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1 Introduction

Standard non-relativistic quantum mechanics is widely presumed to be time reversal
invariant. Yet the justification for this claim has always been a bit mysterious. The
literature produces many distinct justifications. Most are not very convincing. And the
symmetry often feels imposed rather than discovered, as when author Paul Roman writes
that “we should like, even if only by some artifice, to achieve full covariance [time reversal
invariance|” (Roman 1960, 266). Add to this impoverished motivation the fact that the
time reversal operator is the only anti-unitary operator we use and it becomes natural
to find the the conventional wisdom a bit suspicious — or at the least, worth greater
elucidation.

In what follows I provide a new insight into this issue. First, I show that the exact
same puzzle that arises in quantum mechanics arises also in classical physics. I do this
by introducing the “quantum-looking” representation of classical theory of Schiller 1962
and Rosen 1964. That this puzzle can arise classically suggests that the problem is due
to the representation and not the theory. And just as classical physics is time reversal
invariant despite this puzzle, this observation provides hope that the conventional wis-
dom about quantum mechanics is right and that it is genuinely and unambiguously time
reversal invariant. Second, and more controversially, I use the counterpart of the classical
resolution of the puzzle to vindicate a definitional link between spatial variation of the
phase and temporal variation. I show how Bohmian mechanics (and some other inter-
pretations) provides this crucial step. With Bohmian mechanics playing the same role
Newtonian mechanics does in the solution to the classical puzzle, I provide a satisfying
way out of the quantum puzzle.

Put loosely, I argue that the puzzle of quantum time reversal arises because we have
been given only “half” of the theory. By putting classical mechanics in a representation
that reproduces the same questions, we can see how we got into this mess and also how
to get out of it. Classically a solution requires appeal to Newtonian ontology and laws.
Quantum mechanically a solution needs the ontology and laws found in some quantum
interpretations.



2 The Puzzle of Time Reversal in Quantum Theory

The conventional wisdom is that quantum theory — if we focus only on unitary evolution
and ignore controversial features such as collapses — is time reversal invariant. In the
Schrédinger representation, the quantum state is described by a wavefunction. If we
focus on one particle ¢ = ¢(x,t), the evolution of the state ¢ through time is given by
the time-dependent Schrodinger equation:
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where we’ll assume throughout that we’re working with a Hamiltonian H = »°/2m + V (z)
that is time reversal invariant. (1) is a first-order parabolic partial differential equation.

As such, it is of the same family as the heat equation

%: = kV2u
where u may represent the temperature and k is a real-valued coefficient. The heat
equation, of course, is the poster child of temporally irreversible equations. Given their
similar form, how can it be that they differ in this symmetry?

To be a bit more precise, normally one associates time reversal in classical spacetimes
with the physical operation corresponding to a temporal reflection about a spatial axis:
the past is swapped for the future. Then, in natural coordinates over the spacetime
{z,y, z,t}, a passive interpretation of time reversal corresponds to flipping the coordi-
nates t' = —t and using {2/,y/, 2/, ¢'}. Put actively, one sticks with the same coordinates
but changes the world — reverses the sequence of physical states — so that the descrip-
tion of the world exactly matches the description in the passive transformation. Call this
“no frills” time reversal. Assuming time translation invariance, one flips the temporal
sequence of states and that’s it. If any other variable changes under the transformation
(e.g., classical velocity) it happens “by logic and definition alone” from that flip.

Applying this operation to the Schrédinger equation, one immediately sees that it is
not time reversal invariant in this sense. A minus sign pops out due to it being first-
order in time. Typically, if ¥(z,t) is a solution of (1) then ¢ (xz, —t) is not. A symmetry
should take solutions to solutions and non-solutions to non-solutions. Solutions to the
Schrédinger equation are not solutions to the time-reversed Schrodinger equation, so the
symmetry seems broken. That is precisely what we say about the heat equation when
we explain that it is not time reversal invariant.

