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Abstract As was recently shown, non-relativistic quantum theory can be derived by means of a projection method
from a continuum of classical solutions for (massive) particles. In this paper, we show that Maxwell’s equations
in empty space can be derived using the same method. In this case, the starting point is a continuum of solutions
of equations of motion for massless particles describing the structure of Galilean space-time. As a result of the
projection, the space-time structure itself is changed by the appearance of a new fundamental constant c with
the dimension of a velocity. This maximum velocity c, derived here for massless particles, is analogous to the
accuracy limit h̄ derived earlier for massive particles. The projection method can thus be interpreted as a generalized
quantization. We suspect that all fundamental fields can be traced back to continuous sets of particle trajectories,
and that in this sense, the particle concept is more fundamental than the field concept.

Keywords Derivation of Maxwell’s equations · Quantum of light · Photon hypothesis · Planck–Einstein relation ·
Particle–Field dichotomy · Generalized quantization

Mathematics Subject Classification 70S99 · 70H05 · 81P05 · 81S99 · 83C50

1 Introduction

“…one is struck by the dualism which lies in the fact that the material point in Newton’s sense and the field
as continuum are used as elementary concepts side by side”
Albert Einstein [1]

The disturbing dualism between the incompatible basic concepts particle and field has accompanied modern
physics from the very beginning. If one wants to eliminate the particle concept in favor of the field concept, then
one needs nonlinear field equations of unknown origin. The reverse way, namely the elimination of the field concept
in favor of the particle concept, is much easier to accomplish, at least in a formal way. This elimination is actually
an innocent looking standard technique of fluid mechanics known as Lagrangian to Eulerian transition [2,3]. It is
based on the existence of a continuum of solutions of first order ordinary differential equations which fill and thus
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generate the space under consideration [4]; let us note for clarity that the Eulerian formulation is nothing but the
standard formulation of physical fields.

A popular version of this deep particle-field duality is the particle-wave duality of quantum theory (QT). Einstein
rejected this concept and considered QT to be a theory which is complete only with respect to statistical ensembles
and not with respect to individual particles. From the point of view of this ensemble interpretation [5], QT must
be understood in terms of its relation to classical statistical ensembles. The general program of a “quantization”,
or better reconstruction of QT, then consists in the transformation of the basic equations of the theory of classical
statistical ensembles into the basic equations and structures of QT. The first step of this transformation must be the
Lagrangian to Eulerian transition.

This program has been realized in a series of papers of the present author which will be referred to as I [6],
II [3], III [7], and IV [8]. Reconstructing QT along these lines is very simple from a conceptual point of view. It
requires, besides the transition to the Eulerian formulation, only two essential steps, namely a projection from phase
space to configuration space and a linearization or randomization. Both steps can be motivated physically. A theory
containing these two steps, regardless of the order, is referred to as “Hamilton–Liouville–Lie–Kolmogorov theory”
(HLLK). This acronym is also used in this paper. As shown in I–IV, the success of the HLLK is remarkable—not
only Schrödinger’s equation but essentially all characteristic features of (single-particle) QT, like non-commuting
observables, Born’s rule, and even spin, have been derived.

The program underlying the HLLK has not yet been fully carried out. It is obviously incomplete with respect
to the description of several particles and with respect to the extension to Minkowskian spacetime. One wonders,
however, if this program cannot be completed in an even more fundamental sense. So far, we have studied only
particles of non-zero mass. We have found, in IV, that such particles must be fermions with spin one-half. The
second class of elementary particles of fundamental importance in nature are bosons, which have integer spin and
are responsible for mediating interactions. The most important structureless particle of this class is the massless
photon, which has spin 1, and mediates the electromagnetic interaction. The question arises whether the program of
the HLLK can—in analogy to the situation with massive particles—also be used to derive the “quantummechanical
field equations of the photon”, i.e., Maxwell’s equations. In this work, which is the fifth in this series of papers, we
show that this is indeed possible.

The possibility of reconstructing a fundamental classical field equation with the help of HLLK represents a
surprising extension of the range of validity of this method. This generalization, which concerns fundamental
concepts of physics, is discussed in Sect. 2. Here, the interested reader will also find an overview of HLLK as
applied to QT so far.

The ordinary QT of massive particles, derived in I to IV, describes the behavior of particles under a variety of
external conditions (forces), each corresponding to a particular functional form of the Hamiltonian function. In
contrast, in Maxwell’s equations (in empty space), there is no quantity whose functional form could be varied; the
form of the equations is fixed once and for all. In other words, Maxwell’s equations describe only a single system.
If one asks, what this single system might be, then the only possible (reasonable) answer seems to be: the empty
space.

As a consequence, we need, as a starting point of theHLLKprogram, equations ofmotion formassless “particles”
describing the structure of empty space. Such a differential equation, in which no inertial mass occurs, can be derived
bymeans of a transformation from an inertial system to an arbitrarily moving coordinate system (see Sects. 3 and 4).
The result agrees with the equation of motion derived by Holland fromMaxwell’s equations [9]. In Holland’s paper,
it is alsomentioned that one can, in turn, derive the time-dependent part ofMaxwell’s equations from these equations
of motion, using the standard quantization rules. Since Maxwell’s equations are no longer Galilei-invariant, this
means that, in the course of this standard quantization, the Galilei invariance is broken. In fact, the quantization
process introduces, according to Holland, a new fundamental constant c and this implies a fundamental change
from Galilean spacetime to Minkowskian spacetime [9]. This is astonishing because physical constructions usually
take place within a given spacetime. Holland’s remarks provided a strong motivation for the author to try to realize
the HLLK process for massless particles—despite this mismatch of symmetries which was irritating at first sight.
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A reconstruction of Maxwell’s equations in empty space 719

In this paper, we follow the version of HLLK reported in I and II. The space generated in Sect. 5 by means of the
Lagrangian to Eulerian transition is the cotangent bundle of the configuration space R3 × SO(3). We find that we
have to exclude a certain subset of all possible trajectories from this process. This implies an additional condition,
which leads later, in Sect. 7.3, to the transversality conditions of the electromagnetic fields. It is this additional
condition that allows for the first time a derivation of the complete set of Maxwell’s equations in empty space.

In Sect. 6, the projection onto the configuration space R3 × SO(3) is performed. This part represents the core
of the HLLK quantization. The projection creates a new fundamental constant c with the dimension of a velocity.
Due to the additional rotational degrees of freedom, a further projection onto the Euclidean configuration space R3

is required, which is carried out in Sect. 7. The physical meaning of the system of equations derived in this way is
discussed in Sect. 8.

The last Sect. 9 contains some reflections on the concepts of particles, fields, and quantization, as suggested by
the success of the HLLK. We propose a new principle for describing the relation between a physical theory and a
related “better” theory. This principle may be summarized as follows: “Get rid of idealizing assumptions”

2 Structure of the HLLK framework

In this section, we provide for the convenience of the reader a brief overview of the structure of the HLLK, as
applied to QT and presented in papers I–IV. We then describe the generalization of the theory on which this paper
is based.

Before we start, we should mention some other works that also derive QT using different methods but similar
probabilistic assumptions. Numerous such constructions have been published since the discovery of QT, but we
will limit ourselves here to some of the more recent works. Building upon the seminal work of Koopman and
von Neumann, Bondar et al. [10], Arsiwalla et al. [11], and Chester et al. [12] formulate mappings from classical
probabilistic mechanics to QTwith slightly different quantization schemes compared to HLLK. Furthermore, based
on “indivisible” dynamical systems, Barandes [13,14] has recently proposed a stochastic-quantum correspondence.
In [15], Wetterich also discusses a similar idea based on probabilistic cellular automaton. The above approaches
are all independent of HLLK, yet convey a similar overarching message as HLLK.

