
Demarcating value demarcation in ML

Abstract

It has become widely recognized that machine learning (ML) systems are value-laden. This

raises a value demarcation problem: how can we distinguish between legitimate and illegitimate

non-epistemic value influences in ML development and use? This paper makes two

contributions. First, it surveys value demarcation strategies in ML and identifies gaps in the

debate. Second, it addresses a deeper issue: what makes for a good demarcation strategy? We

need a way to judge the adequacy of existing demarcation strategies across contexts. I submit

contextual adequacy as a meta-norm for evaluating the prima facie justification of value

demarcation proposals in ML.

Introduction

In the context of machine learning (ML), the value-free ideal is dead and buried (Johnson 2023,

Dotan & Milli 2019, Kraemer et al. 2011).1 It is now clear that ML across the board is far from

the politically neutral, epistemically objective tool that it was once thought it could be. Instead,

throughout the whole ML research process, normative choices and tradeoffs are being made.

Complete value-neutrality does not exist, and a crisp separation of epistemic and non-epistemic

values also seems unattainable (Rooney 1992). Non-epistemic values come in through the back

1 In philosophy of science, debates persist regarding the value-free ideal. However, within the

domain of machine learning, there is widespread agreement that ML is inherently value-laden. I

take this as a starting assumption and aim to make progress on what the implications are of

accepting this claim.
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door. Instead of leaving them to sneak around in the dark, we need to put a spotlight on this back

door.

This is the value demarcation problem: if we accept that all systems are value-laden, how

do we distinguish between legitimate and illegitimate non-epistemic value influences in ML

development and implementation? This problem is especially pressing in social (i.e.

non-scientific) applications, where the direct stakes of automated decisions are high for decision

subjects. Individuals may have more or less well-grounded intuitions about acceptable and

unacceptable biases in machine learning, but the solution to this hard problem should not be a

matter of personal preference or intuition. A normative framework is needed to guide research

standards and guidelines.

Previous work on the value demarcation problem falls within two broad categories:

descriptive and normative. Descriptive work aims to explain the problem: its underlying reasons

and what it looks like in practice, i.e. concrete value influences in the ML development process.

There has been ample fundamental philosophical discussion about the value-ladenness of

algorithms (Johnson 2023, Dotan & Milli 2019, Scheuerman 2021, Kraemer et al. 2011,

Friedman 1996), fitting in a tradition of technology critique that goes back to Winner (1980), and

there is also an increasing body of work on concrete value influences in practice (Birhane et al.

2022; Martin 2022; Ugar & Malele 2024; Biddle 2022; Angwin et al. 2016). Normative work, on

the other hand, proposes a first-order criterion or set of criteria for value demarcation, such as

providing reasons why a particular value is (il)legitimate.

This paper has two goals. First, drawing on discussions in philosophy of science, I

categorize the current first-order norms that have been proposed and highlight open unexplored

possibilities in the context of ML (section 2). Second, I identify the deeper problem of how we
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can evaluate why some demarcation norms are preferable to others, specifically in the context of

ML. In other words, I introduce the need for meta-norms to be able to justify and evaluate

first-order value demarcation strategies. I seek to make progress toward solving this deeper

problem (section 3). Specifically, I suggest a norm for justifying what makes first-order norms

(in)valid at first glance.2 I argue that any strategy addressing non-epistemic values must result in

ML that is at least contextually adequate (3.1). I then evaluate several current strategies along the

meta-norm of contextual adequacy, with a close look on the value of fairness (3.2). Ultimately

my aim is to push the debate about value-ladenness in ML forward from simply explaining that

values are embedded in modeling, toward finding solutions to the hard problem of value

demarcation.

2. Dominant first-order strategies: axiological and consequentialist

The AI/ML ethics landscape has been grappling with the value question for years. Taking stock,

there are two dominant approaches regarding the influence of non-epistemic values: axiological

strategies and consequentialist strategies.

