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Abstract. We consider and apply a multidimensional discrete-time delay autonomous third order non-
linear vector difference equation system, where the orthogonal change after two reflections is given by a

vector cross product leading to spinor rotations Xi−Xi−2 = −Xi−1×Fi (Xi−1, Xi−2, Xi−3) ∈ R3 or ∈ R7,

where the symmetry invariant C = Xi · Xi−1 = Xi−1 · Xi−2 = ... allows at every step for a polar charge
generating sign flip including expansion/contraction by a scalar factor. Using the Frenet frame approach

defining orthogonal co-moving components with torsion and curvature parameter, both, the orthogonal frame

and the change of the frame are represented by the three position memory terms recurrently. The necessary
cross and dot vector product (split-)algebra is encoded in variable multiplication tables in 3d and 7d. We

discuss two special Fi types showing stable point densities, which are drifting limit cycles with sub-cycles,

where the resulting smooth orbital spinor dynamics shows discrete atomic-type orbital eigenstates or local
waves with characteristic numbers, non-local reflection, instability, hysteresis, interaction, helical emissions,

and transition to chaos. Limit cycle modular arithmetic with equivalence classes characterizes the resulting
point groups, rings, or Nj-gons, where sub-cycles appear on three levels with a total limit cycle length given

by the product of the three sub-cycle lengths.

1. Introduction

With memory or time-delay recurrent functions, we get a rich variety of discontinuous, nonlinear, and
complex phenomena, where we can have multiple bifurcations, limit cycles or periodic solutions and co-
existence of trivial attractors (fixed points or limit cycles) and strange (chaotic) attractors. In this paper
we will consider discrete-time equations with algebraic operations and corresponding symmetries typical for
spinors in higher dimensional Euclidean spaces Rn, where we focus on n = 3 and n = 7. Initially, we started
in two Euclidean dimensions or on spherical surfaces [1] producing some chaotic and regular pattern by
discrete-time Rotation-Translation-Reflection chaotic algorithms inspired by Skiadas in 2009 [2]. We often
wondered, how both, symmetry and regular non-linear flow-type structures can arise out of a time-discrete
chaotic dynamics. In 2022 we switched to 3d allowing for rotations and helical paths with variable direction,
where the 3d cross product rotates the rotator axis and provides for the orthogonal or tangential unit
translation. The reflection operation generates two opposite “charged” density pairs leading to pairs of limit
cycles, where we get small shifts producing smooth orbital waves with regular or chaotic spin dynamics on
curved surfaces [3,4]. Here the reflection as a permanent sign-flip shows an alternating two-period even/odd
tuple symmetry, a “ping-pong” responsible for small non-linear geometric shifts [1]. So we have both, a
long-range non-local jump in the first step and in total a small local shift or double reflection after jumping
back in the second step. This way we found orbital wave function pairs with eigenstates resembling charged
quantum states, where we could stimulate spin-transitions and a lot of non-linear dynamics like decays or
spontaneous phase changes showing hysteresis and pairing effects.
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Table 1. Normed algebras and Lorentz group isomorphisms.

x = n+ 1 x-dimensional Species Division Algebras Split Algebras

1 Real numbers SO(2, 1) ≃ SL(2,R) SO(2, 1) ≃ SL(2,R′)
2 Complex numbers SO(3, 1) ≃ SL(2,C) SO(2, 2) ≃ SL(2,C′)
4 Quaternions SO(5, 1) ≃ SL(2,H) SO(3, 3) ≃ SL(2,H′)
8 Octonions SO(9, 1) ≃ SL(2,O) SO(5, 5) ≃ SL(2,O′)

In our original concept the rotation strength was proportional to the inverse power-law of the radial
distance [3]. Recently, we switched under SO(3) from the Euler angle rotation function to the vector cross
product orthogonal rotation [4]. This new concept is motivated by the following arguments:

(1) On the discrete path in R3 a small orthogonal tangential shift leads to a small rotation of the two
vectors orthogonal to the tangent vector and orthogonal to each other.

(2) These three orthogonal vectors can define a co-moving local orthogonal frame, which can be split by
a cross product algebra into 3 orthogonal parts given by the tangential, normal, and binormal unit
vectors constituting a Frenet frame.

(3) Applying the cross product algebra we don’t need transcendental functions and a rotation matrix to
perform rotations, which provides for a considerable computational performance boost in simulations.

(4) A special kind of orthogonality in the discrete sequence will lead to symmetry invariants supporting
stability of limit cycle path at the edge to chaos.

(5) The cross product algebra well known in 3d can describe quaternion spin dynamics (classical physics)
and can be extended to 7d, where we have some famous octonion spinor relations well known in
relativistic quantum physics.

