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Abstract

In General Relativity, reference frames must be distinguished from coordinates. The for-
mer represent physical systems interacting with the gravitational system, aside from possible
approximations, while the latter are mathematical artefacts. We propose a novel three-fold
distinction between Idealised Reference Frames, Dynamical Reference Frames and Real Ref-
erence Frames. This paper not only clarifies the physical significance of reference frames, but
also sheds light on the similarities between idealised reference frames and coordinates. It also
analyses the salience of reference frames to define local gauge-invariant observables and to
propose a physical interpretation to diffeomorphism gauge symmetry.
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1 Introduction

In the ‘post-Einsteinian’ physical and philosophical literature, due to some ambiguity which can be

traced back to Einstein himself, it has been customary to conflate the terms ‘reference frame’ and

‘coordinate system’, which have been used somewhat interchangeably, or at least have not been

always clearly distinguished. This problem has been highlighted in its philosophical-historical

components in Norton (1989) and Norton (1993).1

This paper analyses what a reference frame is in General Relativity (GR), expanding on existing

definitions in the literature. This analysis helps to further clarify the distinction between reference

frames and coordinate systems. We will show that such a distinction plays a role in the physical

interpretation of diffeomorphism gauge freedom, as well as the definition of local, gauge-invariant

observables.2

The use of coordinates, or even manifold points, to spatiotemporally localise quantities in GR

poses two main, closely interconnected problems:

(P1) We cannot define local gauge(diffeomorphism)-invariant observables

(P2) We have an interpretation of diffeomorphism gauge symmetries as mathematical redundan-

cies or ‘descriptive fluff’ (Earman (2004)).

We will show that both problems are naturally solved when neither coordinates, nor manifold

points, are used to localise physical quantities, but (spatiotemporal) reference frames.3 As we will

specify later (footnote 51, section 3.3), the mention of the use of manifold spacetime points is to

emphasise that we do not intend to limit our proposal to the case where a coordinate representation

of the theory is chosen. In this regard, we identify the gauge group of GR with the group of active

1According to Norton’s analysis, ‘Einstein’s coordinates’ had physical meaning, in that they were purely mathemat-
ical structures in R4, called the ‘Einstein’s manifold’ which are instantiated by physical spacetimes. Modern practice
has, however, confused ‘Einstein’s coordinates’ with ‘coordinate charts’, here called coordinate systems, which are
merely labellings of geometric structures defined in a smooth, differentiable manifold M , and have no physical in-
stantiation. See also Gomes (2023a). Here we call ‘instantiation’ the representational relationship between a model
and the physical possibility that is is supposed to model.

2Having this distinction clear also has a pedagogical role: it should be avoided to confuse two terms, even if one
uses them consistently.

3We consider (P2) to be a problem, as gauge symmetries permeate throughout all of known physics, and it is
reasonable to desire a physical interpretation for the ubiquity of gauge.
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diffeomorphisms.4

Gauge transformations lead to redundant descriptions of physical states. This redundancy (usu-

ally understood as mathematical redundancy) poses challenges to identify physically meaningful

quantities. In the context of Hamiltonian theories this freedom or redundancy appears in the form

of certain kinds of constraints that the variables have to satisfy, called first class constraints. Dirac

(2001) argued that only quantities that remain unaffected under gauge transformations are defined

as observables, ensuring their physical relevance. Thus, he defined observables of a theory with

first-class constraints as quantities which commuted with all of the constraints. In fact, in the

Hamiltonian formalism, the action of constraints on quantities via the Poisson bracket generates

infinitesimal gauge transformations, so commutation implies gauge-invariance. This is the for-

mal definition; in practice explicit observables may be hard to find. This is especially the case in

vacuum General Relativity (GR). Given a three-dimensional foliation of spacetime, the first-class

constraints of the theory are equivalent to spatial diffeomorphisms along the leaves of the foliation

and to diffeomorphisms whose generators act in the normal directions to the leaves (‘refoliations’).

For spacetimes which satisfy the Einstein equations, there is a neat correspondence between these

‘3+1-dimensional’ Hamiltonian symmetries and the four-dimensional spacetime diffeomorphisms

of spacetime (Lee and Wald (1990)). Since geometrical objects depend on the points of the mani-

fold, and the GR gauge group is thought to be the four-dimensional diffeomorphism group which

‘‘moves points around’’ (Isham, 1993, p.170), objects that are represented locally are not gauge-

invariant. This problem was addressed by Rovelli (2002b), in which he argued for a distinction

between two notions of ‘observables’ in GR. Partial observables can be observed, in the sense

of measured, even if not gauge-invariant, while complete observables are constructed by relating

gauge-dependent partial observables in a gauge-invariant manner and characterise the predictions

of the theory, coinciding with the notion of Dirac observables. Although theories can only predict

4We do not have space to adequately introduce this topic. For a good introduction to the distinction between
active and passive diffeomorphisms see Rovelli and Gaul (2000). For a critique of this clear-cut distinction, see
(Weatherall, 2018, p.14). The idea that diffeomorphisms should straightforwardly be regarded as gauge symmetries
for GR is not unanimously shared. For example, Belot (2017) highlights a mismatch between (isomorphisms induced
by) diffeomorphisms and gauge-symmetries (understood as transformation not generating new possibilities) in the case
of asymptotically flat spacetimes at spatial infinity in vacuum. In particular, given the diffeomorphism d ∈ Di f f (M ),
since the two isomorphic models (see below for the meaning of symbols) ⟨M ,gab⟩ and ⟨M , [d∗g]ab⟩ have to be flat
on the same asymptotic region, we need to use a notion of identity of the base set M . Thus, the diffeomorphisms that
preserve flatness, but are not the identity in the asymptotic region are taken to relate different physical possibilities, so
they are not gauge-symmetries. Only asymptotically trivial diffeomorphisms are. See also Ashtekar et al. (1991).
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gauge-invariant Dirac observables, i.e. complete ones, gauge-dependent partial observables are

crucial in physical theories, as they describe physical observations.5 The construction of complete

observables, via composition of partial ones, implements the idea that the physical content of GR

lies in the relations between dynamic quantities represented by partial observables. Thus, the idea

is that locality is to be understood relationally between fields, rather than with respect to some

background unobservable spatiotemporal structure (Westman and Sonego (2009)). As we shall

see, the problem of constructing gauge invariant local quantities in GR is closely related to the

relevance of recognising a physical meaning to reference frame.

We introduce three classes of reference frames in GR, when considered as (a set of variables

representing, or instantiated by) a material system.6 The benefit of this constraint is due to the fact

that GR is deparametrisable only for some specific material models, for which it is possible to con-

struct local gauge-invariant Dirac observables.7 Thus, there is the hope that the deparametrisation

techniques used for these matter toy models can provide hints to better understand the case of GR

coupled with realistic standard matter.8

We call Idealised Reference Frames (IRFs) those reference frames that represent systems in

which both the dynamical equations and the stress-energy contribution to the Einstein Field Equa-

tions (EFEs) are neglected. The second class is that of Dynamical Reference Frames (DRFs),

whose stress-energy content is neglected, but the frame satisfies a specific dynamical equation. As

we will show, these are the reference frames that can be associated with what are usually referred

to as ‘test particles’. Finally, we name Real Reference Frames (RRFs) those ones whose stress-

5For further discussion on the concept of ‘observable’ in GR, see Bergmann (1961), Gryb and Thébault (2016),
Pitts (2022).

6For simplicity, throughout the paper we will often alternate between saying that a reference frame is a physical
system and that reference frame is a set of variables in a mathematical model representing a physical system. Although
the difference is conceptually relevant and we think the latter is the more correct way of saying, this distinction does
not invalidate our work in any way. We thank Erik Curiel (private correspondence) for this suggestion.

7We will directly give some examples of what deparametrising means in Section 3. Naively, deparametrising a
theory means choosing a set of material degrees of freedom {φ} that can be used (at least locally) as a spatiotemporal
reference frame. This means being able to invert (at least locally) these degrees of freedom when expressed in any
coordinate system (see fn. 40). In the strict sense of the term, however, deparametrisation is often defined as a global
procedure. More technically, it means to rewrite the constraints in the form C = π + h, where π are the conjugate
momenta of φ and where h, called the ‘physical Hamiltonian’, does not depend in any way on (φ ,π). See Thiemann
(2006); Tambornino (2012).

8However, using material reference frames is not the only option. Early attempts to use purely gravitational degrees
of freedom as a reference frame in order to write local gauge-invariant Dirac observables were proposed, e.g., in Komar
(1958). Incidentally, here the author refers to the degrees of freedom constituting the reference frame as ‘intrinsic
coordinates’.
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energy contribution to the EFEs is taken into account, as well as their dynamics. Although RRFs

are systems of great interest, as they are physically more realistic in principle, in the remainder of

the paper we deal exclusively with IRFs and DRFs. The proposed classification offers a possible

reason why the notions of reference frame and coordinate system have not been carefully distin-

guished, with some notable exceptions already mentioned. The confusion stems from the practical,

but not conceptual, equivalence that exists between IRFs and coordinate systems.9

Two other distinct notions are often confused, namely, ‘idealisation’ and ‘approximation’. In

Norton (2012)’s view, an idealisation is a novel, (typically) fictitious, system that replaces the

target system under study and that is simpler to analyse. Approximations are inexact descriptions

of the target system. Basically, the crucial difference lies in whether one introduces a novel system

(in the case of idealisation) or not (in the case of approximation). Here, we understand reference

frames to be structures which we identify in a model of GR. The most general models of the theory

— labeled kinematically possible models (KPMs) (so as to distinguish them from those models

that satisfy equations of motions, which are labeled dynamically possible models (DPMs) — are

given by tuples ⟨M ,gab,φ⟩. Here, M is a smooth manifold, gab is a Lorentzian metric, and φ

represents the material degrees of freedom to be possibly used as spatiotemporal reference frames

and instantiated by a target system.10 IRFs (as well as DRFs) are supposed to be derived from

successive approximations to such model structures modelling the target system playing the role

of the reference frame. On the other hand, coordinates are idealisations, in particular, they are

mathematical objects in their own right, without a target physical referent to model, since they are

not instantiated variables (see Sections 2 and 4). Thus, they are not structures within our physical

possible models.11

This paper clarifies the nature of an important and ubiquitous concept in physics: that of ref-

erence frame. In fact, whenever we set up an experiment or formalise the behaviour of a physical

9We mean that at least in light of problems (P1) and (P2) above, the use of IRFs or coordinates is indistinguishable.
This does not mean that being aware of which one is being used is irrelevant (see below).