2.1. Axiological strategies

Many call for appointing a certain value or set of values as (in)appropriate, often departing from

philosophical ideas about e.g. social justice. These strategies draw the core distinction on the

level of concrete values themselves. They establish clear norms for which particular

non-epistemic values are allowed and which are not. Work that calls for concrete, single values

2 Compare with ultima facie justification that asks finer-grained questions, such as how to solve

conflicts between prima facie legitimate norms in practice.
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such as fairness, transparency or accountability falls in this category (Hutchinson et al. 2021;

Shah 2018; De Laat 2018; Zhou & Kantarcioglu 2020; Zerilli 2022; Nyrup 2022; Shook et al.

2017). Within these calls for concrete values, there are different views on what those values look

like and how they should be achieved, resulting in different mitigation strategies. The details of

implementation are not important here; what’s important is to see that they all take the same

axiological strategy.

Axiological demarcation:

Value V is (il)legitimate in ML.

Further examples of the axiological strategy include calls for decolonial (Mohamed et al. 2020;

Mhlambi & Tiribelli 2023), feminist (D’Ignazio & Klein 2020; Toupin 2024; Hancox-Li &

Kumar 2021), and anti-racist ML (Benjamin 2020; Buolamwini & Gebru 2018; Raji et al. 2020).

These are not mutually exclusive and may be complimentary; indeed, calls for anti-racism often

go hand in hand with calls for decolonial and feminist AI. They all seek to dismantle

discriminatory values and promote values such as equity, inclusivity, anti-discrimination, and

sometimes restorative justice.

2.2. Consequentialist strategies

An alternative first-order demarcation strategy takes as its starting point that as long as ML

systems perform well, it does not matter which non-epistemic values shape our decision-making.

The important thing here is the consequences values produce, rather than specific values

themselves.

Consequentialist demarcation:

Consequence C determines which value(s) V are (il)legitimate in ML.

4



In ML, the most common perspective is that any value can shape decision-making as long as it

does not impede model performance, often assessed through technical metrics; but other

consequentialist views are possible. This performance-centric view is particularly prevalent

among engineers (Birhane et al. 2022). However, as scholars have highlighted (Grote & Berens

2020; Danks & London 2017), we cannot escape the influence of and trade-offs between

non-epistemic values in model development and use, from training data to methodological

choices like model architecture, hyperparameters and objective functions. While standard loss

functions aim to optimize for test-set accuracy, maximizing accuracy can sometimes conflict

with other objectives such as fairness or privacy. Negotiating these trade-offs involves

value-laden choices, even if they are not explicitly acknowledged. Thus, failing to explicitly

consider non-epistemic value is a consequentialist stance, even if one may not be aware of it.

Since we have moved past the value free ideal, not taking a stance is also taking a stance.

2.3. Gaps

These value demarcation strategies have their strengths and weaknesses. A major issue with

axiological strategies for example is that we live in pluralistic societies with enormous variety in

both non-epistemic values and ways of prioritizing them––and “it is unreasonable to assume that

public deliberation will yield a shared set of values and a way of prioritizing them that is

supported equally by all” (Holman & Wilholt 2022). Consequentialist strategies often fail to

account for real-world harms or benefits (Birhane et al. 2022) and may open up (data) science to

being abused for political gain (Holman & Wilholt 2022). Moreover, axiological and

consequential strategies might conflict, e.g. when a certain value is deemed illegitimate yet

results in great performance or vice versa.
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Drawing on a current discussion in philosophy of science (Holman & Wilholt 2022), we

can see that more strategies are possible. Axiological strategies locate the core distinction

between legitimate and illegitimate value influences at the level of the values themselves, and

consequentialist strategies locate it on the level of their effects. But there are other possible

levels. First, functionalist strategies look at the role values take on in scientific research, not at

what concrete values they are or the effect that they produce. Examples are Douglas (2009), who

