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Abstract

We take supersymmetry in the Seiberg-Witten theory as a case study of the uses of

(super)symmetry arguments in studying the ontology of four-dimensional interacting quan-

tum field theories. Together with a double expansion, supersymmetry is a via media that

helps to bridge the gap between the ontologies of an exact quantum field theory and its

semi-classical limit. We discuss a class of states that exist at any value of the coupling, and

whose properties such as mass, electric and magnetic charges, and spin quantum numbers

can be precisely characterised at low energies. The low-energy theory is best presented as

a one-dimensional complex manifold, equipped with metric and other structures: namely,

the space of low-energy vacua, covered by three open regions that are interpreted as macro-

scopic phases. We discuss two cases of emergence: the emergence of the low-energy regime

and the emergence between models at low energies, thereby highlighting the significance

of the topology of the space of vacua for such cases of emergence.

Forthcoming in Synthese’s Topical Collection ‘Establishing the Philosophy of Supersym-
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1 Introduction

A major challenge in the study of quantum field theories is bridging the gap between the

ontologies of an exact theory and the ontology of its semi-classical limit, where the latter

is an approximation of the physics of that theory. In realistic interacting quantum field

theories, it is in general difficult to calculate physical quantities by using exact methods.

Thus a common approach is to study the perturbative regime of such quantum field theories,

where an exact solution is approximated by perturbation theory. However, perturbative

theories, being approximative, lack the mathematical rigour that many philosophers hope

for when they interpret quantum field theories.

In this paper, we argue that there is a via media for studying the ontology of interacting

quantum field theories. This via media is a middle way between the exact theory and the

semi-classical limit. Thus, although it is not an exact treatment of the high-energy regime,

it does, by its giving a fully non-perturbative treatment of the strong coupling effects, go
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well beyond the semi-classical limit. It thereby establishes a link between the properties of

the theory’s states and quantities at weak, and at strong, coupling. Furthermore, our appli-

cation of this via media focusses on interacting four-dimensional supersymmetric quantum

field theories that show behaviours, such as the Higgs mechanism and quark confinement,

that are very similar to those of the standard model of particle physics. Thus we will argue

that, given the difficulty of bridging the gap between the ontologies of an exact theory

and that of its semi-classical limit, philosophers would benefit from taking notice of this

approach.

We take the Seiberg-Witten theory, a four-dimensional supersymmetric quantum field

theory, as a case study. This is a low-energy theory that is not meant to provide an actual

description of real-world phenomena. Rather, it is a toy theory that helps to improve our

understanding of phenomena, such as confinement, that we find in more realistic quantum

field theories. It was named after Nathan Seiberg and Edward Witten, who in 1994 suc-

ceeded in writing down an exact analytic solution of it at low energies. A key feature of

the Seiberg-Witten theory is that the state-space of the low-energy regime is a manifold

that is a topologically non-trivial Riemann surface.1 The complete theory is given by three

low-energy models defined on this manifold that are related to each other by dualities.

Each model is characterised by the expectation value of a particular field (e.g. the Higgs

field). The expansion of the effective action in terms of this field has a limited radius

of convergence. Where the series does not converge, it can be resummed so that a new

effective action, based on the expectation value of a dual field, can be found.2

The via media that we advocate has two main ingredients, both of which are present in

the Seiberg-Witten theory: the first is supersymmetry; the second is a double expansion.

Supersymmetry is a spacetime symmetry that extends the Poincaré spacetime symme-

tries. Like other symmetries in quantum field theory, supersymmetry sets restrictions on

the form of the action. However, supersymmetry is particularly successful in constraining

the dynamics of a theory to the extent that it is possible to understand it analytically. This

analyticity makes it a valuable symmetry in the study of non-perturbative regimes of quan-

tum field theories, where the semi-classical approximation cannot be used reliably.3 For

1A Riemann surface is a one-dimensional connected complex manifold. Here, it will come endowed with

a positive-definite metric and a symplectic structure.
2We will explain the sense in which we use the word ‘dual’ in Section 3.
3One could of course adopt other simplifying methods or approaches to study realistic phenomena in

quantum field theory, such as considering lower spacetime dimensions: and such studies have indeed been
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example, there exist supersymmetric accounts that have demonstrated confining behaviour

analytically, and that explain it as the result of monopole condensation.

The second ingredient, i.e. the double expansion, is not necessarily limited to super-

symmetric quantum field theories, and it can be used more generally. The idea is that for

theories with scalar fields and non-trivial potentials, such as the Higgs field, the expecta-

tion value of the scalar field (usually forming a dimensionless combination with a constant

parameter, such as a cut-off for the momentum) can be used as an expansion parameter,

analogous to a coupling constant. There are then two expansions, each correcting the

Lagrangian in its own sort of way. These two types of corrections are:

(i) corrections in the expectation value of the scalar field that renormalize the coupling

functions in the Lagrangian, and

(ii) corrections by high-energy modes that contribute higher-dimensional operators to

the Lagrangian.

This combination of supersymmetry and double expansion as via media uses the fact

that, although supersymmetry cannot guarantee exactness with respect to corrections of

type (ii), it does secure exactness with respect to corrections of type (i). Through a

combination of holomorphy and non-renormalization theorems typical of supersymmetric

theories, supersymmetry fixes the form of the low-energy effective action of the Seiberg-

Witten theory, such that the analytic expressions that Seiberg and Witten derived indeed

include all the quantum corrections of the first type.4 And, since the corrections of type

(ii) are irrelevant at low energies, (i) suffices to give an exact description of the low-energy

regime.5 By thus rendering computations more tractable and by providing results that

done. However, the drawback of lower-dimensional models is that we can see no way of experimentally

verifying them, while supersymmetry is, in principle, verifiable. Furthermore, lower-dimensional models

are qualitatively very different (much simpler) than four-dimensional ones, while the kinds of effects that

we find in supersymmetric theories resemble qualitatively, if not quantitatively, the physics of the real

world.
4After Seiberg and Witten’s original papers, there has been much work addressing the high-energy

regime of this theory, i.e. including corrections of type (ii). In short: UV extensions of N = 2 SYM can

be given by embedding the theory in string theory or M-theory, where N = 2 SYM is realized as e.g. the

world-volume theory of a configuration of D-branes. The constructions involve D4-branes and NS 5-branes

in Type IIA string theory or, alternatively, an M5-brane in M-theory. See, for example, Witten (1997,

pp. 459-460), Giveon & Kutasov (1999, pp. 1020-1021), de Boer & De Haro (2004, pp. 175, 178-181) and

Gaiotto et al. (2013, pp. 239, 243, 255, 269).
5Except for some special values of the Higgs field, where the low-energy description is invalid.
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are exact in the sense just discussed, the via media gives the Seiberg-Witten theory a

higher degree of simplicity than more realistic quantum field theories: thus making it a

valuable toy theory for the qualitative study of phenomena (such as the Higgs mechanism

and confinement) that philosophers are interested in.