10Here, we are using the abstract index notation (see Penrose and Rindler (1987)) to stress that it is a geometrical
object independent from the choice of a coordinate representation.

11This distinction between idealisations and approximations is not the only one possible. A more recent and different
perspective on this matter is found in Frigg (2022). Here, an idealisation does not constitute a novel system but
rather is the name given to the model-target system relation and ‘must have a physical interpretation’ (ivi p.318). An
approximation, on the other hand, ‘operates solely at the mathematical level’ and ‘involves no reference to a model’
(ivi p. 318). It goes beyond the scope of this work, but it is interesting to assess whether the distinction between
reference frames and coordinate systems fits also into such a framework.
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system, we implicitly or explicitly use a reference frame. In Anderson’s words:

All measurements are comparisons between different physical systems. (Anderson,

1967, p.128)

But see also Rovelli (1991b):

Any measurement in physics is performed in a given reference system ,

or (Landau and Lifshitz, 1987, p.1):

For the description of processes taking place in nature, one must have a system of

reference.

The implicit (or omitted) use of reference frames, which will be addressed in Section 4, is rele-

vant in light of the fact that it makes little sense to define a quantity that we measure experimentally

using a set of uninstantiated coordinates and it would be more accurate to describe phenomenology

in terms of reference frames.12

The main question of the present work is what a reference frame in GR can be. One reason

why it is important to reach this end is that researchers in contemporary physics and philosophy of

physics are interested in quantum reference frames (see Rovelli (1991a), Giacomini et al. (2019)).

In fact, all physical systems are, to our knowledge, ultimately quantum. Our work can help to

understand what kind of quantum reference frames are adopted when considering gravitational

situations (Giacomini (2021)). We argue that, before we can really have a discussion on quantum

reference frame in such framework, we should know properly what reference frames are in classical

GR.

As a final note of caution, which it will be useful to keep in mind when we come to Section

4, we would like to emphasise that our work is not intended to delegitimise the valuable and often

ingenious approximation procedure that follows any modelling in physics (Elgin (2017)). Our

12Similarly, by presenting a theory in the coordinate-free language of differential geometry, the quantities cannot be
defined in a diff-invariant way, since they covary under the action of the group of diffeomorphisms. Thus, they cannot
describe the behaviour of physical, gauge-invariant, systems. The only alternative would be to present a theory in
terms of equivalence classes, such as [gab]. However, this formulation is not expressible by a single model as explicit
functions of spacetime points and it is at least questionable to interpret the behaviour of physical systems in these
terms.
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work is meant to be a kind of ‘memento’ that sometimes approximating ‘without remembering

anymore’ can cause problems in theory (see (P1) and (P2) above).

The paper is structured as follows.

In Section 2, we revise the role of reference frames and coordinate systems in gravitational

physics, as well as the main definitions of a reference frame adopted in the literature.

Section 3 contains the detailed classification of reference frames in GR, supported by some

concrete examples.

In Section 4, we provide our proposal on the origin of the lack of care in using the notions of

reference frame and coordinate system in GR.

In section 5 we analyse the differences between DRFs and coordinates. We also highlight the

usefulness of reference frames to address the problem of local gauge-invariant observables and to

have a physical interpretation of diffeomorphism gauge symmetries in GR.

2 Reference Frames vs. Coordinate Systems

This section is not intended to be a comprehensive review of all possible reference frame definitions

in all spatiotemporal theories. The intention is to provide a context in which to place our proposal

within GR, which extends the existing literature on the subject. We also briefly introduce the

differences between coordinate systems and reference frames in gravitational and non-gravitational

physics.

Let us now summarise some main definitions of reference frame, from which all others that

may be encountered can be derived.

In (Rovelli, 1991b, p.303) a reference frame is defined as a set of variables representing a ma-

terial system, for example a discrete set of physical bodies or a matter field, that can be used to

define spatiotemporal localisation in a relational sense. This definition will ground our classifica-

tion in Section 3. From Rovelli (1991b) also comes the suggestion that in GR reference frames can

be considered ‘dynamically uncoupled’ (to the dynamical system of interest, i.e. the metric field,

that we want to write in terms of the chosen reference frame), only if they are approximated. By

‘dynamical coupling’ we mean that: given a matter field φ which is dynamically coupled to the

metric gab, then it is the case that the dynamical possible solutions of the matter field are affected

8



by those of the gravitational field (and viceversa). In a more formal way, ⟨M ,gab,φ⟩ is a DPM iff

⟨M , [d∗g]ab,d∗φ⟩ is ∀d ∈ Di f f (M ). That is, the couples (gab,d∗φ), or ([d∗g]ab,φ) are not dy-

namically allowed.13 Our proposal will deepen and extend Rovelli’s seminal and partial analysis

on reference frames in GR.

On the other hand, in the work of Norton and Earman (see Earman and Friedman (1973);

Earman (1974); Earman and Glymour (1978)), as is now common in the vast majority of the

physical and philosophical literature of GR, a reference frame is defined by a smooth, timelike

4-velocity field Ua tangent to the worldlines of a material system to which an equivalence class

of coordinates is locally adapted (see e.g the recent (Bradley, 2021, p.1042),(Jacobs, 2024, p.4)).

It is straightforward that to fully consider the physical ‘referentiality’ of such a reference frame,

the 4-velocity field, representing e.g. massive particles’ worldlines, should take into account the

coupled dynamics between the particle system and the gravitational degrees of freedom. Since this

is the leading and most widely used definition, we will discuss it in a separate section (Section

3.2.3).

Closely linked to this characterisation of a reference frame in terms of 4-vectors, is that of

defining a reference frame in GR in terms of tetrads, also called ‘orthonormal frames’ ((Wald,

1984, ch.3.4); Duerr (2021)). The tetrads e(A)a are four smooth 4-vector fields, satisfying the or-

thonormality condition e(A)a e(B)b gab = ηAB, where ηAB = diag(−1,1,1,1). The indices A,B are

also called the ‘internal Minkowski indices’ and label the four vectors spanning the tangent space

TpM and forming an orthonormal basis; the latin index a is the usual index of the coordinate-free

notation. Geometrically, a tetrad is a map from the tangent space TpM to Minkowski spacetime

M4.14 In terms of the tetrads, it is possible to rewrite locally the components of a given geometric

object, say the metric TpM ×TpM ∋ gab = e(A)a e(B)b ηAB; or a vector field T ∗
p M ∋ Ua = u(A)e

(A)
a ,

(u(0), · · · ,u(3)) ∈ R4. So, tetrads are a particular basis used to provide a simplified local descrip-

tion of geometric objects in a small neighbourhood of each point of the manifold, as if we were in

Minkowski spacetime. In the ‘tetrad frame’, we can associate four independent scalar values X (A)

(instead of four coordinates xµ ) with each point p ∈M . In a nutshell, each tetrad is a 4-vector rep-

13A similar concept is also present in (Wallace, 2022, p.242), in terms of ‘dynamical isolation’.
14The tangent space Tp(M ) at each point p of a Lorentzian manifold is already a Minkowski vector space. Thus,

describing tetrads as a map from Tp(M ) to the Minkowski space M4 might seem redundant or confusing. To clarify,
the tetrads do not map Tp(M ) to another separate Minkowski space. Instead, the tetrads serve to establish a local
orthonormal basis in Tp(M ) itself.
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resenting a direction in spacetime. The temporal tetrad ea
(0) represents the (local) temporal direction

(often associated with the 4-velocity of the comoving observer). The spatial tetrads ea
(1),e

a
(2),e

a
(3)

represent the (local) spatial directions. The set of these orthonormal spacetime directions (four

orthonormal axes at each point) is the so-called ‘tetrad frame’.

In other recent works, the conventional, but rather informal way to distinguish a reference frame

from a coordinate system is to point out that only a reference frame has a link to an observer’s state

of motion (DiSalle (2020)). Moreover, (Pooley, 2022, Sec.4.3) defines a reference frame as a set

of standards (such as a standard of rest and a standard of simultaneity in Newton theory) relative

to which a body’s motion can be quantified. This paper shows that these definitions do not fully

exhaust the characterisation of reference frames in GR.

The literature dealing with quantum reference frame agrees that reference frames are associated

with physical material systems, which are ultimately quantum. Relative to these objects, we deter-

mine the properties of the physical systems we wish to study, such as spatiotemporal localisation

Castro-Ruiz et al. (2020). In this context, not considering reference frames as physical degrees of

freedom, but as mere coordinates, has obvious consequences as one misses their quantum nature.

Nonetheless, we frequently find in the quantum reference frames literature an assumption of non-

backreacting, and non-dynamical, material reference frames (de la Hamette et al. (2023); Kabel

et al. (2024)).