2. Cross and Dot Product Algebra

The cross product of two vectors gives a third vector that is perpendicular to the two input vectors,
where the symbol “×” will always denote a vector cross and “·” a vector dot product. For example, if we
let X = (x1, x2, x3) and Y = (y1, y2, y3), we have X × Y := (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) and
X ·Y := x1y1 +x2y2 +x3y3. If ei are three orthogonal unit vectors in R3 we have e1 × e2 = e3, e2 × e3 = e1,
and e1 × e3 = −e2 determining the right-hand-rule of the cross product. If M is a square matrix then |M |
denotes the determinant of M with

(X × Y ) =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
Let X ̸= 0, Y ̸= 0, X̃, and Ỹ be vectors in R3 and let a, b, c, and d be real numbers and θ the angle

formed by the two input vectors X and Y , some of the basic properties of the dot and cross products are:

(1) X · (X × Y ) = 0 and Y · (X × Y ) = 0 (orthogonality)
(2) (X × Y ) · (X × Y ) + (X · Y )2 = (X ·X)(Y · Y ) (Pythagorean)

(3) (X·Y )√
(X·X)(Y ·Y )

= cos θ, ||(X×Y )||√
(X·X)(Y ·Y )

= sin θ (transcendental map-

ping)

(4) (aX + bX̃)× (cY + dỸ ) = ac(X × Y ) + ad(X × Ỹ ) + bc(X̃ × Y ) + bd(X̃ × Ỹ ) (bilinearity)

We can extend the basic recurrent nonlinear algebraic system from R3 to R7, since the standard cross
products of normed division and split-algebras can exist in Rn if and only if n = 0, 1, 3 or 7, see Hurwitz in
1898 [5] and Hasebe [6] with Hopf map relations and Lorentz group isomorphisms summarized in Table 1.
So our cross products exist on Rn for n = 3 (quaternion algebra) and can be extended to n = 7 (octonion
algebra) with orthonormal basis e1, e2 . . . en, where for any i ̸= j there is a k with ei × ej = aek for a = 1 or
−1.

Since we are dealing with rotating rotation axes and spinors we have an eye on emerging symmetries due
to orthogonality. The orthogonality property (1.) will be very important regarding the discrete evolution
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of the co-moving Frenet frame according to a symmetry invariant. The quaternion and octonion algebra
defining generalized cross and dot products of two vectors can be encoded in general matrix multiplication
tables, see chapter 4.

3. Discrete Space Curves

Discrete space curves are important in discrete differential geometry. Our focus is on discrete spaces with
the map

(1) X : Z → R3 or R7, (i 7→ Xi),

where three successive vector points Xi−2, Xi−1, Xi are separated by discrete “jumps”, ordered in discrete
time ti+1 = ti +∆ti, and are not located on a straight line. In the following subsections we will relate these
three memory vectors to the orthogonal vectors in the Frenet frame.

Figure 1. Projection of a triangular quaternion limit cycle pair (blue, red) system, where
we have Fi type 2, m = 6 limit cycle connections, see Table 4. Note, that the red and blue
edge points show a reflection mirror symmetry.

3.1. Limit Cycles with Small Shifts. A discrete space curve X according to Eq.(1) is said to be closed of
length m if Xi±m = Xi for any m ∈ Z, see Fig.1 with m = 6 or Fig.3 with m = 470. This is the closed loop
or return condition, where the shift εi = |Xi −Xi±m| > 0 or distance after one cyclic loop in real simulations
can be made infinitesimally small. In a computer simulation some hundreds of operations within a typical
display refresh time unit (20 ... 60 Hz) already show a smooth limit cycle kinematics.

3.2. Governing Equations. Recently we pointed to symmetries in a discrete-time delay autonomous third
order non-linear difference equation vector system (three position vector memory terms) using a normed
cross product algebra presented in [4], where the cross product of the last local vector Xi−1 with a vector
function Fi (Xi−1, Xi−2, Xi−3) based on the last 3 memorized points provides for an orthogonal rotational
change Xi −Xi−2

Xi −Xi−2 = −Xi−1 × Fi (Xi−1, Xi−2, Xi−3) ∈ R3 or ∈ R7,(2)

see the simplified discrete evolution shown in Fig.2. The orthogonal change and rotational shifts after two
reflections is given by a vector cross product, where the reflection operations are given by

(3) Xi−3 = −Xi−2/c4, Xi−2 = −Xi−1c4, Xi−1 = −Xi/c4.

Here symmetry allows at every step for a memory reflection sign flip including expansion/contraction by a
scalar factor c4 > 0. In most cases we set c4 = 1 in Eq.(3).
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Figure 2. The three orthogonal Frenet frame vectors Ti, Ni, Bi related by a cross product
based on the three memorized points Xi−3, Xi−2, Xi−1 in a simplified circular osculating
situation, where the odd points are on the opposite site of even points due to reflection for
c4 = 1.

