
Computable Bayesian Epistemology

Josiah Lopez-Wild

Abstract

Bayesian epistemology is broadly concerned with providing norms for
rational belief and learning using the mathematics of probability theory.
But many authors have worried that the theory is too idealized to accu-
rately describe real agents. In this paper I argue that Bayesian epistemol-
ogy can describe more realistic agents while retaining sufficient generality
by introducing ideas from a branch of mathematics called computable
analysis. I call this program computable Bayesian epistemology. I situ-
ate this program by contrasting it with an ongoing debate about ideal
versus bounded rationality. I then present foundational ideas from com-
putable analysis and demonstrate their usefulness by proving the main
result: on countably generated spaces there are no computable, finitely
additive probability measures. On this basis I argue that bounded agents
cannot have finitely additive credences, and so countable additivity is the
appropriate norm of rationality. I conclude by discussing prospects for
this research program.

1 Introduction

Bayesian epistemology is broadly concerned with providing norms for rational
belief and learning using the mathematics of probability theory. Most (but not
all) Bayesians agree on two core norms:

1. (Probabilism). An agent’s beliefs should take the form of a probability
function P over some algebra F of subsets of an outcome space Ω.

2. (Conditionalization). Upon learning that some subset A ∈ F is true,
the agent’s updated belief in any B ∈ F should take the form of the
conditional probability P (B | A) of B conditional on A.

Many authors have worried, for various reasons, that this picture is too ide-
alized to accurately describe real agents like you and I. Some have pointed out
that the standard view seems to imply logical omniscience, a requirement that
Bayesian agents assign probability 1 to all logical consequences of their knowl-
edge (those propositions to which they already assign probability 1).1 Others
have pointed out that we often struggle to assign perfectly precise probabilities
to events ([Walley, 1991], [Seidenfeld, 2012]). For example, how likely do you

1Though see [Hacking, 1967], [Pettigrew, 2021] for a compelling response to this worry.

1

think it is to rain tomorrow? There seems to be no principled reason to assert,
e.g., a 60% chance as opposed to a 63.45% chance; do I really have reason to
think that my subjective probabilities are infinitely precise?

Despite our best intentions we humans often discover that we apparently
suffer from various biases and fallacies of belief that, on the face of it, show our
beliefs to be probabilistically incoherent—both synchronically and diachron-
ically (see especially [Kahneman et al., 1982], [Allais, 1953], [Ellsberg, 1961]).
Perhaps it is unreasonable to expect real agents to update by conditionaliza-
tion. There are in principle infinitely many propositions I could assign some
probability to. Am I really expected to update them all exactly whenever I
learn something new? What if I am uncertain about the precise content of my
new evidence?2

All of these worries stem from a more fundamental concern about bound-
edness. We know from both experience and theory that humans, nonhuman
animals, AI, etc. are all bounded in their reasoning capacity. And we have
good reason to believe that bounded agents cannot adhere to the prescrip-
tions of Bayesianism. One might conclude that, therefore, bounded agents
cannot be Bayesian. Yet Bayesianism is on the rise in the behavioral sci-
ences. In cognitive science, for example, a large body of research accounts
for these bounds by assuming some underlying computational model, such as a
Turing machine ([Simon, 1957], [Newell and Simon, 1972], [Lewis et al., 2014],
[Lieder and Griffiths, 2020]). We assume that the Turing machine has limited
time, memory, etc. These bounds can be taken from empirical work on the
actual limitations of the architecture of interest.

It is not obvious how the bounded Bayesian models in the behavioral sciences
map onto the ideal Bayesian agent. The former assume strict computational
limitations, resulting in behavior that, from an ideal Bayesian perspective, is
nowhere near Bayes-optimal. This is a descriptive issue for the philosophical
picture. But there is also a normative issue: how can bounded agents like us
be expected to adhere to norms that we cannot, as a matter of fact, actually
attain? Does the ideal Bayesian model really determine epistemic norms for
us? If not, why do we need ideal Bayesianism? Would we be better off with a
bounded Bayesianism?

To resolve these questions we need a principled theory of bounded Bayesian
epistemology. I propose a natural framework for this theory: computable anal-
ysis ([Weihrauch, 2000]). Using computable analysis we can study computable
Bayesian agents. I will argue that these agents form a natural starting point for
a Bayesian epistemology that is applicable to bounded agents like ourselves. In
§2 I introduce the debate around ideal and bounded rationality by way of two
recent papers–one by Jennifer Carr ([Carr, 2022]) and one by David Thorstad
([Thorstad, 2024]). Unraveling this dialectic allows us to situate the present
project. In particular I argue that computable Bayesianism occupies a valuable
middle position between standard “ideal epistemology” research programs and
bounded rationality. In particular it retains the generality of ideal epistemology

2See e.g. Jeffrey conditionalization ([Jeffrey, 1965]).

2

while respecting the intuition from bounded rationality that theories of ratio-
nality should assume realistic cognitive bounds. In §3 I present an outline of
the relevant tools from computable analysis. I rigorously define computability
notions for real numbers, real functions, and probability measures in particular.
We will see that computability, when extended to structures commonly studied
in real analysis, is intimately bound up with topology. This presentation is far
from exhaustive—I’ve aimed to present only what is necessary and to do so in
a conceptually motivated way. In §4 I use this background to prove a surprising
consequence of computable Bayesian epistemology: there are no computable
probability measures that are merely finitely additive, or in other words, if a
probability measure is computable then it is countably additive. In §5 I de-
fend the claim that computable Bayesian epistemology provides a normative
standard for bounded agents.

2 Setting the Stage: Ideal vs. Bounded Ratio-
nality

On the face of it, the pronouncements of ideal Bayesianism and those of bounded
Bayesianism are in tension. Two recent papers highlight this tension. The
first, by Jennifer Carr ([Carr, 2022]), is a defense of ideal epistemology against
bounded theories. The second, by David Thorstad ([Thorstad, 2024]), is a de-
fense of bounded rationality, in part against Carr’s arguments. In this section
I want to chart the topography of this dialectic. I will argue that computable
Bayesianism falls somewhere between ideal epistemology and bounded ratio-
nality. For this reason it avoids Carr’s criticisms of bounded theories, while
retaining many of the virtues that Thorstad claims for bounded rationality.

Carr’s aim is to defend the value of ideal epistemology. She concedes that
theories of ideal epistemology make various assumptions that are not true of real
agents, e.g., logical omniscience, logical consistency and deductive closure of be-
liefs, Probabilism, Conditionalization, etc. In her words, “Ideal epistemologists
are concerned with questions about what perfectly rational, cognitively ideal-
ized, computationally unlimited believers would believe” ([Carr, 2022, 1132]).
By contrast, “non-ideal epistemologists are concerned with questions about epis-
temic norms that are satisfiable by most humans much of the time”. These
glosses certainly make non-ideal epistemology sound more useful. Ideal agents
are not like us at all; why study norms that only they can satisfy?

Carr develops a number of interesting responses to these concerns. Only one
is salient for our purposes. She charges non-ideal epistemology with two defects:
it is (i) conventional, and (ii) seriously context-sensitive. By contrast, she ar-
gues, ideal epistemology is non-conventional and not seriously context-sensitive.
This makes ideal epistemology “normatively robust”, which, she argues, is a
desirable property of any theory of epistemology.