Some ambiguity still appears on the classica level, e.g. in Read (2020), in which the two terms

are not clearly distinguished. In fact, at p. 215 a ‘non-tensorial object’ — that is thought of as a

‘coordinate-dependent object’ (ivi, p. 217) — is defined as a (reference) frame-dependent object.

Also in Lehmkuhl (2014), following Einstein’s idiom which emerges in many quotations (ivi, p.

321), the terms reference frame and coordinate system are used interchangeably, without much

concern.15

15These cases are perfect examples of what was said in the introduction: the distinction between coordinates and
reference frames does not always cause internal problems for the coherence of a work, but it is good that this distinction
is recognised, expressed and maintained in the literature.
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2.1 GR vs. Pre-GR Physics

It is worth resuming the meaning of reference frames and coordinates in GR (understood as the

best representative of gravitational physics), as opposed to non-gravitational theories, which we

will refer to as ‘pre-GR theories’.

Let us briefly recall our coarse-grained definition of:

Reference Frame: a set of dynamically coupled and instantiated physical degrees of freedom16

Coordinate System: a set of non-dynamical and uninstantiated mathematical labellings

Pre-GR Our claim is that the need to separate the two concepts is not an urge in pre-GR physics,

since a reference frame can be identified ‘directly’, that is without any approximation procedure

involving the degrees of freedom of the reference frame, to an ‘instantiated coordinate system’.

Following (Henneaux and Teitelboim, 1994, p.27), an instantiated coordinate system can be

thought of as being ‘brought in from the outside’. Here we interpret ‘outside’ to mean ‘dynamically

uncoupled’ to the relevant dynamical system under study (for the resolution of the dynamical

problem of interest, this is equivalent to considering the system non-dynamical).

Agreed: even in pre-GR there remains the important conceptual distinction between reference

frames and coordinates: being (frames) or not being (coordinates) instantiated by real, physical

objects. Actually, the fact that reference frames can be identified as (instantiated) coordinates does

not imply that they have to be. For example, in general-covariant formulations of pre-GR physics,

coordinates retain their role as mere uninstantiated parameters without physical meaning, as in GR

(on that point, see Giovanelli (2021)’s distinction between formal vs. operational understandings

of coordinates).17 This shows that the distinction between coordinates and reference frames also

applies in pre-GR.

Let’s now see a pre-GR example of reference frame understood as an instantiated coordinate

system. Within Maxwell’s theory in Minkowskian spacetime, the Maxwell field is understood

as a subsystem of the Universe that does not affect the global inertial reference frame that can

be defined as a rigid scaffolding on the fixed background structure, defined by the Minkowski

16Recall, again, that the dynamical coupling is here understood with respect to the dynamical system of interest that
we want to write in terms of the chosen reference frame. In GR, this is the metric field.

17For a further analysis on this point see also Pooley (2017); Westman and Sonego (2009).
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metric ηµν = (−1,1,1,1). For instance, we can define locations in spacetime by means of non

electrically charged rods and clocks, which constitute the reference frame. This point is elucidated

in the following passage in (Einstein, 1905, p.38):

The theory to be developed—like every other electrodynamics—is based upon the

kinematics of rigid bodies, since the assertions of any such theory concern relations

between rigid bodies (systems of coordinates), clocks, and electromagnetic processes.

This passage can be interpreted to mean that the special relativistic Maxwellian theory is concerned

with the relations between electromagnetic processes and material bodies that are dynamically un-

coupled to (outside) the electromagnetic system under study, and that Einstein calls ‘systems of co-

ordinates’. Thus, the point is that in pre-GR a reference frame can be ‘definitionally’ dynamically

uncoupled, but instantiated and can be identified with a less strict notion of coordinate system: an

‘instantiated coordinate systems’: a sort of halfway between reference frames and coordinates.1819

Consequently, the definitions of reference frame and coordinate system in pre-GR theories need to

be amended as follows:

Reference Frame: a set of dynamically coupled and instantiated physical degrees of freedom20

Reference Frame/Coordinate System (interchangeable): a set of ‘definitionally’ dynamically

uncoupled and instantiated labellings (without any approximation being necessary)

18As we will see in the next section, this kind of reference frames are also present in GR: they are IRFs (agreed:
IRFs are treated as non-dynamical degrees of freedom.). The relevant difference with pre-GR case is that in GR it is
mandatory to implement some approximations. There can’t be ‘definitionally’ dynamically uncoupled frames.

19These variables are those that, through the parameterisation procedure, are parameterised and consequently their
dynamics are made explicit. Then, through the de-parametrisation procedure, they are used as reference frames. See
section 3.2.1 for a toy model.

20For example, imagine we choose four complex scalar fields as reference frame for an electrodynamical system.
There will be a coupling between the electromagnetic field (the dynamical quantity of interest) and the four charged
scalar fields used as reference frame. Strictly speaking, they are the sources of the electromagnetic field and are
affected by it. Also, think of the standard U(1) Lagrangian density

L = [(∂aφ∂
a
φ
∗−m2

φφ
∗)−

1
4

FabFab]+ e2[AaAa
φφ

∗+
1
e
AaJa],

where we have the free field terms of the complex scalar field and the Maxwell field and the coupling terms; e is the
electric charge; m is the mass of the scalar field; Ja = ie[−φ∂ aφ ∗+φ∂ aφ ] is the conserved current. More naively, just
think of electrically charged rods and clocks in the case proposed by Einstein and quoted above of an electrodynamic
theory in Minkowski.
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Coordinate System: a set of non-dynamical and uninstantiated mathematical labellings (typical

in the case of general covariant formulations).

Note the difference between being ‘dynamically uncoupled’ and being ‘non-dynamical’. In

the former case, the instantiated object has its own dynamics that is, however, not relevant to the

dynamical problem of interest. In the latter case, on the other hand, since there is no instantiation,

no dynamics can be defined for the variables that constitute the coordinate system.21 It is evident

that non-dynamical implies dynamically uncoupled. It is also the case that being dynamically

uncoupled is as if one were non-dynamical, as far as the dynamics of interest of the problem is

concerned.

GR In contrast, GR has no available ‘outside’. Namely, we are not allowed to consider reference

frames as dynamically uncoupled, barring some approximation procedure. This follows from the

fact that no existing, real physical system is gravitationally neutral. Consequently, there is no way

to disregard the (mutual) interaction between the gravitational field and the degrees of freedom

that characterise the reference frame, unless dynamical approximations are adopted.22 But it is

precisely here that the lines become blurry. As we showed above in the Maxwellian case, in non-

gravitational, pre-GR physics there is no need for approximations: it is always possible to identify

a reference frame as a dynamically uncoupled and instantiated set of parameters and to make it

coincide with the notion of a coordinate system for all practical use.23 In contrast, in GR the

concept of a coordinate system, even if is widely used throughout the general relativistic practice,

can only be considered as a mathematical artefact without a physical referent (that is, without an

instantiation).24 If this were not the case, it would be a set of gravitationally charged degrees

21At most, gauge conditions can be defined for a coordinate system.
22Taking the same example from footnote 20, think of GR coupled with a Maxwell field and a charged scalar field.

In this case, the Lagrangian density is:

L =
√
−g(gabDaφDbφ

∗−m2
φφ

∗)−
1
4

gabgcdFacFbd −R,

where Daφ = ∇aφ + ieAaφ is the covariant gauge derivative; ∇a is the curved connection and R the Ricci scalar
constructed from gab. We notice that we loose the free field terms, because gravity sticks through the connection.

23The reference frame might be considered dynamically uncoupled due to the irrelevance of interaction effects
compared to the experimental precision. Nevertheless, in this context, we refer to the property of being dynamically
uncoupled independent of experimental errors and constraints.

24Following Kuchar (1990), this fact is closely linked to the fact that GR does differ from pre-GR physics in lacking
a non-general covariant formulation.

13



of freedom and thus not dynamically uncoupled. In the following section, we will make precise

our claim that the only way to make a reference frame dynamically uncoupled is to implement

dynamical approximations. In conclusion, it is clear that the notions of ‘reference frame’ and

‘coordinate system’ cannot coincide in GR, neither from a conceptual point of view (which is also

strictly true in pre-GR), but also from the point of view of theoretical practice.

2.1.1 The Newtonian case

We now face the elephant in the room. Under the label of pre-GR physics there is also Newtonian

physics. It is clear, therefore, that ‘pre-GR’ and ‘non-gravitational’ are not and cannot be used as

synonyms, as we have done so far. Also Newtonian gravity has no available ‘outside’. Gravity is

a universal interaction. This may lead one to think that the correct distinction is between gravita-

tional and non-gravitational physics, as far as the possibility of identifying reference frames with

coordinates is concerned, with no room for misunderstanding given by considering the broader

category of pre-GR physics in the discussion.

To shed light on the matter, it is useful for us to follow (Pooley, 2022, sec. 8.10)’s analysis on

the meaning of coordinates. Pooley identifies two possible interpretations of coordinates in pre-GR

theories:

ESR (Einstein–Stachel–Rovelli) interpretation: 25 coordinates are anchored to material refer-

ence frames, such as physical synchronised clocks and rods that establish time and distance

intervals. This anchoring ensures that coordinates are instantiated by material objects, ‘out-

side’ of the system under study. However, in the Newtonian case, this type of interpretation

does not ensure that to define a reference frame interchangeably as an (instantiated) and dy-

namically uncoupled coordinate system, no approximations are required. In this regard, it is

eloquent to quote (Rovelli, 2004, pp.61-62) at length:

For Newton, the coordinates x⃗ that enter his main equation

F⃗ = m
d2⃗x(t)

dt2 (2.152)

25This approach is the one we adopt throughout in this paper.
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are the coordinates of absolute space. However, since we cannot directly observe

space, the only way we can coordinatize space points is by using physical objects.