3.3. Symmetry and the Frenet Frame. According to Noethers Theorem, symmetry exhibits an observ-
able quantity that is conserved. The reflection relations shown in Eq.(3) provide for a symmetry that can be
seen in spatial separated co-orbiting mirror-image density pattern, a kind of pattern-antipattern symmetry,
which are two spatially separated counter sets appearing as even/odd tuples (even/odd index i) [1] defining
opposite “charge” sets based on the alternating “jumps”. The orthogonality and symmetries within the
three subsequent memory terms carries the information of an orthogonal frame and provide for resilience
and stability. In Eq.(2) the cross product Xi−1×Fi equal to the tangential difference Xi−Xi−2 is orthogonal
to the intermediate point Xi−1 with invariant C

(4) C = Xi ·Xi−1 = Xi−1 ·Xi−2 = ..., (Xi−2 −Xi) ·Xi−1 = 0,

where C can be related to a rotation angle si − si−1

(5) C = − |Xi| |Xi−1| cos (si − si−1) = − |Xi−1| |Xi−2| cos (si−1 − si−2) = .... ,

and C < 0 for c4 > 0. In this context we have

(6) Xi−1 · (Xi +Xi−2) = 2C .

This allows to use a discrete Frenet frame apparatus defining orthogonal co-moving components (tangential,
normal, binormal) with torsion and curvature parameter, where both, the orthogonal frame and the change
of the frame are represented by the three position memory terms recurrently. In this work we derive two
types of vector functions Fi. Type 1 is directly based on the Frenet frame apparatus. Type 2 is a modification
containing no unit vector normalization terms, but power-law distance dependent terms. In Fig.2 we see
the discrete-time evolution of the four actual position vectors and three frame vectors Ti, Bi, and Ni. To
get the geometric properties of the curves itself, the discrete Frenet-Serret formulas, see e.g. Hu, Lundgren,
and Niem [7] or Blair and Konno [8], provide for an standard model of orthogonal frame vectors given by
the so-called tangent Ti, normal Ni, and binormal Bi unit vectors in terms of each other. The frame vectors
have unit length |Ni−1| = |Bi−1| = |Ti−1| = 1 and are orthogonalized by cross and dot product operations

(7) Ni = Bi × Ti .

First we note, that in a simple spherical symmetric situation the normal vector Ni points to the center of
motion Ni = −Xi/|Xi|, which means that the coordinate center is equal to the reflection center and the
normal vector is anti-parallel to the position vector, see Fig.2.
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Figure 3. A type 1 quaternion sequence including reflection, where the odd points (blue)
are on the left and the even points (red) on the right. The quaternion is “hosted” in an
octonian, where the depicted three imaginary quaternion dimensions (D1, D2, D4) are a
subset of the eight octonion dimensions (D0, ..., D7). The closed cycle has m = 470 points,
τ ≈ 0.01264, κ ≈ 0.09656, C = α = 1.

3.4. Type 1 Frenet frame vector function. A co-moving frame can provide for kinematic properties like
local orientation, velocity, acceleration, curvature, and torsion along the arc. Regarding the discrete change
of the frame, in a limit cycle which is closed afterm steps, the angular change or arc length difference after one
loop is infinitesimally small with arbitrary slow rotation si−m − si and can go to zero ε = |Xi −Xi±m| → 0.
In this case the fixed point drift is arbitrary smooth and can be a differential ∆si,m = si−m − si → dsi,m.
The change in the normal component after a closed loop with m steps and infinitesimal position change can
be directly related to the continuous Frenet-Serret formula

(8)
Ni−m −Ni

si−m − si
=

∆Ni,m

∆si,m
→ dNi,m

dsi,m
= τi,m Bi,m − κi,m Ti,m ,

where κi,m is the curvature and τi,m the torsion parameter in discrete time on a closed loop. Since Bi,m and
Ti,m must be both orthogonal to Ni,m, the central requirement of orthogonal change in the Frenet continuous
case can be written as

(9)
dNi,m

dsi,m
·Ni,m = 0.

With circular osculating symmetry on both sides (even/odd index) we have |Xi| = |Xi−2|, where with Eq.(4)
the orthogonal change of the normal vector is related to a two step arc length ∆si,2 by

(10)
∆Ni,2

∆si,2
·Ni−1 = 0.
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Now three normal vectors Ni−3, Ni−2, Ni−1 define the actual orthogonal frame and will be used to construct
the next normal vector Ni and frame and with symmetry invariant

(11)
Ni ·Ni−1

∆si,2
=

Ni−1 ·Ni−2

∆si−1,2
= ... =

cos(si−1 − si)

∆si,2
= −cos(∆si,2/2)

∆si,2
.

In terms of the position vector we have

(12)
∆Ni,2

∆si,2
=

Ni−2 −Ni

∆si,2
=

1

∆si,2

(
Xi

|Xi|
− Xi−2

|Xi−2|

)
= −∆Xi,2

αi
,

where

(13) αi = ∆si,2 |Xi|

relates the length of the position vector to the arc change of the normal vector as a constant orbital velocity.
Within two steps including two reflections the Frenet-Serret equation Eq.(8) gives the normal vector change

(14)
∆Ni,2

∆si,2
= τi−1

Xi−1 ×Xi−2

|Xi−1 ×Xi−2|
− κi−1

Xi−1 ×Xi−3

|Xi−1 ×Xi−3|
,

where the binormal and tangential unit frame vectors are given by

Figure 4. A highly regular type 1 quaternion pattern on a unit sphere with C = 1, it is a
limit cycle (see Table 4) with m = 3 · 7 · 59 = 1239, κ ≈ 0.0073π ≈ τ/

√
3, c4 = 1.0.

