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Abstract 

Although fundamental arguments have been presented to support the value-laden nature of 
all scientific research, they appear to be difficult to apply to at least some cases of basic 
research in physics. I explain why this is the case. I argue that basic research in physics is, in 
a very specific sense, often value-laden to a lesser degree. To spell this out, I refer to the 
different signal-to-noise ratios that can be achieved in different fields of research. I also argue 
that having a very low degree of value-ladenness in the very specific sense that I identify 
does not mean that the research in question is not value-laden at all. 

1. Introduction 

An emerging consensus in the philosophy of science holds that non-epistemic values 
inevitably have an influence on key parts of the scientific processes. Philosophers have 
shown this using examples from the life sciences, the environmental sciences, climate 
science, or the social sciences (Alexandrova 2018, Douglas 2000, Elliott 2011, Steel and 
Whyte 2012, Wilholt 2009, Winsberg 2012). Such demonstrations have not yet been put 
forward for research that deals with questions of physics or chemistry that have no direct 
application relevance. Although very fundamental and general arguments have been 
presented to support the value-laden nature of all scientific research, they appear to be 
difficult to apply to these areas. In this paper, I explain why this is the case. I will argue that 
‘basic’ research in physics is actually, in a very specific respect, value-laden to a lesser degree 
than the well-known examples from the life and environmental sciences. To explain this, I 
will refer to the different signal-to-noise ratios that can be achieved in different fields of 
research. In the end, however, I will also argue that this finding should not be confused with 
the alleged fact that basic research on physics is not value-laden at all. 
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In order to make the question manageable, I limit myself in this paper to one 
fundamental argument for the value-ladenness of all research, namely the argument from 
inductive risk (Douglas 2000, 2009; Elliott and Richards 2017). It is well suited to show the 
difficulty of tracing value influences in classic cases of basic research. To give a historical 
example, which I will look at in more detail in a moment: What trade-offs of risk of error did 
Robert Boyle have to make when he measured the volume of air in various states of pressure 
and very cautiously determined that the pairs of numbers he recorded were consistent with 
“the hypothesis, that supposes the pressures and expansions to be in reciprocal proportion”? 
(Boyle 1744 [1662], 101) According to the argument from inductive risk, accepting the 
hypothesis and communicating it are based not only on assumptions about the hypothesis 
itself and about the available evidence, but also about how high a tolerable inductive risk is 
permitted to be in the case at hand, and that question in turn is one that cannot be answered 
in a non-arbitrary manner without considering how severe the consequences would be if one 
were to falsely accept and communicate a finding. This is a very fundamental argument that 
should be applicable to any form of inductive science. Even in research that has no 
recognizable relevance to practical questions, judgments about acceptable risks of error must 
have some value basis. The puzzle cannot therefore be solved simply by pointing out that an 
episode of basic research has no relevance for our ethical and political concerns (cf. Dupré 
2007, 31)—not to mention the fact that historians of science point out that, on closer 
inspection, this is often not true in cases like Boyle’s (Shapin and Schaffer 1985). 
Nevertheless, Boyle’s neat and simple experiments, his clear and precise figures that lie 
almost exactly on a straight line, raise the question of where the risks and, consequently, the 
value-laden decisions are hidden. This is especially true when compared to paradigmatic 
cases of value-ladenness, like Heather Douglas’ (2000) example of laboratory rats that were 
exposed to dioxin for two years at various levels and then autopsied. Scientists examined 
slides of the rats’ livers to determine if there were any tumors and, if so, whether they were 
malignant. As Douglas convincingly argued, this ultimately required them to balance the risk 
of false positives and the risk of false negatives in light of their choices’ implications for 
subsequent research and public health policies. Are Boyle’s experiments and his analysis of 
their results not quite clearly value-laden to a lesser degree in some sense? And if so, in what 
sense? 