Let’s consider these two defects in turn. First, a theory of epistemology is
conventional if its standards of evaluation are arrived at via convention. Carr

3

has in mind Lewis’ theory of conventions (), but I assume other theories of
the nature of convention work just fine. So if a theory of epistemology defines
terms like “rational”, “justified”, etc. in terms of conventions, we say that
theory is conventional. Some non-ideal epistemologists endorse some kind of
conventionalism. For a view that could plausibly be called conventional, see
Dogramaci ().

Second, a theory of epistemology is seriously context-sensitive if there is no
“normatively privileged resolution of one or more of the context-sensitive param-
eters” of the theory ([Carr, 2022, 1135]). The boundedness concerns from above
such as processing speed and memory are such context-sensitive parameters.
Non-ideal epistemology, such as bounded rationality, determines the relevant
parameters on a case-by-case basis. If we want to study human decision-making
then we need information about how much memory the average person has,
how people represent the options available to them, how quickly they think,
etc. These parameter choices are entirely different from those we would make if
we were modeling the visual system or a social network as boundedly rational
“agents”.

But this point only shows that the parameters are indeed context-sensitive.
Carr argues further that there is no normatively correct way to resolve the
context-sensitivity. She points out that non-ideal theories tacitly divide cog-
nitive limitations into two camps: those that “lower the bar” for rationality,
and those that don’t. For example, non-ideal epistemologists usually think that
limited information processing speeds, memory, etc. are limitations that are
relevant for epistemology. Many of them would agree that I am not irrational
for failing to implement a decision rule that requires me to perfectly memorize
a million data points. By contrast there are limitations that non-ideal episte-
mologists generally do not think are relevant for epistemology. Carr includes
as examples “our dispositions toward implicit biases, unreliable heuristics, delu-
sional reasoning, misinterpreting statistical phenomena as having causal impli-
cations”, and others ([Carr, 2022, 1152]). The question is: why do the former,
but not the latter, matter for epistemology? Carr argues that these two groups
are divided on a conventional basis; there is no normatively privileged way to
draw the line between them.

So, Carr concludes, non-ideal epistemology is conventional and context-
sensitive. Ideal epistemology (like Bayesianism) is not. But we want a theory
that is neither conventional nor context-sensitive, because we want a theory that
illuminates general principles of epistemology. Compare: a theory of thermo-
dynamics that only explains why my cup of coffee cools, but no other instances
of heat dissipation, is less satisfying than a general theory that pertains to all
instances of energy transfer. A theory of rational belief that applies only to
certain people at certain times is similarly less satisfying than one that explains
rational belief in any context.

While I agree that a unified, general theory is pleasing, we are stuck with
a highly unrealistic theory. Ideal Bayesians, for example, must still hold that
(i) Probabilism is rational, (ii) humans cannot satisfy Probabilism, and hence
(iii) all humans are irrational. There is no interesting difference between a

4

careful planner and someone who makes life decisions based on tea leaves and
horoscopes—both are irrational. Nor is ideal epistemology ameliorative: it does
not provide suggestions for how to improve our own epistemic well-being. These
are all shortcomings that non-ideal epistemology might not suffer from.

So much for ideal epistemology. What can be said in defense of non-ideal
epistemology? A recent paper by David Thorstad ([Thorstad, 2024]) defends
bounded rationality as a theory of (non-ideal) epistemology. Thorstad responds
in particular to the argument from Carr sketched above.

In response to the charge of conventionalism Thorstad points out that bounded
rationality may but need not be conventionalist. An epistemologist who wanted
to incorporate bounds into their work could adopt any of the popular nor-
mative foundations—a pragmatic foundation based on expected utility maxi-
mization (), an accuracy-first foundation (), or a coherence-based foundation
(), among others. Bounded rationality theorists often assume some compu-
tational model whose limitations are intended to capture the agent’s bounds
([Lieder and Griffiths, 2020]). This model is not a convention, except in the
weak sense in which the use of any scientific model is an agreed-upon practice
by some group of scientists. So conventionalism is not a concern for bounded
rationality.

What about context-sensitivity? Thorstad argues that we can draw a princi-
pled line between those limitations that matter for epistemology and those that
don’t. To do so he appeals to an agent’s cognitive architecture, the facts about
an agent’s cognitive capabilities that do not change over time. As an example he
says “it is an architectural fact that our working memory has a fixed capacity,
but a non-architectural fact which beliefs are currently held in working memory”
([Thorstad, 2024, 404]). The proposal is that facts about cognitive architecture
matter for epistemology, while other facts about an agent’s limitations do not.

Moreover bounded rationality enjoys benefits that ideal epistemology does
not. Bounded rationality vindicates the principle that “ought implies can”.
By making explicit the bounds that agents have, anything deemed “boundedly
rational” can be done by the agent. Ideal epistemology clearly does not vindicate
this principle. As Carr says, “In non-ideal epistemology, ‘ought’ implies ‘can’ in
some substantive sense. . . In ideal epistemology, it doesn’t” ([Carr, 2022, 1133]).
This is an intuitive principle for epistemology—I should not be deemed irrational
for failing to have beliefs, update those beliefs, follow a decision rule, etc., when
I am incapable in principle of doing so.

I think Thorstad makes a good case for bounded rationality. One conse-
quence that Thorstad explicitly endorses, however, is that the standard of ra-
tionality does vary from person to person: “what is rational for an agent depends
on her abilities and the cost of exercising them” ([Thorstad, 2024, 402]). So it
is not seriously context-sensitive which cognitive limitations matter, since we
have a principled dividing line; but whether a given strategy, decision rule, etc.,
is rational for someone is context-sensitive, since it depends on their capabil-
ities. This sort of context-sensitivity is, I suspect, exactly the sort that ideal
epistemologists want to avoid. For any normative epistemic question such as
“Should agent’s beliefs satisfy Probabilism?”, the answer must take the form,

5

“It depends on your abilities.”
Let’s take stock. Carr argues that non-ideal epistemology is conventional-

ist and seriously context-sensitive, whereas ideal epistemology is not; for this
reason, we need ideal epistemology. But, ideal epistemology suffers from its in-
ability to distinguish more or less irrationality, and is not ameliorative. Thorstad
argues that non-ideal epistemology is not conventionalist, and that the alleged
context-sensitivity can be resolved in a principled way. But, boundedly rational
epistemology still suffers from a context-sensitivity that many epistemologists
will not like. It does not provide us with a general theory of rationality, but
rather a theory of rationality-for-someone-in-some-context.

Can we do better? I think we can. I want to suggest a framework that
enjoys the generality of ideal epistemology while better respecting the intuition
that ‘ought’ implies ‘can’. Specifically I argue that we should study computable
Bayesian epistemology. Computable Bayesian epistemology (or “computable
Bayesianism”, for slightly shorter) supplements the classical Bayesian framework
with the assumption that the agent’s cognitive processes are limited to Turing
computable functions. An agent’s beliefs, for example, are represented by a
computable probability function. Computable Bayesianism abstracts from time
and space limitations, memory constraints, information-theoretic bounds, and
issues of noise. The theory is therefore not context-sensitive: the underlying
computational model never changes. Instead it asks: is it possible, even in
principle, for a computable agent to satisfy Bayesian norms? And, if not, are
there weaker alternatives that they can satisfy?