(15) Bi = c−1
B Xi−1 ×Xi−2, Ti = c−1

T Xi−1 ×Xi−3,

which are normalized by cB and cT

(16) cB = |Xi−1 ×Xi−2| , cT = |Xi−1 ×Xi−3| .

With αi∆Ni,2 = ∆si,2Xi−1 × Fi(...), Eq.(2), and Eqs.(12-16) we have

(17) Fi (Xi−1, Xi−2, Xi−3) = αi

[
Xi−2c

−1
B τi−1 −Xi−3c

−1
T κi−1

]
.

As the central concept of this paper, both, the orthogonal frame and the change of the frame are represented
by Fi (Xi−1, Xi−2, Xi−3) in Eq.(17) with 3 position memory terms recurrently. Results based on Eq.(17) are
shown in Fig.3 and Fig.4.
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3.5. Type 2 Orthogonal frame vector function. In our computer experiments we have been looking for
variants of Fi in the three-memory term Frenet concept and found

Fi (Xi−1, Xi−2, Xi−3) = αi

[
c1

Xi−2

|Xi−2 −Xi−1|p1
+ c2

Xi−3

|Xi−3 −Xi−1|p2

]
.(18)

Note, that here we have a power-law distance dependence similar to the previous work of Skiadas [2]. The
discrete two-step difference equation with the normal vector orthogonal to difference of successive vectors is
is with Eqs.(2) and (18) given by
(19)

∆Xi = Xi −Xi−2 = −Xi−1 × Fi (Xi−1, Xi−2, Xi−3, ...) = αi

[
c1

Xi−1 ×Xi−2

|Xi−2 −Xi−1|p1
+ c2

Xi−1 ×Xi−3

|Xi−3 −Xi−1|p2

]
Default values for the exponents are p1 = p2 = 1, since we get in this case a scale-invariant dynam-
ics. Comparing Eq.(14) to Eq.(19) we have the standard bilinear normalization terms and get for Eq.(19)
reflection-distance power-law dependent torsion and curvature functions

(20) τi−1 =
c1cB

|Xi−2 −Xi−1|p1
, κi−1 =

c2cT
|Xi−3 −Xi−1|p2

.

The scalar control parameter can be related by
(21)
Ni−1 = c−1

N Xi−1 = Bi−1 × Ti−1 = c−1
B c−1

T (Xi−1×Xi−2)×(Xi−1×Xi−3) = c−1
B c−1

T Xi−1 (Xi−1 · (Xi−2 ×Xi−3)) ,

where we find the triple vector product or 3d polar sine

(22) c−1
N cBcT = Xi−1 · (Xi−2 ×Xi−3) = −Xi−2 · (Xi−3 ×Xi−1) = −Xi−3 · (Xi−1 ×Xi−2).

In contrast to the standard Frenet normalization we have with p1 = p2 = 1 a scale-invariant distance
dependent unit vector normalization in Eq.(19). Both variants show similar results in spherical symmetry,
if we have p1 = p2 = 1, C = 1, and small angles si−2 − si, see Fig.2, since in this case

(23) |Xi−1 ×Xi−2| ≈ |Xi−2 −Xi−1||Xi−1|, |Xi−1 ×Xi−3| ≈ |Xi−3 −Xi−1||Xi−2|.

Figure 5. Two coupled type 2 quaternion systems with rotating orbital wave functions
with coupling given by βXY,i = −βY X,i showing atomic type structures with inner core and
outer orbital states, where the core (on the left side) is very tiny. c1 ≈ −0.0073, c2 ≈ 0.02,
c3 ≈ −0.0073, c4 ≈ 7.5, p1 = p2 = 1, p3 = 2, CX = CY = α = 1, where the size difference is
given by c4 ̸= 1.

3.6. Coupled Systems. An external coupling means, that the frame change is not only driven by the
internal frame vectors, but also from external frame vectors introducing additional external vector shifts
affecting curvature and torsion with an extended symmetry invariant. In this paper we will only consider
examples of a mutual coupling between two systems. Coupling two systems X and Y having the same vector
function Fi, the coupling from the Y -system to the X-system could be given by

(24) Xi = βXY,i +Xi−2 − βXY,i−2 − (Xi−1 − βXY,i−1)× Fi (...) ,
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with coupling function term βXY,i leading to an additional shift with symmetry invariant

(25) (Xi − βXY,i) · (Xi−1 − βXY,i−1) = (Xi−1 − βXY,i−1) · (Xi−2 − βXY,i−2) = ... = CX .