2.1 The HLLK framework as applied to quantum theory

The starting point for the reconstruction of QT in the framework of HLLK is a statistical ensemble of classical
particle trajectories. This ensemble ismathematically defined as a continuum of solutions of the canonical equations,

q̇k = ∂H(q, p)

∂pk
, ṗk = −∂H(q, p)

∂qk
, (1)

which fills the entire 6-dimensional phase space. We consider a single (classical) particle without interaction, with
coordinates qk , conjugate momenta pk , and Hamilton’s function H(q, p).

We have thus defined the mathematical structure of the theory that we have chosen as our starting point. The
final result of our reconstruction should be the one-particle QT, which in the simplest case, which we consider here
first, is given by the Schrödinger equation—a linear evolution equation in three-dimensional configuration space
for one complex or two real variables. If we compare the two mathematical structures, the following steps required
to reconstruct the QT are almost automatic.

(1) First, the continuous set of particle trajectories must be converted into the usual field-theoretical form. This
process is known from fluid mechanics and is called “Lagrangian to Eulerian transition”. Field variables are
introducedwhose temporal and spatial distribution in phase space is determined by the solutions of the equations
ofmotion. The partial differential equationswhich these field variables obey are best suited for the reconstruction
of QT in that they reproduce the behavior of the particles more accurately than any other type of field equation.
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(2) The number of field variables to be introduced must correspond to the number of real components of the wave
function to be reconstructed. In our case, therefore, two field variables must be introduced. One of these two
variables will in any case be a quantity ρ(q, p, t), which we assign the physical meaning of a probability
density—in the sense of a quantum mechanical interpretation. It obeys the Liouville equation

∂ρ

∂t
+ ∂ρ

∂qk

∂H

∂pk
− ∂ρ

∂pk

∂H

∂qk
= 0. (2)

We introduce the classical action in phase space S(q, p, t) as the second field variable. It obeys the equation

∂S

∂t
+ ∂S

∂qk

∂H

∂pk
− ∂S

∂pk

∂H

∂qk
= L̄ , (3)

where L̄ is the Lagrangian defined by L̄ == pk (∂H/∂pk) − H . This choice is based on the close relationship
between the classical action in configuration space and the phase of the quantummechanical wave function; if (3)
is projected onto the configuration space by replacing the variable p by the gradient of S, the Hamilton–Jacobi
equation is obtained.

(3) In QT, two coupled equations for the probability density and the phase can be derived from the well-known polar
representation of the wave function (Madelung decomposition). Conversely, in the context of our reconstruction,
we try to obtain with the help of the same decomposition

ψ = √
ρ e

ı
h̄ S , (4)

a single equation for the complex phase space variable ψ(q, p, t). Indeed, we obtain the equation[
h̄

ı

∂

∂t
− h̄

ı

∂H

∂qk

∂

∂pk
+ ∂H

∂pk

(
h̄

ı

∂

∂qk
− pk

)
+ H

]
ψ = 0. (5)

This is still a purely classical statistical theory. In particular, no result of this theory depends on the parameter
h̄. It is “only” the mathematical form of this theory that has a similarity with QT; of course, it is this similarity
that makes the transition to QT much easier.

(4) Equation (5) is an evolution equation in phase space, but it already fulfills the important criterion of linearity.
The final step is to convert (5) into an evolution equation in configuration space. This is formally very easy to
do using the “quantization rules”

∂

∂pk
= 0, pk = h̄

ı

∂

∂qk
. (6)

The application of these rules transforms (5) into the Schrödinger equation[
h̄

ı

∂

∂t
+ H

(
q,

h̄

ı

∂

∂qk

) ]
ψ(q, t) = 0, (7)

This projection generates far-reaching changes in the theory: The concept of particle orbits becomes obsolete,
and the formal parameter h̄ becomes a new natural constant that can no longer be eliminated from the theory.

In this simplest version of the HLLK, we have treated the non-relativistic theory of massive particles without spin.
This simplest version can be extended or modified with regard to all three properties. However, two basic conditions
must be taken into account in all versions: (1) there is a projection from phase space to configuration space, (2) the
resulting equations in configuration space must be linear.

The simplicity of the above version of the HLLK is based on the fact that the evolution equation in phase space
is already linear. Thus, in this version, linearization is performed first, as in I, II. In order to take the phenomenon of
spin into account, the order must be reversed, i.e., the projection must be performed first, as in III, IV. The projection
is performed by replacing the variable p in the canonical equations with a momentum field M , pk → Mk(q, t).
The canonical equations lead to the nonlinear equation of motion

∂Mi (q, t)

∂t
+

[
∂Mi (q, t)

∂ql
− ∂Ml(q, t)

∂qi

]
vl (q, t) = − ∂

∂qi
h (q, t) , (8)
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A reconstruction of Maxwell’s equations in empty space 721

and to an equation for the position coordinate which will not be written down. The fields h(q, t), v(q, t) are defined
by h(q, t) = H (q, M(q, t)), vk(q, t) = Vk (q, M(q, t)) and the velocity field Vk(q, p) is given by the derivative
of H(q, p) with respect to pk . A decomposition of M with respect to Clebsch potentials P, Q is then carried out,

Mk(q, t) = ∂S(q, t)

∂qk
+ P(q, t)

∂Q(q, t)

∂qk
, (9)

This decomposition doubles the number of real components of the wave function; the two additional components
P, Q describe the rotational part of the momentum field which is responsible for spin. This then leads to the
Pauli–Schrödinger equation.

In the context of HLLK, the spin is thus a collective (rotational) effect of the probabilistic ensemble—similar col-
lective interpretations have been proposed before [16]. The wave function of a spin 1/2 ensemble can be constructed
with the help of four (independent) real fields, a probability density ρ and the three components S, P, Q of the
momentum field. The special value 1/2 for the spin is therefore a logical consequence of the three-dimensionality
of space. A more detailed discussion of the spin phenomenon will be given in a subsequent paper as part of the
derivation of the Dirac equation.

2.2 The general HLLK framework

This paper shows that the concept of HLLK also makes sense in the case of massless particles. In this case, the
object to be quantized is nothing other than empty space. The quantization leads to the free Maxwell equations.
The method used is formally similar to that described above, but additional rotational degrees of freedom must be
taken into account (in this case the spin arises by a completely different mechanism, namely by projection onto
an irreducible representation space). Since we derive a classical equation in this paper, the density ρ cannot be
a probability density, but must be interpreted as a real particle density. This freedom in the interpretation of ρ

does not only exist in Maxwell’s equations, but also in Schrödinger’s equation; it opens up the possibility of field
quantization.

In I–IV, HLLK is exclusively a method for reconstructing QT, which is associated with the appearance of a new
natural constant h̄. The fact that the classical Maxwell equations, containing the constant of nature c, can be derived
with the same “quantization method” requires a re-evaluation of HLLK. Moreover, this fact calls into question
fundamental categories of our physical notions.

There are at least two ways of interpreting this fact. On the one hand, we can retain the concept of quantization
and generalize it in such a way that we identify the process of quantization with the process of HLLK. Then all
three fields, which are named after Schrödinger, Dirac, and Maxwell, are quantized fields. The special role of h̄
as a quantization feature is omitted; the occurrence of c can just as well be understood as a quantization feature.
This semantic definition is supported by the fact that all these fields have equal rights in relation to the second
quantization. It is then reasonable to assume that all fundamental fields in nature are quantized fields (in this sense).
The second possibility is to interpret HLLK not as a quantization process, but as a general method for constructing
fundamental physical fields. If one opts for this definition, one can maintain the difference between quantized and
classical fields. The remarkable fact that the three fields mentioned can all be derived using the same general method
does not, of course, depend on any semantic definition.