Because it is not context-sensitive the results are quite general. They apply
to any agent whose cognitive powers are no stronger than a universal Turing
machine. So they apply to me, you, the computer I wrote this paper on, and
my dog. Yet, we are still explicitly including bounds in our theory. So if we
can prove that some component of Bayesian epistemology (e.g. Probabilism or
Conditionalization) is not computable in general, then no real agent can satisfy
that component. On these grounds I argue that it cannot be an epistemic norm
for real agents. In this way we recover a version of ‘ought’ implies ‘can’: if no
computable agent can do it, then they ought not.3

To make the case for computable Bayesianism we need to do two things.
First, we need to state the theory precisely. This requires mathematics that
goes beyond standard probability theory. I propose that we use tools from
computable analysis, a branch of mathematics that studies the computational
content of results from classical real analysis—in particular, measure and prob-
ability theory. I will introduce this extra mathematics in the next section.
Second, we need to show that the theory has interesting consequences beyond
the classical Bayesian theory. There is a small (but growing) body of research in
formal epistemology concerning computable agents (see [Zaffora Blando, 2022],
HWZB, [Belot, 2023a], [Belot, 2023b] for some examples). I will add to these re-
sults by proving that a computable agent’s beliefs must be a countably additive
probability—that is, a computable agent cannot have merely finitely additive

3Where this should be read “¬ Ought(φ)”, rather than “Ought(¬φ)”.

6

credences. I will then return to the issue of norms for bounded agents.

3 Computable Analysis from First Principles

The field of computable analysis began with the foundation of computability
itself. Turing’s original paper proposing the Turing machine model also defines
a notion of “computable real number” ([Turing, 1937]). The theory comes from
a natural intuition. For some computations there are known algorithms for
finding the solution: for example, Newton’s method for finding the roots of real
functions. In other cases there is no such general method: many differential
equations, for example, do not have methods for exact solution. This difference
suggests that there might be limits to what a human (or computer!) can exactly
compute. Is it possible to show mathematically which objects or operations of
real analysis are exactly computable, which are not, and why? This is the goal
of computable analysis.

It’s important to screen off confusions before entering into the technical
details. As the above description should suggest, computable analysis is not a
replacement for classical analysis. We are not in the business of defining new
and different numbers, functions, etc. Instead we are discovering a finer-grained
classification of classical structures. We will work with the exact same set of
real numbers as we always have, but now we can show that some of them have a
special property: there exist algorithms that exactly compute them.4 Similarly
we are not changing the notion of “function”, but rather showing that some
functions can be implemented algorithmically—there is a uniform procedure for
transforming arguments into values.

Since our focus is explicitly Bayesian this means in particular that we are
not changing probability theory. Rather, the goal is to define and study the
well-behaved portions of probability theory. As it turns out, most probability
measures, random variables, operations, etc. that formal epistemologists and
statisticians use in practice are computable. So this is not a radical proposal
that would alter practice. Instead the focus on computable probability theory
primarily serves to exclude pathological mathematical entities that cannot be
implemented by bounded reasoners anyway. This exclusion results in stronger
theorems: since we’re studying a smaller set of objects we can say more about
them. This point will become clearer as we work through the details.

To start we’ll consider standard computability theory. Computability theory
is generally defined on the natural numbers N. All naturals n are computable
in the sense that there is a Turing machine which, for example, computes the
binary code for n. A function f : N → N is computable if there is a Turing
machine which, given a code for n, takes finitely many steps to output a code for
f(n). A set A ⊆ N is computable if there is a Turing machine which, given n ∈ N
as input, outputs either a code for “Yes” if n ∈ A or a code for “No” otherwise.
See ([Soare, 2016]) or any other introductory textbook on computability theory
for further details.

4In the limit of infinite time; more on this later.

7

Importantly, in computability theory we generally assume that the Turing
machine operates on codes from a fixed finite alphabet which represent natural
numbers. For example most textbooks use the alphabet {0, 1} of binary codes.
The set of all possible finite binary codes, usually denoted 2<ω, is countably
infinite. Indeed if Σ is a finite set then Σ<ω is countable. So we can easily
extend computability notions to any countably infinite set X of objects, not
just N. To do so we fix some finite alphabet Σ and define a surjective function
δ : Σ<ω → X. Then a string p ∈ Σ<ω is a code (or name) for some element
x ∈ X just in case δ(p) = x. We want every element of X to have a name, so we
require δ to be surjective. Note that any given x ∈ X may have multiple names,
however. As an example of this process we can define finite codes for all rational
numbers via the map ⟨i, j, k⟩ 7→ (i− j)/(k+1). This is a computable surjection
from N3 onto Q. Then we can define computable rational numbers as those with
computable codes (in this case, all rationals are computable) and computable
functions between rationals are defined as computable functions between their
codes.

Transferring computability notions to rational numbers is easy because ra-
tionals can be given finite codes. By contrast real numbers are not always
finitely representable. Consider the decimal representation of π = 3.1415926 . . .
We know that this representation never terminates, so any finite initial segment
is not equal to π. Nonetheless π should be considered a computable real (and
is computable according to the standard definition below) since we have algo-
rithms for computing increasingly precise representations of it ([Brent, 2020]).
We can prove that in the limit these algorithms compute π exactly. So, intu-
itively, π should count as a computable real number. Thus we cannot expect
a computable real number to be a real number whose entire representation is
computable in a finite amount of time.

Instead, a computable real number is a number which can be computably
approximated arbitrarily well. Consider π. Suppose we have run the algorithm
for a finite amount of time and it has output 3.1415. If we run the algorithm
for longer then it will output more digits to append to this number. But,
knowing how decimal representation works, we know that π, whatever it really
is, falls somewhere in the interval [3.1415, 3.1416). We have already produced an
approximation to π that is within an error bound of 1.0× 10−4. And when the
next digit (in this case a ‘9’) is output, the error bound tightens to 1.0× 10−5.
So we have an algorithm that computes approximations to π with a computable
error bound (or computable rate): having output n digits, we know the error
bound is 1.0× 10−(n−1).

More generally we define a real number r to be computable if there is a
uniformly computable sequence (qn)n∈N of rational numbers such that |r−qn| ≤
2−n for all n.5 The sequence is “uniformly” computable in the sense that there
is a single algorithm which, on input n, outputs qn. Thus a Turing machine can
calculate an approximation to r to as accurate a degree as desired, and that

5The rate of convergence 2−n can be replaced by any other computable rate, and defines
precisely the same set of computable real numbers.

8

calculation will terminate. Calculating r exactly, though, need not be a finite
process. So we have a nice computability notion for real numbers. Commonly
used reals like π, e, or any rational are all computable reals. Note, though,
that most reals are not computable. To see this, note that each computable
real has at least one corresponding Turing machine program that computes
approximations to it. There are only countably many Turing machines, so only
countably many computable real numbers.

Real numbers are not the only structure in probability theory, though. We
need a more general way to define computability notions for things like proba-
bility measures and random variables. We’ll use the commonly accepted foun-
dation for computable analysis, the Type-Two Theory of Effectivity (TTE);
see [Weihrauch, 2000], [Brattka et al., 2008], [Braverman and Cook, 2006] for
introductions.

The trick to computing real numbers was to compute approximations—
specifically those which converge to the object at a computable rate. And the
way we did this was to define a Turing machine that output longer and longer
names of those approximations. Unlike standard computability theory, though,
it’s perfectly fine if that computation runs forever. We just need the output
to encode good approximations. In the limit the machine would produce an
infinite code which names the desired real number.