We will illustrate the value of this via media for interpreting ontologies of quantum

field theories by arguing that the Seiberg-Witten theory exhibits ontological emergence

between the low-energy theory and the high-energy theory. In addition, we discuss a case

of emergence in the Seiberg-Witten theory between one low-energy model and another

low-energy model. We will use the notion of ontological emergence in the framework of

De Haro (2019), which characterises ontological emergence in terms of novel reference.

The plan of the paper is as follows. In Section 2, we briefly introduce supersymmetry, its

holomorphy properties, and a class of vacuum states that is identified by the supersymmetry

algebra. Because these states can be individuated for a range of both weak and strong

coupling, they are robust in the sense that their existence and some of their key properties

in the low-energy theory are independent of the details of the high-energy theory. We

argue that this makes them suitable candidates for the study of the ontology of the theory.

In Section 3, we discuss the Seiberg-Witten theory. We show how type (ii) corrections

appear in the Wilsonian effective action and how type (i) corrections are suppressed by

holomorphy. Furthermore, we discuss the role of geometric structures and topology in

the Seiberg-Witten model. Finally, in Section 4, we discuss the framework for ontological

emergence in more detail and argue for the two cases of emergence mentioned above. We

also argue that supersymmetry plays a central role in our claims of ontological emergence.

2 Supersymmetry

In their discussion of symmetries in physics, Brading & Castellani (2002, pp. 11-12) identify

four roles that symmetries play in physics and in physical theories: namely, classificatory,

normative, unifying and explanatory. Our focus in this Section is on the “normative role” of

supersymmetry in physical theories. Similar to other symmetries in quantum field theory,

supersymmetry plays a “normative role” by imposing restrictions on the form of the action

that describes a physical system: namely, by requiring that the action is invariant under a

supersymmetry transformation. This limits the number of terms that can appear, thereby

simplifying the calculations that are required to describe physical properties or phenomena.
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In Section 2.1, we provide a brief introduction to supersymmetry, superspace and su-

perfields. Section 2.2 will consider the “normative role” of supersymmetry in more detail

by discussing the property of holomorphy. In Section 2.3, we identify a class of states

in supersymmetric quantum field theories that are characterised by robustness. We will

return to this class of states in Section 3.2, where we will argue that their robustness makes

them particularly suitable for investigating the theory’s ontology.

2.1 Introduction to Supersymmetry

Supersymmetry is a spacetime symmetry that extends the Poincaré spacetime symmetries

such that each boson has a supersymmetric fermion partner and vice versa. The super-

symmetry generators Q relate particles with different spin, namely particles with integer

spin to particles with half-integer spin:

Q |boson⟩ = |fermion⟩ , Q |fermion⟩ = |boson⟩ . (1)

In a theory with one supersymmetry, each boson is related to one fermion. In theories with

extended supersymmetry (i.e. more than one type of supersymmetry generator Q), the set

of states is invariant under more than one type of supersymmetry transformation, so that

each boson is related to more than one fermion. Thus the number N of copies (i.e. types)

of supersymmetries, i.e. the number of ways there are to exchange a boson and a fermion

without changing the theory, is the number of independent supersymmetry generators, QI ,

where I = 1, . . . ,N . The larger the number of copies N , the more constrained the theory

is. In the Seiberg-Witten theory, where N = 2, each boson is related to two independent

fermions.

Because of supersymmetry, particles in supersymmetric theories come in supermul-

tiplets, i.e. sets of particle states that are related to each other by the supersymmetry

transformations. One way of writing down these supermultiplets is in terms of superfields,

that contain both bosonic and fermionic fields, which are defined in a generalized spacetime

manifold called superspace.6 In superspace, Minkowskian spacetime is extended to include

anticommuting coordinates known as Grassmann coordinates. These coordinates allow for

the inclusion of fermionic degrees of freedom in the spacetime.

In general, an extended N = 2 supersymmetric theory like the Seiberg-Witten theory

can contain a hypermultiplet, which is a multiplet that includes two complex scalar fields

6For a discussion of foundational questions on superspace, see Baker (2022) and Menon (2021).
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and two fermionic fields. This hypermultiplet is taken to be either a massless state or a

short BPS state (to be discussed in Section 2.3), and an N = 2 massless vector multiplet.7

The latter contains the complex scalar field ϕ and its supersymmetric partner ψ, the gauge

field Aµ and its supersymmetry partner λα, and four states of the Dirac fermion.

2.2 Holomorphy and Non-renormalization

As an extension of the Poincaré symmetries, supersymmetry can be understood as an ad-

ditional constraint on the field content of a field theory. The restrictions on the theory

become apparent due to the holomorphic properties of supersymmetric theories of this

kind, i.e. the superpotential is a holomorphic function of the chiral superfields. This super-

potential is a function of the superfields and coupling constants, from which the physical

potential is derived. The physical potential is itself not holomorphic, but it is constrained

by the holomorphic property of the superpotential. This holomorphy allows the superpo-

tential to depend only on the chiral superfields and not on their complex conjugates, and

therefore the higher-order terms in the expansion of the superfield do not appear in the su-

perpotential. In other words, the superpotential does not receive higher-order perturbative

corrections under renormalization. This is the sense in which, in the Introduction, we said

that supersymmetry constrains the appearance of corrections of type (i), i.e. corrections in

the expectation value of the scalar field that renormalize the couplings in the Lagrangian.

The strength of the “normative” role of supersymmetry in quantum field theories lies in

the fact that the restrictions it imposes often allow us to understand the theory analytically.

Thus supersymmetry provides a model that is mathematically simpler than many non-

supersymmetric models, thereby aiding in the interpretation of the ontology of interacting

quantum field theories. We will show how supersymmetry constrains the action in the

Seiberg-Witten theory in Section 3.1.

2.3 BPS States

Theories with extended supersymmetry like the Seiberg-Witten theory often contain a

class of states that satisfy a lower bound on the energy, and that can be derived from the

supersymmetry algebra. Our focus will be on this class of states because, as we will argue

7To be more precise, an extended N = 2 supersymmetric theory in which the highest helicity of the

particles in a supermultiplet is restricted to be one.
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in Section 4.1, these states are encoded in the properties of the Seiberg-Witten theory that

are relevant to our claim about ontological emergence.

Theories with an extended supersymmetry can contain massive multiplets of different

lengths (i.e. with different numbers of states). The supersymmetric particle states that are

described by a short massive hypermultiplet satisfy a lower energy (or mass) bound called

the Bogomol’nyi–Prasad–Sommerfield (BPS) bound,89 which is given by:

M ≥
√

2|Z| . (2)

Here, Z is given by the algebra of the generators, which for an extended supersymmetry

takes the following general form:

{Q,Q} = Z , (3)

where Z are the central elements of the algebra, called central charges.10

The states that saturate the BPS bound in Eq. (2), i.e. those with the lowest possible

energy (or mass) allowed by the theory, are known as BPS states or as states that are BPS

saturated.

Because the BPS bound follows from the supersymmetry algebra, which is valid for

any value of the coupling, it is invariant under renormalization, i.e. it does not get any

corrections from renormalization effects. As we discussed above, symmetry arguments

suppress quantum corrections (i.e. type (i) corrections) to the masses or charges of the

BPS states. This protection against quantum corrections secures that the BPS states form

a class of states that is robust, in the sense that their existence and their mass and charge

are independent of the value of the coupling.