Reversely, the coupling from the X-system to the Y -system could be given symmetrically by

(26) Yi = βY X,i + Yi−2 − βY X,i−2 − (Yi−1 − βY X,i−1)× Fi (...) ,

with coupling shift βY X,i and symmetry invariant

(27) (Yi − βY X,i) · (Yi−1 − βY X,i−1) = (Yi−1 − βY X,i−1) · (Yi−2 − βY X,i−2) = ... = CY ,

where the coupling has also 3 memory terms. As a result, we see for some special vector coupling functions
βXY,i and βY X,i with radial distance dependent strength and scalar coupling constant c3, e.g. by coupling two
discrete paths by a symmetrical coupling function βXY,i−1 = −βY X,i−1 with opposite signs and power-law
exponent p3

(28) βXY,i−1 = c3
Xi−1 − Yi−1

|Xi−1 − Yi−1|p3
,

which can be extended two more than two coupled systems by superimposing the shifts of many mutual
coupling functions. Two typical coupled system pattern are shown in Fig.5 and Fig.6. With the same
control parameter the symmetry and scale between opposite “charges” can be broken by the expansion
factor c4 ̸= 1 or with a different symmetry invariants CY ≫ CX (scaling with radius, wave amplitudes or
lengths, curvatures, or energies) depending on the initial conditions. The exponents leading to stable pattern
are usually p3 = 2 or p3 = 3. Increasing the coupling, the spin axes change individually in some angular
range (showing precession) until the chaotic range begins.

Figure 6. Two (blue, red) coupled type 1 quaternion systems with core region (left, highly
enlarged), showing a helical packet emission from the core (mid, red core blue helix) trans-
forming the local helical path into a non-local semi-stable kind of 2s-orbital cloud or wave
(right, blue). The positive charge at the core in red (left) is surrounded by negative charges
in blue (right). The neutral inner core (red and blue) is more than 2000 times smaller than
the outer orbitals (blue), which have a size ratio about 1:4. We have βXY,i = −βY X,i,

κ ≈ 0.0073π ≈ τ/
√
3, c3 ≈ −π/4, c4 = 1.0, p3 = 3, CX ≈ 0.00003808, CY ≈ 1.0, where the

size difference is given by CY ≫ CX .

3.7. Helical Paths. The Frenet-Serret formulas are frequently used to describe the dynamics in multivari-
able space curves such as the helix in R3. Helical paths are curves of constant curvature κ and torsion τ
and for which the tangent makes a constant angle θ = arctan(τ/κ) with a fixed line. General helices or
Lancret curves appear in many applications, see Çiftçi [9]. In electromagnetism a charged particle in a static
uniform magnetic field in Euclidean space R3 moves along a circular helix because of the Lorentz force (cross
product between the velocity and magnetic field vector) and newtons equation. Lancret’s theorem states
that a necessary and sufficient condition for a curve to be a helix is that the ratio of curvature to torsion
be constant. So it is not surprising that we find with our approach within the Frenet apparatus with type
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1 Fi(...) vector functions helical frame paths, especially in simulations with coupling showing spontaneous

emission and absorption, see Fig.6. We often see a very interesting dynamics with
√
3κ ≈ τ near to the

helical angle θ = π/3 = arctan(
√
3). In Fig.6 we observe the characteristics of the helical emission, where

the emitting core (in red) spins up an orbital state near to the core until (left picture) a critical spin is
reached and the helical emission is started. The helical “spring” has often the same number of turns, the
ratio pitch/diameter is related by the arctan of the helical angle to the ratio torsion/curvature.

Figure 7. Split-octonion type 2 limit cycle structure on a twisted path with N2 = 8 jumps
per cycle m = 8 · 22 = 176 fixed points, see Table 4, stable invariant, projected are 3 core
dimensions out of 7d. The blue rays show the “ jump” structure.

4. Normed Algebras and Multiplication Tables

4.1. Multiplication Tables. How can we define and customize the algebra? Regarding orthogonality
and normalization as the most important characteristics, the cross product is encoded in n × n (split-
)multiplication tables, see Tables 2 and 3, where different table dimensions and classes characterize different
algebras, see Hasebe [6] or Schray and Manogue [10]. The multiplication tables or tensors are known as the
structure constants of the (split-)algebras. There is just one 3d cross multiplication table, but there are 480
versions of 7d cross algebra tables, so the cross operations in 7d have in contrast to the 3d cross operation
not only 1 but 480 possible multiplication tables [10]. Although these different tables are all equivalent, a
simulation or physical theory might make use of more than one multiplication table at any given time. In
this context it should be noted, that we can define the 3d quaternion as a sub-algebra of the 7d octonion
algebra, see Table 3. For practical reasons and as a interesting case, our simulation software can select for
different coupled systems the algebra from different predefined multiplication tables. In our software, we can
edit, switch to, and combine different algebras. We can even cut out an subset of operations. Our simulation
software comes with some basic multiplication tables for all of this mentioned algebras as an validated input
for computer experiments that can be modified.

4.2. (split-)Octonion and (split-)Quarternion Algebra. The cross product is usually defined by the
algebra of pure imaginary quaternions (n = 3 imaginary components) part of octonions (n = 7 imaginary
components), where the 7d cross product has the same relationship to the 8d (split-)octonions O as the 3d
cross product does to the 4d (split-)quaternions H [6, 10]. The (split-)octonions correspond to the largest
of the four normed algebras and are like the (split-)quarternions a division algebra over the real numbers,
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Table 2. Example of a Split-octonion Multiplication Table, from [6].