The coordinates x⃗ [...] are therefore defined as distances from a chosen system

O of objects, which we call a ‘‘reference frame’’ [...] Notice also that for this

construction to work it is important that the objects O forming the reference frame

are not affected by the motion of the object A. There shouldn’t be any dynamical

interaction between A and O. (Our emphasis).

Of course, for there to be no dynamical interaction, due to the universality of gravitation, an

approximation procedure is implied. Thus, according to ESR, the correct demarcation for

the different meaning of coordinates would be between gravitational and non-gravitational

physics. Only in the latter, coordinates can be understood as reference frames (and vicev-

ersa), as they can be ‘definitionally’ dynamically uncoupled.

ATF (Anderson–Trautman–Friedman) interpretation: Special coordinates are not instantiated

by external material objects, but through gauge-fixing conditions that encode physically

meaningful spacetime structures. In the Newtonian case, KPMs being of the kind: ⟨R4, ta,hab,Γa
bc⟩

such gauge-fixing consists of imposing the connection Γ
µ

νρ = 0, the temporal metric tµ =

(1,0,0,0) and the spatial metric hµν = diag(0,1,1,1). Thus, it means they are instantiated

by background spacetime structure, and not by material objects.26. This position is based

on a substantivalist view of spacetime in which coordinates encode spatiotemporal physical

magnitudes that exist even without material physical bodies disclosing them. In the ATF

view, coordinates must still be anchored to the real world, but this anchoring does not de-

pend on material reference frames. This allows an interpretation of reference frames that

is independent of specific material objects. Also, this approach allows an understanding of

physical properties that is intrinsically (or internally) linked to the spatiotemporal structure

of the theory, rather than to external objects.

Then, we have two possibilities as to whether Newtonian physics can be subumed into the

broader category of ‘pre-GR physics’, or not. But first, let us recall Newton (1687)’s defini-

tions of absolute space and time:

26For an analysis about the spacetime-matter distinction see Martens and Lehmkuhl (2020)
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Absolute Space: Absolute space, in its own nature, without regard to anything external,

remains always similar and immovable

Absolute Time: Absolute, true and mathematical time, of itself, and from its own nature

flows equably without regard to anything external

Case 1: Absolute space and time are part of ontology In this case, ATF allows us to con-

sider ‘GR vs pre-GR’ as the relevant distinction regarding the meaning of coordinates.

The ‘definitionally’ instantiated and dynamically uncoupled coordinates are absolute

space and absolute time. So, we can understand reference frames as instantiated and

dynamically uncoupled coordinates, exactly as in Maxwellian theory in Minkowski

spacetime, where electrically neutral rods and clocks are used. Notice that the cate-

gory of instantiation is valid since absolute space and time are considered to be part

of the ontology. However, this is not immediate, considering that Newton (1999), in

the General Scholium, also refers to absolute space as a ‘sensorium Dei’. This quote

shows how Newton conceived absolute space not as a physical entity, but as a mani-

festation of the divine presence, a ‘sensorium Dei’ (God’s sensorium), through which

God perceives the universe. And this brings us to the second case.

Case 2: Absolute space and time are not part of ontology In this case, they are not in-

stantiated parameters, since the category of instantiation is no longer applicable. Space

and time revert to being mere uninstantiated and non-dynamical mathematical labellings,

just as in GR. Since this approach discards substantivalism about spacetime, since New-

ton’s absolute space-time is no longer a physical substance (on the critique of spacetime

as belonging to the category of ‘substance’, see also Brown and Lehmkuhl (2013)), the

rationale behind the ATF approach loses its validity. The only way to define a spa-

tiotemporal reference frame (which is a necessarily instantiated set of variables) is

through material objects. However, in order to have a set of variables that can play the

role of absolute space and time, it is necessary, as ESR suggests (see above), to apply

approximation procedures to such material objects in order to ‘screen out’ the univer-

sality of gravitational interaction, thus having a set of dynamically uncoupled variables.

It is therefore not possible to understand the term ‘reference frame’ and ‘coordinate
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system’ interchangeably, because there are no instantiated and dynamically uncoupled

coordinates, without the application of some approximation procedure. Therefore, the

different meaning of reference frames and coordinates relies on the distinction between

gravitational physics (GR and Newtonian gravitation, where reference frames can be

understood as instantiated and dynamically uncoupled coordinates only by means of

an approximation procedure; while coordinates are definitionally non-dynamical and

uninstantiated) and non-gravitational physics (where coordinates can be definitionally

dynamically uncoupled and instantiated and coincide with a reference frame, without

any approximation procedure).

3 IRF, DRF, RRF

We define a spatiotemporal reference frame, at the most basic level, as a set of variables instantiated

by a material system. In particular, we need at least four scalar independent degrees of freedom

representing experimentally accessible quantites.27 Since most of the fundamental physical fields

(fermionic or bosonic) are not scalars, the required four scalar quantites could also represent ‘phe-

nomenological’ properties of matter (e.g. in FLRW comsology the entropy of the cosmological

fluid can be used as a reference clock (Schutz (1970, 1971); Cianfrani et al. (2009); Campolongo

and Montani (2020))); or be constructed out of fundamental fields.28

We now introduce a novel three-fold distinction of possible reference frames, based on the de-

gree of dynamical approximation applied to (model of) the target material system, which makes its

dynamics more or less intertwined with that of the gravitational field. Although the paper adheres

to the rationale presented in Rovelli (1991b) — that adopting approximations to define a reference

frame blurs its physical significance, while considering its stress-energy presence and its dynam-

ics brings its full physical significance back into focus — our proposal provides an independent

contribution to this topic. In particular, our paper engages with more philosophical literature than

Rovelli’s original proposal and complements his work with additional theoretical tools and objec-

27The stated necessary condition for spatiotemporal reference frames as giving four independent scalars is coherent
with the proposal to use a timelike four-vector field as a reference frame. It is sufficient to considers the scalars be the
components of the timelike four-vector.

28This ‘level zero’ definition of a reference frame is still too broad. Conditions must be imposed on the set of four
parameters representing space and time. See, e.g., footnote 36.

17



tives. To give a concrete example, in Rovelli (1991b) the author overlooks the class of DRFs,

which are dealt with extensively here. This fact is curious since, as we shall see, a particularly

relevant physical example of DRF is precisely GPS coordinates, introduced in Rovelli (2002a).

Moreover, we place special emphasis on IRFs as possible reference frames. In fact, we argue that

they are crucial for understanding the role of coordinates in GR (Section 4).

Also, this work analyses the standard definition of reference frame provided in the literature in

the light of a new perspective and adopts a methodology that can provide a clear conceptual map

useful for discerning between possible reference frames in GR. The main motivations of our pro-

posal, which will be discussed below, concern the physical interpretation of diffeomorphism gauge

freedom, as well as the need to define local gauge-invariant observables (Section 3.2 and Section

5); the interpretation of vacuum GR; the fictitious role of coordinates in GR and the exposition of a

new perspective on why the two concepts are sometimes used interchangeably without much care

(Section 4).

3.1 Idealised Reference Frame

In the case of an Idealised Reference Frame (IRF), any dynamical interaction of the material sys-

tem represented by the reference frame is ignored. In particular, two approximations are adopted:

(a) In the EFEs, the stress-energy tensor contribution of the material reference frame is neglected

(b) The set of equations that determine the dynamics of the material reference frame is neglected

Step (b) renders indeterministic the dynamics of the metric field, even if written in terms of the

matter degrees of freedom. We argue that the class of IRFs are similar to what Rovelli (2004, p.62)

calls ‘undetermined physical coordinates’. The reason for this designation is clearly expressed by

the author:

We obtain a system of equation for the gravitational field and other matter, expressed

in terms of coordinates X µ that are interpreted as the spacetime location of reference

objects whose dynamics we have chosen to ignore. This set of equation is underde-

termined: same initial conditions can evolve into different solutions. However, the

interpretation of such underdetermination is simply that we have chosen to neglect

part of the equations of motion.
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However, we refrain from adopting this nomenclature as it may cause unnecessary confusion

between the terms reference frames and coordinates, and because we believe it is more appropriate

in this context to speak of indeterminism of the dynamics than underdetermination, which is usu-

ally a term related to a ‘supernumerary’ of possible choices, not necessarily linked to dynamical

considerations. Basically, when we use IRFs, similarly to the use of coordinates in GR, the system

appears to be not deterministic. To be precise, we have not a real indeterminism. In the case of

coordinates, it is merely the result of an unexpressed gauge freedom in the dynamics, that allows

the same initial data to evolve into different solutions. Different solutions with the same initial

conditions represent two gauge-related configurations.29 To explore the origin of indeterminism

in the case of IRFs, suppose we have a metric field gab satisfying the EFEs, and four scalar fields

{φ (A)} representing the IRF. We assume that the independent values of {φ (A)} define a (local)

diffeomorphism U ⊆ M → R4 . Given any doublet (gab,φ
(A)), the metric can be parametrised

by the four values of the scalar fields, used as IRF. Thus, we can write the so-called ‘relational

observable’ gAB(φ) := gab ◦ (φ (A))−1. The reason behind the apparent indeterminism when us-

ing IRFs is that both (gab,φ
(A)) and ([d∗g]ab,φ

(A)) are legitimate models for the dynamics, for

all diffeomorphisms d ∈ Di f f (M ). This is due to the fact that IRF is dynamically uncoupled

from the metric field. Thus, we have still a redundancy in the frame representation of the metric.