BPS states share an intimate connection with the topological and geometric aspects

of a supersymmetric theory. Some of the BPS states arise in supersymmetric theories as

topological soliton states, whose properties depend on the geometry of the theory. Soliton

states are stable, particle-like states that are solutions to the classical, non-linear equations

of motion. As such, perturbative approximations are neither valid nor sufficient to describe

them in quantum field theory, and other methods are required in order to take these non-

perturbative contributions into account in calculations.

8See Prasad & Sommerfield (1975); Bogomolny (1976).
9For the time being, we use the word ‘particle’ in the usual sense of a state with definite quantum

numbers, localized in a region of spacetime. In Section 3, we will discuss that particle states can be limited

to a certain region of parameter space, and consequently can have a limited domain of application.
10See Haag et al. (1975).
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Among the BPS states in the Seiberg-Witten theory are two types of topological soliton

states, namely monopoles and dyons. In extended supersymmetric quantum field theo-

ries, topological solitons have topological quantum numbers that play the role of central

charges.11 In this case, Z is the central charge that arises in the supersymmetry algebra

in the semi-classical regime, and it is given by:

Z = ane + aDnm , (4)

where ne and nm are the electric and magnetic quantum numbers of the state under

consideration. Monopoles carry magnetic charge, while dyons carry both magnetic and

electric charge. In the next Section, we will discuss how geometric methods such as studying

monodromies are applied to find the geometric properties of the Seiberg-Witten theory,

including the topological soliton states.

3 The Seiberg-Witten Theory

The Seiberg-Witten theory is an exact low-energy effective theory of the four-dimensional

N = 2 supersymmetric Yang-Mills (SYM) theory with SU(2) gauge symmetry. In 1994,

Nathan Seiberg and Edward Witten developed this theory in two papers that were highly

influential for the understanding of non-perturbative aspects of four-dimensional quantum

field theories.12 Section 3.1 introduces the theory and discusses the notion of the Wilsonian

effective action. It shows how supersymmetry imposes restrictions on the form of the action.

It also argues that the set of vacuum states of this theory constitute a moduli space, with

its coordinates being the gauge-invariant expectation values of the Higgs field. In Section

3.2, we continue to explore the role of geometry in Seiberg and Witten’s achievement of

writing down the exact low-energy effective action. We also discuss the role of dualities in

unifying the low-energy models in one full theory.

3.1 Wilsonian Effective Action

The low-energy effective theory that was derived by Seiberg and Witten is defined by a

Wilsonian effective action that is derived from the exact path integral. This method, of

11See Witten & Olive (1978).
12Seiberg & Witten (1994a,b)
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deriving the Wilsonian effective action, entails that the field modes with momentum higher

than a certain momentum cutoff are integrated out: their effects are then included in the

renormalization of the coupling constants in the Wilsonian effective action. Schematically,

the general form of the action is as follows:

S = −1

2

∫
d4x

(
gij(ϕ) |∂µϕi|2 + V (ϕ) + Cn(ϕ, g, ∂g,Λ)(∂ϕ)n

)
, (5)

where ϕi collectively denotes the set of low-energy fields (in the low-energy model that

we will consider, this set will include the complex-valued Higgs field, a gauge field, and

their supersymmetric partners). The first term in this action contains the metric gij(ϕ)

in the space of fields (which, for the Seiberg-Witten theory, only depends on the Higgs

field). The second term is a real-valued potential for the scalar fields. The third term

indicates schematically the high-energy corrections, i.e. corrections of the type (ii), which

we discussed in the Introduction. These are indicated schematically by operators that are

higher powers in the derivatives of the fields (namely, n > 2), which are of mass dimension

higher than 4. Here, Cn(ϕ, g, ∂g,Λ) is a function of the (non-renormalizable) high-energy

corrections that depend on the Wilsonian momentum-cutoff Λ.13 As one can see from

their dimensions, these corrections are negligible at low energies, i.e. E ≪ Λ, while their

contribution grows as the energy increases (namely, the coefficients are proportional to

negative powers of Λ). As we will discuss later, neglecting the high-energy terms allows

for the identification of a metric that describes the space of vacuum states.

To write down the Wilsonian effective action explicitly, i.e. to determine the forms of

the metric and the potential in Eq. (5), supersymmetry arguments are used, in addition

to internal symmetry arguments. This is best done using the superspace formalism that

we discussed in Section 2.2: N = 2 supersymmetry requires that the low-energy effective

action, Eq. (5), is recovered as an integral over both spacetime and superspace, of the

following form:

Seff =
1

16π
Im

∫
d4x d2θ d2θ̄ F(Ψ) , (6)

where F is the prepotential of the low-energy theory and θ and θ̄ are coordinates in super-

space. The prepotential includes all the information about the physics in the low-energy

13For a scalar field, the mass dimension of (∂ϕ)n is 2n, and so since, in units where ℏ = 1, the action is

dimensionless, the mass dimension of the coefficient Cn is 4− 2n (with n > 2). This means that, to lowest

order, and neglecting curvature effects, this coefficient is proportional to 1/Λ2n−4. For a discussion of the

significance of these higher-order terms and their dimensions, see Williams (2023, pp. 50-54).
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regime, and its functional form can in principle be determined from the microscopic the-

ory. The invariance of the action under the extended N = 2 supersymmetry is secured

by the fact that the prepotential is a holomorphic quantity, both in the chiral superfield

Ψ and in the coupling constants, g. In other words, F only depends on the superfields

and coupling constants, and not on their complex conjugates, so that ∂F(Ψ)/∂Ψ̄ = 0 and

∂F(g)/∂ḡ = 0. It now becomes clear how supersymmetry constrains the appearance of

type (i) corrections: because higher-order terms in the perturbative expansion of the oper-

ators in the prepotential depend in some way on Ψ̄ or ḡ, only the first-order term appears

in the prepotential. Seiberg and Witten’s achievement was that they were able to find

the full expression for the low-energy effective prepotential, including the non-perturbative

corrections.

The microscopic theory that the effective action in Eq. (6) is derived from has an SU(2)

symmetry that in the low-energy regime is broken, by the Higgs mechanism of the scalar

field ϕ, down to a U(1) symmetry.14 The corresponding Higgs potential is given by:

V (ϕ) =
1

2
Tr[ϕ†, ϕ]2 ≥ 0 . (7)

Unbroken supersymmetry requires that the ground state satisfies V (ϕ0) = 0. This means

that either ϕ0 = 0, or ϕ†
0 and ϕ0 need to commute. The latter case results in a family

of vacuum states with ϕ0 = 1
2
a σ3, where a is the vacuum expectation value of the Higgs

field.