1 e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 −e5 e4 −e7 e6
e2 −e3 −1 e1 −e6 e7 e4 −e5
e3 e2 −e1 −1 −e7 −e6 e5 e4
e4 e5 e6 e7 1 e1 e2 e3
e5 −e4 −e7 e6 −e1 1 e3 −e2
e6 e7 −e4 −e5 −e2 −e3 1 e1
e7 −e6 e5 −e4 −e3 e2 −e1 1

Table 3. Structure of the Multiplication Table.

Table structure of a 7d algebra with a 3d sub-algebra Encoding the split-octonion Table above

a kind of hypercomplex number system. Split-octonions often show a very rich dynamics with limit cycles
and subcycles, see Figs.7-9, where different frequencies can be observed, like a slow wave or orbit in some
dimensions superimposed by a fast vibration or orbit in other dimension pairs.

4.3. Signatures of (split-)Quaternions and (split-)Octonions. A criterion is not only how many di-
mensions the algebra has, but also its signature - how many of these dimensions square to positive, negative
or zero scalars. In Table 2 the signature of a split-octonion is located on the diagonal. This way we bring to
life (split-)quaternions and (split-)octonions, which have different signatures, since in the splitted case not all
dimensions square to negative. The split-algebras have the properties similar to the original division algebras
except for their split signatures and provide for very important concepts [6]: few years after the discovery of
quaternions by William R. Hamilton [11], James Cockle introduced the notion of the split-algebras [12, 13].
Similar to the original division algebras, there exist three species of split-algebras; split-complex numbers
C′, split-quaternions H′, and split-octonions O′. The Lagrangian for the classical superstring involves a
relationship between vectors and spinors in Lorentz/Minkowski spacetime which holds only in 3, 4, 6, and
10 dimensions, these numbers are 2 more than the dimensions, see Baez [15] and Table 1 [6].

5. Limit Cycles, Modular Arithmetic, and Equivalence classes

Limit cycles appear in all simulations depicted in this paper. Without limit cycles we would not observe
the smoothness and arbitrary small shifts in closed loop discrete operations. Especially with split algebras
we find nested sub-cycle structures, see Figs.8 and 9.
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Figure 8. Scale-invariant split-octonion type 2 pattern with orbital limit cycle structure
having 8 ring groups (yellow) including 8 reflection structures (green), each having n = 26
points, providing for a total limit cycle length m = 416 = 2 · 8 · 26. The violet lines show
some “jump” paths connecting the group elements.

Table 4. Limit Cycle Split-Octonions with Sub-Cycles

Figure b N1 N2 N3 m = N1N2N3 r = b− l m sphenic?

Fig.1 2 1 2 3 6 1

3 2 5 17 170 2 y
Fig.3 3 2 5 47 470 2 y

3 2 8 17 272 2 n

Fig.8 3 2 8 26 416 2 n
3 2 8 23 368 2 n

Fig.9 4 2 10 30 600 2 n
5 2 17 27 918 2 n

Fig.4 4 3 7 59 1239 1 y

Fig.7 7 1 8 22 176 1

5.1. Nested Limit Cycles. Given natural numbers Nj ∈ Z, we can get spatial separated hierarchic Nj-
gons, that are, closed sub-cyclic sequences, where the total cycle period is the product of the periods at every
level j with maximum level J and

(29) m =

J∏
j=1

Nj .

In other words, our system divides the total cycle into equivalence classes, each of the form {Nj = kjb+ r |
kj ∈ Z} where r < b. Here we have a modular arithmetic, where numbers Nj ”wrap around” when reaching
a certain value, called the modulus. The numbers Nj are equivalent if they have the same remainder when
divided by some number b, a kind of hidden modular period. On a simple circular ring a cycle or sub-cycle
with Nj elements does normally not correspond to angular segments with 2π/Nj angular units, since we
have a modular or geometric shift l leading to π ± 2π/(Nj + l) units, where l is responsible for sub-cycle
pattern generation, adding π is due to reflection, and r = b− l < b is the remainder. The equivalence classes
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Figure 9. Type 2 split-octonion having orbital fixed point structure with 10 different ring
groups and 10 reflection structures, each having 30 points, providing for a total limit cycle
length m = 600 = 2 · 10 · 30. c1 ≈ −0.1933, c2 ≈ 0.7839, p1 = p2 = 1, α = 1, C is not
constant, so it is slightly instable.

are given by

(30) Ni ≡ Nj (mod b),

where b divides Ni − Nj , or Ni and Nj have the same remainder r when divided by b, which holds for
Nj = kjb− l (or Nj = bj − l).
The emergence of sub-cycles happens especially in type 2 split-octonions, where we always have J = 3, which
means that m is a sphenic number if all three Nj are prime. Examples are given in Table 4 and especially in
Fig.8 with visible jump paths, where m = 2 · 8 · 26 = 416. Here we have Nj = bj − l elements for j = 1, 2, 3
and l = b− r with base b = 3 and remainder r = 2 giving l = b− r = 1. Our simulations suggests that with
our approach m = 4 and m = 6 are the smallest stable limit cycles. As another result from Table 4, m is
always the product of three equivalent numbers Nj .