Hence, the apparent indeterminism. The matter degrees of freedom participate in the definition of

the metric, whose evolution is determined up to four arbitrary functions because of approximation

(b).30 The difference between IRFs and coordinates is very subtle and will be discussed in Sec-

tion 4. In brief, an IRF can be thought of as an instantiated coordinate system. We believe that

the origin of the confusion between the concepts of reference frame and coordinate system stems

29As for the connection between the use of coordinates in GR and indeterminism, we refer the reader to the well-
known problem of the hole argument Earman and Norton (1987), Weatherall (2018), Pooley and Read (2021).

30We point out that the logical possibility that only approximation (b) is adopted leads to the same conclusion about
indeterminism. In this case, the material reference frame contributes to the curvature of spacetime and thus to the
particular solution of the EFEs, but its dynamic equations are not considered. The fact that this is an approximation is
immediately apparent here. From (differential) Bianchi identities follows the condition ∇aGab = 0. Therefore, from
the validity of the EFEs, one immediately has ∇aTab = 0. The Euler-Lagrange equations for the matter fields in GR
are essentially equivalent to the imposition of ∇aTab = 0. This is why the Einstein equations are said to contain the
dynamical equations of matter. Therefore, having a non-null Tab and thus being able to implement ∇aTab = 0 and
yet not considering the equations of motion of matter is evidently an approximation. This case is also present in
pre-GR physics, where we can consider objects that are sources of the field, but are unaffected by it. For example
in electromagnetism, the Gauss constraint div(E) = ρ involves the charge density ρ , which is treated as a source,
unaffected by the electric field E. There is also a close analogy with the Poisson equation ∇φ = ρm in Newtonian
gravity, where the mass density ρm sources the potential. Of course, even in pre-GR these are approximations.
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from the pragmatic equivalence of formulating the general-relativistic dynamics in terms of IRFs

or coordinates, as far as (P1) and (P2) are concerned.

3.2 Dynamical Reference Frame

If we assume only the first of the above approximation, namely (a), we get a Dynamical Refer-

ence Frame (DRF). Consequently, we now have the possibility of using the dynamical equations

of matter and obtain a deterministic dynamical system, since we can interpret the equations of mo-

tion of the material reference frame as the set of gauge-fixing conditions that we would apply if we

used the parameters constituting the reference frame as coordinates. This fact supports the position

expressed in Rovelli (2014) (see also (Gomes, 2023b, Sec. 2.3)), according to which the existence

of gauge freedom is not a redundancy of the formalism, rather it suggests the (overlooked) rela-

tional nature of physical degrees of freedom.31 This is also consistent with the definition given in

(Henneaux and Teitelboim, 1994, p.3) of a gauge theory as a theory

[...] in which the dynamical variables are specified with respect to a ‘reference frame’.

In the following, we will give three examples of a DRF.

3.2.1 Warm-up: parametrisation and de-parametrisation

Before doing so, to give a simple toy example of what it means to write our dynamics using a DRF,

we propose a parallel to the case of a parametrised Newtonian system in one spatial dimension,

described by canonical variables [q(t), p(t)]. This is by no means intended to introduce a proper

example of what a DRF is, but at best a valuable analogy.

Through the parametrisation procedure32 we extend the configuration space C = {q(t)} →

Cext = {q(τ), t(τ)} and ‘unfreeze’ the time coordinate t (which corresponds to some ‘external’

clock), which can now be treated as a dynamical variable on the same footing of the q variable.

31In this paper, we choose to take Rovelli’s position. In this context one should not reduce the state space of
the theory by quotienting under the action of symmetries, since quotienting is throwing away physical information
encoding how systems interact. The topic is broad. For the sake of completeness, we refer the reader to some replies
on various fronts to Rovelli’s ‘relational proposal’ on ‘why gauge’. See, e.g., Teh (2015) and Weatherall (2016).

32See (Henneaux et al., 1990, ch.4), or Tambornino (2012).
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Both depend on an arbitrary parameter τ . The extended action of the parametrised system reads as

Sext =
∫

dτ

pt
dt

dτ
+ p

dq

dτ
−N(τ)

pt +
p2

2m

 , (1)

while the Hamilton equations are


dt

dτ
= N(τ),

d pt

dτ
= 0

dq

dτ
= N(τ)

p

m
,

d p

dτ
= 0

(2)

The extended system is subject to the reparametrisation symmetry τ → τ ′(τ) and different

choices of the Lagrange multiplier N(τ), also known in GR as ‘lapse function’, amount to consid-

ering the gauge dynamics in different parametrisations. This is the analogue of the diffeomorphism

symmetry in GR.

We can partially gauge fix the system, through the gauge choice N = 1, which amounts to

having a parametrisation in which t(τ) grows linearly. However, the dynamics still has some

redundancy, since (t(τ),q(τ)) are not reparametrisation-invariants. The dynamics is expressed

in terms of the (introduced-by-hand) arbitrary parameter τ , therefore the evolution is physically

meaningless.

A well-known approach to constructing local, gauge-invariant quantities is to impose the

canonical gauge condition t(τ)≡ t0, which completely eliminates any residual gauge redundancy.33

Geometrically, this condition defines a slice that cuts all the so-called gauge orbits on the constraint

surface — generated by the first class constraint C := pt +
p2

2m
— once and only once. That way,

we can write observables which are understood as unique gauge-invariant quantities. In particular,

an observable can be defined as the ‘coincidence’ of q with t, that is the value of q when t reads

the value t0.34 Explicitly: q(τ)|t(τ)=t0 := q(τ)+ p/m [t0 − t(τ)]. Note that this is the definition of

an evolving constant of motion (see Belot and Earman (2001)).

33Here we use the term in the most basic sense: ‘‘there is more than one set of values of the canonical variables
representing a given physical state’’ (Henneaux et al., 1990, p.17).

34This is the analogous of the notion of spacetime coincidence in GR. See Giovanelli (2021) for a recent review on
this topic.
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An equivalent approach is to pick the variable t as the ‘temporal reference frame’ (also referred

to as the ‘relational clock’) by inverting the relation t(τ) = τ ↔ τ(t) = t. Note that this can be done

since we are able to solve Hamilton equations for the considered system. Furthermore, in this case,

the function t(τ) is globally invertible, but this is not always the case. By inserting the quantity τ(t)

within the gauge-dependent quantity q(τ) we obtain a gauge-invariant relational observable q(t),

defined for any given value of t. This consists in de-parametrising the system.35 Consequently,

we recover the formalism of the original ‘unparametrised’ case in which t represented a mere

non-dynamical coordinate. However, in such a case the physical interpretation of the time t as a

dynamical variable is now revealed and, in this sense, it represents a good analogy of (the temporal

component of) a DRF. In fact, now q(t) describes the gauge-invariant, relational evolution of q

with respect to the dynamical variable t. Furthermore, the dynamical theory written in relational

terms becomes deterministic and without any gauge redundancy.

In a nutshell, what we wanted to show in this warm-up section is that the de-parametrisation

procedure allows some dynamical variables to be used as a reference frame, getting the use of

coordinates (parameters) out of the way. This becomes valuable when dealing with GR, which

‘naturally’ comes in a parameterised form. In fact,

The already [parametrised] system ”per excellence” is the gravitational field in general

relativity. (Henneaux and Teitelboim, 1994, p.102)

3.2.2 Four Klein-Gordon Scalar Fields

The first proper example of a DRF is the so-called test fluid reference frame. In short, the test fluid

is affected by the metric field (it is acted upon), but the metric field is not affected by the test fluid

(it does not act): thus, the back-reaction on gravity (namely, its stress-energy tensor on the r.h.s.

of the EFEs) is approximated to be negligible. As a toy model for a test fluid, we consider a set

of four real, massless, free, Klein-Gordon scalar fields in a curved spacetime (which is solution of

some EFEs where the stress-energy tensor relative to the scalar fields is neglected). Each scalar

35Apart from technical details and setting aside the obvious difference in theoretical framweork, this is the rationale
according to which complete observables are constructed (see Rovelli (2002b), Dittrich (2006), Tambornino (2012)).
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field φ (A),A = 1,2,3,4 has its own equations of motion (in abstract index notation)

□gφ
(A) ≡ ∇

a
∇aφ

(A) = 0 (3)

and the system of the four scalar fields can be used as a (generally local) reference frame (a clock

and three rods) with respect to which local observables can be defined.36 More clearly, to describe

the dynamics of the scalar fields we first need to know the metric gab (deriving from some EFEs,

e.g. Rab = 0), in order to define the compatible connection ∇a. In that sense, the metric acts on the

test fluid, but it is not affected by it.37

This example clarifies what we have said about the correspondence between using a DRF and

a gauge-fixed formulation of the theory written in coordinates. In fact, the four scalar fields satisfy

the same equation that is written when De Donder gauge-fixing is imposed on coordinates. Hence,

we have a straightforward example of a gauge-fixing condition, understood ‘relationally’ as a set

of dynamical equations.38

When we use the set of Klein-Gordon fields φ (A) as the reference frame, we recover a complete

set of local gauge-invariant observables gAB(φ) := gab ◦ (φ (A))−1. No gauge redundancy appears,

since when (gab,φ
(A)) is a solution, then ([d∗g]ab,φ

(A)) is not, for a generic d ∈ Di f f (M ). Hence,

given some initial data, we have a unique representation for gAB(φ). This is due to the fact that DRF

is dynamically coupled to the metric field.39 With the notation gAB(φ), it is emphasised that the

‘physical metric’ is not localised on points of the spacetime manifold M , but on a somewhat four-

dimensional ‘physical’ manifold T , which is the space of ordered four-tuples of fields’ real values.