claims that for values to be legitimate they may act as reasons to determine evidence thresholds

but are restricted from directly accepting or rejecting claims, preventing undue influence on the

scientific process. Anderson (2004) argues that values are allowed as long as they do not “drive

inquiry to a predetermined conclusion”. Second, coordinative strategies legitimize value-laden

methodological choices by their alignment with expectations placed on them by others. For

example, those choices should adhere to certain standards (and meta-standards) in order to be

legitimate (Elliott & McKaughan 2014). Finally, systemic strategies make the demarcation

dependent on the whole social set-up within which the research occurs: the whole system needs

to meet certain conditions for value-influences in science to be legitimate (Longino 1990,

Kitcher 2011). An example of a systemic strategy for ML is Paullada et al. (2021), who argue

that a turn in the culture is necessary regarding dataset development and use. Note that these

strategies are not strictly mutually exclusive and that some may often produce coinciding

demarcations in practice. For example, a decolonial strategy is mainly axiological since it locates

the core distinction between legitimate and illegitimate value influences on the level of values

themselves, but it has elements of a systemic strategy; working towards decolonial ML is not a

matter of picking out bad apples, but changing the entire system.
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There are two central gaps with corresponding avenues for further research. One gap is

that not all strategies have been explored in detail in the context of machine learning. One

possible route to take is thus to establish more sophisticated first-order demarcation strategies by

drawing parallels with similar views in philosophy of science. For example, one could take a

functionalist or coordinative approach and apply it to the machine learning context. This is

certainly fruitful and would advance our understanding of non-epistemic values in machine

learning. The second gap however is more interesting and more challenging. There is a lack of

work that provides normative guidance on which of those strategies are useful, empirically

successful, or normatively grounded and justified. What makes for a good demarcation strategy?

Why should some non-epistemic value influences prevail over others? While some obvious

candidates come to mind: goals might be to minimize discrimination or human suffering, to

improve well-being or equity, these goals may conflict with other goals, e.g. seeking truth or

driving innovation. Thus, in order to avoid justification halting at “just-so” and ending up with

relatively static, possibly inconsistent, or generally unclear first-order norms, higher-level goals

of ML require careful consideration. In this paper, I seek to make progress on this second

research gap by proposing contextual adequacy as a meta-norm for prima facie justification of

value demarcation strategies in ML.

3. Contextual adequacy as a meta-norm

Establishing higher-level goals of ML is no easy feat. Ultimately the question boils down to:

what do we want machine learning to be? In philosophy of science, there are hotly debated goals

and ideals that science as a practice should live up to. Understanding the natural world,

prediction and control, generalizability, accuracy, and impartiality or variations thereof come to

mind. But there are also voices in the debate that argue it may not be possible to come up with

7



overarching umbrella goals for science, and instead we need to look at concrete disciplines. I am

sympathetic to the latter view. My goal here is not to characterize ML in its entirety and arrive at

an exhaustive list of meta-norms that can provide the solution to all issues with first-order

proposals in practice. It is much more modest: the aim is to propose contextual adequacy as a

meta-norm for ML, which can be used to make an initial evaluation of demarcation strategies in

non-scientific contexts.

3.1 Adequacy for purpose (AFP)

ML models are usually developed for specific tasks in specific contexts. However, they are often

adapted and used in contexts beyond the context of development. For example, a ML system that

was trained to classify pastries learned to perform a variety of other tasks, including the

identification of cancer cells (Somers 2021). Transferability is particularly valuable when

confronted with challenges such as limited training data or resource constraints: learned features

can be generalized to new models or contexts, thereby reducing the necessity to start training

models from scratch for each unique application (Ching et al. 2018). Moreover, transferable

models are more robust against deviations from assumptions made in model training, i.e. models

will be better equipped to handle variations in real-world scenarios (Zhuang et al. 2020, Weiss et

al. 2016).