One of the consequences of the supersymmetry constraints is that the Wilsonian ac-

tion describes the low-energy physics by its classical couplings. In the case of unbroken

supersymmetry, these couplings are represented by parameters that can be understood as

(the lowest component of) the vacuum expectation value of a superfield.15 In this case, the

Higgs expectation value a represents the complex order parameter u that corresponds to

the (classical) coupling constant. The space of vacuum solutions is then parametrized by:

u = ⟨Trϕ2⟩ = 2a2. (8)

14On a widespread interpretation, the Higgs mechanism does not break the local gauge symmetry, which

is always present in the full theory. (For discussions, see Berghofer et al. (2023) and Maas (2019).) More

precisely: only a global subgroup of the gauge group gets broken. We thank Silvester Borsboom for a

discussion of this point. The model with the broken symmetry is obtained, in the low-energy regime, by

expanding the bottom theory about a minimum of the potential. Thus only a U(1) symmetry remains.
15For more details on this point, see Bertolini (2024), chapter 9.4.
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As we will discuss below, u can be understood as the value of a coordinate on the manifold

of vacua called the moduli space. Expectation values like a are values of moduli, i.e. a

distinguished set of quantities (here, the Higgs field), that distinguish between different

low-energy phases.

In the low-energy regime of the quantum theory, the moduli space is a manifold

equipped with a metric that can be found by integrating over the Grassmann coordi-

nates θ̄ and θ in the effective action, Eq. (6). The resulting kinetic term is then compared

with the first term in Eq. (5). The overall multiplying coefficient is:

Im τ(a) := Im
∂2F(a)

∂a2
, (9)

where Im τ(a) depends on the Higgs expectation value a. This coefficient can be interpreted

as an overall (scale) factor of the metric on the moduli space, so that the metric is given

by:

ds2 = Im τ(a) da dā = Im
∂2F(a)

∂a2
da dā . (10)

Since the prepotential F is holomorphic in Ψ, the coupling matrix τ only depends on the

coordinate a, and not on its complex conjugate ā. The fact that it is possible to interpret

this coupling matrix as a scale factor of the metric will be important in our discussion of

emergence in Section 4.

In the previous discussion, we analysed the low-energy regime of the N = 2 SYM

theory with SU(2) gauge symmetry: at high energies, the action given in Eq. (6) includes

the additional terms, Cn. Because of these terms, the integration over θ̄ and θ does not

allow for the extraction of an overall multiplying coefficient. Therefore, a straightforward

interpretation of the metric in moduli space is lost.16

3.2 Low-Energy Models

Another important property of the metric on the moduli space, given in Eq. (10), is that

it is not globally defined. The facts that (i) the prepotential F(a) is a holomorphic (and

thus harmonic) function of a, and (ii) its second derivative, Im τ(a) = Im ∂2F/∂a2, is

identified as a running gauge coupling (so that it is not a constant), together imply that

16The first few terms may have a geometric interpretation as corrections to this moduli space. But at

high energies, one expects that this simple and neat description of the moduli space breaks down: see

footnote 4 for relevant work on the high-energy regime.
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F(a) cannot be positive-definite everywhere on the manifold.17 But since, by (ii), Im τ(a)

is the (inverse) gauge coupling g, a negative value of Im τ(a) corresponds to a negative

gauge coupling, which is not a physical result. Thus there are no coordinates a and ā that

can define the metric globally; the metric is not globally defined.

In this Section, we discuss how this problem is solved by introducing additional models

that each have their own set of local coordinates. Thus by combining geometric methods

and dualities, one can describe the complete moduli space of the low-energy effective theory.

Seiberg and Witten took a geometric approach to calculate the exact effective action

of the low-energy effective models, namely by studying monodromies: the transformation

that a mathematical object, in this case the pair (aD, a), undergoes as it moves on a closed

path around a singularity. Studying monodromies provides insights into the structure of

the moduli space: it allows one to investigate its local and global properties, topology,

algebraic geometry, and the relationships between different regions of the space. The

moduli space of the Seiberg-Witten theory is a Riemann surface and, as we argued in

Section 3.1, it is endowed with a metric. An investigation of the monodromies of the

moduli space led Seiberg and Witten to conclude that the Riemann surface has a non-

trivial topology: there are at least three singularities, at u = ∞, u = Λ2 and u = −Λ2,

that are not part of the manifold itself.18 By studying the monodromies around each of

the singularities, the prepotentials of the three low-energy models can be found.

We first focus on the region in the vicinity of the singularity a = ∞, i.e. u = ∞, where

the expectation value of the Higgs is large. Therefore, one expects usual perturbation

theory to be a good approximation. Seiberg and Witten found the full expression for the

prepotential in this region by expanding it in terms of the (large) expectation value of the

Higgs field. They found the following expression:

F(a) = F0(a) +
i

π
a2 log

a2

Λ2
+

a2

2πi

∞∑
k=1

ck

(
Λ

a

)4k

, (11)

where the first term is:

F0 =
1

2
τ0 a

2 . (12)

17In mathematical terms, the statement is that a non-constant harmonic function cannot have a mini-

mum or a maximum within its region of definition. See Theorem 21 in Ahlfors (1979, p. 166).
18The presence of two singularities additional to the singularity at u = ∞ agrees with the fact that the

N = 1 theory, to which the N = 2 supersymmetric theory breaks upon the introduction of a mass term,

possesses exactly two vacua. For more details, see Bertolini (2024, ch. 12.3.2).
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This term is the classical contribution to the prepotential: which, when substituted into

Eq. (6), gives the classical action, i.e. Eq.(5). The logaritmic term is the one-loop cor-

rection. The third term is the sum of non-perturbative contributions, such as the soliton

contributions. In the region of the moduli space near a = ∞, this sum is dominated by the

first two terms, i.e. the theory is dominated by the semi-classical, one-loop physics: and,

as such, it is asymptotically free. For regions of the moduli space where the parameter

a is comparatively smaller, the sum still converges with a finite radius of convergence.

In this larger region, the non-perturbative contributions cannot be neglected, and writing

down the complete action requires knowing the values of the coefficients, ck, of the non-

perturbative terms in the sum. It is these terms that Seiberg and Witten were able to

compute exactly. Using Eq. (10), one can determine the metric of this region from the

prepotential in Eq. (11).

Due to the limited radius of convergence of the expansion of the prepotential, this

model, which we dub M , does not suffice to construct the complete low-energy theory.

We also require models that cover the other regions of the moduli space. Thus the full

theory consists of three low-energy models, M , M ′ and M ′′, each of which is valid in an

open region near one of the singularities. In each region, the prepotential has a different

form, and it has a parameter of expansion that renders the sum convergent. As we just

discussed, M is valid in the region around u = ∞, i.e. for large expectation values of the

Higgs field. Likewise, M ′ is valid in the region around u = Λ2, and M ′′ is valid in the

region around u = −Λ2. These three regions of validity overlap, and together they cover

the whole Riemann surface. Once the metric on the moduli space in the region around

u = ∞ is known, one can find the appropriate coordinates for the regions described by

M ′ and M ′′ by making use of an (effective) duality transformation. In the Seiberg-Witten

theory, a duality transformation allows one to shift between different coordinate patches

that ascribe different local properties to the moduli space, thus shifting between different

low-energy models. Because the three local models each use dual variables to describe a

region of the moduli space, the prepotential and the metric are rendered non-singular by

the duality transformation in the overlap region.