2. An abstract framework 

I will start to approach this question by asking why scientific research needs to take 
significant inductive risks at all. To achieve the desired generality, so that it becomes possible 
to compare radically different areas of scientific research, I avail myself of a framework 
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introduced by James Bogen and James Woodward (Bogen and Woodward 1988). In this 
framework, scientists seek to infer features of phenomena. Phenomena are understood to be 
events, processes, relations, and manifestations of properties that have stable and repeatable 
characteristics. The basis for scientists’ inferences about phenomena is provided by the 
results of measurement and observation processes, which Bogen and Woodward refer to as 
“data.” 

Of course, inferences from data to phenomena are always subject to uncertainty. A very 
important source of this uncertainty is the presence of noise. Woodward has introduced this 
term into the data-phenomena framework: 

Investigators try to arrange data production processes so that the data are causally 
influenced by the phenomena they are trying to learn about (and because of this convey 
information about those phenomena), but commonly data will also reflect the causal 
influence of many other more local and idiosyncratic factors having to do with 
properties of instruments, measurement procedures, and the environment. The 
influence of these additional factors on the data is often conceptualized as […] “noise.” 
(Woodward 2010, 793) 

Following Woodward’s usage, I will refer to features of the data caused by the phenomena 
as “signal” and features caused by other factors as “noise.” I deliberately accept the somewhat 
imprecise way of speaking of “features” in order to preserve the generality I am aiming for. 
“Noise” in this sense can be many things: causal processes that have nothing to do with tumor 
formation but affect rat liver tissue in ways that visually resemble a malignant tumor; 
impurities and inaccuracies in the manufacture of a Torricellian tube—the  simple type of 
barometer Boyle used in his experiments—which mean that its height is not quite exactly 
proportional to the atmospheric pressure acting on the pool of mercury at its base. 

A critical factor for the uncertainty in data to phenomena inference is how much the 
causal factors subsumed under “signal” affect the data in relation to the causal influence of 
the noise. In the following I will refer to this relation as “signal-to-noise ratio”. For the 
purposes of this paper, it suffices to stipulate that we call the signal-to-noise ratio “more 
favorable” when the signal’s influence is more prominent in the data, holding the noise level 
fixed, and “less favorable” when it is less so. 

Of course, it is not the signal-to-noise ratio alone that determines how uncertain 
conclusions about the phenomena are. Even with noisy data, the reliability of inference can 
in principle be improved through more effort, for example by increasing the amount of data 
used. This may suggest that no matter the signal-to-noise ratio, it is a matter of choice which 
inductive risks science is willing to accept. If one applies very strict standards as to how 
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probable it is supposed to be that one’s conclusions from data-to-phenomena inference 
actually correspond to the facts, then one just abstains from drawing any conclusions until 
one has sufficiently broadened the data base to be able to achieve the desired reliability for a 
given signal-to-noise ratio. 

3. Is it a matter of choice which inductive risks science is willing to accept? 

The fact that the business of strict standards is not always so simple can be illustrated by the 
example of agricultural research, which provides the background for Ronald Fisher’s 
pioneering contributions to statistics. In his study of the genesis of Fisher’s significance test 
method, Cornelis Menke (2016) has emphasized the relevance of two factors: first, that Fisher 
was strongly moved by considerations of research economics, and second, that at the time 
that he first developed his method he was employed as a statistician at an agricultural research 
institute. In order to draw conclusions from a comparative agronomic field trial with an 
experimental plot and a control plot, one must make assumptions about the comparability of 
the soil and other conditions of the plots. Ideally, these must be based on many years of 
experience with the yields of the plots. In terms of research economics, it makes no sense to 
keep the risk of statistical error lower than the uncertainties about the comparability of the 
experimental plots. To push these in turn to a very low level, one would theoretically need 
hundreds of years worth of documented planting and yield cycles. Against this background, 
it is to be understood that Fisher says of the p-value of 0.05 that “[i]t is convenient to take 
this point as a limit in judging whether a deviation is to be considered significant or not.” 
(Fisher 1925, 47; Menke 2016, 134-135). A significant result is thus characterized as one in 
which we can clearly state that either the null hypothesis is false, or the data are a random 
result that is less than 5% likely. 

