∅, so
by Lemma 9 we can compute G ⊆

⋃∞
n=1 Cn with ∅ ≺ G and such that, for sufficiently

large N ,

B ∪G ≺

(
N⋃

n=1

Cn

)
\G. (8)

Since B ∩G = ∅ and for all n,Bn ⪯ B, we have

Bn ∪G ⪯ B ∪G. (9)

For sufficiently large N (not necessarily the same N as before), DN ≺ G, so

BN ∪DN ≺ BN ∪G. (10)

Furthermore,

∞⋃
n=1

Cn =

∞⋃
n=1

(Cn \G) ∪G

=

( ∞⋃
n=1

Cn \Dn

)
∪

(( ∞⋃
n=1

Cn

)
∩Dn

)

But for sufficiently large N we have DN ∩
(⋃N

n=1 Cn

)
≺ G, and hence for sufficiently

large N we have (
N⋃

n=1

Cn \G

)
⪯

(
N⋃

n=1

Cn

)
\Dn. (11)

Finally it is clear that (
N⋃

n=1

Cn

)
\DN ≺ CN . (12)

We therefore have, for sufficiently large N ,

BN ∪DN ≺ BN ∪G by (10)

≺ B ∪G by (9)

≺

(
N⋃

n=1

Cn

)
\G by (8)

⪯

(
N⋃

n=1

Cn

)
\Dn by (11)

≺ CN by (12)

which contradicts the construction of BN , CN , DN (see 2 above). Therefore B ̸≺ C. A
parallel argument establishes that C ̸≺ B.
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5 Constructing the Measure

In this section I prove the main result: every atomless computable qualitative proba-
bility σ-algebra has a unique computable probability measure that is compatible with
it. To do so we need to introduce a few more technical devices.
Definition 11. A function X : Ω→ [0, 1] is a computable uniform random variable if:

1. whenever I, J ⊆ [0, 1] are intervals with |I| ≤ |J |, X−1(I) ⪯ X−1(J);
2. for all q ∈ Q, the sets X−1[0, q), X−1(q, 1] are almost-computable uniformly in q.

Theorem 1. If (A ,R,⪯) is an atomless computable qualitative probability σ-algebra
then there is a computable uniform random variable X : A → [0, 1].

Proof. The argument closely follows the classical result due to Villegas (Theorem 5).
Define a sequence of binary random variables Xn : A → {0, 1} recursively as follows.
By Lemma 11 computably partition Ω into almost-computable sets [1], [0] ∈ A such
that [1] ∼ [0]. Let X1(x) = 1 iff x ∈ [1]. Again by Lemma 11 we can computably parti-
tion [1], [0] into equally likely events [11], [10] ⊆ [1] and [01], [00] ⊆ [0]. Let X2(x) = 1
iff x ∈ [11] ∪ [01]. Continuing in the obvious manner we define an infinite sequence of
equipartitions of Ω, where the nth element of the sequence has cardinality 2n, and a
corresponding sequence Xn of uniform binary random variables.

In particular for each x ∈ Ω there is an infinite binary sequence σx such that for all
n, x ∈ [σx ↾ n]. Thus the sequence {Xn}n∈ω can be used to define a uniform random
variable X in a natural way (see [6] for more details). We now show that X must
be computable. Let q ∈ [0, 1] be rational. Then q has a computable binary expansion
0.x1x2 . . . = σq. We write s ⊏ t to mean that s is a prefix of t. Then we have

X−1[0, q) =
⋃{

[t0] | t ∈ 2<ω ∧ t1 ⊏ σq

}
,

Similarly,

X−1(q, 1] =
⋃{

[t1] | t ∈ 2<ωt0 ⊏ σq

}
.

(See Figure 2.) Since σ is computable both X−1[0, q) and X−1(q, 1] are computable
unions of almost-computable events and hence are almost-computable uniformly in
q.

We can now prove our main result, Theorem 2. It says that for every atomless
computable qualitative probability σ-algebra there is a unique computable probability
measure compatible with it.
Theorem 2. If (A ,R,⪯) is an atomless computable qualitative probability σ-algebra
then one can compute a unique computable probability measure P : A → [0, 1] that is
compatible with ⪯.