This is an example of what De Haro & Butterfield (forthcoming) call the geometric

view of theories, i.e. a conception of a physical theory as a geometric structure, often a

differentiable manifold, and of models that are open sets that together cover the whole

manifold, with (quasi-)dualities on the overlaps between the open sets. Each region of the
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moduli space is characterized by the vacuum expectation value of a field that plays the

role of an order parameter: in our model M above, this value was denoted by a.

Dualities can be understood as a class of symmetries, where rather than acting on solu-

tions to theories (as is the case with standard (gauge) symmetries), dualities act on a space

of theories (which, following De Haro & Butterfield (2017), we have here called ‘models’).19

A formal definition of a duality is provided by De Haro & Butterfield (2017), who define

a duality as an isomorphism between models that share a common core. According to

this definition, a duality is a structure-preserving bijective map between the states and

quantities of the two models, that is equivariant for (i.e. that respects) their dynamics,

and reflects their formal equivalence.

The dualities between the low-energy models in the Seiberg-Witten theory are in fact

quasi-dualities, i.e. they are close to dualities but they are not quite dualities: here, the

duality map is only partially isomorphic, and it is not defined on the whole moduli space.

Nevertheless, there is a map between the relevant state spaces that preserves the relevant

subset of the quantities. This map is defined only where the models overlap on the moduli

space. It is in fact an analytic continuation to a region where the series expansion of the

prepotential does not converge, but can be resummed using a quasi-dual variable.

The models M and M ′ are related to each other by S-duality: see Figure 1. S-duality

transformations are also known as ‘weak-strong coupling dualities’, because they relate

the physics in a strong-coupling regime, where perturbative methods break down, to the

physics in a weak-coupling regime, where perturbation theory gives a valid approximation

of the physical system. More specifically, this S-duality is a quasi-duality of the electromag-

netic type, which means that the models M and M ′ are quasi-duals under the exchange

of an electrically charged gauge boson and a magnetically charged monopole. Thus it re-

lates a weak-coupling gauge theory to a strong coupling theory of solitons, i.e. topological

particles.20

The models M ′ and M ′′ are related to each other by a T-duality transformation (not to

19As Castellani & Rickles (2016) point out, a duality transformation is more radical than an ordinary

symmetry transformation. This is because, in addition to leading to a change in theoretical description,

it can also lead to a change in the interpretation of the physical system. See Dieks et al. (2015) and

Vergouwen (2022) for explications of this idea in the context of emergence. The contrast between internal

and external interpretations is further developed in De Haro & Butterfield (2021).
20For a fuller account of these aspects of the Seiberg-Witten theory, and in particular of the philosophical

significance of solitons, see De Haro & Butterfield (forthcoming).
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T

M ′M M ′′
S-duality T-duality

Figure 1: Overview of the Seiberg-Witten theory. The vertical arrows indicate taking the low-

energy regime of the microscopic theory T , which results in three effective models, M , M ′, and

M ′′. These models are related to each other by quasi-dualities, indicated by the horizontal arrows.

be confused with T-duality in string theory), which typically results in a constant overall

shift in the action. The S- and T -dualities of the Seiberg-Witten theory are the two

generators of an SL(2,Z) symmetry group, which relates different points on the moduli

space, and so this is the symmetry group of the moduli space.

A physical interpretation of the singularities in the moduli space is to understand them

as massive particles, either an elementary particle or a soliton, that have been integrated

out.21 At these values of a, the particles become massless and the low-energy approximation

is invalid. The duality transformations allow one to set up an effective action that describes

the regions around the singularities, where the mass of these particles is small and therefore

the particles need to be included in the effective action.

Two of the singularities, at u = Λ2 and u = −Λ2, can be interpreted as corresponding

to massless solitons, respectively a monopole and a dyon. The monopole solutions in

this theory were initially described in 1974 by Gerard ’t Hooft and Alexander Markovich

Polyakov. In examining the Georgi-Glashow model, they observed that monopoles occur

naturally in Yang-Mills theories with a Higgs mechanism. These solutions correspond to a

conserved magnetic current that is topological in nature. The third singularity, at u = ∞,

can be interpreted as corresponding to a massless gauge boson. The soliton solutions are

dual to each other, and to the elementary particle solutions. Performing a full SL(2,Z)

duality transformation on the gauge particle state corresponding to the singularity at

21See ’t Hooft (1981), pp. 463-465.
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u = ∞ gives a dyonic state that corresponds to the singularity at u = −Λ2. These three

particles, the monopole, the dyon, and the gauge boson, are part of the BPS spectrum of

the theory.

4 Emergence in the Seiberg-Witten Theory

In this Section, we will argue that the relation between the N = 2 supersymmetric SU(2)

Yang-Mills theory and the low-energy Seiberg-Witten theory, that we discussed in the

previous Section, is best conceptualised as a relation of emergence. Namely, there are

two main benefits from bringing in a conception of emergence: First, Section 4.1 will

illustrate how Butterfield’s conception of emergence, as ‘properties or behaviour of a system

which are novel and robust relative to some appropriate comparison class’ (Butterfield,

2011: p. 921), casts light on the physical interpretation of the Seiberg-Witten theory. Thus

Section 4.1 will use the idea of a ‘delicate balance’ between reduction and emergence, that

has been recently advocated by several authors, to conceptualise the relations between

the various models involved in the Seiberg-Witten theory.22 Second, Section 4.2 will spell

out which geometric properties emerge in the low-energy regime. Thus Section 4.2 will

thereby illustrate, in a concrete example, how a theory of emergence can benefit from

precise case studies in quantum field theory such as the Seiberg-Witten theory. For, in

so far as Wilsonian renormalization group methods are very general and can be applied

widely in quantum field theory, the Seiberg-Witten theory is paradigmatic of the relations

between high-energy and low-energy theories, and it casts light on the role of topology in

a theory of emergence.

4.1 Framework for Emergence

We will use as our framework for emergence a theory of ontological emergence developed

in De Haro (2019). The leading idea is that ontological emergence is a matter of novelty

in the semantics of a physical theory, relative to an appropriate comparison class. (This is

best explained in the most general case, where the comparison class is taken to be another

theory or set of theories: as against the special case where the comparison class is the

22See e.g. Butterfield (2011), Guay and Sartenaer (2016), Crowther (2016) and De Haro (2019).
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same theory, and only some properties or behaviours are different.)23 Thus we distinguish

a bottom theory, Tb, and a top theory or model, Tt or Mt. In our case, it will initially be

appropriate to have a model at the top, because as we will discuss, there are three possible

linkage relations, each with a model in its codomain. Together, the three models give what

we call the Seiberg-Witten theory: see Figure 1.