There are technical trade-offs in the quest for transferability. One highly effective

approach is fine-tuning: models inherit pre-trained weights from another model and start learning

from there, as opposed to random initialization, where the initial values of the model’s

parameters are set randomly. Fine-tuning greatly improves accuracy (Yosinski et al. 2014).

However, it has been found that vulnerability to adversarial attacks transfers too; attacking the

pre-trained model will deceive the transferred model (Rezaei & Xin 2019). Models trained with
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random initialization are much more robust against such attacks, though they exhibit lower

accuracy (Chin et al. 2021). Different transfer learning methods are proposed to deal with this

problem. This is a fruitful avenue in computer science.

Beyond technical trade-offs, however, transferability comes with certain risks and harms.

ML is not only a technical endeavor; it is so embedded in social structures that these provide

constraints on transferability too. It is crucial to judge whether a model is actually desirable in a

new context of application, even if it is technically transferable. In other words, judging

transferability is not just a matter of accuracy and robustness against dataset shifts. For example,

implementing a medical decision support system in a new context that has demonstrated high

accuracy across datasets and robustness against adversarial attacks may still result in adverse

consequences; doctors in certain regions may put either too little or too much trust in systems, or

there may be a cultural emphasis on the patient-doctor relationship, and people may feel scared

of or misunderstood by a “machine”. In general, research has suggested that ML in healthcare

disrupts existing work practices, which disturbs patient-doctor or patient-nurse relationships

(Elish & Watkins 2020). Different application contexts have different requirements, partly

determined by non-epistemic values, that go beyond performance metrics. Thus a consensus has

emerged that ML should be contextually adequate; not taking the context into account can result

in various harms.

However, the details of such contextual adequacy have not been fleshed out. What makes

a model adequate for purpose and how can we assess this in practice? Here I draw inspiration

from Parker (2020), who developed an adequacy-for-purpose (AFP) view of evaluation for

scientific models. On the AFP view, models cannot be evaluated as good or bad just by

representational accuracy. Instead, models should always be assessed in light of their purpose or
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downstream use. The quality of the model therefore only exists relative to a certain application

context.

In order to judge whether a model is adequate-for-purpose, one first needs to understand

the purpose and how that purpose can be met. Note that in non-scientific contexts, the purpose of

a ML model is not always epistemic. Models can be used for a range of goals, such as resource

allocation, customer service, cost minimization, automation of several tasks, etc. It may often be

the case that the purpose is achieved through epistemic sub-purposes, but not always. And

whether a purpose is achieved is often open to interpretation; if the goal is to explain a certain

event, it depends on your notion of explanation whether that goal has been met successfully. In

many cases the purpose needs to be defined more clearly in the first place, and sometimes there

are reasons to reject the purpose outright. For example, in the case of people using Meta’s

open-source LLM to create graphic sexbots that engage in violent and illegal acts, we have good

reasons to argue that no model would be adequate for this particular purpose (Dupré 2023).

If the purpose of the model is clear and acceptable, we need ways to evaluate the

adequacy of a certain ML model for that purpose, i.e. whether people can actually achieve that

purpose through the use of that model. The key insight is that for a ML model to be AFP, it needs

to be not only accurate and robust against adversarial attacks (i.e. stand in the right relationship

with the target system) (T), but it also needs to stand in the right relationship with the user of the

model (U), the methodology that is employed (W), and background assumptions that are at play

(B) all at the same time. In Parker’s words, purpose P defines a problem space and U, W, B, T

are constraints on how it should be solved. The model M then needs to be a solution within that

problem space. These constraints interact; sometimes T depends on U, W, or B. Take a complex

phenomenon A that you want to explain with model M; the purpose of the model is thus to
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explain A. If the target is represented in too much detail, it may result in a model that is

incomprehensible to users (U) and therefore fails to explain P. In this case, what the suitable

relationship to the target is depends on user needs and constraints. Note that the constraints are

not just epistemic; there are non-epistemic value constraints at play in U, W, B and T (Lusk &

Elliott 2022).