So if we wanted a Turing machine which could compute, for example, func-
tions from real numbers to real numbers, we would also need it to take those
infinite codes as inputs (“oracles”, in computability theory). More precisely, we
define a type-2 Turing machine as a Turing machine with:

1. finitely many one-way infinite read-only input tapes;

2. finitely many two-way infinite read-write work tapes;

3. a one-way infinite output tape.

The input and output tapes are “one-way infinite” in the sense that they have a
left end, or first cell, and then extend infinitely far to the right. At the start of
computation there is a machine head placed at the left end of the output tape
and each input tape. Over the course of the computation the machine may move
each input head or the output head to the right, but not left; backtracking is
not allowed. The machine may read the content of the input tapes but cannot
change the contents; similarly the machine may write on the output tape but
cannot change what it has written.

To get a feel for how this works, let’s imagine a type-2 machine that im-
plements a computable real function f : R → R, and on the input tape we
write the code for a real r such that f(r) = π. Since π has an infinite code
the machine will clearly never halt. Instead we require that over time it writes
a sequence that in the limit encodes π. Since a code for r is written on the
input, the machine may query r for information at any given step. However,
the machine clearly does not have enough time to survey all of r; instead it can
only read one digit at a time. So at the end of computation it will only have

9

read a finite initial segment of the code for r. Moreover after any finite amount
of time the machine will have written at most a finite initial segment of the code
for π. These finite initial segments encode the rational approximations that we
mentioned earlier when discussing computable reals. Thus with more time the
machine will output longer codes that encode better rational approximations to
P (A) = π.

The one-way output requirement is necessary for computations on infinite
sequences to be well-defined, essentially because we only ever witness finite
approximations to the final computation. If we allowed the machine to rewrite
its output then we could never know any information about the output with
certainty. For suppose that after some time t the machine has output some
finite sequence s; for all we know, at some future time t + n the machine will
erase s and write instead some other sequence t. Thus at any time we never
know if the current output contains any information about the limiting result
of the computation, rendering the computation useless. This is evidently not
the case for the algorithms for computing π; we have proofs that their finite
approximations are correct. Thus we say that a type-2 machine computes a
function f : X → Y if, given a (finite or infinite) code for a point x ∈ X, it
either (i) runs for a finite amount of time and outputs a finite code for a point
f(x) ∈ Y , or (ii) runs for an infinite amount of time and outputs finite codes
which converge to an infinite code for a point f(x) ∈ Y .

So we have a Turing machine model designed for computation on infinite data
structures; now we need the data. TTE allows us to define computability notions
on richer mathematical structures by “encoding” those structures as sequences
of symbols, much like a computer would. We do so via a representation, a
surjective function from either Σ<ω or Σω onto our structure we wish to encode.
For example, let νN : 2<ω → N be the usual binary encoding of natural numbers;
e.g., νN(100) = 4. This is a computable representation of N. We let ⟨·, ·⟩
denote some computable bijective tupling function, with obvious n-ary extension
⟨x0, x1, . . . , xn−1⟩ := ⟨⟨x0, x1, . . .⟩, xn−1, ⟩. We then define codes of tuples via
νNn : 2<ω → Nn, defined

νNn(w) := (x0, . . . , xn−1) ⇐⇒ w = ⟨x0, . . . , xn−1⟩.

Similarly our earlier computable surjection between N andQ, the map νQ(⟨i, j, k⟩) :=
i−j
k+1 , is a representation.

We can define representations on R that make precise our earlier discussion
of rational approximations. For our purposes it is efficient to assume that Σ
at least contains 0, 1, and a symbol # that has been set aside as a “blank” or
“dummy” symbol. We can define a representation ρ : Σω → R for the real
numbers as follows:

ρ(w0#w1# . . .) := r ⇐⇒ |r − νQ(wi)| < 2−i

for all i ∈ N. Now is a good time to convince yourself that if σ ∈ 2ω is such that
ρ(σ) = r for some real r ∈ R, then r is computable in the sense defined earlier
iff σ is.

10

Now we can define a very general notion of a computable function. Let X
and Y be sets with representations νX : Σω → X and νY : Σω → Y . Then a
function f : X → Y is (νX , νY)-computable iff there is a computable function
F : Σω → Σω such that for all σ ∈ dom(F), f(νX(σ)) = νY (F (σ)), that is, the
following diagram commutes:

X Y

dom(F) Σω

f

νX νY

F

We call F a realizer of f . In this precise sense we can vindicate the earlier
intuition that f is computable if there is a computable map from codes of
arguments of f to codes of values of f . Notice that the computability of f is
relativized to the representations on which F operates. We leave it to the reader
to determine that when X,Y = R and νX , νY = ρ one can derive the definition
of computable real function defined earlier in the paper.

3.1 Admissible Representations

So we have a precise definition of computable functions between represented
sets (X, νX) and (Y, νY). But this notion of computability depends on the rep-
resentations we choose; as it turns out, different representations make different
elements x ∈ X or functions f : X → Y computable. We commonly say that
different representations induce different computability notions. This fact might
make computable analysis seem too relativistic to be interesting—one might
suspect that objects, functions, etc. are not computable simpliciter, but only
with respect to some representations (and not computable with respect to oth-
ers). To fix this relativity we define a class of “good” representations that all
induce the same computability notion. We call these representations admissible,
and our next task is to define this class.

The central idea behind admissible representations (and indeed all of com-
putable analysis) is this: computability is a feature of topology. More precisely:
topology is the study of approximations in a space. If the topology is sufficiently
well-behaved, we can use it to define computable approximations to objects. In
our case “sufficiently well-behaved” means: the topological space must be T0 and
second countable. A topological space is T0 if for any distinct points x, y ∈ X,
there is an open set U that contains x but does not contain y.6 A topological
space is second-countable if it has a countable basis.

So suppose we have a set X with a topology (family of open sets) τ , and
suppose (X, τ) is T0 and second-countable. For concreteness suppose B = {Bn |
n ∈ ω} is the countable basis of (X, τ). Since B is countable, we can identify
each Bn with the natural number n, and thereby assign B a representation νN :
Σ<ω → N. Thus if β : N→ B is defined n 7→ Bn, then α = β ◦ νN : Σ<ω → B

6By symmetry this means that there is also an open set V that contains y but does not
contain x.

11

is a representation of the countable basis B. [Weihrauch, 2000] calls the triple
(X, τ, α) an effective topological space.

In any T0, second-countable topological space (X, τ), each point x ∈ X is
uniquely determined by the set {Bn | x ∈ Bn} of basis elements that contain
x. And we already have a representation α for those basis elements. So we
could define a representation δX : Σω → X of the whole space X by letting the
code for a point x ∈ X be a list of all basis elements Bn that contain x. There
are at most countably many such Bn, and each Bn is given a finite code by
α. So we could simply concatenate all those codes (placing the dummy symbol
between them) to define a sequence σ ∈ Σω that encodes the point x ∈ X.
More precisely,

δX(σ) = x :⇐⇒ {Bn ∈ B | x ∈ Bn} = {α(s) | s ⊏ σ}

where “s ⊏ σ” means that s is a finite subword of σ, i.e., s appears (contigu-
ously) somewhere in the code σ. [Weihrauch, 2000, 64] calls this a standard
representation. Its codes simply list the basis elements containing a point. And
notice that if σ is computable then there is some algorithm that lists the basis
elements containing δX(σ); one can show that this representation, if defined
for R, defines exactly the same set of computable real numbers as our earlier
definition.