36Arguably, the scalar field selected to play the role of the timelike variable (say φ (1)) needs to satisfy some prop-
erties such as a homogeneity condition ∇i∇iφ

(1)(xµ) = 0, where i = 1,2,3 are spatial indices in some coordinates
{xµ}. We could also assume a ‘monotonicity condition’ connected with some assumptions on its potential (when it is
considered).

37Please, be careful: this does not mean that the metric is given in the sense that it is an absolute field: i.e. the
same (up to isomorphism) in every DPM, or a fixed field: i.e. the same in every KPM (Anderson (1967), James Read
(2023)). It only means that we do not consider back-reaction. We must not have a given metric in the above meanings,
because that would reduce the discussion to a Klein-Gordon theory in a curved background. Here, we deal instead
with GR which is a background independent dynamical theory of the gravitational field. The case examined here is
introduced in (Pooley, 2022, sec.8.7) under the name GR2. More generally, one can also have a dynamic metric that
takes into account the stress-energy tensor of other material fields, but not that of the reference frame.

38As stated in Gomes (2023b): ‘Though De Donder gauge is still not complete—it requires initial conditions on the
metric and its time derivative (cf. (Landsman, 2021, p.161))—it suffices to render evolution deterministic’.

39However, due to the approximation procedure, the dynamical coupling between scalar fields and gravity is not
symmetrical here. That is, differently from what was said in Section 2, the dynamically possible solutions of the scalar
fields do not influence those of the metric, but depend on them.
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Thus, reference fields φ (A) can be understood as diffeomorphisms φ (A) : gab ∈ M → gAB ∈ T and

the metric can be parametrised by the (four) values of the scalar fields, used as reference frames.40

41 Taking away any reference to points of M , one obtains a well-defined notion of local gauge-

invariant observables in GR in terms of ‘Einsteinian coincidences’ (Einstein (1916)). Physical

objects do not localise relative to the manifold, but relative to one another. This constitutes what

is referred to as relational localisation (see Rovelli (2024), Goeller et al. (2022)). Basically, as

we have shown, one must express the spatiotemporal localisation of observables through matter

fields, which play the role of reference frames. Thus, we designate all the spatiotemporal locations

by the values of four scalar fields. As also argued in Gomes (2023a), this way of understanding

localisation in terms of physical field values is very similar to Einstein’s original understanding of

coordinates (see footnote 1 in the Introduction).

3.2.3 DRFs in the Orthodox View

In accordance with the previously mentioned literature (see Section 2), a reference frame can also

be represented by a timelike 4-velocity field Ua tangent to a congruence of worldlines of a system

of test particles, or a test matter fluid. We choose to review this particular case, as we believe it

warrants a closer examination and it is particularly significant from an historical and philosophical

perspective.

The ‘orthodox’ point of view—that is how we call the view introduced in the philosophical

40In some coordinates {xρ}, we have explicitly gαβ [φ γ ] = (∂µ φ α)(∂ν φ β )gµν(xρ). With a slight abuse of notation
we have defined φ γ(xρ) := {φ 0(x),φ i(x)}, i= (1,2,3). See (Tambornino, 2012, p.11), or (Westman and Sonego, 2009,
fn.17). The initial letters (α,β , ...) of the Greek alphabet refer to reference frame’s indices. The final letters (µ,ν , ...)
refer to coordinates’ indices. Let’s notice that it is difficult to think of a realistic situation in which a reference frame
would cover the entire manifold. In fact, four Klein-Gordon scalars won’t generally form a bijection. For example,
they could end up having the same values everywhere on R4, thus representing only one (physical) point. Finally, in
order to indicate viable reference frames, each φ should be at least locally invertible, i.e. in some open set U ⊂ M
and for a given chart, det(∂φ γ/∂xµ) ̸= 0.

41The four degrees of freedom necessary to define a spatiotemporal reference frame can be understood as the four
components of Ua := (φ (0),φ (1),φ (2),φ (3)). This establishes a connection with the previous proposal in Section 2 to
use a 4-vector field as a reference frame. Notice also that in the case of (orthonormal) tetrads, which we recall are
four smooth 4-vector fields, we can give a physical instantiation to tetrads if we write them directly in terms of four
scalar fields, that is: eα

µ (x
ρ) := ∂φ α/∂xµ (see (Westman and Sonego, 2009, p.16)). The initial letters (α,β , . . .) of the

Greek alphabet here refer to tetradic indices when coordinates are explicited. This relationship suggests that the scalar
fields can be interpreted as an ‘internal parameterisation’ associated with each point in spacetime. Thus, for example,
the metric tensor in the (orthonormal) tetrad frame can be written as ηαβ [φ γ ] = (∂µ φ α)(∂ν φ β )gµν(xρ). In the case
of non-orthonormal tetrads, the tetradic metric gαβ [φ γ ] is not necessarily Minkowskian. Furthermore, assuming the
invertibility of the fields {φ α}, the tetrads are non-degenerate (i.e. det(eα

µ ) ̸= 0) (see the analogy with footnote 40
above).
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literature by Earman and Norton42 —recognises as a viable characterisation of a reference frame

the expression of matter’s state of motion, i.e. the assignment of a 4-velocity vector field Ua tangent

to the worldlines of a material system, satisfying some dynamical equation and to which locally

adapt a coordinate system (x0,x1,x2,x3).

We quote at length the definitions of a reference frame provided by Earman and Norton:

In this context a reference frame is defined by a smooth, timelike vector field V .

[...]Alternatively, a frame can, at least locally, be construed as an equivalence class

of coordinate systems. The coordinate system {xi}, i = 1,2,3,4, is said to be adapted

to the frame F if the trajectories of the vector field which defines F have the form

xa = const,a = 1,2,3. If {xi} is adapted to F , then so is {x′i} where x′a = x′a(xb),

x′4 = x′4(xb,x4); such a transformation is called an internal coordinate transformation.

F may be identified with a maximal class of internally related class of coordinate sys-

tems. (Earman, 1974, p.270)

[...] it is now customary to represent the intuitive notion of a physical frame of refer-

ence as a congruence of time-like curves. Each curve represents the world line of a

reference point of the frame. [...] A coordinate system {xi} (i = 1,2,3,4) is said to be

‘adapted’ to a given frame of reference just in case the curves of constant x1, x2 and x3

are the curves of the frame. These three coordinates are ‘spatial’ coordinates and the

x4 coordinate a ‘time’ coordinate. (Norton, 1985, p.209)

Thus a frame of reference is introduced in standard practice as a congruence of timelike

curves defined on the manifold (with metric). The frame, if smooth, assigns a velocity,

its tangent vector, to every event in the manifold. (Norton, 1989, p.1242)

Since we defined (at the most basic level) a DRF as a material system that satisfies equations

of motion and whose dynamics depends on, but not affects, that of the gravitational field, we can

firmly assert that the orthodox view considers DRFs as possible reference frames. (However, there

is no mention of reference frames corresponding to IRFs, or RRFs).

42It is also the most supported in the physical literature (see Wald (1984), Malament (2012)).
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A comparison between reference frame ‘à la Earman-Norton’ and DRFs would be useful both

for a better understanding of different possible types of DRFs, but above all for providing a delim-

ited conceptual context to reference frames as they are usually employed in the literature.

To this purpose, we would like to comment briefly that there are possible differences, to be

analysed, between a DRF (as we have introduced it) and a reference frame defined in the orthodox

sense, as encoded by a 4-velocity Ua. However, we will not fully engage in this project on this oc-

casion, but we will only give a few hints. In the light of footnote 40, the first noticeable difference

is that for us a reference frame can be understood as a 4-vector in the sense that its components

are directly the components of the 4-vector. In contrast, when it is said that a 4-velocity constitutes

a reference frame, the components (one temporal and three spatial) of the reference frame are not

directly the components of the 4-velocity itself.43 In fact, basically using a 4-velocity Ua = dxa/dτ

(with τ being the proper time of the comoving observer) as a reference frame means employing

comoving coordinates (where Ua = (1/
√
−g00,0,0)) a with respect to which to define the compo-

nents of a geometric object of interest. In particular, the components of a generic 4-vector can be

organised as follows: its time component is that along the direction of the 4-velocity itself, which

gives the direction along which the proper time of each worldline of the fluid increases; its spa-

tial components are defined as those orthogonal to the direction of the 4-velocity. Therefore, we

can see that a formalism in terms of coordinates is maintained, that is, we are using what Earman

(1974) and Norton (1985) call the ‘adapted’ coordinate system (i.e. the coordinate system that

a comoving observer with the matter fluid uses to define space and time).44 To give an example

of the substantial difference between the two approaches we have contrasted, note that (Rovelli,

1991b, p.309) also uses a set of particles or a fluid of matter moving along timelike geodesics as a

reference frame, but does not use the 4-velocity as a reference frame. Instead, he uses four scalar

43The same can be said in the case of the tetrad frame, since the four tetrads are used to define four spatiotemporal
directions. Thus each tetrad, being a 4-vector, does not itself constitute a standard of time or space, as is the case when
we define a 4-vector as consisting of four scalar fields.

44Again, the same applies in the case of the tetrad frame: when we drop the abstract formalism in order to have a
spatiotemporally explicit characterisation, we retain the formalism in coordinate terms to express the components of
any geometric object in that reference frame.
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degrees of freedom associated with such a material system.45 So, in short, there is a difference be-

tween using a 4-velocity vector as a reference frame and using a 4-vector consisting of four scalar

components.

Along these lines, we mention that, contrary to our definition of a DRF, the orthodox char-

acterisation of a reference frame as ‘a maximal class of adapted coordinate systems’ can lead to

come conceptual confusion between the set of adapted coordinates on the reference frame and the

reference frame itself. This is also stated in (Earman and Glymour, 1978, p.254):

Of course, a reference frame can be represented by a maximal class of adapted coordi-

nate systems. [...] But such a coordinate representation can easily lead to a blurring of

the crucial distinctions [between reference frames and coordinate systems] mentioned

above. (Our italics).