Thus the idea of emergence that we are going to discuss is, roughly, that the bottom

and top theories (or models) (i) are formally linked, and (ii) their semantics “come apart”:

namely, the linkage relation does not respect the semantics, so that a change in the se-

mantics is required. To realize this contrast between the formal linkage and the change in

semantics, we use the following (standard) distinction between (i) a bare theory or model,

and (ii) its interpretation in a domain of application:

(i) The bare theories and the linkage map. A bare i.e. uninterpreted theory or model is

(also standardly) described as a triple of state-space, set of quantities, and dynamics, which

we denote by: ⟨S,Q,D⟩. The set of quantities Q will be the algebra of gauge-invariant

fields, which give representations of the super-Poincaré algebra with various quantum num-

bers (they are interpreted as masses and spin quantum numbers, see Section 2.1). Thus

taking T , i.e. the N = 2 SU(2) SYM theory, as our bottom theory, these are the fields

in the corresponding supermultiplet (viz. a vector supermultiplet), while in the top model

M , i.e. N = 2 U(1) SYM, these are the fields of the chiral multiplet.

For quantum theories, the set of states S is usually a Hilbert space, H. In our bottom

theory, the Hilbert space is spanned by the irreducible representations of the super-Poincaré

algebra: and, as we discussed in Section 2.3, we will focus on the subspace of BPS states,

i.e. the states that satisfy the BPS bound in Eq. (2), so that S will be restricted to this

subset. In our top theory, the BPS states are encoded in the properties of the moduli

space (especially, in the monodromies around each of the singularities), which is the space

of low-energy vacua (not just for a single model, but for the whole Seiberg-Witten theory).

Thus we will first take the state-space of the top model to be the open region of the moduli

space corresponding to a single model: and, after we discuss the relation between the

different models, we will extend the state-space to the whole moduli space, so that we will

regard the whole low-energy Seiberg-Witten theory, as described by its moduli space, to

be emergent.

The fields take values on the states, i.e. for a state ψ ∈ H, a gauge-invariant field

23See Butterfield (2011) at p. 921.
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Φ ∈ Q is assigned an expectation value ⟨ψ|Φ |ψ⟩ ∈ C. This allows us to think of a field

Φ ∈ Q as an assignment of a complex number to a state, i.e. Φ : H → C. Thus in the

low-energy model M discussed in Section 3, the gauge-invariant expectation value of the

Higgs field, Eq. (8), is a coordinate on the space of low-energy vacua, i.e. the moduli space.

Each of the other two models has an analogous order parameter, i.e. the expectation value

of a distinguished complex-valued field that characterises a macroscopic phase of the low-

energy theory, which are obtained by quasi-duality. (Since the different open sets of the

moduli space have qualitatively different “macroscopic” properties, this is reminiscent of

phase transitions in statistical mechanics: hence our use of the word ‘phase’.) The order

parameters of the other models give different coordinatizations of the moduli space that

are valid in the other open sets (although we will not need to discuss their details).

The dynamics is given by a choice of a self-adjoint operator that is the theory’s Hamil-

tonian (alternatively, by a choice of a Lagrangian, which in the low-energy model M is

given by Eq. (5), and analogously for the other models).

The linkage between the bottom and top theories that the framework for emergence

requires is a non-injective, partial map, that is a partial homomorphism, i.e. it respects

part of the theory’s structure. This map has as its inputs states of the bottom theory, and

as its outputs states of the top theory (likewise, there is a similar map for quantities). The

non-injectivity requirement embodies the idea of ‘coarse graining’, so that a state of the

top theory at low energies is the output of a (usually large) number of input states in the

domain of the linkage map, i.e. the bottom theory at high energies.

It will be useful to think of the linkage map(s) in terms of the variation of a parameter

in the path integral formulation of the theory, together with the associated procedure of

integrating out the modes that exceed the relevant scale: namely, the energy, in units

of the cutoff, i.e. E/Λ, so that as we vary this parameter we go through a sequence of

states and quantities that are relevant at that energy (recall the discussion of Wilsonian

renormalization, in Section 3.1). The image of the map(s), i.e. the top model, is obtained

when this parameter is taken to zero or a value close to zero, so that only the massless modes

remain.24 The comparison class is the class of theories at larger values of this parameter

(in particular, very large ones). The non-injectivity requirement will be satisfied, because,

24We say ‘or a value close to zero’ because it is only required is that the energy E is much smaller than

the mass of the lightest massive mode that has been integrated out. Thus, although it is useful to think

in terms of taking the limit E/Λ → 0, nothing here hinges on actually being at the limit.
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regardless of the value of the parameter E/Λ at which we take our bottom theory, and

regardless of what this theory looks at high energies, we always get the same top model.

Also, the map is partly structure-preserving if the bottom and top theories share part,

but not all, of their (super)symmetries: as in the case of symmetry breaking, and of

bottom and top theories that share a supersymmetry algebra, which we are interested

in here. Furthermore, the linkage map forgets the detailed information about the fields

whose masses exceed the cut-off: namely, the top theory does not distinguish between

members of the comparison class that have the same properties at low energies, but different

properties at high energies. Thus the low-energy theory is insensitive to part of the detail

of the bottom theory (especially, about the higher-order terms in Eq. (5)), even though it

contains the detailed non-perturbative information about the coupling parameter, through

the non-perturbative terms in the superpotential, Eq. (11) (recall our discussion of the

double expansion, in Section 1).

In the case at hand, we take the two linkage maps just discussed, between the sets of

states and between the sets of quantities, to be cases of Nagelian reduction.25 Namely,

the quantum numbers that characterize the BPS states of any of the three models at the

top are subsets of the quantum numbers of the BPS states of the bottom theory (these

numbers follow from the supersymmetry algebra, and in particular from Eqs. (2) and (4)).

Thus, in effect, the linkage map is a bridge law between the states of the bottom and top

theories.26 Likewise, the quantities of the top model, especially the Wilsonian effective

action (from which other quantities can be derived), are derived from those of the bottom

theory, through the renormalization procedure and symmetry arguments (themselves based

on the supersymmetry of the bottom theory) discussed in Section 3.1.

Hence our claim, in the preamble of this Section, that the relation between the bottom

and top theories involves a ‘delicate balance’ between reduction and emergence. For we

can Nagel-reduce the structure of the top models to the bottom theory (adding, where

appropriate, definitions of terms and other bridge laws). And at the same time, as point

25Recall that, in short, a theory Tt is Nagel-reduced to Tb iff Tt can be deduced from Tb, using appropriate

bridge laws. Here, the deduction is the derivation of the low-energy Wilsonian effective action from the

exact path integral. See Nagel (1961), Butterfield (2011b), and Dizadji-Bahmani et al. (2010).
26Bridge laws are used here because the state-space of the top theory is not simply a subset of the

state-space of the bottom theory. The bottom and top states have different properties: for example, they

are not in the same representation, because they appear in different supersymmetry multiplets. Thus one

needs to specify how the states of the bottom theory are mapped onto those of the bottom theory.
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(ii) and Section 4.2 will argue, there is ontological emergence, i.e. referential novelty.

Agreed: as Section 4.2 will discuss, even before we interpret anything, novel structures

already appear in the top theory. But this would not by itself give us ontological emer-

gence, if those structures gave merely different formal descriptions of the same domain of

application. Thus we will argue that there is referential novelty, so that the linkage and

interpretation maps do not commute. We do this in (ii) below. Section 4.2 will then discuss

in more detail the properties that are emergent.