The structure of the general HLLK method can be defined as follows:

(1) Find field equations in phase space for physically meaningful particle ensembles,
(2) Project these field equations onto the configuration space,
(3) Linearize the field equations in configuration space,

where the order of steps (2) and (3) can be changed. The general structure defined in this way leaves many details
of the mathematical implementation open. This concerns the dimension and topology of the considered spaces and
the way in which the projection and linearization are carried out. It also concerns the way in which the new natural
constants are introduced. In contrast to the usual construction of field equations in the Lagrange formalism and with
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Fig. 1 This is a generic
trajectory for initial values
v0 neither parallel nor
perpendicular to n

the help of symmetry considerations, the HLLK is extremely selective. For particles with non-zero mass, there are
essentially only two physicallymeaningful particle ensembles that automatically result from the canonical equations
in Galilei and Minkowski space. The resulting field equations are the Schrödinger equation (more precisely: the
Pauli-Schrödinger equation) and the Dirac equation. The ensemble of massless particles describing Galilean space
also appears to be unambiguous. In this case, the HLLK method leads to the free Maxwell equations, as shown in
the following sections.

3 Equations of motion for Galilean particles

Galilean spacetime is given by E
3 × Rt , where E

3 is the Euclidean space equipped with an Euclidean distance
function. A complete description of Galilean spacetime is given by its symmetry group, the 10-parameter Galilean
group. Those elements of this group that are continuously connectedwith the identity can be expressed, in aCartesian
coordinate system, in the form

(x, t) �→ (Rx + gt + b, t + s) . (10)

Here R is a 3× 3 orthogonal matrix with determinant 1, x, g, b are three-vectors, and s is a scalar parameter. The
Galilei group, as Eq. (10) shows, has rotations, Galilei boosts, and space and time translations as subgroups.

Our task is to find equations of motion whose solutions are as similar as possible to Eq. (10). We call the
hypothetical particles that satisfy these equations Galilean particles. We introduce this name in order to emphasize
the analogy with both the previous theory of particles with non-zero mass and also with the photons to be derived
later. The above definition of the equations of motion is admittedly rather fuzzy; however, we will show that
important physical results can be derived with their help.

Let us first consider Newton’s equation ofmotion for a free particle ẍ = 0 and its general solution x(t) = v0t+x0.
This solution already describes, in its dependence on the initial conditions, two of the above subgroups namely
the Galilei boosts and the spatial translations. To account for the still missing rotations, one can tentatively use the
defining equation ẋ = ω × x of the angular velocity ω. To recover the Galilei boosts and spatial translations, it is
only necessary, to perform a derivation of this equation with respect to time. Considering only angular velocities
constant in time (clearly, time-dependent angular velocities are not compatible with our similarity requirement; this
would lead to a dramatic increase in the number of degrees of freedom) one obtains the equations

ẍ = ω × ẋ, ω̇ = 0, (11)

which agree with the equations derived by Holland [9]. These relations have a simple physical interpretation. Let us
consider two coordinate systems, an inertial frame K , with basis vectors ei , and a rotating reference frame K ′, with
basis vectors e′

i (t). Any position vector x(t) can be represented in either K or K ′. The relation between velocity v
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A reconstruction of Maxwell’s equations in empty space 723

Fig. 2 This is a special case
of a trajectory for initial
values v0 parallel to n

and acceleration a in K and the corresponding quantities v′ and a′ in K ′ is given by

a = a′ + 2ω × v′ + ω̇ × x + ω × (ω × x) (12)

v = v′ + ω × x. (13)

If we set here v′ = a′ = 0 (and ω̇ = 0), we obtain Eq. (11). The equation of motion (11) for Galilean particles thus
simply states that for a point held fixed in K ′, the sum of the centripetal force and the centrifugal force vanishes.

The general solution of (11) depends on the 9 integration constants ω, v0, x0. If the unit vector n = ω/ω parallel
to ω and its magnitude ω = |ω| are introduced, the solution takes the form
x(t) = (n × v0)

1 − cosωt

ω
+ (v0 − v0 · n n)

sinωt

ω
+ v0 · n n t + x0. (14)

The generic solution, with v0 neither parallel nor perpendicular to n, is shown in Fig. 1. It has the form of a spiral, i.e.,
a superposition of a circular motion with a Galilean boost. When v0 is parallel to n, the circular motion disappears
and only the Galilean boost survives, as shown in Fig. 2. We shall come back to this degenerate case in Sect. 5

Finally, to investigate the similarity of the solutions (14) with the Galilean transformations (10), we use the
relation

r′ := R(n, φ)r = r − (r − r · n n) (1 − cosφ) + (n × r) sin φ, (15)

which describes the effect of a rotation R on a vector r when the angle of rotation φ and the axis n are used as
parameters [17]. With the help of (15) and the definitions r0 = v0/ω, v� = v0 ·n n, the solution (14) may be written
in the form

x(t) = R(n, ωt − π/2)r0 + v�t + n × r0 − n · r0 n + x0. (16)

In this formula, all types of transformations belonging to theGalilei group,with the exception of the time translations,
occur. We have a rotation of the vector r0, with an axis n and an angle ωt − π/2, a Galilei boost, with the velocity
v�, and a spatial translation by n × r0 − n · r0 n + x0.

However, the individual group parameters in (16) are complicated functions of the initial conditions x0, v0, ω;
in particular, the angle of rotation depends on time. Therefore, (16) is still very different from a real Galilei
transformation, where all group parameters can be varied independently. As the solutions of (11) do not provide a
complete description of of Galilean space we expect that the HLLK will only lead to physically meaningful results
if additional restrictions are introduced.

4 Transition to Canonical Equations

In order to start the program of the HLLK, we must bring, as a first step, the equations of motion (11) of the
Galilean particles into canonical form. For this purpose, the components of the angular velocity may be expressed
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724 U. Klein

by Euler angles, which allow to describe the instantaneous state of rotation of the particles. We follow here closely
the procedure of Holland [9,18] using a standard notation for the Euler angles θ, φ,ψ [17], which will alternatively
be denoted by αk where α1 = θ, α2 = φ, α3 = ψ .

The relation between the time derivatives α̇i of the Euler angles and the components of the angular velocity is
given by

α̇i = Aikωk , (17)

where the elements of the matrix A are periodic function of θ and φ,

A =
⎡
⎣ cosφ sin φ 0

− cot θ sin φ cot θ cosφ 1
csc θ sin φ − csc θ cosφ 0

⎤
⎦ . (18)

Using the Euler angles, the original equations of motion (11) now take the form of two second order differential
equations,

α̈l + Ali
∂A−1

ik

∂αr
α̇r α̇k = 0, (19)

ẍi = εi jk A
−1
js α̇s ẋk . (20)

Note that Eq. (19) only describes the constancy of ω over time and does not depend on x . The equations of
motion (19), (20) of the Galilean particles have a somewhat unusual form which stems from the fact that each point
of time t is assigned not only a position in R3 but also a state of rotation, which is described by a point in the group
space SO(3) of the rotation group. The 6-dimensional configuration spaceR3 × SO(3) agrees with that of the rigid
body, as already mentioned by Holland [9,18].

The Eqs. (19), (20) can easily be derived, by means of a variation with respect to xk and αk , from a Lagrangian
L of the form

L(x, α, ẋ, α̇) = d0A
−1
ik (α)ẋi α̇k , (21)

if one observes that the matrix elements of A fulfill the relations[
∂A−1

kr

∂αs
− ∂A−1

ks

∂αr

]
Asi = εi jk A

−1
jr . (22)

To prove this relation, we use the definition (18) and verify the equality of the two sides of (22) with the help of the
computer algebra program Mathematica.