A five percent probability that the data can occur if the null hypothesis is true is not 
exactly low. A practice of inferring phenomena from data that would be guided by Fisher's 
recommendation for identifying significant results is accordingly not very strict in its 
standards. Indeed, this is one of the reasons why the practice of using the p-value of 0.05 as 
the standard for publishable results is heavily criticized today. The context of agronomic 
research nevertheless makes Fisher’s choice of this convention understandable. In 
agricultural research, there are limits to the application of ever stricter standards that are 
rooted in the subject matter of research itself. Increasing the sample size and thus the acreage 
exacerbates the problem of providing homogeneity of soil and growing conditions. Repeating 
experiments generally requires waiting a year.  
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In discussing inductive risks, it is commonly emphasized that methodological decisions 
involve balancing the desired reliability of positive outcomes against the desired reliability 
of negative outcomes. The example of Fisher and the feasible significance level for 
agronomic field research makes it clear that, in addition to this, a trade-off against another 
factor, which I call productivity, is also required. By productivity I mean the rate at which a 
given research effort produces any results at all in a given time—whether positive or negative 
(Wilholt 2022). A superficial consideration might lead to think that the willingness to accept 
a reduced reliability of results in return for higher productivity would mean a limited 
orientation towards the goal of truth. This is not the case, as productivity is a dimension of 
the search for truth just as the reliability of positive results and the reliability of negative 
results are. It is almost trivial to achieve high reliability if you are prepared to sacrifice 
productivity—for example by adopting a research strategy that only deals with obvious cases 
and suspends judgment indefinitely on all the rest. Aiming for the truth implies aiming at 
reliable results, but it also implies aiming at results. A research program that would place no 
value at all on productivity could not convincingly claim to be concerned with the pursuit of 
truth.  

In agricultural research, there are sources of noise that can only be controlled to a very 
limited extent, such as the many inhomogeneities of a crop field, or the distinct characteristics 
of individual organisms. In order to achieve minimal productivity at all, researchers have to 
accept noticeable inductive risks. In practically relevant contexts, of course, researchers must 
not only achieve minimal productivity, but have specific goals for the productivity of their 
research that are dictated by the practical needs of an application context: Application-
relevant research has a greater or lesser degree of urgency. Productivity, reliability of positive 
results, and reliability of negative results must therefore be traded off against each other in a 
way that allows for noticeable shifts between these parameters. Since all three of these are 
dimensions of science’s orientation toward truth, there are no purely epistemic considerations 
that allow us to determine what exactly the trade-off must be. Only non-epistemic values can 
be the determining factor.  

4. Improving the signal-to-noise ratio 

As long as the signal-to-noise ratio remains the same, the reliability of positive results, for 
example, can only be increased by methodological choices that simultaneously come at the 
expense of the reliability of negative results, of productivity, or of both. For a fixed signal-
to-noise ratio, inductive risks can only be shifted from one dimension of an investigation’s 
truth-orientation to the other. However, there are areas of scientific research where it is quite 
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possible to aim for a more favorable signal-to-noise ratio. Examples of this can be found in 
all laboratory sciences and especially in physics. 

A real, substantial improvement in the signal-to-noise ratio is not just a zero-sum game 
with respect to inductive risks. Instead, it can effectively reduce the total amount of risk we 
must accept in all dimensions of truth-seeking. Under certain circumstances, it may be 
possible to achieve values in terms of reliability of positive results, in terms of reliability of 
negative results, and in terms of productivity that easily meet our expectations, so that we do 
not have to make compromises in any of these respects, and decisions about trade-offs 
between them need no longer involve comparative judgments about competing value-infused 
goals. This is the sense, I will argue below, in which values influence the scientific issues in 
question to a lesser degree. 