Readers familiar with the topic will demand that we stop right here. They will point
out that Wigner 1931 taught us that time reversal in quantum theory is represented
by two operations, a temporal reflection and complex conjugation ¢ — *. And it is
certainly true that (1) is invariant under these combined operations. That is, if ¥(x,t)
is a solution of (1) then so is ¢*(x, —t), and vice versa. Quantum mechanics does indeed
have this symmetry.

But is that the end of the issue? No. One can call the Wigner transformation “time
reversal” if one wants and say that vindicates the conventional wisdom, yet that obscures



the fact that the two symmetries are different. Dub them whatever you like, the opera-
tion of flipping temporal sequence is different than that plus implementation of complex
conjugation. Or so it seems. If someone described the operation L : Kk — —k and then
said that the heat equation was time reversal invariant because its solutions are invariant
under the combined operation of time reversal and L, one would feel that was a bit of a
cheat—or at least a kind of pun on the phrase “time reversal”. Why in the world should
r flip sign due to reversing the temporal sequence? It doesn’t follow from logic and
definition alone. Same in quantum theory. Why should K : i — —i when reversing the
temporal order? ¢ is a number without spatiotemporal dimensions, so why should it flip?

It is no wonder then that there has been a fair number of people in the philosophical
foundations of physics puzzling over time reversal in quantum theory (e.g., Albert 2000,
Allori 2022, Callender 2000; Earman 2002; Gao 2022; Lopez 2021; Malament 2004;
Roberts 2017, 2022; Struyve 2022). Different camps emerged differing over whether
the Wigner symmetry should count as time reversal symmetry. One group holds that
quantum theory is not invariant under time reversal, strictly speaking, but it is invariant
under what we might call “motion reversal” (implemented via Wigner’s symmetry). Given
the interpretive complications with quantum theory, it wouldn’t be surprising if two
similar symmetries that overlap classically were conflated quantum mechanically. The
other camp holds that Wigner symmetry is or warrants the label time reversal invariance
once this symmetry is properly understood.

Lately, however, there have been efforts at a kind of rapprochement between the two
camps. Callender 2023 and Roberts 2022 hope to show that Wigner symmetry does
follow from no frills time reversal. The present argument is in this spirit. Success in this
endeavor would be the best possible resolution. After all, one has a strong suspicion that
there is still more to the story, that disambiguation (or not) is too simple. As Schréodinger
1931 remarks when comparing (1) with the Fokker-Planck equation (a parabolic equation
like (2)), “whilst in both cases the differential equation is of first order in time, the
presence of a factor v/—1 confers to the wave equation a hyperbolic or, physically stated,
reversible character at variance with the parabolic-irreversible character of the Fokker[-
Planck] equation” (Chetrite 2021, section 2.5). So the similarity with the heat equation
may be superficial. Due to the i, (1) “feels” more like a hyperbolic equation than a
parabolic one, which, after all, is why it’s called a “wave equation” despite its parabolic
nature. A more satisfying explanation would offer a deeper insight into the connection
between complex conjugation and time reversal.

In what follows I provide such an explanation in three steps. The first step is to see
that this puzzle can arise even in purely classical physics. The second identifies what
it takes to extricate ourselves from the classical puzzle. The third simply takes the
classical solution’s counterpart in the quantum context. No doubt this last step will
be controversial because it involves an interpretation of quantum theory. But if I'm
right, the puzzle over time reversal in quantum theory arises because standard quantum
mechanics gives us only “half” a theory.