Thus, the upshot of the meta-norm of contextual adequacy is that the values that are

encoded in ML systems should be brought to light and scrutinized whether it is a good fit for a

particular purpose. Systems cannot be rejected or endorsed in the abstract, evaluation should

always happen in light of a particular application. To this end, extensive documentation is

crucial, which can be standardized by e.g. model cards (Mitchell 2019). An account of legitimate

value influences in ML should specify how it produces systems that are adequate for purpose.

Practical questions include: What is the purpose of this model? When can we say the purpose is

achieved? Are the application constraints of fidelity, user characteristics, methodology, and

background context specified? Is there a clear roadmap for when models do or do not meet the

application constraints?

3.2 Evaluation

Let us evaluate the dominant first-order strategies seen in section 2. Consequentialist strategies

maintain that any system is transferable to any context as long as it performs well on certain

metrics. This clearly does not produce ML that is contextually adequate; it does not specify in

any way how application constraints of user characteristics, methodology, and background

context should be defined, and how models can meet them.

We have already seen an example with the medical decision support system, where the

model was performing well but was not adequate for purpose in a different application context
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due to cultural user constraints. Examples of where M is not a solution in the problem space

constrained by U, W, B, T but are still used are plenty. ChatGPT is used for customer service

interactions in diverse multinationals, which is not adequate for purpose due to non-epistemic

value influences related to cultural sensitivities and nuanced language understanding

(Shrivastava 2023). Or consider a sentiment analysis tool for academic recruitment (Uloko et al.

2023). The idea is that sentiments in people’s resumés can be analyzed and leveraged for better

hiring decisions. Text like “I am a highly motivated individual…” is labeled positive, whereas

text like “I am interested in a software development role…” is labeled neutral. Each applicant

then gets an aggregated sentiment score, which, according to the researchers, enhances “the

institution’s ability to make well-informed decisions that encompass both eligibility and

suitability aspects” (Uloko et al. 2023). From a consequentialist perspective, the primary focus

might be on the tool’s ability to accurately predict sentiment and its impact on hiring success

rates. However, such a tool might inadvertently introduce biases, potentially disadvantaging

candidates from certain demographics or cultural backgrounds.

The meta-norm of contextual adequacy allows us to see that we can outright reject the

dominant consequentialist views that implicitly argue that any value influence is allowed as long

as it does not hinder performance.3 Contextual adequacy involves a holistic understanding of

societal, cultural, and ethical dimensions involved in a certain purpose, beyond narrow

performance metrics. This is a less trivial point than it seems, given the still widespread attitude

among computer scientists that performance is the primary objective and anything resembling

ethics is an afterthought. It also forces us to consider the purpose of systems more often, and

whether we should use the system in the first place.

3 Note that this does not imply that all consequentialist views suffer the same fate.
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Some axiological strategies seem to fare better here; others do not. Not all value

demarcation proposals align with the meta-norm of contextual adequacy. Let us take fairness as

an example. There is a narrow understanding of fairness as a statistical notion that is obviously

unhelpful when aiming to achieve contextual adequacy for ML. When trying to express fairness

in technical metrics, it is clear that there are many different options, and some definitions of

fairness are undesirable in certain contexts. Demographic parity for example aims to ensure

equal outcomes across different demographic groups, which may not be desirable in medical

diagnosis and treatment. Certain diseases may affect demographic groups differently, and

treatment should be based on clinical factors rather than demographics alone. Thus, achieving

fairness in healthcare is not simply a matter of achieving demographic parity. A value

demarcation proposal that stops at simple definitions of statistical fairness therefore will not be

useful in our quest for (de)legitimizing non-epistemic value influences in ML, since such

definitions do not facilitate contextual adequacy.