I would like to explain this briefly with an example that I have already mentioned 
several times. What really happened when Robert Boyle first established the law now named 
after him? In the relevant experiment, a certain amount of air is sealed in the shorter arm of 
a U-shaped tube, the bend of which is filled with mercury (Boyle 1744 [1662], 100-102, cf. 
Shapin and Schaffer 1985, 27). The mercury level is initially the same in both arms of the 
tube. Mercury is now poured into the open arm until the air enclosed in the other arm has 
been compressed by a certain amount. It is then measured by how many inches the mercury 
column in the longer arm exceeds that in the shorter arm. Since the longer arm is open, the 
atmospheric pressure, which is measured independently in inches of mercury, is added to this 
amount. The resulting sum is the decisive value, “exhibiting the pressure sustained by the 
included air” (Boyle 1744 [1662], 101). Boyle increases the pressure 24 times until the air is 
reduced to a quarter of its original volume. He compares the pressure values determined by 
measurement with calculated values that indicate “[w]hat the pressure should be, according 
to the hypothesis that supposes the pressures and expansions to be in reciprocal proportion” 
(ibid.). The deviation is always less than 1%. 

To further support the generality of his hypothesis, Boyle undertakes another 
experiment, this time with air under pressure that is lower than atmospheric pressure (ibid., 
102-103): a thin glass tube, open on both sides, is immersed deeply, but not completely, in a 
mercury bath. The portion of air above the liquid level in the tube is then sealed in with wax. 
When the tube is lifted, the air inside expands. The reduced air pressure of the air in section 
A of the tube and the weight of the mercury column B projecting above the surface level 
together maintain equilibrium with the atmospheric pressure. Subtracting B from the 
atmospheric pressure thus gives the pressure of the included air. Boyle again presents a table 
of numerical results that match his hypothesis similarly well as in the first experiment. 
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In some cases, it is quite simple steps by which the ratio of signal to noise is optimized 
in experimental practice, and the separation of signal from noise is made possible. In both of 
Boyle’s experiments, a certain small amount of air is included in an enclosure bounded on 
one side by a mercury surface and on all other sides by rigid barriers. This confinement allows 
both experimentation with a specific, fixed amount of air and shielding against a whole range 
of causal influences on that portion of gas. The atmospheric pressure acting on the apparatus 
from the outside is controlled by being measured independently for each individual 
experiment in close temporal and spatial proximity. Manipulations of the system that cause 
changes in pressure and volume are performed extremely slowly and in small steps. This 
preparation creates a tiny, well-controlled experimental space. The phenomenon of air 
pressure is made controllable and manipulable, it is isolated from external influences in a 
laboratory environment. Ernan McMullin has summarized such aspects of experimental 
practice, which amount to a foundational strategy of the modern experimental method, under 
the apt label of “causal idealization” (McMullin 1985). 

A good decade after McMullin's reflections, Nancy Cartwright accentuated the 
observation that, especially in physics, experimentation often begins with extensive material 
preparation of the phenomenon by coining the term “nomological machine”. The 
experimental apparatus facilitates “the repeated operation of a system of components with 
stable capacities in particularly fortunate circumstances” (Cartwright 1997, 65), which is 
what makes the exact application of mathematically formulated laws possible in the first 
place. 

              
 
Fig. 1: Schematic representation of Boyle’s two experiments supporting the inversely proportional relationship 
between pressure and volume in air. 