3 The Classical Schrodinger Equation

In this section we’ll stay entirely within the classical mechanical regime but shift to a
representation that looks very quantum. We’ll derive the so-called “classical Schrédinger
equation” of Schiller 1962, Rosen 1964, and others. This equation arises from treating
classical mechanics as a kind of field theory. The field theory is itself motivated from
classical statistical mechanics. We’ll use the Hamilton-Jacobi formulation of classical
mechanics. Although it can describe a single particle, the Hamilton-Jacobi picture is
naturally suggestive of a continuous ensemble of particles evolving in configuration space
beginning with different initial conditions. And from this theory a field picture is natural,
one with wavefronts evolving in configuration space. This picture is the reason why
Hamilton-Jacobi theory is usually taught as a precursor to quantum theory. To get the
classical Schrodinger equation we’ll simply bundle these waves into a Schrodinger-like
form.

We will consider particles of mass m evolving in in a potential V in a Cartesian system
x = (z,y,z). We'll denote with ¢; and p; the generalized coordinates, where i = 1,...,n
and n is the number of degrees of freedom of the system. The Lagrangian is

1
L(z,2,t) = —=mi? — V(x,t)

V2

and the action is

lrqr
S = L(x,d,t)
trqr
where [ is the initial time and location and F' is the final time and location. Then using
identities found in any good analytical mechanics textbook (e.g., Johns 2016), one derives
the Hamilton-Jacobi equation:
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The surfaces of constant S are regarded as wavefronts. These are sets of points ¢ at
time ¢ for which S(q,t) =constant. (2) describes the evolution of these wavefronts with
time. While Hamilton-Jacobi wavefronts are often derived from knowledge of particle
trajectories, it’s important to recognize that this is not necessary. We can simply begin
with (2) and regard it as an independent equation governing these wavefronts.

To extract individual trajectories from (2), one can associate particle paths with the
characteristics of (2). Jacobi’s Theorem tells us that p; = %, and we can use this
relation and a separation of variables to deduce the equation of motion for particular
initial positions x = (z(¢,x0)). In this sense Hamilton-Jacobi theory encodes a kind of
“particle-wave” duality, which is what attracted Schrodinger to it when he discovered
his famous equation. One can begin with waves and extract particle trajectories or vice

+V(z,t) =0 (2)

versa.
The Hamilton-Jacobi theory is naturally suggestive of an ensemble picture. The S-
function gives us momenta via p = VS. Yet via the classical Lagrangian and its conjugate



momentum we know that p = ma. So ma& = VS. The S-function therefore describes a
velocity field all over configuration space. In the single-particle case, one particle “surfed”
the “wave” described by S. But we can easily imagine an infinite ensemble of particles
differing in their initial positions x = (x(¢, x¢)) surfing the same S-function but tracing
out their respective trajectories.

Let this ensemble be distributed with density R?(x,0) > 0. As the particles evolve
according to (2), we can watch this distribution R?(z,t) evolve in time. Since the particles
move without sources or sinks, they must obey a continuity equation

OR(z,t)> 0  109S(x,t)
ot + 6:U(m ox

This is a conservation law for probability, one implied by the classical Liouville theorem.
Writing the Hamilton-Jacobi equation for an ensemble as the combined equations (2)
and (3) describe a statistical mechanics of classical particles. Solutions are obtained by
specifying the initial S and R, S(x,0) = Sp(x) and R(z,0) = Ro(z). So(z) determines an
initial momentum field that shapes the development of the initial distribution. We arrive
at a kind of field theory describing two partially coupled fields, S(z,t) and R?(z,t).

Readers familiar with the Madelung decomposition of the Schréodinger equation know
that if we write the wavefunction in polar form and separate real and imaginary parts
we obtain two real equations, a “quantum” Hamilton-Jacobi equation and a continuity
equation (Holland 1993). Since we have a Hamilton-Jacobi equation and continuity
equation in equations (2) and (3), can we perform a “reverse Madelung decomposition”
and combine these equations to form a “classical” Schrodinger equation.