6. Sharp Tangential - Radial Modal Transition

Both of our two proposed Frenet type vector functions show some interesting spin dynamics in 3d and
7d. We found very interesting transition with hysteresis for special values of α, κ, τ . With a type 1 or 2
vector function, a unit curvature κ = 1, unit scale C = 1 on the sphere, a small coupling constant α (velocity

parameter , see Eq.(13), and a torsion parameter τ ≈
√
3κ, we get a simple 1d ring pattern. Increasing

the ratio κ/τ or c2/c1 slightly, some 2d off-equatorial spherical surface pattern appear, see Fig.10. Without
spiral we have Viviani’s curve (looks like an infinity symbol on the sphere, cylinder intersecting a sphere)
as a generalized helical curve, which can also be found in simulations. Finally, the tangential motion turns
spontaneously within a very small range of the ratio into a 3d radial helical motion with cylindrical structures,
see Fig.11. More in detail, the binormal component stimulates off-equatorial patterns, which often look like
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Figure 10. 3d A scale-invariant type 2 quaternion pair, point symmetric, perfectly stable,
pure angular modes on the sphere with constant radius and constant C = 1, can run under
7d split and non-split without change. c1 ≈ −0.0073, c2 ≈ −

√
3c1, p1 = p2 = 1, α = 1.

Figure 11. A scale-invariant type 2 quaternion pair with excited radial modes from
Fig.10. The pair shows a modal transition between mirror symmetric radial (left) and point
symmetric orbital modes (right). The modal transition with hysteresis happens in a very
small torsion range (∆τ/τ < 10−7), see Table 5. p1 = p2 = 1.

the infinity symbol ∞ with some extra loops, as long as in Eq.(18) the curvature/torsion ratio

(31) ga = −
√
3c2/c1

is below a critical threshold. Increasing ga we find at some ratio ga2
(where the orbital angular range col-

lapses) that radial modes or vibrations get excited. It seems, that one of two orbital modes in Fig.10 collapses
into a radial oscillation with a thin helical or cylindrical shape, see Fig.11.
Comparing the orbital structures of a type 1 with a type 2 vector function, there are some differences regard-
ing the excitation of radial modes. Increasing ga, the type 2 transition to radial modes occurs spontaneously
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Table 5. Sharp normal-tangential type 2 phase transition between ga1
...ga2

, where C = 1

α−1 ga1 = −
√
3c2/c1 ≈ 1 + α

2π
ga2 (ga2 − ga1 )/ga1 2α−2 ga2

−ga1
ga1

+ga2
−2

20 1.008959597 1.008959938 3.37756E-07 0.015213901

100 1.001601099 1.001601168 6.9307E-08 0.433554973
137.0359996 1.001159968 1.001160029 6.09683E-08 0.988141622

137.7 1.001154267 1.001154328 6.0802E-08 0.999929527

200 1.000789955 1.000790003 4.7300E-08 2.396894339
1000 1.0001563375 1.0001563486 1.1134E-08 71.2280004

above a special threshold value ga2
in contrast to type 1. Decreasing the ratio back to lower values we find

hysteresis, where the radial mode reverts back to a spherical mode for ga1 < ga2 . We find that ga1 , ga2 ,
ga1 − ga2 depend on the velocity or coupling constant α, the stronger the coupling, the higher the anomaly
ga. Regarding the values that are listed in Table 5, there is a similarity to the anomaly in the electron
g-factor (ge = 2 · 1.00115965218..., see Fan et al. [14], since we also find ga ≈ 1 + α

2π and approximately

ge = 2ga = −2
√
3c2/c1 ≈ 2+ α

π , which was calculated as the first correction term by quantum electrodynam-
ics long ago. Therefore, it is plausible also to take for a test the fine structure constant as an electromagnetic
coupling constant α, see Table 5.

√
3 is the long diagonal between opposite corners in the 3d unit cube, 2

√
3

is the normalizing distance of reflection, the distance of a point to its reflected point from flipping the sign
of all three orthogonal unit vectors (normal, tangential, binormal).