 8 

Even in physics, the application of causal idealization does not inevitably lead to 
inductive risks disappearing or becoming vanishingly small. Robert Millikan’s lab books on 
his famous oil drop experiment, as cited below by Richard Holton, contain notes that bear 
eloquent witness to the frustrating need to interpret the data that was produced by what was 
supposed to be a nomological machine (cf. also Woodward 2010, 794; Barnes, Bloor and 
Henry 1996, 38):  

Very low Something wrong [11/18/1911]. Very low Something wrong [11/20/11]. This 
is almost exactly right & the best one I ever had!!! [12/20/11]. Possibly a double drop 
[1/26/12]. This seems to show clearly that the field is not exactly uniform, being 
stronger at the ends than in the middle [1/27/12]. Good one for very small one [2/3/12]. 
Exactly right [2/3/12]. Something the matter.... [2/ 13/12]. Agreement poor. Will not 
work out [2/17/12]. Publish this Beautiful one.... [2/24/12]. BEAUTY one of the very 
best [2/27/12]. Perhaps Publish [2/27/12]. Excellent [3/1/12]. This drop flickered as tho 
unsymmetrical [3/2/12]. (Holton 1978, 212) 

Evaluating data points selectively, as Millikan appears to have done, obviously involves risks 
of error and is quite reminiscent in nature of the situation faced by the toxicologists described 
by Douglas (2000), who must look at one rat liver preparation after another and classify it 
either as tumor-free or as cancerous tissue. Experimenters in physics, however, often have 
the advantage that the way to further improve the signal-to-noise ratio by further causal 
idealization is open to them. This is true, for example, of Millikan’s continued efforts devoted 
to fighting dust particle intrusion in his apparatus, which he blamed for some of the aberrant 
measurements. 

In contrast, in the life and social sciences, there are often reasons lying in the subject 
matter that stand in the way of further improving the signal-to-noise ratio. Of course, the life 
sciences have fully embraced the experimental method, and in their case, too, causal 
idealization is evidently part of this method to some extent. But to take the shielding of a 
phenomenon against extraneous causal factors to extremes is often incompatible with the 
integrity of a studied organism. Sources of noise are often rooted in the causal complexity of 
the object under study itself and cannot be isolated or shielded without disturbing or even 
destroying the object. 

This is at least sometimes different in physics. Here, under favorable circumstances, it 
may be possible to unravel the “tangle of causal lines”, to use one of McMullin’s (1985: 264) 
metaphors for causal idealization, by material preparation, and in the end to isolate a single 
or a few among them as a signal, with little or almost no noise. We always have implicit or 
explicit value-infused expectations about how reliable positive and negative results of a study 
need to be, and how quickly results need to come (i.e., in my terminology, how productive 
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the study should be). If causal idealization has been very successful and the signal to noise 
ratio is very favorable, it may be possible to meet all of these expectations simultaneously 
with ease. Some methodological choices would then theoretically still shift the balance 
between productivity and reliability, but if these shifts occur in areas of reliability and 
productivity that far exceed our need for reliability and productivity anyway, then they do 
not make a relevant difference and do not impose hard choices on scientists. In this sense, a 
very crucial source of value-ladenness disappears for the investigations in question, and in 
this respect, it can be said that the more favorable the signal-to-noise ratio that can be 
achieved in an investigation, the less value-laden it is, ceteris paribus. 

5. Some observations and clarifications 

It is not only noise in the data and the resulting inductive risks in data-to-phenomena 
inference that pose a threat of false results in physics. Philosophers of science have been 
aware, at least since the times of Pierre Duhem, that a large number of assumptions and 
presuppositions go into physical experiments. The theoretical interpretation of the 
experimental setup could contain errors. Initial conditions or parameter values could be 
wrong. The experimental setup could contain an undetected technical mistake. Arguably, 
historians of science have shown how at least sometimes the kinds of assumptions I just 
mentioned are influenced by scientists’ political, ethical, or social values. However, it would 
be quite hard to demonstrate that such assumptions must be influenced by values. By contrast, 
when it comes to weighing inductive risks, to the question of how precisely, say, the 
reliability of positive results ought to be traded off against the desired productivity, there 
simply is no rational alternative to starting from a judgment about how severe the 
consequences of a false-positive result would be. Therefore, this potential source of value-
ladenness plays a special role, and therefore scientific research that enjoys the luxury of being 
able to work with a favorable signal-to-noise ratio is, in this respect, at least potentially value 
laden to a lesser degree. Of course, a favorable signal-to-noise ratio does not apply to all 
physical experiments, nor is it fundamentally limited to physics. But the most characteristic 
examples of such successful causal idealization come from physics, which is why I stick to 
physical examples in this paper. 