Before we construct the canonical equations, we note the following inconspicuous but important point. We
introduced in Eq. (21) a constant d0 as a pre-factor. Neither its numerical value nor its dimension is determined by
the form of the equations of motion. We can choose both freely, at least at this point. However, due to the projection
onto the configuration space, to be performed later in Sect. 6, a new fundamental constant, say c, will be generated
in our theory. This seems to be a generic property of the HLLK (In the earlier case of massive particles studied in
I–IV, Planck’s quantum of action was generated in this way). Clearly, the choice of the constant d0 is important
because it determines this new constant c. In a sense, we are even able to derive the constant c, to the extent that we
are able to justify our choice of d0 sufficiently well. Of course, this derivation can not concern the numerical value
of c, this value will be determined by nature alone. However, by means of a physically justified determination of
the dimension of d0 we can at least derive the dimension of c, which already gives us a crucial information about
its physical meaning. A reasonable choice for the dimension of the Lagrangian L seems to be energy, the same
dimension as in the theory of particles with non-zero mass. We have already chosen the designation (Galilean)
“particles” for the objects, whose trajectories are determined by the solutions of Eq. (11). However, this was just
a semantic assignment. If we now determine that d0 has the dimension g cm (which gives L the dimension of
an energy) then we make a formal determination of these objects as particles—which goes beyond the previous
semantic assignment. In Sect. 6.2, we will see that this choice of d0 implies the dimension of a velocity for c.
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A reconstruction of Maxwell’s equations in empty space 725

The canonical equationsmaybe constructedusing the standardmethod.Themomentum pk , canonically conjugate
to xk , is given by

pi := ∂L

∂ ẋi
= d0A

−1
ik (α)α̇k . (23)

Equation (17) shows that pi = d0ωi . Since ω̇i = 0, the momentum pi is conserved. Thus, Galilean particles are
subject to an unusual, strongly degenerate dynamics. The momentum πi canonically conjugate to αi is given by

πi := ∂L

∂α̇i
= d0A

−1
ki (α)ẋk . (24)

The momentum pk does not depend on ẋk but only on α̇k ; an analogous behavior is shown by πk . Hamilton’s
function,

H(x, α, p, π) = d−1
0 Aki (α)piπk (25)

does not depend on x , in agreement with the fact that p does not depend on time. The deeper reason for the
independence of L(x, α, ẋ, α̇) and H(x, α, p, π) from x is the translation-invariance of the basic equation of
motion (11). The canonical equations are given by

ẋk = d−1
0 Aik(α)πi , α̇k = d−1

0 Aki (α)pi , (26)

ṗk = 0, π̇k = −d−1
0

∂A ji (α)

∂αk
piπ j . (27)

The solutions of the ordinary differential equations (26),(27) are trajectories in a 12-dimensional phase space
� [cotangent bundle of the rigid body configuration space R

3 × SO(3)], which is spanned by the coordinates
x, α, p, π . Remarkably, the velocity ẋ is not proportional to the momentum p. Another interesting variable, defined
by its components

mk = Aik(α)πi , (28)

takes the dimension of an angular momentum (if the parameter d0 is defined as in Sect. 4). The elements of the
matrix A obey the relations Ark∂r A ji − Ari∂r A jk = εikr A jr . Using these identities, it is easy to see that the mk

fulfill also the Poisson bracket relations

{mi ,mk} = εiklml (29)

characterizing angular momentum components, as noted already by Holland [9,18]. Remarkably, according to the
equations of motion [see the left member of (26)], the velocity �v = �̇x agrees for arbitrary times with the angular
momentum m, apart from a proportionality constant. The Hamiltonian function may consequently be written in the
form H = vk pk .

In order to get rid of the ugly prefactors d−1
0 , the position variables xi may be replaced by the new variables

ui = d0xi , (30)

which have dimension g cm2. The newmomentum variables, canonically conjugate to ui are then given by d
−1
0 pi =

ωi . Using the new variables ui , ωi , the Lagrange function and the Hamilton function take the form

L(u, α, u̇, α̇) = A−1
ik (α)u̇i α̇k , (31)

H(u, α, ω, π) = Aki (α)ωiπk , (32)

and the canonical equations are given by

u̇k = Aik(α)πi , α̇k = Aki (α)ωi , (33)

ω̇k = 0, π̇k = −∂A ji (α)

∂αk
ωiπ j . (34)
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We will change freely between Eqs. (32)–(34) and the original equations (25)–(27) where the important parameter
d0 appears explicitly.

The set of all solutions, together with a probability (or density) distribution at t = 0, defines a statistical (or
particle) ensemble formulated by means of Lagrangian coordinates. The next step in the formulation of the HLLK is
the transition to the usual (Eulerian) formulation, which describes physical properties by means of fields depending
on the coordinates of a suitable space. In our case, this space is �.

5 Lagrangian to Eulerian transition

For the general considerations of this section, it is convenient to use the original equations of motion (26),(27). We
write the solutions in the form

xk(t) = xk(t, x
0, p0, α0, π0), (35)

pk(t) = pk(t, x
0, p0, α0, π0), (36)

αk(t) = αk(t, x
0, p0, α0, π0), (37)

πk(t) = πk(t, x
0, p0, α0, π0), (38)

where x0k , α
0
k , p

0
k , π

0
k are the initial values of the dynamic variables at t = 0. If these equations can be solved for

x0k , α
0
k , p

0
k , π

0
k , then they define a flow in �, that is, there is a mapping from � onto itself at each instant of time t .

In order to discuss the physical meaning of this mapping, it is convenient to abandon the special meaning of H
and to substitute an arbitrary observable A(Q, P) in place of H . We think of these observables, which depend on
2n phase space variables Q, P , as important physical quantities like energy, momentum or angular momentum (all
defined by a fundamental symmetry of space-time). Each A(Q, P) defines canonical equations, whose solutions
(if invertibly) represent a group of transformations, each element of which maps the phase space onto itself. The
observables A represent the classical equivalent of the associated Hermitian operators Â in QT. The one-parameter
group of transformations generated by A corresponds in QT to the one-parameter group of unitary operators
generated by Â. These relations, basically known for a long time [19], have recently been used by the author as an
essential component in a reconstruction of QT, see II.

In the present work, we assume that analogous relations hold also for massless particles. Accordingly, A is
identified with the Hamiltonian function (25) of Galilean space-time. The variables Q and P are identified with
the configuration space variables x, α and the corresponding canonically conjugate momenta p, π , respectively.
We first assume that the mapping defined by (35)-(38), from � onto itself, is 1 : 1, but analyze this question more
carefully at the end of this section.

The Lagrangian to Eulerian transition, which we perform now, is a straightforward generalization of the well-
known method in fluid mechanics (where n = 3) to arbitrary n. The details were reported in II. From the canonical
equations, it follows that an arbitrary density ρ(x, α, p, π, t) obeys the Liouville equation

∂ρ

∂t
+ ∂ρ

∂xk

∂H

∂pk
+ ∂ρ

∂αk

∂H

∂πk
− ∂ρ

∂pk

∂H

∂xk
− ∂ρ

∂πk

∂H

∂αk
= 0, (39)

During the reconstruction of QT in I–IV, an analogous quantity ρ(x, p, t) was assigned the physical meaning of
a probability density. In contrast to this, we do not specify the physical meaning of the density ρ(x, α, p, π, t), at
least at the moment. We assume further, as in I–IV, that the dynamical variable ρ(x, α, p, π, t) is not sufficient to
perform the transition to a quantum theory. As a second variable we choose, again in analogy to I–IV, the variable
S(x, α, p, π, t), defined by

S(x0, α0, p0, π0, t) =
∫ t

du

[
pk

∂H

∂pk
+ πk

∂H

∂πk
− H

]
. (40)
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The action variable S(x, α, p, π, t) obeys the following differential equation, which is referred to as action equation,

∂S

∂t
+ ∂S

∂xk

∂H

∂pk
+ ∂S

∂αk

∂H

∂πk
− ∂S

∂pk

∂H

∂xk
− ∂S

∂πk

∂H

∂αk
=

pk
∂H

∂pk
+ πk

∂H

∂πk
− H .