Proof. By Theorem 1 there exists a computable uniform random variable X on A .
As in the classical proof we define P (A) for any A ∈ A as the unique real number
such that

A ∼ X−1[0, P (A)].

The existence, uniqueness, and countable additivity of P , and the fact that P is
compatible with ⪯, follow from the fact that (A ,R,⪯) is atomless and monotone, via
[6] Theorem 4.3. It remains to verify that P is computable.
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Fig. 2 X−1[0, q) and X−1(q, 1].

Let V = X−1[0, q), an almost-computable event. By definition of P , P (V ) = q.
Thus by Lemma 4 the sets

{R ∈ R | P (R) < q}
{R ∈ R | q < P (R)}

are c.e., or in other words, the conditions “P (R) < q′′ and “q < P (R)′′ are c.e
conditions uniformly in R. Now fix R ∈ R. It follows that the condition

p < P (R) < q (13)

for some p, q ∈ Q is c.e. It follows that the set of R ∈ R that satisfy condition (13)
and for which, given m ∈ ω, (q − p) ≤ 2−(m−1), is c.e., since this latter condition is
computable. In other words the set

∆R = {(p, q,m) ∈ Q2 × ω | p < P (R) < q & (q − p) ≤ 2−(m−1)}

is a c.e. set. We then define a fast Cauchy sequence approximating P (R) as follows.
Begin enumerating ∆R. Define the total computable function f(n) := ⟨pn, qn, n⟩, the
(code for the) first tuple enumerated into ∆R whose final coordinate is n. For each
n define rn := (qn − pn)/2. Since by definition of ∆R we know that P (R) ∈ (pn, qn)
and (qn − pn) ≤ 2−(n−1), we know that |P (R) − rn| ≤ 2−n for all n. Thus {rn}n∈ω

is a fast Cauchy sequence of rationals whose limit is P (R). In other words, for all
Ri ∈ R the probability P (Ri) defined by the computable uniform random variable X
is a computable real uniformly in i.
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Note that in the statement of Theorem 2 we say that we can compute the rep-
resenting measure P , not merely that it exists. Indeed given any event Ri ∈ R we
can compute P (R) from the relation ⪯ as follows. For each n compute a 2n-fold
equipartition {Bn} of Ω into almost-computable sets. If for some k ≤ 2n we have

Ri ∼
m⋃
j=1

Bj

then, as in Lemma 10, this can be decided. Otherwise there is a unique ℓ such that

ℓ⋃
j=1

Bj ≺ Ri ≺
ℓ+1⋃
j=1

Bj

and so we know that ∣∣∣∣P (Ri)−
ℓ

2n

∣∣∣∣ ≤ 2−n,

and thus we compute a fast Cauchy sequence with limit P (Ri). Since R generates A
the values P (Ri) determine P .

6 Conclusion

We have seen that given a natural computability condition on a qualitative probability
σ-algebra there corresponds a unique computable probability measure. In this way we
have a representation of degrees of belief for computable agents. Theorem 2 therefore
tells us (i) when an agent is properly represented as having computable beliefs, and
(ii) how to compute those beliefs given the agent’s qualitative probability structure.

This work suggests further avenues for research. The most natural extension is to
derive a computable version of Savage’s representation theorem. Savage’s theorem is
considered the central result in the literature on representation theorems for decision
theory, since it derives both utility and probability from a common preference struc-
ture. One might hope to show that given a single (hopefully natural) computability
condition on the preference relation one can derive both a computable probability
and computable utility function; this would provide a unified foundation for studying
computable agents in decision theory.

It also suggests a study of much more bounded agents than those representable by
a universal Turing machine. For example, work in cognitive science ([20]) and bounded
rationality ([21]) often studies much less sophisticated agents representable via finite
state automata or time-bounded Turing machines. Analogous representation theorems
for these architectures are, to my knowledge, currently lacking.
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