To get the classical Schrodinger equation, we simply package this familiar physics into
a single compact equation. Introduce complex classical wavefunctions by joining together
the action S and the above R to form:

R%*(z,t)) =0 (3)

Yor = R(x, t)exp(iS(x,t)/h) (4)

where £ is added merely to mimic the appearance of the quantum.! Combined together
into one complex-valued equation, (2) and (3) are equivalent to
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which is the so-called classical Schrédinger equation (Schiller 1962; Rosen 1964). Here U

is the classical potential and we assume it time-independent U(z,t) = U(z). @ is what
is sometimes dubbed the quantum potential. It has the form

Q- h? 1 9%R
 2m R 022’

As we know from Bohmian mechanics (Bohm 1952), @ carries all the “quantum” aspects
of nature. Intuitively, (5) is the Schrodinger equation (1) with its quantum aspects
“subtracted” out.

Tt will drop out when equations of motion are derived.



This “classical Schrodinger equation” should not be confused with the “classical Schrédinger

equation” of Koopman 1931, von Neumann 1932, and Sudarshan 1976. The present
equation is nonlinear and its wavefunction’s domain is configuration space, whereas the
Koopman-von Neumann-Sudarshan equation is linear and its wavefunction’s domain is

phase space.? The nonlinearity means that superpositions of solutions are not generally

also solutions. If ¢; is a solution and 1)y is a solution, then 1 + 12 is not generally a
solution; the exceptions are when 1 and 1 have no common support or when one is a

multiple of the other. Interference patterns also do not develop, as one would expect.?

4 Time Reversal of the Classical Schrédinger Equation

Consider time-reversal in this dynamics. Because each trajectory in the ensemble is
governed by Newtonian dynamics, we expect the evolution to be time-reversal invariant
in a no frills sense. And it is. We’re just running a bunch of Newtonian particles forward
and backward in time. Newton’s second law is time reversal invariant, so the ensemble
should be too.

What’s interesting and a bit surprising is that in this formalism one achieves this tem-
porally reversed evolution by complex conjugation of (5). We're in exactly the same sit-

uation with the classical Schréodinger equation as we were with the quantum Schrédinger
equation! Just as with the Schrédinger equation, temporal reflection will bring a mi-

nus sign out in front of (5). The equation is non-linear but still a first-order parabolic
equation. Solutions to (5) will not be solutions to this equation:
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However, if we take the complex conjugate when we time reverse, then solutions of (5)

will be mapped one-to-one to solutions of

th—=5—— = (=555 +U(,1) = Qz,)vcL(z,1) (7)

which is the complex conjugate of (5).

We’re in precisely the same situation as we were quantum mechanically. But the

beauty of this case is that we know exactly what is going on because we have a good
theoretical understanding of classical mechanics, its ontology, laws, and the derivation

of the wave equation (5). This understanding will help us extricate ourselves from the

quantum puzzle.

To drive the point home, let’s be clear. Forget the derivation of (5). Suppose you were

just given (5). This is a perfectly conceivable world. You’ve got your waves and from
these you obtain your probability distributions. To get the distributions, you supple-

ment (5) with a classical version of Born’s rule. Perhaps you attach a Copenhagen-like

2For a philosophical lesson we learn from Koopman-von Neumann-Sudarshan, see Callender 2024.
3For further discussion of (5), see Benseny, Tena, and Oriols 2016, Holland 1994, Ghose 2018, Rosen
1964, 1965, Schiller 1962, 1986, Schleich et al 2013.



interpretation to this, or something else. It is a theory along the line suggested by Pri-
gogine 1996 and Krylov 1979 and developed philosophically by McCoy 2020. You have
an empirically adequate (to the classical world) theory in a classical statistical mechan-
ical universe. You get along perfectly fine. You don’t have or believe that you need a
trajectory-based classical physics.

Still, you're a bit puzzled by time reversal. (5) is a first-order in time equation like
the quantum Schrédinger equation. On a “no frills” sense of time reversal, it is simply
not time reversal invariant. But you notice that if you take the complex conjugate of
the wavefunction when time reversing, then solutions in one temporal direction map to
solutions in the other. What reason would you have to take the complex conjugate when
time reversing? As before, complex conjugation doesn’t follow from temporal reflection
by logic or definition alone. We could readily envision classical mechanical counterparts
of all the concerns raised in the introduction.