The standard representation of an effective topological space has a number of
important topological properties ([Weihrauch, 2000, 67]) that make it the “gold
standard” for representations. So whenever possible we want to use a stan-
dard representation, or any representation that induces the same computability
notion. We call any such representation admissible. Speaking precisely, we
say that a representation δ : Σω → X is admissible if there is a computable
function f : Σω → Σω and a computable function g : Σω → Σω such that
δ(σ) = δX(f(σ)) and δ(g(π)) = δX(π) for any σ ∈ dom(δ) and π ∈ dom(δX).
Here f is a translation from δ to δX , while g is a translation in the other direc-
tion.

This is all the technical background we need to talk about computable prob-
ability theory. The highlights are: we can define computability on infinite struc-
tures via codes which give increasingly accurate approximations of objects. We
pick out admissible representations by making sure those representations inter-
act properly with the topology of the represented space (assuming it has one).
The standard representation of an effective topological space is admissible, and
any representation which is equivalent to it (in the sense that there are com-
putable translations back and forth between them) is equally good, because it
defines the same computability notions. With these tools in hand, let’s discuss
probability theory.

3.2 Computable Probability Theory

How should we define a computable probability measure? To be precise, suppose
we have a set Ω of possible outcomes and suppose P is a probability measure on

12

Ω. We’ll give R its standard representation ρ. As a warm-up suppose Ω is finite.
Then P is a function from the powerset P(Ω) of Ω to the unit interval [0, 1]. So
to talk about the computability of P we need a representation for P(Ω). P(Ω)
is a Boolean algebra. The most commonly used topology for Boolean algebras
is the order topology : the topology generated by the subbasis of open rays

(A,→) = {B ∈P(Ω) | A ⊂ B} and (←, A) = {B ∈P(Ω) | B ⊂ A}

for all A ∈ P(Ω). We let τo denote the order topology on a given algebra. Be
careful about what this means: the points of the topological space (P(Ω), τo)
are subsets A ⊆ Ω, and the open sets U ∈ τo are sets of such subsets.7

Since Ω is finite, P(Ω) is finite. So we can give each point A ∈P(Ω) a finite
code, and any surjective map δfin : Σ<ω → P(Ω) is admissible. In particular,
since every code is finite, every point A ∈ P(Ω) is assigned a computable
code. As we saw before, to say that P is computable is to say that there is
a computable realizer FP : Σ<ω → Σω such that ρ(FP (σ)) = P (δfin(σ)). The
result is that if Ω is a finite set then P is computable if and only if P (A) is a
computable real number for all A ⊆ Ω. And this is exactly what one näıvely
expects a computable probability measure to be: an algorithm that computes a
probability for any given set.

Suppose instead that Ω is a countably infinite set. Again we use the order
topology on P(Ω). Since P(Ω) is uncountably infinite we cannot use finite
codes for our representation. However we can show that (P(Ω), τo) is an effec-
tive topological space. To see this, enumerate the points xn ∈ Ω. Note that
P(Ω) is a σ-algebra generated by the countable family of singletons {xn}. First
we need to show that (P(Ω), τo) has a countable basis. It suffices to show that
there is some countable family of rays

(Bn,→), (←, Bn)

that generates every open ray (A,→) and (←, A) for each A ∈ P(Ω). This
is true: let the Bn be either finite or cofinite subsets of Ω (of which there are
countably many). Then if A is either finite or cofinite the result is immediate,
whereas when A is both infinite and coinfinite there must exist index sets J,K ⊆
ω such that

(A,→) =
⋃
j∈J

{(Bj ,→) | A ⊆ Bj}

(←, A) =
⋃
k∈K

{(←, Bk) | Bk ⊆ A}.

So (P(Ω), τo) has a countable basis. Moreover it is T0: pick any distinct A,B ∈
P(Ω). There are two cases: either A ̸⊆ B or B ̸⊆ A. Without loss of generality
assume the former case. Then (A,→) is an open set containing A but not B,
and (←, B) is an open set containing B but not A.

7Since P(Ω) is finite, the order topology coincides with the discrete topology generated
by the family of singletons. Thus under either topology every subset of P(Ω) is open.

13

Therefore P(Ω) with the order topology has a standard representation δΩ :
Σω → Ω. In this case a code for a set A ⊆ Ω is a list of the open rays
(Bn,→), (←, Bn) that contain A, where the Bn are either finite or cofinite. If
we identify a subset A with the set of index numbers of elements of A, one can
show that the subsets assigned computable codes are precisely the computable
subsets of N (in the standard sense of computability theory). These subsets
are mapped to computable real numbers by any computable realizer FP of P .
Therefore a probability measure on a countable set Ω is computable just in case
it assigns computable real numbers to all computable subsets.

Moving to uncountable spaces Ω is largely the same as the countable case.
The primary difference is we need to determine the σ-algebra F of subsets of
Ω on which the measure P is defined—for example, if Ω is a topological space,
we often let F be the Borel σ-algebra. But once we do that we can run the
same line of argument to show that (F , τo) is an effective topological space,
assuming (and this is important!) that F is countably generated. If F is not
countably generated then (F , τo) is not second-countable. There are still ways
to define representations in this case, but it becomes quite messy and is well
beyond what we need for this discussion. So in what follows we’ll assume that
F is countably generated, which is true for almost all spaces that probabilists
and statisticians usually work in.

We can of course define computability notions for many other parts of prob-
ability theory: the integral, random variables, Lp spaces, etc. But for our pur-
poses we can be content with probability measures. The interested reader can
find more in, for example, [Ackerman et al., 2019], [Hoyrup and Rute, 2021].

Having gotten this far one might begin to wonder whether there was some
other way to define computability notions for the structures we have considered.
Historically there have been multiple different schools of computable analysis,
and they all worked with slightly different definitions of central concepts. But,
interestingly, they were all shown to be either (i) equivalent, or (ii) inadequate
for their intended target. [Rute, 2020] is a nice overview of this history and
discusses the different approaches in mathematical detail.

4 Coherence: Finite versus Countable Additiv-
ity

Now we can take a breather. The preceding section gave us tools to talk about
the computability of probability measures. This foundational work might feel
like tedious bookkeeping. In a sense it is . Usually in probability theory (and
mathematics more broadly) we can get away with definitions like “define a
function as thus-and-so” without explicitly describing how that function works.
Computable analysis asks us to keep track of the implementation details: what
the input data is like, what the output data is like, and how functions map

14

input to output. So at the foundational level there is a lot of bookkeeping.8

Hopefully with this perspective it’s clear that, rather than replacing classical
math, we’re simply being more careful about details that were always there
“under the hood”.

Let’s return to Bayesianism. In this section I want to discuss Probabilism.
Already we will encounter remarkable consequences: in this section I prove that
there are no computable probability measures that are merely finitely additive.9

A probability function is always required to satisfy an additivity condition:
if A,B are disjoint sets, then P satisfies

P (A ∪B) = P (A) + P (B). (1)

But modern measure-theoretic probability also assumes that probability mea-
sures are countably additive, satisfying the stronger condition

P

(⋃
n

An

)
=
∑
n

P (An) (2)

where {An}n∈N is a countably infinite sequence of disjoint measurable sets. We
call a probability function P that satisfies (2) a “countably additive probability
measure”; by contrast we call a probability function P that satisfies (1) but not
(2) a “merely finitely additive probability measure” (and sometimes we drop
the word “merely”).