The fact that the advantages of physics in this respect are due to its subject matter is 
not to be understood in such a way that they are inherent to the material stuff itself that 
physicists investigate. Rather, they depend on how well this stuff can be prepared for 
experimentation. Take, for example, the hydrodynamics of the earth’s atmosphere. It is made 
up of the same stuff that is the subject of Boyle’s experiments: Air under different pressure 
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conditions extending into various regions of physical space. However, in the study of the 
actual hydrodynamics of our atmosphere, one can by no means speak of a favorable signal 
to noise ratio, whereas in Boyle’s experiments one can. 

It is important to note that the same material manipulations that optimize the signal-to-
noise ratio often widen the gap between internal and external validity, making near-value-
free results possible in principle but often render them limited in their practical applicability 
at the same time. Internal validity in the sense that is relevant in this context is the truthful 
description of the operation of the nomological machine in the laboratory, while external 
validity means the (approximate) correctness of the result when applied to a practically 
relevant problem outside the laboratory. 

Another important clarification is that everything really turns on the ability to infer the 
signal well and reliably from the background noise while avoiding overfitting to the data. 
The term signal-to-noise ratio, which I am using for simplicity, describes this a bit 
imprecisely. In particle physics, for example, there is a lot of noise. The particles that are 
caused by collisions are extremely short-lived. The detectors register the products of millions 
of decay events, and the task is to filter out from this abundance the traces of decay of rare, 
particularly interesting particles. The fact that in particle physics it is nevertheless possible 
to filter out the signal with very high reliability is due to the sheer gigantic amount of data 
that can be collected over a long time in the colliders. The diagram below shows how data 
from two-photon collisions were collected over a period of about a year and a half in the 
ATLAS Experiment at CERN. The visible bump in the fitted red curve that appears in the 
aggregated data at the end corresponds to the mass of the Higgs boson. 

 

 

 
             Snapshot from April 2012       Snapshot from August 2012     Final data from December 2012 
 
Fig. 2: Aggregated data (mass spectra) from two-photon collisions at the ATLAS experiment, CERN.  
Source: https://home.cern/resources/faqs/five-sigma . Used with permission. 
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ATLAS waited to publish the “discovery” of the Higgs boson until the data showed statistical 
significance of five standard deviations—a convention also known as “five sigma”, or 5σ. 
Converted, this means a p-value of 0.0000003. This value indicates the probability with 
which, under the assumption that no Higgs bosons were created in the collisions, the bump 
in the curve could arise as a result of mere fluctuations in the background noise. The five 
sigma standard is conventionally required in particle physics to talk about a discovery; 
journals, for example, typically do not allow the use of the term “discovery” in title or abstract 
unless the data reach at least this level of statistical significance. 

From the perspective of virtually any other discipline, especially any field from the life 
or social sciences, the five sigma standard marks an unattainable and almost fantastic level 
of rigor in the demands for reliability of data-to-phenomena inference. The fact that it is at 
all possible to meet such strict standards in physical experiments is what makes it seem to us 
as if there were no trade-offs or compromises required at all, and no room for value-
ladenness. Had the ATLAS physicists waited a few months longer, they would have realized, 
in effect, even higher standards for the reliability of their discovery, at the cost of somewhat 
reduced productivity. But we do not perceive this as a value-laden choice, since our standards 
for productivity and reliability are not affected in any relevant way by one or two months’ 
worth of data. Either way, our expectations are overfulfilled. 