(ii) Interpretation maps and a condition for not meshing. A familiar, indeed main-

stream, way to present the semantics of a physical theory is to use referential semantics.

We will endorse this framework, which allows us to model the semantics by an interpreta-

tion map from states and quantities in the bare theory to a domain of application in the

world.

In particular, as we discussed above, the distinguished set of fields that are the order

parameters distinguish the macroscopic i.e. low-energy phases of a quantum field theory,

which are the equivalence classes of states with the same qualitative behaviour. Thus

we can think of the values of quantities, interpreted as indicators for various phases, as

providing a semantics for the states.

With these preliminaries, ontological emergence is the phenomenon that, when we

compare the high- and low-energy theories, although we can relate the states and quantities

of the bottom and top bare theories formally, using the partly structure-preserving linkage

map, this linkage does not mesh with the interpretation, so that the two maps form a

diagram that does not commute (see Figure 2). Namely, as we move from the bottom to

the top by taking E/Λ to a small value, the semantics of the bottom theory stops being

applicable, and we need to construct a new semantics, i.e. a new interpretation map, for the

top model.27 In particular, compared to the domain of application of the bottom theory,

the domain of application of the top model contains novel properties. The appearance of

these novel properties, which is signalled by the need to change the interpretation map,

and hence by the non-commutativity of the diagram, is what we call ontological emergence.

In the next Section, we will discuss these novel properties.

27For some examples of e.g. how the interpretation of the bottom theory becomes inconsistent with the

top theory, see De Haro (2019: p. 35-48). This means that there is no limiting system associated with that

interpretation, and a new interpretation is required.
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DM

DT

̸=E/Λ → 0

Figure 2: Ontological emergence of the low-energy model M of the Seiberg-Witten theory from

the microscopic theory T . The interpretation maps iM and iT require different semantics, hence

the linkage and the interpretation fail to commute and the domain of applications DM and DT

differ.

4.2 Novelty in the Seiberg-Witten Theory

According to the definition given above, the mark of ontological emergence is the appear-

ance of novel properties in the domain of application of the top theory, compared to the

bottom theory: such that the linkage and interpretation maps form a non-commuting dia-

gram, as in Figure 2. In this Section, we will first focus on the novel properties that arise

in the top theory, i.e. the low-energy theory, and then argue that the three low-energy

models M,M ′, and M ′′ individually, as well as the complete Seiberg-Witten theory, onto-

logically emerge from the microscopic theory T , i.e. the N = 2 super Yang-Mills theory

with SU(2) gauge symmetry. We end this Section by discussing an alternative case of

emergence, namely the relative emergence between the low-energy models that make up

the Seiberg-Witten theory. We also discuss the role of topology in these cases of emergence.

For simplicity, we focus on one of the three local low-energy effective field theory models

and identify this as our top model. We take the model M that describes the region on the

moduli space around the singularity u = ∞. This model is an N = 2 super Yang-Mills

theory with U(1) gauge symmetry. Figure 2 gives a schematic depiction of this case of

emergence.

We will discuss the emergence of this model in two steps, both of which illustrate the

previous Section’s statement that, as we take E/Λ to be small or zero (namely, much

smaller than the mass of the lightest massive mode that has been integrated out), ‘the se-

mantics of the bottom theory stops being applicable’. Thus we first discuss novel features
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of the top domain that are not in the domain of the bottom theory, and then we discuss

features of the bottom theory that are inconsistent with the top theory. In other words,

some concepts that appear in the bottom theory stop being applicable in the top theory.

Novel features of the top domain that are not in the bottom theory’s domain. We be-

gin with the low-energy effective action. As Section 3.1 shows, the action contains non-

renormalizable terms that, at sufficiently high energies, prohibit us from identifying a

metric that describes a classical moduli space. However, as E/Λ becomes small, these

terms are negligible and the vacua of the theory form a manifold, in which physical quan-

tities take on a value, and which is equipped with geometric structures such as the metric,

given by Eq. (10). Thus to get from the top bare theory to the domain of application, we

interpret these mathematical structures as physical properties of the theory: especially, as

a metric for angles and distances between vacuum states. Since the interpretation map

iT of the bottom theory does not have a metric in its range, while iM does have a metric

in it range, this illustrates the non-commuting diagram in Figure 2: for small E/Λ, there

is a novel property, i.e. a metric on a one-dimensional complex manifold, in the theory’s

domain of application. In addition to being novel, the metric is also a robust property.28

The robustness we consider here is similar to the case of the emergence of the liquidity

of water in the continuum limit: once one starts to zoom in on the surface of water, one

begins to see the granularity and the internal structure of the molecules—and yet we say

that liquidity is a robust property of water. The liquidity does not disappear because at

smaller distances it begins to be granular rather than continuous.29 Likewise, in our case,

the low-energy theory M is insensitive to part of the detail of the high-energy theory T .

Furthermore, the classical properties that arise in the domain of application of the low-

energy models are novel compared to the microscopic quantum theory. For example, in the

low-energy model M , the Higgs field behaves classically.30 These novelties are the result

of the classical and geometric nature of the moduli space, and require a new semantics as

28We follow the notion of robustness given in Butterfield (2011a). See also Franklin & Knox (2018),

Section 3.2, for a discussion on robustness in the context of emergence.
29See for example Butterfield’s discussion of ‘emergence before the limit’ in Butterfield (2011b).
30By ‘behaves classically’, we do not mean that the Higgs field has a specified classical value, but rather

that its correlation functions factorise, because in the low-energy regime a single configuration dominates

the path integral, and other contributions are suppressed. See e.g. Witten (1980, Section IV) and Coleman

(1985, p. 392).
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discussed above.

Finally, the properties of the BPS multiplets are novel in the top theory’s domain of

application compared to the bottom theory. Even though the N = 2 supersymmetry holds

both in the low-energy model and in the high-energy theory, the BPS states are in different

representations of the supersymmetry algebra in the top theory compared to the bottom

theory, i.e. the supermultiplets are not fully preserved under the linkage map. Thus states

that are related by the linkage map have the same mass and charge, but different spins.

Thus they are different states altogether and, in addition to being novel, they are also ro-

bust. For as we discussed in Section 2.3, the BPS bound is dictated by the supersymmetry

algebra, and therefore the relation between the masses of the BPS states and their charges

is invariant under the renormalization group, and remains valid after perturbative and

non-perturbative contributions are taken into account. In other words, if the states in the

microscopic theory satisfy the BPS bound, they must satisfy the bound in the macroscopic

theory as well. Furthermore, these states exist at any value of the coupling. Perturbations

in the underlying physics, i.e. the inclusion of perturbative or non-perturbative terms in the

action, do not affect the appearance of the BPS states in the full low-energy theory, even

though they are not all present in each phase, i.e. in each of the models, of the low-energy

theory. In this sense, supersymmetry secures the robustness of the BPS states, more specif-

ically the gauge states, the monopole states and the dyonic states, of the Seiberg-Witten

theory. This robustness makes them reliable parts of the ontology of the theory: namely,

such states are present in the domain of application at low energies, no matter how large

the quantum corrections, i.e. for any value of the coupling.