(41)

We can combine Eqs. (39), (41) into a single differential equation using the complex-valued field variable
ψ(x, α, p, π, t), defined by

ψ = √
ρ exp

(
ı

s0
S

)
. (42)

Relation (42) is sometimes referred to as a “linearizing transformation”. It was originally introduced by Madelung
in a three-dimensional context in order to bring the Schrödinger equation into a “hydrodynamic form” [20]. In this
formula, we have introduced a parameter s0 which has the dimension of an action and has no physical meaning at
all (it is part of the definition of the quantity ψ and may take any numerical value).

Using the relations (39), (41) and (42), we see that all derivatives of ρ and S can be expressed by derivatives of
ψ , so that (39), (41) can be replaced by the single differential equation

s0
ı

∂ψ

∂t
− ∂H

∂pk

(
pk − s0

ı

∂

∂xk

)
ψ − ∂H

∂πk

(
πk − s0

ı

∂

∂αk

)
ψ

− s0
ı

(
∂H

∂xk

∂

∂pk
+ ∂H

∂αk

∂

∂πk

)
ψ + Hψ = 0,

(43)

for the complex variable ψ . In this field-theoretic form of the equations of motion (26), (27), the projection onto
the configuration space R3 × SO(3) becomes particularly simple, as will be shown in the next section.

We now return to the questionwhether themapping defined by the solutions of the equations ofmotion is 1 : 1.We
use the equations ofmotion in the form (33),(34); themappinghas the formofEqs. (35)-(38),with x and p replacedby
u andω. A point in� is denoted by x , its components are denoted by xμ, where

(
xμ

) = (u, ω, α, π) , μ = 1, .., 12.
The initial values at time t = 0 are denoted by y, its components yμ are given by

(
yμ

) = (
u0, ω0, α0, π0

)
. The

mapping can then be written in the compact form x = f (t, y), and this mapping will be 1 : 1 if the determinant of
the functional matrix

f
′ =

⎡
⎢⎣

∂1 f1 ∂2 f1 · · · ∂12 f1
...

...
. . .

...

∂1 f12 ∂2 f12 · · · ∂12 f12

⎤
⎥⎦ (44)

(where ∂μ denotes the derivative with respect to yμ) is different from 0 everywhere in �. We are unable to perform
a complete analysis of this determinant as the time-dependence of the Euler angles is very complicated [21], even
for the simple case of constant angular velocity considered here. We will examine only the case where the velocity
v is parallel to ω (this is the special case shown in Fig. 2). This means vk := u̇k = rωk where r is a real number. It
is easy to see that in this special case the determinant of the functional matrix (44) vanishes.

To show this, we first assume that the parallelism between vk and ωk holds true only at t = 0. Thus, the initial
values obey the relations v0k = rω0

k . We know that ω is constant, thus ωk = ω0
k in agreement with the left member

of Eq. (34). Equation (11) shows that all derivatives of v with respect to t vanish at t = 0. It follows that the
parallelism v0k = rω0

k at t = 0 implies the parallelism vk = rωk for arbitrary t . The left member of Eq. (33) implies
Aik(α

0)π0
i = rω0

k . Thus, the initial values of πi can be expressed by the initial values of α and ω using the relation
π0
l = r A−1

kl (α0)ω0
k . As a consequence, the last three columns of the functional matrix (44) vanish, since nowhere

in the solutions do the variables π0
l appear any more. For the solutions obeying

v = rω, (45)

the Lagrangian to Eulerian transition cannot be carried out. These solutions must be excluded by an appropriate
additional constraint. This will be done in Sect. 7.3.
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An important part of HLLK is the projection from phase space � onto R
3 × SO(3). This step is similar to the

usual quantization rule, in that the canonical momenta are replaced by operators acting on configuration space. This
projection, which will be carried out in Sect. 6, is, in the case of massless particles treated here, not sufficient to
generate a physically meaningful field theory. In order to arrive at a field theory with independent variables t, xk ,
a further reduction from R

3 × SO(3) to Euclidean configuration space R3 must be performed. This step will be
reported in Sect. 7.

6 Projection to rigid body configuration space

From now on, we use the original system of Eqs. (26),(27) for the variables xk, αk and the canonically conju-
gate momenta pk, πk . Our starting point is the linearized equation of motion (43) for ψ , with the Hamiltonian
function (25). In Eq. (43), two constant parameters d0 and s0 occur, which have—as part of the definition of the
Lagrangian function and the dynamical variable ψ—no physical meaning at this time.

6.1 The projection

The projection onto R
3 × SO(3) is done exactly as in I, II. One replaces ψ(x, α, p, π, t) by an unknown function

ψ(x, α, t) denoted for simplicity by the same symbol. Thus, the third bracket in (43) disappears. To remove pk and
πk from the operator expression, the only remaining option is to perform the following substitution by operators:

pk ⇒ p̂k := s0
ı

∂

∂xk
, πk ⇒ π̂k := s0

ı

∂

∂αk
. (46)

This makes the first two brackets disappear and the Hamiltonian function H(x, α, p, π) becomes an operator
Ĥ = H(x, α, p̂, π̂). So the well-known quantization recipe finds a natural explanation as a projection rule. We
mention that the standard quantization recipe (without the α-degree of freedom) has also been used to derive
Maxwell’s equations from the relativistic particle equations of motion [22]. The projection transforms Eq. (43) into
the ’Schrödinger-like’ differential equation(
s0
ı

∂

∂t
+ Ĥ

)
ψ = 0. (47)

The Hamilton operator now has the form Ĥ = d−1
0 Aki (α) p̂i π̂k if we choose the order of the operators according

to the non-quantized Hamilton function (25). However, the exact form of Ĥ is not yet known, because the order of
the non-commuting quantities Aki (α) and π̂ has still to be fixed. (There is no ordering problem between x and p̂
because Ĥ does not depend on x). The standard method of symmetrization cannot be applied here because of the
non-Euclidean configuration space R3 × SO(3).

To clarify the ordering problem, we use the inner product

(ψ, φ) =
∫

�

dσ ψ∗(x, α, t)φ(x, α, t), (48)

where the abbreviations � = R
3 × SO(3), dσ = d3x d3α sin α1 were used and the Euler angles vary according to

α1 ∈ [0, π ], α2 ∈ [0, 2π ] α3 ∈ [0, 2π ]. One can now show that the Hamilton operator

Ĥ = d−1
0 Aki (α) p̂i π̂k (49)

isHermitianwith respect to the scalar product (48) as long as one restricts oneself to states in the space of 2π -periodic
functions. The proof is given in “Appendix A”. The reverse order of Aki (α) and π̂k can be excluded.

As a consequence of the quantization, the angular momentum componentsmk , defined by (28), become operators

m̂k = Aik(α)π̂i = s0
ı
Aik(α)

∂

∂αi
, (50)
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The mk satisfy the commutation relations (
[
â, ô

] = âô − ôâ)
[
m̂i , m̂k

] = − s0
ı

εikl m̂l . (51)

In the proof of (51), the same identity is used as in the proof of the corresponding Poisson bracket relation (29).
Using the operators m̂, the Hamilton operator takes the form Ĥ = d−1

0 m̂k p̂k . It is then sometimes interpreted as
helicity, a projection of angular momentum (or spin) onto momentum.

The velocity components vk become operators v̂k = d−1
0 m̂k due to quantization. When v̂ is used, Ĥ takes the

form Ĥ = v̂k p̂k , and thus becomes formally similar to the Hamilton operator of Dirac’s theory in the limiting case
of vanishing mass. Of course, in Dirac’s theory, the velocity operator is given by c times α, where c is the speed
of light, and α is a three-vector whose components are 4 × 4 matrices. In the present case, the velocity is still a
differential operator, but we will perform, in Sect. 7, a second projection which maps the velocity components to
matrices.