Why accept countable additivity? Kolmogorov ([Kolmogorov, 1950]) origi-
nally introduced countable additivity axiomatically as a mathematical expedi-
ent. Many long-run convergence theorems, such as the Central Limit Theorem
or martingale convergence theorems, rely on countable additivity ([Diaconis and Freedman, 1986]).
These theorems form the foundation for results such as Bayesian convergence to
the truth, the Blackwell-Dubins merging of opinions theorem ([Blackwell and Dubins, 1962]),
and others, all of which have foundational philosophical importance in Bayesian
epistemology.10

Mathematically, countable additivity is a natural condition that allows us
to derive powerful results from probability theory. This is not contentious. Its
philosophical significance is more contentious. Bruno de Finetti ([de Finetti, 1974]),
for example, argued that countable additivity is not a reasonable requirement of
an agent’s credences. One objection he raises is: one should be able to define a
fair lottery over the natural numbers. Countable additivity does not allow such

8Of course at the research level mathematicians have invented many tools to streamline this
process. I have opted for the foundational perspective here for two reasons. First, philosophers
expect (or at least should expect) a justification that a piece of mathematics is the right tool
for the job. Working through the details of admissible representations shows us that we have
defined computability notions in the most natural way. Second, the main result, Theorem 1,
is a simple proof if one is familiar with these foundational details, whereas the result is not
obvious at a higher level of abstraction. So this route is also the most perspicuous.

9Over countably generated spaces, at least. There might be a more general result, but
we’ll stop here.

10Though see [Purves and Sudderth, 1976] for some restricted convergence results for merely
finitely additive measures.

15

a probability measure—if P were countably additive and assigned some nonzero
probability p to each natural n, we would have P (N) =

∑∞
n=1 P ({n}) = ∞, a

contradiction. Any countably additive probability on N must therefore build in
an asymmetry—we cannot treat each natural as equally likely. But, de Finetti
argues, this is unintuitive. Why can’t I imagine each number is equally likely?
If a fair countable lottery is ruled out by our theory of credences then either our
intuitions about credences are wrong, or we should change the mathematics. de
Finetti opts for the latter: if countable additivity rules out this possibility then
we should not accept countable additivity.

This debate has continued on into the modern literature ([Kadane et al., 1999],
[Williamson, 1999], [Easwaran, 2013]). Without recapitulating these arguments,
I want to point out that there are very few instances of mathematically natural
finitely additive probability measures. What could explain this paucity? One
way to prove the existence of merely finitely additive measures is de Finetti’s
coherence theorem. Michael Nielsen has recently shown that this theorem is
equivalent to the Hahn-Banach theorem, which is, in a precise sense, “noncon-
structive”. That is, the theorem proves the existence of a mathematical object
without providing explicit instructions to construct it ([Nielsen, 2020]). In this
case the theorem shows that coherent previsions can be extended to a finitely
additive probability on the powerset of the outcome set. But the theorem simply
says that such a probability exists—it does not give instructions for explicitly
defining it.

These “nonconstructive” objects can be classified with tools from computable
analysis. Indeed they turn out to be noncomputable objects.11 Computable
mathematical objects (e.g. computable real numbers, computable probability
measures) are, by contrast, constructive in this sense, because there is a Turing
machine which implements a finite program (a set of instructions) which builds
that object. So if we are interested in computable Bayesianism because we wish
to model real bounded agents, then we should not use noncomputable—and
hence nonconstructive—objects. Finitely additive probabilities might not be
good models for bounded agents.

Of course de Finetti’s theorem is not the only way to define finitely additive
probabilities. While that theorem may be nonconstructive, perhaps there are
other methods that allow us to define computable finitely additive probabili-
ties suiable for bounded agents. Unfortunately this is not the case. Indeed in
this section I will prove that there is no computable merely finitely additive
probability on a countably generated measure space.

The proof idea is actually quite simple. First, it is a fundamental result of
computable analysis that all computable functions are continuous ([Weihrauch, 2000],
Theorem 2.2.3). This should not be too surprising, since we’ve seen that com-
putability is intimately related to topology. More precisely, suppose X has
topology τX and representation δX , while Y has topology τY and representa-
tion δY . Recall that we call a function f : X → Y computable if it has a

11And there are hierarchies describing “how uncomputable” the objects are, allowing for
finer classification.

16

computable realizer; in this case we say that it is (δX , δY)-computable. Simi-
larly if f has a continuous realizer we say f is (δX , δY)-continuous. But since X
and Y are topological spaces it makes sense to ask whether f itself is continuous
in the standard sense. Weihrauch proves the following:

Proposition 1 ([Weihrauch, 2000], Theorem 3.2.11). For any f : X → Y , f is
continuous (in the standard sense) if and only if f is (δX , δY)-continuous.

So being continuous and having a continuous realizer are equivalent proper-
ties. This result has the following important corollary:

Proposition 2 ([Weihrauch, 2000], Corollary 3.2.12). For any f : X → Y , if
f is (δX , δY)-computable then it is (δX , δY)-continuous, and hence continuous
in the standard sense.

Let’s be clear what this proposition says. First, if f has a computable
realizer, then that realizer is continuous. Second, since it has a continuous
realizer, f is itself continuous as a function between topological spaces. So:
every computable function is continuous. It is crucial that we used admissible
representations for Proposition 1; it need not hold otherwise.

Returning to our main topic, countable additivity is also a form of continuity,
though that is not apparent in the formulation above. Suppose A1, A2, . . . is a
sequence of measurable sets such that A1 ⊆ A2 ⊆ . . . and

⋃n
i=1 Ai = A, and

A is itself measurable. We also write An ↑ A to denote this sequence. Then
a probability measure P is montonely continuous from below if P (

⋃n
i=1 An)→

P (A) as n→∞. Alternatively, suppose B1, B2, . . . is a sequence of measurable
sets such that B1 ⊇ B2 ⊇ . . . and

⋂n
i=1 Bi = ∅, written Bn ↓ ∅. Then P

is monotonely continuous from above (at the empty set) if P (
⋂n

i=1 Bn) → 0
as n → ∞. One can show (Ash) that in the presence of the other axioms of
probability, monotone continuity from below, monotone continuity from above,
and countable additivity are all equivalent ([?], Theorem 1.2.8). This means that
if P is merely finitely additive then there exists some sequence such that An ↑ A
but P (An) ̸→ P (A), and some sequence such that Bn ↓ ∅ but P (Bn) ̸→ 0.

Monotonely continuous probability certainly looks like a continuous function
between topological spaces. But we don’t normally think of the algebra F as a
topological space, so we don’t normally think of probability measures as being
literally continuous. But we now know that to define computability notions for
probability we need F to be a topological space; we can equip it with the order
topology τo. Doing so one can show that if An ↑ A or Bn ↓ ∅, then An → A
and Bn → ∅ in the order topology.12 Thus if P : (F , τo)→ [0, 1] is continuous,
then it is monotonely continuous, and hence countably additive. Putting these
facts together we have the following.

12We’ll just prove that An → A; the other case is similar. Any open ray (←, U) containing
A clearly contains every An. Since An ↑ A we know that for any open ray (U,→) containing
A there is k ≥ 0 such that Ak ∈ (U,→), and so for every m > k,Am ∈ (U,→). These rays
form a subbasis for the order topology, and so for any open set containing A there is some
index after which every An is an element of that open set, so An → A.

17

Theorem 1. There is no computable merely finitely additive probability measure
on a countably generated algebra.