3.2.4 GPS Frame

To conclude, we argue that a realistic example of DRF is given by the set of the so-called GPS

coordinates, introduced in Rovelli (2002a). The idea is to consider the system formed by GR cou-

pled with four test bodies, referred to as ‘satellites’, which are deemed point particles following

timelike geodesics of a given metric gab, and meeting at some (starting) point O.46 Each particle

is associated with its own proper time φ . Accordingly, we can uniquely associate four numbers

φ (A),A = 1,2,3,4 to each spacetime point P. These four numbers represent the four physical vari-

ables that constitute the DRF. Geometrically they constitute the proper timelike distances between

the four intersection points with the past lightcone of P and the starting point O. Such quantites are

broadcasted by the satellites and received in P. See Fig. 1. This example in particular highlights the

usefulness of our classification as a clear and easy-to-use conceptual framework for categorising

45Another well-known example in this direction is the case of the so-called ‘Brown and Kuchař dust’. The dust
of pressure-less and freely-falling particles is described by eight scalar fields, four of which (T,Zi) represent the
spatiotemporal degrees of freedom to be used as reference frame, thus each point of M is labelled by the set (T,Zi).
In particular, the Zi are constant along the geodesics of the dust and the T measures the proper time parametrising
the geodesics of the dust. We can foliate the spacetime through spacelike T = constant hypersurfaces, and label each
point in these hypersurfaces through the Zi degrees of freedom. This emphasises that such a dust fluid is a special case
of a global reference frame in GR cpupled with matter field (unless there are singularities or boundaries of spacetime).

46Regarding the meaning to be attributed to ‘given’, see footnote 37.
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reference frames introduced in the literature.47

Figure 1: Construction of the set of GPS reference frame φ (A), I = 1,2,3,4.

3.3 Real Reference Frame

When we take into account both the dynamics of the chosen material reference frame and its stress-

energy tensor, we get a Real Reference Frame (RRF). Examples of RRFs include pressureless

dust fields Brown and Kuchař (1995) and massless scalar fields Rovelli and Smolin (1994). We

point out that RFFs are the least mathematically convenient and most phenomenologically relevant

reference frames. Although we will not use it in the following discussion, it is possible to propose

a sub-classification of RRFs. In brief, we define a RRFdep as a RRF that permits the theory to

be deparametrised, so that complete observables can be analytically described (see Tambornino

(2012) for a review). As a matter of fact, in some special cases approximations can be made to

the Hamiltonian of the material field used as the RRF, thereby implementing a deparametrisation

procedure.48

47Think also of Fletcher (2013)’s light clocks, which are nothing but a type of temporal DRF. In fact, also in this
case, the ‘temporal reference’ is given by the measurement of proper time ‘‘experienced by a point particle along a
timelike curve with the length of that curve as determined by the metric’’ (ivi, p.1369).

48Therefore, even in the case of RRFs we have room to make some approximations in the sense of Norton (2012).
Actually, even in the case of DRFs, we may or may not obtain a (global) deparametrisation of the theory, depending
if the field used as a reference frame entirely covers the manifold or not.
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In the remainder of the paper we will primarily focus on IRFs and DRFs, leaving the study of

RRFs for future work.49

Summing Up The relevance of introducing our classification can be summarised as follows:50

• Conceptual Framework: it provides a clear conceptual framework for discussing issues in

GR related to reference frames as material systems coupled to gravity. In particular, it helps

contextualising the issues presented in the Introduction and clarifying the implications of

using different types of reference frames:

(P1) We cannot define local gauge-invariant observables when we use IRFs, or coordinates

(P2) The gauge freedom of GR is interpreted as a mere mathematical redundancy if we use

IRFs, or coordinates.

However, using reference frames and by relaxing some of the approximations, thus consid-

ering DRFs, or RRFs, both problems (P1) and (P2) find a natural resolution (see Section

5).51 Agreed: our proposal is not intended to be a new proposal to solve these problems.

Rather, it provides a new theoretical structure in which to frame such problems.

• Effective Communication: it provides a valuable semantic clarification, thus enabling clear

communication on the use of reference frames in all general-relativistic sectors

• Enhanced Understanding: it enhances understanding on the role of material reference

frames in GR, confirming their practical significance to resolve the identified issues. In ad-
49In our opinion, RRFs play a major role in quantum gravity phenomenology. For example, whenever a quantum

material reference frame is in superposition, no matter how small the mass, the spacetime in which it lives must split
into two separate spacetimes (this effect is called the Bose-Marletto-Vedral effect (Bose et al. (2017); Marletto and
Vedral (2017))). However, as also expressed in Adlam et al. (2022): ‘‘for the small masses we deal with in current
quantum experiments the difference between the spacetimes is experimentally insignificant and thus it is typically
assumed that we can completely discount any effects of gravita- tional back-reaction’’.

50We point out that the fourth logical possibility, that only approximation (b) is adopted, is not admissible in GR.
In contrast, in pre-GR physics, it is entirely admissible to have objects that are sources of the field, but are unaffected
by it. For example in electromagnetism, the Gauss constraint involves the charge density, which is treated as a source,
unaffected by E. There is also a close analogy with the Poisson equation in Newtonian gravity and its modern descen-
dant Newton-Cartan gravity, where the mass density sources the potential but does not self-gravate. Of course, even
in pre-GR these are approximations.

51We recall that our approach is not restricted to a coordinate formulation of a theory. Gauge freedom under active
diffeomorphisms appears as a mathematical redundancy because one adopts physical spatiotemporal localisation in
terms of manifold points. Once one adopts relational localisation, by replacing the manifold points with the four scalar
components of a reference field, one obtains gauge-invariant observables and it becomes clear why gauge existed.
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dition, it also helps to understand the relationship between coordinates and reference frames

in GR (see next Section 4).

We conclude by considering another interesting implication in considering IRFs and DRFs as

possible classes of reference frames. If we disregard also any stress-energy contribution from other

material sources, the solutions of the EFEs will be vacuum solutions. In support of (Rovelli, 1991b,

p.304), we can say that vacuum GR can be seen as an approximate theory for an observable metric,

in which we make use of IRFs, or DRFs. In other words we are suggesting, without any pretense of

making a claim, that exact vacuum solutions may not exist in nature, but only approximated matter

solutions that behave like vacuum solutions could be permitted. Further discussion is required in

this regard.

4 IRFs vs. Coordinates: What Is the Source of the Confusion

Between Reference Frames and Coordinate Systems?

[I]t is not often that experiments are done under the stars. Rather they are done in a

room. Although it is physically reasonable that the walls have no effect, it is true that

the original problem is set up as an idealization.

Richard Feynman.52

A notable empirical success of GR is the detection of gravitational waves by the LIGO project

(Abbott et al. (2016)). The gravitational contribution of the reference frame used to localise the

detection of gravitational waves on Earth is completely disregarded. Even theoretically, the com-

ponents of the metric are calculated within a particular coordinate gauge, namely the so-called

Transverse-Traceless gauge (TT gauge). Therefore, in practical uses of GR a reference frame is

often intended as a coordinate system.

However, acknowledging that we are implicitly using reference frames can help us understand

the physical reasons for presence of gauge freedom and why we need to use some gauge-fixing

condition. Namely, as already stressed in section 3.2, the presence of diffeomorphisms as gauge

52Feynman and Hibbs (1965). This choice of section opening is also found in Wallace (2022).
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redundancy indicates the tacit assumption of an approximation procedure that overlooks the dy-

namics of a physical system we are using as a reference frame. Indeed, in the case of gravitational

waves, the TT-gauge conditions can be interpreted relationally as a set of dynamical equations

satisfied by the reference frame used to make the spatiotemporal measurements. Thus, there is a

correspondence between a gauge-fixing procedure and a choice of a particular reference frame.

The puzzle, then, is why such approximations work so well and, analogously, why the ideali-

sation of the target system — which we select to play the role of the reference frame — to a mere

coordinate chart works so well that the difference between the two concepts can be overlooked

in theoretical and experimental practice. This issue is clearly expressed by Thiemann (2006, p.2)

within the cosmological sector:53

Why is it that the FRW equations describe the physical time evolution which is actu-

ally observed for instance through red shift experiments, of physical, that is observ-

able, quantities such as the scale parameter? The puzzle here is that these observed

quantities are mathematically described by functions on the phase space which do not

Poisson commute with the constraints! Hence they are not gauge invariant and there-

fore should not be observable in obvious contradiction to reality.

Simply put, in theoretical and experimental practice reference frames are unwittingly approx-

imated to IRFs, and this leads to their being understood as coordinate systems.54 A sequence of

misunderstandings. In both cases, there is gauge-redundancy and no local gauge-invariant observ-

ables can be defined. However, this leads to the situation where all general-relativistic physics

incorrectly interprets the dynamical equations of systems as physical evolution equations ‘rather

than what they really are, namely gauge transformation equations’ (ivi, p.3), as they are written in

53Here Thiemann uses the term ‘observable’ in the sense of Dirac observables.
54Local coordinate systems are usually employed to compute solutions of EFEs. A straightforward example is the

use of Schwarzschild coordinates (t,r,θ ,φ). Of course, the Schwarzschild geometry can be expressed in a range of
different choices of coordinates. In the ‘textbooks interpretation’, Schwarzschild coordinates represent spatiotemporal
points on that Manifold. Instead, from our point of view Schwarzschild coordinates should represent some physical
degrees of freedom that allow the localisation to be defined in a diffeomorphism-invariant manner, rather than repre-
senting (spatiotemporal values of) points on a Manifold. However, they are idealised (in the sense of Norton (2012))
to coordinates, without any reference to a physical system instantiating them.
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coordinates (or in dynamically uncoupled reference frames, like IRFs).55 The analysis of such a

puzzle deserves a separate discussion, which will not be carried out here.56 Let us just say that

our classification serves us well. In fact, only by acknowledging that we are using IRFs, and

not coordinates, we can lighten the degree of approximation on the reference frame, for exam-

ple including its dynamical equations. In this way, the dynamics becomes a physical, relational

dynamics of local gauge-invariant observables written in terms of DRFs and not a (coordinate)

gauge-variant description of reality. Predictions can be made only by going through the procedure

for constructing relational local observables, which are deterministic.