6.2 A new fundamental constant

If we insert the definitions of p̂k and π̂k , and multiply with a factor s−1
0 , the Schrödinger-like equation (47) takes

the form(
1

ı

∂

∂t
− d−1

0 s0 Aki (α)
∂

∂αk

∂

∂xi

)
ψ = 0. (52)

Thus, the constants d0 and s0 do no longer occur individually, but only in the combination d−1
0 s0, which has

the dimension of a velocity. While the quantities d0 and s0 were originally introduced as purely mathematical
definitions, now, after the projection, they can no longer be changed at will. Thus, a new natural constant d−1

0 s0 with
the dimension of a velocity appears, which we denote by c. Experiments show that the constant c must be assigned
the numerical value of the speed of light. As is well-known, the appearance c of has dramatic consequences for the
structure of spacetime.

During the quantization of massive particles, reported in I–IV, the parameter s0 was identified with Planck’s
quantum of action h̄. This constant has the physical meaning of an accuracy limit for measurements, and is in this
sense characteristic for QT. The absence of h̄ in (52) indicates that this equation should not be interpreted in the
same probabilistic sense as Schrödinger’s equation for massive particles. We discuss this point in more detail in
Sect. 8.

Although the constants d0 and s0 only occur in the combination d−1
0 s0, fundamental relations between d0, s0 on

the one hand and d−1
0 s0 on the other can be determined. This is possible because s0 and d0 were both introduced in a

well-founded physical context. The quantity s0 was introduced as a unit of measurement of the classical action, and
it seems natural to assume a connection with QT here and thus to identify the numerical value of s0 with the value of
Planck’s quantum of action h̄. The quantity d0 was introduced as a pre-factor of a Lagrange function that describes
“Galilean equations of motion”. The dimension of d0 was determined under the assumption that the objects obeying
these Galilean equations of motion have the character of particles (i.e., the Lagrange function was assigned the
dimension of an energy). This means that the two concepts that “in the background” establish the dimensions of
the quantities s0 and d0 are those of QT and the point particle.

The dimensions s0 and d0 chosen in this way are compatible with the fact that the new natural constant d−1
0 s0

occurring in Eq. (52) has the dimension of a velocity. Obviously, only two of the three constants s0, d0 and d−1
0 s0

are independent of each other, and for the assignment s0 = h̄, d−1
0 s0 = c, d0 is given by

d0 = h̄

c
, (53)

as the ratio of two fundamental constants of nature which characterize the transition from classical physics to QT
and to special relativity, respectively. We may also say that only two of the following three concepts or ideas are
independent of each other:
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1. The idea of a fundamental limitation of measurement accuracy, as expressed by the occurrence of the constant
h̄ in QT.

2. The idea of a fundamental limitation of the speed of propagation as expressed by the occurrence of the constant
c in the special theory of relativity.

3. The idea of massless particles (photons) as a means of describing empty space.

This relationship is also responsible for the famous linear relationship between momentum and angular frequency,
which we derive next.

The constant d0 itself does not occur in the field equation (52), but it occurs in the definition of the canonical
momentum pk = d0ωk [see text following Eq. (23)]. Accordingly, the linear relationship cpk = h̄ωk exists between
the components pk of the canonicalmomentumof theGalilean particle and the angular velocity, or angular frequency,
ωk . The corresponding relation between the absolute values p and ω is given by

cp = h̄ω. (54)

Equation (54) establishes a relation between particle properties and wave properties, as does the related equation
p = h/λ between momentum p and wavelength λ. These famous relations, associated with the names of Einstein
and De Broglie, were, remarkably, discovered very early in the development of QT [23]. We have found here, using
the framework of HLLK, a new derivation of these relations.

7 Projection to Euclidean configuration space

We perform, as a first step of the projection to R3, a general expansion in the parameter space of the rotation group
SO(3). A suitable set of basis functions is provided by the so-called Wigner D-matrices [24]

Dl
m,n(α) = eımα2dlm,n(cosα1)e

ınα3 , (55)

where the dlm,n are generalized associated Legendre functions. The Dl
m,n are the matrix elements of the rotation

operator in a l,m (angular momentum) basis (l = 0, 1, 2, .., m = −l, ..,+l). For each l, the (2l + 1) × (2l + 1)
matrices Dl

m,n represent an irreducible representation of SO(3). The homomorphism property may be expressed
in the form

Dl
m,n (g2g1) =

l∑
m′=−l

Dl
m,m′ (g2) D

l
m′,n (g1) , (56)

where g2g1 is the product of the rotations g1, g2 ∈ SO(3). The Dl
m,n form an orthonormalized set of basis functions

on SO(3),(
Dl
m,n, D

r
p,q

)
R

= δlrδmpδnq , (57)

with the inner product being defined by

(ϕ, χ)R =
∫
SO(3)

d3α sin α1ϕ
∗(α)χ(α), (58)

Furthermore, one can show that this set is complete. Our wave function may consequently be written in the form

ψ(x, α, t) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

Fl
m,n(x, t)D

l
m,n(α). (59)

This expansion shows that ψ transforms under rotations according to a reducible representation, namely the direct
sum of all irreducible representations. If we were to project Eq. (52) onto R

3 without any further constraints, we
would have to introduce a variable with infinitely many components. This is of course not acceptable. We need
a variable with a relatively small number of components which, more importantly, transforms according to an
irreducible representation of the rotation group. Thus, the irreducibility postulate used so successfully by Wigner
plays a decisive role in the projection from R

3 × SO(3) to R3.
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7.1 Reduction to l = 1

We choose the irreducible representation l = 1. As a basis in the corresponding subspace, we use the three functions
D1
a,0(α), a = −1, 0, 1; these transform according to the l = 1 representation, as shown by Eq. (56). In the following,

we write Da instead of D1
a,0 omitting the indices 1, 0. Then the expansion (59) reduces to

ψ(x, α, t) =
1∑

a=−1

Fa(x, t)Da(α), (60)

where the three orthonormalized basis functions are given by

D−1(α) = ı

√
3

4π
e−ıα2 sin α1, (61)

D0(α) =
√
3

2π
√
2
cosα1, (62)

D1(α) = ı

√
3

4π
eıα2 sin α1. (63)

The projection to the three-dimensional subspace generates a theory in the Euclidean configuration space R
3 (a

conventional field theory) for a wave function ψ(x, t) with the three components F−1(x, t), F0(x, t), F1(x, t)
(indices a, b running from −1 to 1). The Schrödinger-like differential equation (47) takes the form

h̄

ı

∂Fa
∂t

+ d−1
0 p̂i M

i
a,bFb = 0, (64)

where the quantities Mi
a,b are the matrix elements of the operators m̂i in the l = 1 basis,

Mi
a,b = (

Da, m̂i Db
)
R , (65)

M1 = h̄√
2

⎡
⎣0 1 0
1 0 1
0 1 0

⎤
⎦ , M2 = h̄√

2

⎡
⎣ 0 ı 0

−ı 0 ı
0 −ı 0

⎤
⎦ , M3 = h̄

⎡
⎣−1 0 0

0 0 0
0 0 1

⎤
⎦ . (66)

Performing a necessary rearrangement of indices, the matrices Mi coincide with the matrices Ji derived by Holland
from Maxwell’s equations [9].

The matrices Mi fulfill the same commutation relations[
Mi , Mk

]
= − h̄

ı
εikl M

l , (67)

as the differential operators m̂k from which they were derived. The constant matrices Mi are angular momentum
operators (for l = 1), but their action consists only in a mixing of the three components of ψ . Thus, they do
not describe an orbital angular momentum but an internal degree of freedom called spin (spin 1). Based on the
present derivation, it is clear that the rotational motion associated with this internal degree of freedom must not be
interpreted as rotation of individual massless particles (photons), but as collective rotational motion in a (statistical
?) ensemble of massless particles.

The components v̂k of the velocity operator are transformedby the projection into the 3×3matricesV k = d−1
0 Mk .