If we assume that really the theory is time reversal invariant — and we should because we
know what’s going on, to which we will turn in a moment — the problem is that we need the
classical momenta to reverse under time reversal. In the other classical representations,
we know that (g, p) going to (¢, —p) will cause the forward in time trajectories to retrace
their paths in the reverse time direction. But in this representation — where we only
have (5) — we lack reason to flip the momenta when we implement a temporal reflection.
From Jacobi’s theorem we have

oS
= 90 (8)

but this is spatial variation, not temporal variation. If we’re strict about only reversing
what follows from a simple temporal reflection, then we have no reason to turn the
momenta around. To get the classical waves to turn around we need the classical phase
to flip. Complex conjugation achieves this as it reverses #5/a in (4), which in turn flips the
momenta. With what we have, however, this isn’t motivated from a no frills temporal
reflection.

b

5 The Classical Solution

There is no mystery in this case about what’s going on. We know more than (5). In a
classical world there are more than just waves rippling through high dimensional configu-
ration space. The wave description was built up from a statistical mechanics of individual
particles and these particles ultimately are governed by Lagrangian or Hamiltonian or
Newtonian mechanics. These resources associated with the particle ontology give us the
ability to link the above momenta with temporal variation.

Suppose we have a classical free particle. It is governed by (2). Its solutions will be
spherical wave fronts, and we’ll know that the momentum p is given by equation (8) above.
But we also know a whole lot more if we assume that we have particles with trajectories.
Importantly, we also know that the Lagrangian is L(z,,t) = (1/2)mi? — V(z,t). The
particle’s canonical momentum is p; = 9L/a4. With our Lagrangian, that means p = mz.



So m& = mdz/at = VS. See Holland 1993, 51. Alternatively, with a three-dimensional
delta function we can extract the motion of a single particle directly from a solution S
of (2) (see Rosen 1986, 690). This point is absolutely crucial. The canonical momentum
on its own in our “wave picture” isn’t necessarily tied to temporal variation. But when
we bring in the resources and assumptions of a particle ontology traversing well-defined
trajectories, we connect this to velocities. That connects the temporal variation of the
ontology with the spatial variation of the phase. The classical Schrédinger representation
does not give us this (or if you prefer, my imagined above world where we're simply given
(5) doesn’t). Only when we look “under the hood” of this representation do we see this
connection. By “under the hood” I mean classical particle mechanics.

And of course we know that classical mechanics is time reversal invariant in a no frills
sense. Again sticking with our above single particle Lagrangian, we can use the second
order Euler-Lagrange equations to derive Newton’s equation of motion:

mx = —VV|$Z$(t)

which is time reversal invariant in a no frills sense.

In the classical Schrodinger equation representation, ¢ does not go to —i under time
reversal. Or it shouldn’t if one uses the full resources attached to the ontology. Really
1 never flips. It only looks like it flips if one ignores some of classical mechanics. What
really happens is that time “flips”, which in turn “fHips” velocity, which in turn “Hips” the
classical phase; when that reflected phase is then used to compose a classical wavefunc-
tion, that wavefunction is the complex conjugate of the original classical wavefunction.
The complex conjugation is simply a downstream consequence of reflecting time.

Opening the hood shows us that complex conjugation does indeed follow by logic and
definition alone from a simple no frills temporal reflection. The “problem” of time reversal
in the Schrodinger representation of classical physics is therefore solved.

6 Back to Quantum Time Reversal

In standard quantum mechanics we are in the situation where we only have the quantum
counterpart of (5). It’s therefore hard to see a good reason to take the complex conjugate
when time reversing a system. Complex conjugation does not follow from t — —t if we
restrict ourselves only to the Schrodinger equation. Hence time reversal is very puzzling.