According to us, the underlying source of the confusion between coordinate systems and ref-

erence frames is that reference frames are approximated to such an extent that they play the role of

IRFs. However, once these approximations are made it becomes impossible to realise that approx-

imated physical systems in the sense of IRFs, rather than coordinate systems, are being used. The

relevant point is that in practice there is no difference between a coordinate system and an IRF.57

Both come in the form of a set of non-dynamical variables that are used to define a spatiotempo-

ral localisation of our relevant quantities. However, the difference between IRFs and coordinate

systems is conceptually relevant. An IRF is instantiated by a physical systems that would, by

nature, interact with all other degrees of freedom in the theory, but to which we apply a posteriori

some dynamical approximations. On the other hand, a coordinate system is an idealisation: it is a

set of uninstantiated mathematical variables that definitionally have no dynamics whatsoever (this

is an exact property of the idealised novel system). In a nutshell: coordinates are mathematical,

uninstantiated idealisations; IRFs are instantiated approximations of some structure within our

theory’s model, which represents a physical, real, material target system. Hence, the ‘confusion’

between coordinates and reference frames can be traced back to that between idealisations and
55In support of Thiemann (2006), let’s notice that the scale factor a(t) is not gauge-invariant because in FLRW

model, via homogeneity and isotropy requirements, one fixes the lapse function N = 1 and the shift vector Ni = 0, but
that choice is not sufficient to fix the gauge completely. It is only equivalent to a choice of a certain functional form of
the gauge time parameter (cosmic time t). Recall the warm-up exercise given in Section 3.2.1.

56Another evident problem is that coordinates are mathematical, uninstantiated artefacts. What sense does it make
to define quantities that we measure experimentally as dependent on a set of mathematical labels which are not part of
any possible preferred ontology?

57Again, we mean with regard to problems (P1) and (P2) presented in the Introduction, that have to do with the
dynamics of a theory. From a technical point of view, the distinction between IRFs (instantiated) and coordinates
(uninstantiated) is rooted in the fact that, contrary to coordinates, IRFs, as a class of fields that extends over the
spacetime manifold, are assumed to covary with reshufflings of points under an active diffeomorphism.
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approximations, and ‘the difference matters’ (Norton (2012)).58

5 DRFs vs. Coordinates

The differences between DRFs and coordinates are clear and can be summarised as follows:

• The gravitational dynamics is deterministic when using a DRF and not deterministic (in the

sense of the presence of gauge-freedom) when using coordinates

• We can define local gauge-invariant observables in terms of a DRF. No local gauge-invariant

observables are defined when we use coordinates

• The variables constituting a DRF are partial observables describing our phenomenology,

while coordinates are not.

Let us give a practical example of such differences. Let {x0,xi} be a set of coordinates and

{T,Zi} a set of four scalar degrees of freedom, describing some matter fluid defined by some

dynamical equations and whose backreaction on gravity is neglected. We consider the ADM

space+time analysis of such model of GR.59 In total we have 6×∞3 degrees of freedom of the

3-metric hi j(x0,xi) written in coordinates plus 4×∞3 physical degrees of freedom describing the

material system. By removing 4×∞3 gauge degrees of freedom of the metric, thorugh a gauge-

fixing, 6×∞3 physical degrees of freedom remain. When we use the matter field as a reference

frame, the relational 3-metric hαβ (T,Zi) has naturally 6×∞3 physical degrees of freedom.60 Thus,

the same deterministic dynamical theory, when written in relational terms (i.e. using a DRF) is

well-defined without any gauge condition to be fixed. Furthermore, the (relationally) local quantity

58We think that this sort of ‘confusion’ is also rooted in the lack of care Maudlin (2018) highlights regarding the
clarification of the ontology of theories by modern philosophers and theoretical physicists. (Gomes and Butterfield,
2024, p.2) also agree, stating: ‘‘No special care is taken to specify: which parts represent ontology, ‘what there is’ (and
within that: what is basic or fundamental, and what derived or composite); and which parts represent ‘how it behaves’
(which (Maudlin, 2018, p.4) calls ‘nomology’: in particular, dynamics); and which parts represent nothing physical,
but instead mathematics (which, though unphysical, can of course be invaluable for calculation)’’. We also agree
with (Gomes and Butterfield, 2024, fn.1) that this necessary clarification on the ontology of theories is not intended
to support the claim of logical positivists that the physical theories to be considered should present a once-and-for-all
division of facts and conventions (see e.g. Putnam (1975)).

59The ADM formalism Arnowitt et al. (1960) is a Hamiltonian formulation of GR. The canonical variables of this
formalism are the 3-metric tensor hi j and its conjugate momentum pi j.

60Here α and β are (spatial) frame’s indices running from 1 to 3.
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hαβ (T,Zi) is a local gauge-invariant observable. In fact, the diffeomorphism group act both on the

3-metric and the scalar fields, in such a way to leave hαβ (T,Zi) invariant.

This example shows that the use of DRFs solves both problems (P1) and (P2).

(P1-solved) As also demonstrated with practical examples in section 3.2, we are able to write local

gauge-invariant observables. The ‘price’ to pay is to accept a notion of relational locality

between fields. The force of this notion lies in the possibility of constructing gauge-invariant

local observables and defining a physical, deterministic dynamics for such quantities

(P2-solved) As far as the interpretation of diffeomorphism gauge freedom in GR, using DRFs,

we can interpret gauge-fixing conditions as dynamical equations of some physical system

chosen as the reference frame. The presence of gauge freedom, in such a view, suggests

that we are ignoring the dynamics of some physical system that we are using as a reference

frame.61 In other words, as stated in Rovelli (2014):

Gauge invariance is not just mathematical redundancy; it is an indication of the

relational character of fundamental observables in physics. [...] Gauge is ubiqui-

tous. It is not unphysical redundancy of our mathematics. It reveals the relational

structure of our world.

[...] The choice of a particular gauge can be realized physically via coupling: with

a material reference system in general relativity.

6 Conclusion

The presented work introduced three distinct classes of reference frames in GR, according to their

increasing physical relevance in the gravitational dynamics. Indeed, we considered ‘idealised’

(IRF) those reference frames whose physical nature does not enter in any way into the dynamical

picture, as ‘dynamical’ (DRF) those one which are associated with a specific set of dynamical

61Following Gomes et al. (2022), another answer to (P2) is that ‘‘gauge symmetry provides a path to building
appropriate dynamical theories—and that this rationale invokes the two theorems of Emmy Noether (1918)’’. This
approach is an extension of the, well-known, answer amongst practising physicists known as the gauge argument of
Weyl (1929), which posits that local gauge invariance necessitates the introduction of gauge fields to properly describe
fundamental interactions.
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equations, as ‘real’ (RRF) those whose stress-energy tensor also contributes to the EFEs. In light

of the identified problems related to defining local, gauge-invariant observables and interpreting

diffeomorphism gauge symmetry not as a mere mathematical redundancy, our novel three-fold

classification proved to be a valuable tool, providing a theoretical framework in which to effec-

tively contextualise the aforementioned challenges. In particular, we analysed the role of DRFs in

this debate. This work complements and extends existing literature on the subject, as it includes

past definitions of a reference frame, thus enhancing the coherence and validity of the proposed

framework.

The paper also sheds light on the necessity of maintaining conceptual clarity to avoid signif-

icant errors in interpretation. Reference frames can be approximated as IRFs and inaccurately

conflated with coordinate systems, since an IRF behaves as if it were a coordinate system, as far

as the objective of constructing local gauge-invariant, determinstic observables is concerned. On a

conceptual level it is a serious mistake to confuse the two notions. In GR, coordinates are math-

ematical idealisations, constituted by uninstantiated variables. IRFs are approximations of some

structure within our theory’s model, instantiated by a target physical, material system.

Our proposal on reference frames could have implications both for the increasingly studied

notion of quantum reference frame and for future discussions on the nature of vacuum solutions

of EFEs. In particular, it remains to be clarified if vacuum solutions can be reconsidered in terms

of approximated matter solutions where the stress-energy tensor is neglected. This is not the only

option. Certainly, it is possible to opt for a definition of a non-material reference frame in vacuum

GR, for example in terms of purely gravitational degrees of freedom. Likewise, it remains to be

clarified why and to what extent the use of reference frames as mere coordinates works so well

that the difference between the two concepts can be overlooked, as far the experimental practice is

concerned. This observation prompts us to consider why in the cosmological sector equations writ-

ten in coordinates still yield predictive results, although theoretically, physical predictions should

solely arise from equations expressed in terms of reference frames whose dynamics is taken into

consideration.

The proposed framework serves as a valuable guide for researchers, offering new perspectives,

confirming some well-established research paths and opening avenues for exploration within the

field. Overall, the aim of this work is to enrich the study of a sector of GR, by providing a clear
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and coherent approach to understanding the role of material reference frames. In conclusion, our

systematic classification of reference frames may have significant implications for the foundations

of Einsteinian theory of gravity.
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