The example shows that, strictly speaking, a distinction can be made. The question of 
signal to noise ratio, i.e., according to our definition, how much the data are causally 
influenced by the phenomenon in relation to other causal influences, can be asked once in 
relation to individual measurements and once in relation to the accumulated data that the 
circumstances under which the scientists work allow them to collect. The relevant sense in 
our context is always the latter—for data-to-phenomena inference is always made on the 
basis of the total, accumulated data. Where noise is unsystematic, the large-scale 
accumulation of data can make the signal stand out from it. In this sense, it can also be said 
of the ATLAS experiment that the huge number of measurements that are made makes it 
possible to realize a favorable signal to noise ratio, even though noise is considerable for each 
individual measurement. 

6. Why a favorable signal-to-noise ratio does not mean value free science 

Finally, I would like to warn against confusing a very low degree of value-ladenness in this 
very specific sense with the complete lack of relevance of non-epistemic values. This would 
be a serious mistake for two reasons. Firstly, the fact that trading off between reliability of 
positive outcomes, reliability of negative outcomes and productivity does not require us to 
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make decisions where we have to accept falling short of the value-laden expectations we 
have set in one respect or the other, does not mean that such trade-offs do not need to take 
place at all. The choice of five sigma, for example, is not merely a matter of social 
coordination; its pros and cons can be discussed (see e.g. Lyons 2013). What ultimately plays 
a role in such trade-offs, when they do not cut into markedly value-laden expectations one 
way or the other, are considerations of research economics. If the cost to the research 
community of being led astray by a mistake, even a very unlikely one, is potentially 
extremely high, then it may be worth investing a few more resources (i.e. sacrificing 
productivity) to make the mistake even less likely. Such questions of research economics are 
too closely interwoven with economic issues in a more general sense to allow the values in 
question to be clearly marked as “purely epistemic”. 

The second and arguably even more important reason is that the possibility of achieving 
such favorable epistemic conditions depends on presuppositions that are themselves relevant 
to questions of value in the context of discussions of the ends and means of science. For in 
order to enjoy favorable signal to noise ratios one must be able to afford the necessary 
reduction in complexity and the time and material effort required to construct nomological 
machines. In particular, one must be able to afford to focus on phenomena that can be 
captured in such nomological machines and thus may be far removed from the phenomena 
that matter in application contexts. Whether one studies more directly application-relevant 
questions that force one to make hard choices in weighing inductive risks, or application-
remote nomological machines that do not, but on the other hand may take one further away 
from practically relevant questions, is itself a value-laden trade-off at the level of the choice 
of research question and amounts to its own form of value-ladenness. This form of value-
ladenness is concealed when one focusses solely on trade-offs between different types of 
inductive risks, as such trade-offs always presuppose a given, very specific subject of 
research and cannot represent value-laden decisions that involve subtle or not so subtle shifts 
in the subject of research. 

The false conclusion that research with favorable signal-to-noise ratios would no longer 
require any values at all would ultimately mean failing to recognize that there are many other 
forms of epistemic risks in research besides inductive ones (Biddle 2016; Biddle and Kukla 
2017). 

7. Conclusions  

I have found that some kinds of research endeavors, because of the favorable signal-to-noise 
ratio they can achieve, do not require researchers to make hard choices in the sense of 
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requiring them to compromise on reliability of positive results, reliability of negative results, 
or productivity relative to levels of these objectives that seem worth pursuing. In this 
particular respect, these episodes of research exhibit lower degrees of value-ladenness, and 
at least in this sense, then, degrees of value-ladenness may be said to exist. This explains why 
there are examples of scientific research where we find it extremely difficult to identify risks 
of error that need to be weighed against each other in value-laden decisions. I have also 
pointed out that achieving such advantageous signal-to-noise ratios requires the prior material 
preparation of experimental systems, and that in the course of these preparations, trade-offs 
involving shifts in the subject of research are implicitly made at another level, such as those 
between internal and external validity. That research which benefits from a favorable signal 
to noise ratio is in a certain respect value-laden to a lesser degree does therefore not mean 
that it is completely free of non-epistemic values. 
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