What makes this hard to tolerate is that quantum theory almost has the resources to
extract itself as we did above. After all, a Madelung decomposition of the Schrédinger
equation will yield two real equations, a quantum Hamilton-Jacobi equation and a con-
tinuity equation. Using a hydrodynamic analogy, we want to say that the probability
current j defines a velocity for us via

4One could also point out that classical hydrodynamics is an an isomorphic situation. Like our systems
here, the fluid is described by a continuity equation and an Euler equation (a field-theoretic expression
of Newton’s second law). With the usual restrictions, classical hydrodynamics is considered time
reversal invariant. The reason is that the current (density times velocity) reverses sign due to the
velocity flipping. Without “opening the hood” on the physics of the fluid, we might not see that the
theory is time reversal invariant.
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or using the phase of the quantum Hamilton-Jacobi equation via

v=VS

We’re prohibited from doing so because — we’re told — we all know that quantum
mechanics is incompatible with always-determinate trajectories, and hence there can
be no velocities. This conventional wisdom is repeated again and again throughout
quantum theory. In the Sakurai 1994 textbook the author uses scare quotes around
the equal sign in equation (N), and in Shimbori and Kobayashi 2000 the authors use
scare quotes around the word velocity. Sakurai uses scare quotes because he thinks
always-determinate trajectories and velocities will contradict the quantum uncertainty
principle®; see Romano 2021 for a convincing reply. Shimbori and Kobayashi 2000 don’t
say why they use scare quotes but presumably it is due to this conventional wisdom. In
the philosophy literature, Earman 2002 and Gao 2022 recognize that the quantum phase
must turn around, but neither explicitly connect this via logic and definition alone to a
temporal reflection. Gao 2022 suggests that assuming the continuity equation invariant
under time reversal is a requirement of meaning, and hence due to definition. However,
in the next paragraph we see that the concept of the best explanation is really doing
the work. Physics in the time-reversed world would be unexplained, he says, if we do
not reverse the momentum—but that is just what happens in time reversed worlds in a
non-time reversal invariant theory. Earman 2002 writes:

How can the information about the direction of motion of the wave packet
be encoded in (z,0)? Well (when you think about it) the information has
to reside in the phase relations of the components of the superposition that
make up the wave packet. And from this it follows that the time reversal
operation must change the phase relations.

As congenial as what Earman says is to the present perspective, “when you think about it”
and “has to” are not derivations. The spatial variation in the phase is only definitionally
linked to the temporal variation in a temporal reflection when one removes the above
scare quotes.

Remove the square quotes and we remove the problem. What helped us understand
complex conjugation’s connection to time reversal in the case of the classical Schrédinger
equation was that we already knew or posited the ontology and individual particle dy-
namics. We opened the hood and looked at the engine. What hinders us in the quantum
case is that we don’t know what’s going on. The infamous measurement problem leaves
us not knowing what the ontology or extra dynamics (if any) are.

5Sakurai: “we would like to caution the reader against a too literal interpretation of j as p times the
velocity defined at every point in space, because a simultaneous precision measurement of position
and velocity would necessarily violate the uncertainty principle” (1994, 102-103).



However, there are interpretations of quantum mechanics that are especially well-
suited for tackling this question. One is Bohmian mechanics. Bohmian mechanics can
be derived via a Madelung decomposition of the Schrédinger equation to a “quantum”
Hamilton-Jacobi equation and continuity equation — essentially the reverse of how we
derived the “classical” Schrédinger equation. Non-relativistic Bohmian mechanics also
posits particles guided by a dynamical law, like Newtonian mechanics, and in many ways
quantum mechanics is to Bohmian mechanics as statistical mechanics is to classical New-
tonian dynamics. This similarity raises the possibility that we can understand complex
conjugation’s connection to time reversal in the same way as we did classically. Perhaps
we can open the hood and see a rationale for complex conjugation when time reversing
by studying the Bohmian engine.