Proof. Suppose F is a countably generated algebra (not necessarily a σ-algebra)of
subsets of some set Ω. Then (F , τo) is an effective topological space, and has
a standard representation δF . Let P : F → [0, 1] be a merely finitely additive
probability measure. Then P is not monotonely continuous, hence not contin-
uous with respect to τo. By Proposition 2, P is not (δF , ρ)-computable.

This result is quite general. We did not require F to be a σ-algebra, since
the order topology is well-defined on any Boolean algebra, nor do we require
the outcome space Ω to have any particular structure, such as a topology.

The obvious choice point in this proof is the choice of topology τo. Why
is this the right topology for the algebra? First, it’s the most commonly used
topology for ordered sets. Second, the only other commonly studied topology
for algebras, the topology of order convergence,13is a finer topology—that is, it
is a superset of τo. And it is a basic fact of topology that if f : (X, τ1)→ (Y, τY)
is continuous and τ1 ⊆ τ2, then f : (X, τ2) → (Y, τY) is continuous. So the
result also holds if we use the topology of order convergence.

Let’s finish this section with an example. Consider the de Finetti lottery on
the natural numbers, denoted PD. This finitely additive probability measure
is defined on P(N). While we can’t give a precise description of its behavior
(because it is nonconstructive), we at least know that it assigns 0 to every finite
set of numbers, and 1 to every cofinite set. Such a measure is guaranteed to
exist (assuming the Axiom of Choice) thanks to de Finetti’s coherence theorem.

By Theorem 1 we know that this measure is not computable. It is instructive
to see what goes wrong. As usual we equip P(N) with the order topology. The
standard representation δP(N) encodes subsets A ⊆ N by giving a list of open
rays (Bn,→), (←, Bn) ⊆ N that contain A, where the Bn are either finite or
cofinite sets. If P were computable then there would be a (type-2) Turing
machine which takes these codes as input and output a series of approximations
to the assigned probability. At a machine level this means that the Turing
machine, after a finite amount of time, outputs some finite string that encodes
some first approximation. Crucially, the machine must output something after
a finite amount of time, during which it could only have read a finite amount
of the code for its input x. As we said earlier, a machine which ran forever and
never output anything clearly does not compute anything of use.

Weihrauch ([Weihrauch, 2000]) calls this the “Finiteness Property” for Tur-
ing machines. It is simply the fact that computable functions are continuous
in another guise. Let’s suppose that the Turing machine receives as input an
infinite sequence σ whose digits are members of some finite alphabet. By the
Finiteness Property that machine must output some finite code t after having
read only a finite prefix s of σ. And, since the machine is deterministic, this

13This topology can be given as follows. Let (An)n∈ω be a sequence of elements of F . Then
(An)→ A if and only if there exist two sequences (Bn)n∈ω and (Cn)n∈ω such that (i) if i ≤ j
then Bi ⊆ Bj and Cj ⊆ Ci, (ii) for all i, Bi ⊆ Ai ⊆ Ci, and (iii) supBn = A = inf Cn.

18

means that if the machine is given as input any other code τ that also begins
with the string s, then the machine will output t after the same number of
steps. So similar input codes are mapped to similar output codes—the function
is continuous.14

So suppose we have a machine T that realizes the de Finetti measure. It
receives as input a list of open rays containing the encoded subset. It has to
read some finite prefix of this code and then output some finite string. We can
show that, since the de Finetti measure is discontinuous, T must output wrong
information on arbitrarily many inputs—there is no correct way to define T . For
our discontinuity we’ll choose the fact that P (n) = 0 for all n, but P (N) = 1.
Each subset has multiple codes, since any permutation of the family of open
rays containing that subset is an admissible code. In particular, suppose we
have a sequence σ that encodes the rays ({n},→) in increasing order. Suppose
σ contains codes for each such ray, so that it encodes N.

What does T do with σ? After some finite prefix it must output something.
Suppose it has seen m many open rays. So the information available to the
machine thus far is that the encoded set contains the first m natural numbers.
Recall that we defined the representation ρ of the real numbers as a sequence of
rationals, where the nth rational is within 2−n of the encoded real. So the first
rational that T outputs must be within 1/2 of the correct number. The correct
number for σ is 1, since it encodes N. So we could have T simply output 1. But
then some other code, σ′, which began with the first m rays ({m},→) and then
continued with the ray (←, {1, 2, . . . ,m + 1}) would thereby encode the finite
set {1, 2, . . . ,m}, which is assigned probability 0. So T would output 1 on σ′,
which is wrong—it isn’t within 1/2 of 0, the correct answer.

Now obviously we could change the rate of convergence for representations
of reals. Perhaps instead of 2−n we pick some slower computable bound. The
point is that we can repeat this process: we can find some sufficiently long
prefix of σ on which T has output sufficient information to be incorrect on some
other sequence σ′ which agrees with σ to that point. And both δP(N) and ρ are
admissible, so any other admissible representations will have the same problem.

So a brief excursion into computability theory already reveals interesting
consequences for Probabilism: a bounded agent’s beliefs must be countably
additive. Before wrapping up I want to return to our motivating discussion on
normative theories of epistemology for bounded agents.

5 Norms for Bounded Agents

Let’s review the two core Bayesian norms:

1. (Probabilism). An agent’s beliefs should take the form of a probability
function P over some algebra F of subsets of an outcome space Ω.

14The relevant topology on Σω , the space of codes, is the product topology generated by
the discrete topology on Σ. This topology has as a basis the family of clopen sets [s] = {σ |
∃n ∈ ω : σ ↾ n = s}.

19

2. (Conditionalization). Upon learning that some event A ∈ F is true,
the agent’s updated belief in any B ∈ F should take the form of the
conditional probability P (B | A) of B conditional on A.

Theorem 1 shows that there is no computer program, even in principle, that
calculates a merely finitely additive probability. Any such program must output
the wrong answer on many inputs. This is not an issue that could be resolved
by more memory, greater processing speed, immunity from errors, etc.15 So this
result is not seriously context-sensitive in Carr’s sense. Nor is it conventional,
since the Turing machine is the paradigm mathematical model of computation.
But the result is more general than bounded rationality can offer. Nowhere in
the statement of the theorem do we make reference to any particular agent’s
capabilities. Any bounded agent has capabilities much weaker than a universal
Turing machine’s; so anything such a machine cannot do is out of reach for such
an agent.

On this basis we can conclude that an agent’s credences, if they are coherent
and computable, must be countably additive. Unlike previous debates around
additivity this is not a normative claim. I am not saying a bounded agent’s
credences should be countably additive; they have to be, if they are coherent.
One might have thought that since finite additivity is logically weaker than
countable additivity it is sometimes more feasible to satisfy the former but not
the latter. But computable analysis allows us to see that in fact any such
measure is mathematically quite complex—too complex to represent a bounded
agent. Combining this fact with the principle that “ought” implies “can”, I
conclude that mere finite additivity is not a normative principle of belief for
bounded agents. Put positively, since bounded agents should have coherent
credences, they should have countably additive credences.

6 Conclusion

I have argued that computable analysis provides a natural framework to study
Bayesian epistemology for slightly more realistic bounded agents. Despite the
fact that the research program is young it has already produced surprising
results—for example, that there are no computable finitely-additive probability
measures, or that conditionalization is not always computable ([Ackerman et al., 2019]).
I have argued that these results matter because normative theories of episte-
mology should satisfy some version of the principle that “ought” implies “can”,
which ideal epistemology does not. I concluded that while bounded agents
should have countably additive credences, they cannot (if they are coherent)
have merely finitely additive ones. This is a surprising contribution to a standing
debate which shows that computable Bayesianism holds philosophical promise.