Features of the bottom theory that are inconsistent with small E/Λ. The bottom the-

ory has an SU(2) symmetry group, with a corresponding number of gauge bosons (namely,

three), only one of which survives at small E/Λ, i.e. under the linkage map. Thus in

the low-energy regime, only a U(1) subgroup of the original gauge symmetry remains.31

Therefore, statements such as ‘the gauge field has an SU(2) gauge symmetry’, which can

31That the low-energy model has a U(1) symmetry and no SU(2) symmetry is independent of the

interpretative details of the Higgs mechanism. The model with the broken symmetry at the top is different

from the bottom theory, because it is obtained by expanding the bottom theory about a minimum of the

potential, and taking the low-energy limit. In this regime there is only a U(1) symmetry. See also footnote

14.
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Figure 3: Ontological emergence of the low-energy model M ′ from the low-energy model M . The

interpretation maps iM and iT require different semantics, hence the linkage and the interpretation

fail to commute and the domain of applications DM ′ and DM differ.

be made and have a referent in the bottom theory, are inconsistent with the linkage map:

such statements have no referent in the top model, i.e. no corresponding item in the top

domain of application. Thus again, this means that the linkage and interpretation maps

do not commute.

The other two low-energy models similarly emerge from the microscopic theory. Each

model is related to the bottom theory by a linkage map that maps the microscopic theory

to the sub-region of the moduli space that is described by that low-energy model. Let

us briefly discuss the emergence of M ′ from T . Here, M ′ is the N = 2 supersymmetric

version of QED with a light N = 2 hypermultiplet. By including an (approximate) S-

duality transformation in the linkage map, the model M ′ emerges from the microscopic

theory T . In this case, the monopoles obtain electric, rather than magnetic, charge upon

the duality transformation. Therefore, we can say that the metric of the regions of the

moduli space and the classical properties described by M ′ emerge from the microscopic

theory.

Taking into account the S- and T-duality transformations that unify the low-energy

models to form a complete low-energy effective action, and the fact that the BPS relation

given in Eq. (4) is invariant under the duality, we argue that the moduli space of vacua of

the whole Seiberg-Witten theory ontologically emerges from the microscopic theory.

Topology of the moduli space and emergence. As an alternative to the above discussion,

of looking at emergence relative to the high-energy theory, one can also look at the relative
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emergence between the three low-energy models.32 Thus for example, one may consider

the emergence, as one moves from any point in the moduli space far from u = Λ2 towards

u = Λ2, of a monopole state. In this type of emergence between phases, the topological

non-triviality of the moduli space, and specifically the fact that the moduli space cannot

be covered by a single open set, plays an important role:33 for it implies that we cannot

use a single model. Thus we need three models to cover the whole moduli space, hence

the possibility of emergence: more specifically, each open set comes equipped with a dif-

ferent complex coordinate (namely, the order parameter for that model). These complex

coordinates are maps from the given open set onto C, with each open set mapping onto

its own copy of C, i.e. its own coordinate space. These coordinate spaces are model spaces

(see Lee (2018), p. 55), i.e. spaces of zero or constant curvature that model (regions of) a

Riemannian space. These model spaces provide a model-theoretic semantics for the moduli

space and the quantities defined on it that guide the physical interpretation of the models.

In other words, these model spaces are structures for the domains of application shown in

Figure 3.

In sum: the topology of the moduli space implies that we require more than one

model space to coordinatize the moduli space. Each model space describes a domain

of application, and so the domains of application corresponding to each region are also

different from each other. Thus in the low-energy theory, ontological emergence, which

is characterised by the differences between the domains of application, depends on the

topologically non-trivial structure of the moduli space, and is vividly illustrated by the

fact that the moduli space has three different model spaces.34

5 Conclusion and Outlook

The primary aim of this paper has been to illustrate that the combination of a double

expansion and supersymmetry serves as a via media that assists in bridging the gap between

32See also Vergouwen (2022). For more details about the topological argument, and an analogy with a

phase transition towards a ferromagnetic state, see De Haro & Butterfield (forthcoming).
33Although two open sets suffice to cover the punctured plane, the physical properties of the Seiberg-

Witten theory (namely, the lack of convergence of the prepotential) require us to adopt three models: and

thus to cover the Riemann surface with three open sets.
34For a discussion of the implications of moduli space for the formulation of scientific theories, see

De Haro & Butterfield (forthcoming).
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the ontologies of an exact theory and that of its semi-classical limit. We have illustrated how

the techniques developed for the Seiberg-Witten theory can be used to learn about non-

perturbative quantum field theory, particularly by employing reduction and emergence:

and how supersymmetry, along with the other techniques being used, is helpful in this

regard.

The two expansions that we have distinguished result in two possible types of corrections

to the effective action of the Seiberg-Witten theory: (i) corrections in the expectation value

of the scalar field, and (ii) corrections by higher-dimensional operators for high-energy

modes that contribute at higher energies. We showed that, by constraining the number of

terms in the action and ensuring exactness in type (i) corrections, supersymmetry assists in

making well-founded statements about the ontology of interacting quantum field theories

such as the Seiberg-Witten theory. Namely, it can be used to determine the properties

of BPS states such as their masses, electric and magnetic charges, and spin quantum

numbers, as well as the topological and geometric properties of the moduli space and its

set of quantities, such as the order parameters and the free energy.

Thus our discussion contributes to the debate about how to answer interpretative ques-

tions in quantum field theory. This debate hinges on a problem well-known to philosophers:

that of how to rigorously define quantum field theories. This latter problem is sometimes

discussed in terms of a contrast between algebraic and Lagrangian quantum field theories.35

While the algebraic approach is mathematically rigorous, it has so far not been very prac-

tically applicable to interacting four-dimensional quantum field theories. And, while the

Lagrangian approach is thus applicable and is empirically well-confirmed, it is in general

not mathematically rigorous, which invites questions about the validity of the philosoph-

ical conclusions that one may draw from the interpretation of such theories. Following

Fraser (2009), we characterise two aims that align with these approaches: to interpret

those quantum field theories that are used in scientific practice, commonly formulated

within the Lagrangian approach to quantum field theory, and to clarify foundations and

provide interpretations, which is more easily achieved by focussing on more rigorous ver-

sions of QFT, such as the algebraic formulations. Through the via media that we have

illustrated, we argue that we are faced with the prospect of bringing together these two

aims. Namely, we have shown how supersymmetry plays a “normative” role in quantum

field theory that aids in computing exact, rather than (semi-classically) approximate, and

35See Fraser (2011), Wallace (2006, 2011), and Ruetsche (2002).

26



therefore mathematically more rigorous, solutions. These solutions are valid to all orders

in the coupling parameter, and so they are fully quantum. This makes the Seiberg-Witten

model particularly suited for interpretive questions in quantum field theory.36 A complete

understanding of (the theoretical content of) quantum field theory of course also requires

understanding of the high-energy limit, and for that the simplest Seiberg-Witten theory

that we have discussed here does not suffice.37
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