Indeed, we can. Bohmian mechanics describes particles with always-determinate po-
sitions, X. The dynamics for these particles come in many equivalent forms. For our
needs the “Newtonian” second-order formulation may be the most transparent. This for-
mulation was the original one presented by Bohm. In this representation, the Bohmian
dynamics for the particles are given by Newton’s second law, except now the above
quantum potential joins the classical potential:

d’X (1)
me—— ")
dt?

where we assume that all the particles have the same mass and that V(z,t) = V(z).

Because the quantum potential () does not flip sign under time reversal, we can see

that the Bohmian dynamics is time reversal invariant in a completely simple “no frills”

sense. This theory is now written in terms of two real-valued functions, R, and S, just

as classical Hamilton-Jacobi theory is. The dynamics requires that particle velocities

satisfy p = mv = V.S, as in classical Hamilton-Jacobi theory. Here I stress that there is
an “equals sign” without scare quotes.

We can now transform into the complex-valued wave representation. When we do, we
see that in order to get back the time-reversed (in the no frills sense) Bohm trajectories,
we need to take the complex conjugate of the wavefunction. Without the underlying
ontology, that transformation seems to have no rationale. But when we look under the
hood at the assumed Bohmian ontology and laws, we see that complex conjugation does
follow from t — —t . As in the classical setting, this no frills temporal reflection alters
the sign of the velocities of the particles. And via p = mv = V.S, that changes the sign
of the phase. That then demands complex conjugation.®

=-V(@Q+V) (10)

SNote that I must assume the so-called “nomological” interpretation of Bohm’s theory for this to work
(see Diirr, Goldstein, and Nino Zanghi 1997; Callender 2015). On this picture, the particles are
understood as the primitive ontology and the wavefunction is understood as nomological, like the
Hamiltonian. If the wavefunction is on par with the particles, we end up with the original problem
restated in the Bohm formalism. That is, perhaps the velocities flip as suggested in the text but
the phase does not; that would indicate that the guidance equation (equation (9) above) doesn’t
hold under time reversal. That possibility exists because the wavefunction is its own entity on non-
nomological views. On nomological interpretations, by contrast, the particles (or fields, or whatever
beables are posited) are the “boss”, and the wavefunction is part of what governs or best describes
the particle motions. If velocity flips, then so does the phase. This restriction to the nomological
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Essentially the same reasoning holds also in the “Newtonian Quantum Mechanics” in-
terpretation of Hall et al 2014 and Sebens 2015. According to this theory, there are many
classical worlds evolving (and interacting) via a Newtonian force law that is manifestly
time reversal invariant in a no frills sense. The time reversal invariance of the fundamen-
tal ontology forces the phase to change sign. And when we compose the wavefunction
from the more basic entities in the theory, complex conjugation occurs when time re-
versing, just as it does here when composing wavefunctions in both the classical and
quantum Hamilton-Jacobi representations. Sebens claims that explaining time reversal
is an advantage of his interpretation. I agree that it is an advantage of any interpretation
that it link the spatial variation of phase information with time.

7 Conclusion

Time reversal in quantum theory has long been puzzling. The main point of this paper
is that precisely this same puzzle arises also in classical physics, and in particular, in the
representation of classical physics via the classical Schrédinger equation of Schiller and
Rosen. I think many readers will be surprised to learn this. What does it mean? To me,
it teaches us that the puzzle of time reversal in quantum theory originates from using
a theory stripped of its ontology. Once the ontology and its dynamics are added, all
becomes clear. Presented in its real-valued form with a full Bohmian ontology and laws
(or other interpretation with similiar effect), the theory is time reversal invariant in a no
frills sense. We don’t need to take the complex conjugate of anything. Translated into a
complex-valued representation, complex conjugation is simply a consequence of ¢t — —t.
Normally, we cannot see this because we are working with only “half” the theory. But if
we imagine that a good interpretation provides the other half of the story, we recognize
the engine that derives complex conjugation from temporal reflections.”
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