I have also argued that computable Bayesianism avoids that context-sensitivity
of more restrictive programs in the tradition of bounded rationality. This is not

15Unless we want to consider ordinal-time computation, which bounded agents certainly are
not capable of.

20

to say that computable Bayesian epistemology contradicts those theories. On
the contrary, this work strengthens results from those fields by showing that
some problems are impossible for an agent to solve because of the mathematics
of computability theory alone, not because of some contingent fact about their
individual limitations.

Of course, much remains to be done. In this paper we have laid out the
basics of computable probability theory, but there is a vast literature that I can
only gesture at here. This work may well find application in ongoing debates in
formal epistemology. There are also many avenues for further research. If condi-
tionalization is sometimes noncomputable, as shown in [Ackerman et al., 2019],
what is (are) the best alternative update rule(s) for computable agents? How
should we measure “better” and “worse” update rules in this case? We also do
not have computable versions of Dutch book or expected accuracy theorems. As
with finite additivity we may find unexpected barriers to computability, caus-
ing us to re-evaluate the normative import of these results. We may find that
an epistemology for real agents is surprisingly different from our traditional
theories.

References

[Ackerman et al., 2019] Ackerman, N. L., Freer, C. E., and Roy, D. M. (2019).
On the computability of conditional probability. Journal of the ACM, 66.

[Allais, 1953] Allais, M. (1953). Le comportement de l’homme rationnel devant
le risque: Critiques des postulats et axiomes de l’ecole americaine. Econo-
metrica, 21(4):503–546.

[Belot, 2023a] Belot, G. (2023a). That does not compute: David lewis on cre-
dence and chance. Philosophy of Science, page 1–10.

[Belot, 2023b] Belot, G. (2023b). Unprincipled. The Review of Symbolic Logic,
page 1–40.

[Blackwell and Dubins, 1962] Blackwell, D. and Dubins, L. (1962). Merging of
opinions with increasing information. The Annals of Mathematical Statistics,
33:882–886.

[Brattka et al., 2008] Brattka, V., Hertling, P., and Weihrauch, K. (2008). A
tutorial on computable analysis. In New Computational Paradigms. Springer.

[Braverman and Cook, 2006] Braverman, M. and Cook, S. (2006). Computing
over the reals: Foundations for scientific computing. Notices of the AMS,
53(3):318–329.

[Brent, 2020] Brent, R. P. (2020). The Borwein brothers, pi and the AGM.
In Bailey, D. H., Borwein, N. S., Brent, R. P., Burachik, R. S., Osborn, J.-
a. H., Sims, B., and Zhu, Q. J., editors, From Analysis to Visualization, pages
323–347, Cham. Springer International Publishing.

21

[Carr, 2022] Carr, J. R. (2022). Why ideal epistemology? Mind, 131(542):1131–
1162.

[de Finetti, 1974] de Finetti, B. (1974). Theory of Probability, volume 1. Wiley.

[Diaconis and Freedman, 1986] Diaconis, P. and Freedman, D. (1986). On the
consistency of bayes estimates. Annals of Statistics, 14:1–67.

[Easwaran, 2013] Easwaran, K. (2013). Why countable additivity? Thought,
2:53–61.

[Ellsberg, 1961] Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms.
The Quarterly Journal of Economics, 75(4):643–669.

[Hacking, 1967] Hacking, I. (1967). Slightly more realistic personal probability.
Philosophy of Science, 34(4):311–325.

[Hoyrup and Rute, 2021] Hoyrup, M. and Rute, J. (2021). Computable mea-
sure theory and algorithmic randomness. In Handbook of Computability and
Complexity in Analysis. Springer.

[Jeffrey, 1965] Jeffrey, R. (1965). The Logic of Decision. McGraw-Hill.

[Kadane et al., 1999] Kadane, J. B., Schervish, M. J., and Seidenfeld, T. (1999).
Statistical implications of finitely additive probability. In Rethinking the
Foundations of Statistics, chapter 2.5, pages 211–232. Cambridge University
Press.

[Kahneman et al., 1982] Kahneman, D., Slovic, P., and Tversky, A., editors
(1982). Judgment under Uncertainty: Heuristics and Biases. Cambridge
University Press.

[Kolmogorov, 1950] Kolmogorov, A. N. (1950). Foundations of the Theory of
Probability. Chelsea Publishing Company.

[Lewis et al., 2014] Lewis, R. L., Howes, A., and Singh, S. (2014). Computa-
tional rationality: Linking mechanism and behavior through bounded utility
maximization. Topics in Cognitive Science, 6:279–311.

[Lieder and Griffiths, 2020] Lieder, F. and Griffiths, T. L. (2020). Resource-
rational analysis: Understanding human cognition as the optimal use of lim-
ited computational resources. Behavioral and Brain Sciences, 43:1–60.

[Newell and Simon, 1972] Newell, A. and Simon, H. A. (1972). Human Problem
Solving. Prentice-Hall.

[Nielsen, 2020] Nielsen, M. (2020). The strength of de Finetti’s coherence the-
orem. Synthese, 198(12):11713–11724.

[Pettigrew, 2021] Pettigrew, R. (2021). Logical ignorance and logical learning.
Synthese, 198:9991–10020.

22

[Purves and Sudderth, 1976] Purves, R. A. and Sudderth, W. D. (1976). Some
finitely additive probability. The Annals of Probability, 4(2):259–276.

[Rute, 2020] Rute, J. (2020). Algorithmic randomness and construc-
tive/computable measure theory, page 58â€“114. Lecture Notes in Logic.
Cambridge University Press.

[Seidenfeld, 2012] Seidenfeld, T. (2012). Forecasting with imprecise probabili-
ties. International Journal of Approximate Reasoning, 53:1248–1261.

[Simon, 1957] Simon, H. (1957). Models of Man. John Wiley.

[Soare, 2016] Soare, R. I. (2016). Turing Computability: Theory and Applica-
tions. Springer.

[Thorstad, 2024] Thorstad, D. (2024). Why bounded rationality (in epistemol-
ogy)? Philosophy and Phenomenological Research, 108(2):396–413.

[Turing, 1937] Turing, A. M. (1937). On computable numbers, with an applica-
tion to the Entscheidungsproblem. Proceedings of the London Mathematical
Society, s2–42(1):230–265.

[Walley, 1991] Walley, P. (1991). Statistical Reasoning with Imprecise Probabili-
ties, volume 42 ofMonographs on Statistics and Applied Probability. Chapman
and Hall.

[Weihrauch, 2000] Weihrauch, K. (2000). Computable Analysis: An Introduc-
tion. Springer.

[Williamson, 1999] Williamson, J. (1999). Countable additivity and subjective
probability. The British Journal for the Philosophy of Science, 50(3):401–416.

[Zaffora Blando, 2022] Zaffora Blando, F. (2022). Bayesian merging of opin-
ions and algorithmic randomness. The British Journal for the Philosophy of
Science.

23

	Introduction
	Setting the Stage: Ideal vs. Bounded Rationality
	Computable Analysis from First Principles
	Admissible Representations
	Computable Probability Theory

	Coherence: Finite versus Countable Additivity
	Norms for Bounded Agents
	Conclusion