It has been frequently pointed out that a static axiological approach results in the

impossibility of fairness; there are many statistical fairness definitions that are impossible to all

optimize at the same time, and sometimes there are multiple desirable definitions of fairness that

conflict (Chouldechova 2017; Friedler et al. 2021). This seems to put us in a bind: satisfying one

definition of fairness will violate at least one other desirable definition of fairness. Algorithmic

fairness, in other words, does not always lead to justice in practice (Hoffmann 2019; Binns 2018;

Selbst et al. 2019). There are different responses to this problem. Some argue that, in fact, there

is a metric that trumps others (Dwork et al. 2012, Corbett-Davies et al. 2017); some argue that

the impossibility problem is a theoretical problem but not a practical one (Bell et al. 2023);
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others have called for a rejection of the (axiological) fairness frame altogether, and towards other

approaches for value demarcation.

Green (2022) for example proposes methodological reform. This is a combination of a

systemic and axiological strategy for value demarcation, since it maintains that fairness is

legitimate only if certain conditions in the system have been met. He argues that the higher-level

goal of many ML applications is to promote justice. The focus on formalization of fairness

results in the impossibility problem; instead, the development and use of algorithms should draw

on philosophical theories of substantive equity. Instead of treating fairness as a technical attribute

of algorithms, Green maintains, we need to look at how algorithms promote justice in practice.

His approach involves two steps: reducing upstream social disparities that feed into

decision-making processes, and reducing downstream harms for those disadvantaged within

decision-making processes (Green 2022: 4). These complementary steps appeal to the conditions

of the sociotechnical system as a whole, not just to values themselves or the effects thereof.

Using the meta-norm of contextual adequacy, we can see that this approach is preferable

over others. The purpose is clear: promote social justice in practice. For this purpose to be met,

then, certain conditions in the broader socio-technical system need to be eliminated (B). This

approach to algorithmic fairness is supposed to account for relational and structural harms by

eliminating certain conditions in the broader socio-technical system (B) through methodological

reform (W), such that users (U) of the model (also including decision subjects) can achieve the

purpose (P) of promoting social justice in practice. The proposed methodology is one of

“substantive algorithmic fairness”, which adopts tools from the discussion on substantive

equality “to reason about when formal algorithmic fairness is (and is not) appropriate” (Green

2022: 16). Though there is much more to be said here, it is clear that this systemic and
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axiological approach is better equipped to achieve contextual adequacy than purely axiological

approaches to value demarcation. The upshot is that any approach that calls for value

demarcation without specifying the purpose of a system and how we can determine whether the

system is adequate for that purpose can be rejected outright, or should at least be accommodated.

Unfortunately there is no space here to consider other value demarcation proposals.

However, I hope that this gives enough inspiration to see how the meta-norm of contextual

adequacy might prompt deeper consideration of the purposes of ML applications and provide

guidance on how to evaluate value demarcation proposals. It can highlight what value

demarcation proposals should take into account, explain how they can be improved, or maybe

even provide structured reasons for why they can be rejected outright.

Conclusion

Non-epistemic value influences are pervasive throughout the ML lifecycle. This problem has

invited many accounts of (il)legitimate values in ML, most notably axiological and consequential

strategies. These accounts might conflict and other strategies (functionalist, coordinative,

systemic) are possible, which brings us to the question of justifying certain strategies over others.

I have argued that in order to make progress on this value demarcation problem,

meta-norms need to be established based on the higher-level goals of ML research. Our

suggestion is that one such higher-level goal of ML is contextual adequacy. This meta-norm can

be used to evaluate first-order value demarcation proposals.

Note that I have taken only a small step. Our aim was not to provide an exhaustive list of

meta-norms, nor a comprehensive framework for what we should do all things considered. Other

meta-norms will have to be thought out and conflicts may occur. However, if we hope to ever

15



make progress on the issue of value-laden machine learning, I contend that at least we can now

see that this is the right direction.
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