Figure 12. A scale-invariant type 2 octonion pair acting in 7d with more than 3 modes
excited (radial and orbital modes simultaneously). This is the octonion version of the
quaternion pair in Fig.10. It is also point symmetric to P , perfectly stable with constant
C = 1, has the same parameter like the quaternion in Fig.10, but shows no sharp transition
between modes. c1 ≈ −0.0073, c2 ≈ −

√
3c1, p1 = p2 = 1, α = 1

Here we can also see a difference between type 1 and type 2 vector functions. In contrast to type 1,
the type 2 sequences shows by varying the torsion parameter a very sharp transition ∆τ/τ < 10−7 from
spherical to radial modes and vice versa while showing hysteresis loop if we vary torsion or curvature up
and down. Note, that the mirror symmetry changes to a point symmetry and vice versa, see Figs.10 and
11. Hysteresis is the dependence of the state of a system on its history and can therefore be attributed to
the memory terms in our non-linear system. Geometrically, the new oscillation is orthogonal to an existing
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oscillation (with memory = conservation of spin) stating a new imaginary dimension forcing a rotation in
a new imaginary plane. This process excites harmonics, waves, and rotations in all possible orthogonal
degrees of freedom. To stimulate another orthogonal mode or rotation, the new degree of freedom must be
in concert (orthogonal and in phase) with existing degrees of freedom. Such a behavior showing a phase
transition while exciting an extra dimension can be found in simulations. Hysteresis means, that there is not
only memory or entropy/information stored in the system but also some power buffered, where the system
could act on the hysteresis cycle like a pump. The last column in Table 5 compares the relative hysteresis
power (ga2 − ga1/(ga1 + ga2 − 2) with the coupling power α2/2, and it turns out that both have similar
values at α−1 ≈ 137 with hysteresis range ga2 − ga1 ≈ α3/(2π). Regarding this number and basic meaning
of hysteresis regarding storage and coupling of energy, the hysteresis could be crucial in coupling different
system connected in a radial direction, where modes get excited with enough hysteresis power and coupling
strength.

7. Conclusions

Bringing the (split-)quaternion and (split-)octonion system to life by orthogonal components in a time-
discrete recurrent frame, we change the normal component by tangential and binormal components generating
the next frame. The non-linear recurrent model of kinematic curve generation results in complex paths of
orbital and radial modes. Even on simple tangent paths on spherical surfaces with constant curvature there
are nonlinear geometric effects on the orbital path. We find two related vector functions driving the frame
path by tangential and binormal components, where type 2 is scale-invariant for p1 = p2 = 1. Different
normed algebras in 3d and 7d can be applied to get the orthogonality and related symmetry. The two main
symmetries are given by the reflection mirror symmetry and the invariant C. Monitoring C shows if a pattern
is stable or not, since stability and a stable limit cycle requires special values of torsion and curvature with
proper initial conditions. Limit cycle modular arithmetic with equivalence classes characterizes the resulting
point groups, rings, or Nj-gons. We could split a limit cycle into sub-cycles with level 1 ≤ j ≤ J = 3, where
we find a limit cycle number m = N1N2N3 as a the product of three numbers Nj . If all Nj with J = 3 are
prime, m is a sphenic number.

Very interesting regarding further computer experiments and vector functions are the transitions between
orbital and radial modes. Here we see, which fundamental aspects of our approach are relevant for a sharp
transition as a resonance with hysteresis, which can in our case only be found with three degrees of freedom.
We find, that the transition usually occurs at a special helical angle condition near to θ = arctan(τ/κ) =

arctan(
√
3) = π/3. During the orbital/radial transition the orbital mode transforms in radial direction

into a helical path. Coupling two systems is supported by this transition, eventually a new approach to
the well-known anomalous g-factor of an interacting positron-electron pair. With a spherical symmetry the
radial coupling strength is a p3 = 3 power-law, resulting in helical emissions resembling a charged particle
moving radially in a magnetic field. After the helical path has reached a critical length or radial distance, it
transforms into a non-local bound state of an orbital cloud around a very tiny core.

The recurrent operations approach could be interesting in all fields the algebras already have been applied,
which are Clifford algebras and spinors, projective geometry with Hopf fibrations and Lorentzian geometry,
Jordan algebras, and the exceptional Lie groups - and there are many applications in quantum physics and
relativity. The existence of classical supersymmetric string theories has been linked to the existence of the
normed division algebras [10], see Table 1. Since relativistic quantum physics (Dirac) can be formulated by
this algebra, see e.g. [15, 16], and the Frenet frame approach directly shows the geometric role of torsion
and curvature in the context of electromagnetism, we could try to link to quantum and relativistic physics
and eventually identify some interesting real existing orbital wave solutions that could be relevant in this
context. The concept of long-range reflection jumps introduces a kind of non-locality, which is important in
the context of quantum physics. But there are also local helical paths starting at a core and forming a bound
state surrounding the core. Curvature and torsion properties have already be related to electromagnetic fields.
The spin/curvature anomaly found in the context of a radial mode excitation threshold with hysteresis could
be a good starting point. Geometric shifts induced by parallel transport can be related to the surface
curvature and torsion, where extra angles or angular shifts are responsible for pattern generation. Building
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this way complex structures, modular arithmetic gives the extra angles and geometric shifts on closed,
discrete, and curved paths. This relation is still open.

In future works we will consider not only one isolated system with one algebra, we will apply different
algebras in parallel, where we can modify, couple or split algebras in variable multiplication tables. But this
approach requires more understanding and improvement of the simulation methods. There are still a lot of
interesting open points, some of which will be clarified sooner or later. Videos from simulations can be found
on the internet with the tag #DACOP.
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