We note that both the velocity V k and the angular momentum Mk describe internal degrees of freedom. Using the
three-component wave function ψ , Eq. (64) may be written in the more compact form(
h̄

ı

∂

∂t
+ V i p̂i

)
ψ = 0, (68)

which shows the formal similarity with the massless Dirac theory particularly clearly.
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7.2 Transition to Cartesian basis

If we assume that the theory described by (68) makes physical sense, then it seems useful to replace the spherical
coordinates with the more commonly used Cartesian coordinates. In concrete terms, this means that we have to
look for a representation of the spin matrices that corresponds to the transformation behavior of real vector fields
in R3. These are given by Sijk = h̄

ı εi jk , or

S1 = h̄

ı

⎡
⎣0 0 0
0 0 1
0 −1 0

⎤
⎦ , S2 = h̄

ı

⎡
⎣0 0 −1
0 0 0
1 0 0

⎤
⎦ , S3 = h̄

ı

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ . (69)

As for the prefactors h̄
ı , these were added in order to be able to use the classical result as part of QT; of course, the

classical rotation operator itself does not depend on h̄.
The transition to the Cartesian basis is performed by means of the transformation Fa = UaiGi , Sinm =

U−1
na Mi

abUbm , where indices a, b take values from −1, 0, 1, all other indices running from 1 to 3, and the uni-
tary matrix U is given by

U = 1√
2

⎡
⎣ 1 ı 0

0 0
√
2

−1 ı 0

⎤
⎦ . (70)

In termsof thenewCartesianfield componentsGi and spinmatrices Si theSchrödinger-like differential equation (64)
takes the form
h̄

ı

∂Gn

∂t
+ d−1

0 p̂i S
i
n,lGl = 0. (71)

Denoting the components d−1
0 Si of the velocity operator with the same symbol V i as before, and using also the

same symbol ψ for the complex quantity with components G1,G2,G3, Eq. (71) may also be written in the more
compact form (68).

If we now introduce real vector fieldsE andBwith components defined byGk = Ek+ı Bk , it follows immediately
from (71) that these fields satisfy the two time-dependent electromagnetic field equations

∂

∂r
× B − 1

c

∂E
∂t

= 0, (72)

∂

∂r
× E + 1

c

∂B
∂t

= 0. (73)

We have not yet used the constraint that states corresponding to Eq. (45) are not allowed. Next, we try to derive the
two remaining Maxwell equations from this constraint.

7.3 Derivation of transversality conditions

The additional condition we have to take into account was formulated in Sect. 5, in the context of the description
of particle orbits in phase space. It stated that those orbits which fulfil the condition v = rω [see Eq. (45)] are to
be excluded from consideration. If the relation p = d0ω [see text following Eq. (23)] is used, then the additional
condition means that the velocity v must not be parallel to the direction of propagation n(p) = p/p, where

p =
√
p21 + p22 + p23.

We have made three drastic changes to the original picture of the motion of (massless) particles in the course
of the present development. In the first step, we moved from particle coordinates to space coordinates, replacing
ordinary with partial differential equations. As a consequence, the concept of trajectories lost its meaning; it was
replaced by the concept of continuous distributions in phase space. In the second step, we moved from phase space
to rigid body configuration space. In this step the transition to QT was carried out—in the sense that observables in
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phase space were replaced by operators in configuration space. Remarkably, with this single step, we left not only
the realm of classical physics but also the realm of non-relativistic physics. In the third step, the projection onto the
Euclidean configuration space was performed. The number of degrees of freedom was further drastically reduced
by replacing operators on SO(3) by 3 × 3 matrices.

Despite these major changes, the original condition (45) can easily be “translated” into the present version of
the theory. Let us consider the operators of velocity V i and momentum p̂i , replacing the original quantities vi and
pi . The eigenvalues of the components

V 1 = c

ı

⎡
⎣0 0 0
0 0 1
0 −1 0

⎤
⎦ , V 2 = c

ı

⎡
⎣0 0 −1
0 0 0
1 0 0

⎤
⎦ , V 3 = c

ı

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ . (74)

of the velocity operator are 0,±c. The particles that form the quantum mechanical counterpart to the original
Galilean particles—we can call them photons—are thus either at rest or moving at the speed of light. This means
that the photons that make up our ensemble may have unusual kinematics; for example, the velocity is always
parallel to the spin as shown by the relation V i = d−1

0 Si .
In order to find the possible values of V relative to the direction of propagation n(p), we solve the eigenvalue

problem of the operator V i p̂i [25]:⎡
⎣ E ıcp3 −ıcp2

−ıcp3 E ıcp1
ıcp2 −ıcp1 E

⎤
⎦

⎛
⎝u1
u2
u3

⎞
⎠ = 0. (75)

We obtain three eigenvalues Ea (a = 0,+,−) given by

E0 = 0, E± = ±cp, (76)

with the corresponding orthonormalized eigenvectors

u0(p) = 1

p

⎛
⎝p1
p2
p3

⎞
⎠ , u±(p) = 1√

2p2
(
p21 + p22

)
⎛
⎝±ı p2 p − p1 p3

∓ı p1 p − p2 p3
p21 + p22

⎞
⎠ . (77)

With the help of these solutions, one can form a complete basis of plane wave states

φa
p,n(x, t) = 1

(2π h̄)3/2
uan(p)e

ı
h̄ (pk xk−Ea(p)t), (78)

and write the general solution of Maxwell’s equations as a linear combination, with an amplitude Aa(p), in the
form

Gn(x, t) =
∑
a

Ga
n(x, t) =

∑
a

∫
d3 p Aa(p)φa

p,n(x, t). (79)

This decomposition will allow us to identify the part of the solution that has to be eliminated due to the original
additional condition.

In the statewith the eigenvalue E0 = 0 the helicity is 0, i.e., the spin is perpendicular to the directionof propagation
n(p). The associated eigenvector u0(p) describes amovement parallel to n(p), i.e., a longitudinal wave. In the states
with E± = ±cp the helicity is ±1, that is, the spin is parallel or antiparallel to n(p). Both associated eigenstates
are perpendicular to n(p), and also perpendicular to each other [the relation

(
ua(p), ub(p)

) = δab holds true for a
inner product defined by (a, b) = ∑

k a
∗
k bk]. The movement therefore takes place in a plane perpendicular to n(p)

and describes a transverse wave.
The transition from the original particle picture to the present quantum picture led in a certain way to a sim-

plification, insofar as only three directions of the original continuum of possible directions of velocity have now
survived. On the other hand, at first glance, a difficulty of intuitive interpretation arises in that the operators of
spin and velocity are proportional to each other. The velocity operator therefore has the “wrong direction”, so to

123



734 U. Klein

say. However, the velocity is described by the eigenstate belonging to the operator of the velocity, and not by the
operator itself. Therefore, the quantum mechanical state corresponding to the original particle state [v parallel to
n(p)] is given by the longitudinal contribution G0

n(x, t) associated with the eigenvalue E0 = 0.
To eliminate the term G0

n(x, t) from Eq. (79), it is sufficient to postulate the validity of the relation

∂Gn

∂xn
= 0. (80)

The longitudinal state is not compatiblewith this requirement due to the relationn(p) = u0(p), while the transversal
states automatically fulfil this condition. After separating the real and imaginary parts, (80) leads to the transversality
conditions

∂E
∂r

= 0,
∂B
∂r

= 0 (81)

for the real-valued physical fieldsE andB. The conditions (81) play a special role; as is well-known, it is sufficient to
ensure their validity at a single (initial) time. This special role is also visible in the formalism of second quantization.

The absence of the longitudinal mode for massless particles can also be shown using Lorentz invariance; the
same is true for the parallelism between the velocity operator and the spin operator [26]. It is satisfying that the
HLLK provides an alternative and completely independent explanation for these facts.

8 Maxwell’s equations, classical or quantum

We have already identified the system of Eqs. (72),(73),(81) with Maxwell’s equations, but we may ask ourselves
whether this identification is the only possible one within the framework of our theory.

In Sect. 5, we introduced a density whose physical meaning and dimension was not specified. The formalism of
HLLK yields the same field equations for all these densities. However, the physical meaning and dimension of the
associated fields is determined by that of the densities; the dimension of the density coincides with the dimension
of the square of the fields. Equations (72),(73) imply the conservation law

1

2c

∂

∂t

(
E2 + B2

)
+ ∂

∂r
(B × E) = 0. (82)

It follows that the density E2 + B2 integrated over whole space is a conserved quantity. If we interpret the fields
E, B as electrodynamical fields, then this density is an energy density. In order to derive Maxwell’s equations, one
must therefore take a non-probabilistic quantity, namely an energy density, as the original density.

This choice is consistent with the interpretation of Maxwell’s equations as classical equations, where classical
means the same as non-probabilistic. The HLLK thus provides the basis for a “second quantization” in the sense of
the quantization of a classical field. As will be discussed in the next section, the process of HLLK can be thought of
as a generalized quantization. If this terminology is accepted, the field quantization becomes a second quantization
in the literal sense.

Regardless of the fact that there is no true probability density in Maxwell’s equations, the 3-component quantity
ψ introduced in Sect. 7.2 (or a generalization of it) is called the “wave function of the photon” by some authors [27];
this terminology has been criticized by other authors [28]. The question is not of paramount importance in view of
the fact that numerous quantum-like structures can be found in Maxwell’s equations, especially in the formulation
of Eq. (68). These structures also became visible in the course of our derivation.

As already mentioned, the interpretation of the density, which is first introduced in the phase space, is completely
arbitrary in the HLLK, and has no influence on the form of the final field equations in the configuration space.
However, if a probability interpretation is assigned to the density, then one has to fulfil the additional condition that
the integral of the density over the whole space must be equal to 1 (a similar operation exists also in the case of a
particle density). For example, using the formalism introduced in I, II, we can also derive a classical Schrödinger
equationwhere the square of the absolute value of thewave function has themeaning of a particle density.Conversely,
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instead of the classical Maxwell equations derived here, we can also derive a “quantum mechanical” equation, for
a three-component complex quantity φ, with associated fields b and e. These fields satisfy Eqs. (72),(73),(81) and,
in addition, must satisfy the probabilistic normalization condition∫

d3x
(

b2 + e2
)

= 1, (83)

with the integration extending over all space. The relation between this quantum-mechanicalMaxwell wave function
and the above classical wave function was found by Good [25,28]. He also showed that the expectation values of
Maxwell’s theory have the correct quantum mechanical form when using this wave function.

These questions are relevant for the problem of second quantization, the introduction of an occupation-number
formalism for a first-quantized theory, or the equivalent problem of quantizing a classical field [29]. The additional
complication that the relevant dynamical variables are not the fields but the potentials must also be taken into
account [30]. We do not want to discuss these questions, which are outside the scope of this paper, but mention that
the HLLK provides a basis for both types of second quantization. We hope to return to these questions in a later
paper, after the derivation of the Dirac equation.

9 Discussion

In I–IV, Schrödinger’s equation (and the entire formalism ofQT as regards single particles) was derivedwith the help
of the HLLK. In the present work, the complete set of Maxwell’s equations was derived using the same method.
It was thus possible to derive the two differential equations that are probably the most important in the field of
fundamental physics with the help of this method.

These two equations are quite different in their physical meaning. We know from an enormous number of
observations that the predictions of Schrödinger’s equation are probabilistic in nature whereas the predictions
of Maxwell’s equations are deterministic, in the sense that they can be tested with the help of forces in single
experiments. Schrödinger’s equation thus belongs to QT, while the electromagnetic field is regarded as the prototype
of a classical field par excellence; at least as long as one excludes experiments with very low intensity from
consideration.

The HLLK was originally constructed to derive QT within the framework of a probabilistic world view. The fact
that the same method can now be used to derive a deterministic (fundamental) system of classical field equations
requires a reassessment of the significance of this method. One can define the HLLK as a generalized quantization
method that starts from a continuum of particle trajectories, performs a projection onto the configuration space, and
introduces a new natural constant in the course of this projection. In the case of QT, this new natural constant is h̄,
while in the case of Maxwell’s equations it is the speed of light c.

This double success leads to the speculative question whether possibly all fundamental fields of physics can be
defined on the basis of such a generalized quantization defined by the HLLK. It leads, in short, to the question of
whether all fundamental fields are quantum fields in this sense. This would also mean that all fundamental fields
of physics can be traced back to an associated particle system. With regard to the dichotomy mentioned at the
beginning of this paper, it would mean that the particle concept is more fundamental than the field concept.

The natural constants generated in the course of the projection to the configuration space, h̄ and c, both have the
physical meaning of a realistic limitation or—which is the same thing—the elimination of an unrealistic idealization.
Let us explainwhatwemeanby that.Classical particle physics contains theunrealistic assumption thatmeasurements
with infinitely high accuracy are possible. The HLLK quantization that leads to Schrödinger theory eliminates this
unrealistic assumption and creates an accuracy limit h̄. As regards the massless case, let us consider the structure
of Galilean space-time. Here we find the unrealistic assumption that infinitely large velocities are possible. The
HLLK quantization eliminates this unrealistic assumption by generating the Maxwell field—and with it a modified,
relativistic space-time structure characterized by a maximum velocity c.

We find here a new ordering principle for the relation between different physical theories: Theory B is better
than theory A if an inadmissible idealization of theory A no longer occurs in theory B. In the present work, we
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736 U. Klein

have derived—following a path opened by Holland [9]—Minkowski space fromGalilean space with the help of this
ordering principle.We can now transfer classicalmechanics (for particleswith non-zeromass) intoMinkowski space
according to the well-known method. This relativistic mechanics still suffers from the inadmissible idealization that
measurements with infinitely high accuracy are possible. The elimination of this inadmissible idealization, with the
help of the HLLK quantization, leads to the Dirac equation, as will be shown in the next paper in this series.
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Appendix A Proof of hermiticity of Hamilton operator

Here we show that the Hamiltonian (49) is Hermitian with respect to the inner product (48) defined for 2π -periodic
functions. The proof is carried out as usual by partial integration, whereby the angle variables αk must be taken into
account in addition to the position variables xk ; to separate the variables, we write dσ = d3x dS, dS = d3α sin α1.
First, starting from the definition
(
ψ, Ĥφ

)
= − s20

d0

∫
R
3
d3x

∫
SO(3)

dS ψ∗(x, α)Alk(α)
∂

∂αl

∂

∂xk
φ(x, α), (A1)

we perform the partial integrations with respect to the variables xk and obtain
(
ψ, Ĥφ

)
= s20

d0

∫
R
3
d3x

∫
SO(3)

dS

[
∂

∂xk
ψ∗(x, α)

]
Alk(α)

∂

∂αl
φ(x, α). (A2)

After carrying out the three remaining partial integrations with respect to the variables αk , taking into account the
2π -periodicity of the wave functions, we obtain the relation(

ψ, Ĥφ
)

=
∫

R
3
d3x

∫
SO(3)

dS
(
Ĥψ

)∗
φ + �, (A3)

where � results from the angular dependence of the matrix A and is given by

� = − s20
d0

∫
R
3
d3x

∫
SO(3)

dS

(
∂

∂xk
ψ

)∗ [
∂Alk

∂αl
+ cosα1

sin α1
A1k

]
. (A4)

A direct calculation shows that all three components of the square bracket in Eq. (A4) vanish. Therefore, � = 0

and
(
ψ, Ĥφ

)
=

(
Ĥψ, φ

)
.
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