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Abstract

The ultra-relativistic limit of general relativity is a theory known
as Carroll gravity. We provide a philosophical introduction to the
formalism of Carroll gravity, and to its status as a limit of general
relativity; we also explore some of its various conceptually interesting
features.

1 Introduction
It’s well known that Galilei group Gal(d) :=

(
SO(d)⋉Rd

)
⋉Rd+1, obtained

in the non-relativistic limit of the Poincaré group (heuristically, as c → ∞),
acts on spacetime coordinates xµ = (t, x⃗) as

t′ = t+ b,

x⃗′ = Rx⃗+ v⃗t+ a⃗.
(1)

If one instead takes the ultra-relativistic limit of the Poincaré group (heuristi-
cally, c → 0) one arrives at the Carroll group Car(d) :=

(
SO(d)⋉Rd

)
⋉Rd+1.

Although the structure of this group is the same as that for the Galilei group
(see Hansen (2021, ch. 2) for a detailed discussion), thinking about obtaining
this group of transformations via the ultra-relativistic limit means that it
acts differently on spacetime coordinates xµ = (t, x⃗)—in particular, it acts
as

t′ = t+ v⃗.Rx⃗+ b,

x⃗′ = Rx⃗+ a⃗.
(2)
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This yields different physics, as we’ll see. Geometrically, just as Galilean
spacetime (the isometry group of which is the Galilei group) can be obtained
by ‘widening’ the lightcones of Minkowski spacetime, so too can Carroll
spacetime (the isometry group of which is the Carroll group) be obtained
by ‘narrowing’ the lightcones of Minkowski spacetime. Carroll gravity in
its full glory stands to such a flat-spacetime ultra-relativistic theory as gen-
eral relativity stands to special relativity (the latter, of course, being set in
Minkowksi spacetime).1,2

The nomenclature ‘Carroll gravity’ is due to Lévy-Leblond (1965), who
wrote this:

En réalité, les aspects paradoxaux de l’invariance «carrollienne»
proviennent de la condition fondamentale [∆x/∆t ≫ 1] de va-
lidité de cette approximation de l’invariance relativiste. Les lois
de transformation carrollienne [(2)] ne peuvent en effet par hy-
pothèse s’appliquer qu’à des intervalles grands de genre espace.
Mais deux événements séparés par un tel intervalle sont évidem-
ment totalement disconnectés causalement [...] On peut ainsi
prévoir qu’à la limite non-relativiste correspondante la notion de
causalité va perdre presque tout contenu. En effet, comme on
le voit sur les formules [(2)], par un changement de système de
référence approprié, on peut modifier à plaisir l’intervalle tem-
porel entre deux événements et en particulier changer son signe,
excepté dans le cas où l’intervalle spatial entre les deux événe-
ments est nul. Autrement dit, l’ombre causale d’un événement
donné se réduit au lieu même où se passe cet événement, pour
des temps quelconques. Ceci est d’ailleurs parfaitement visible
[...] où l’on voit à la limite carrollienne les cônes «futur absolu»
et «passé absolu» se contracter sur l’axe des temps, la région de
l’«ailleurs absolu» envahissant tout l’espace-temps. Remarquons
enfin qu’en théorie galiléenne l’intervalle de temps entre deux

1. Technically, this can be understood in terms of gauging the Carroll algebra—see
(Hartong 2015)—just as a curved-spacetime non-relativistic theory (e.g. Newton–Cartan
theory) can be understood in terms of gauging the Bargmann algebra (which is the central
extension of the Galilean algebra)—see (Andringa et al. 2011).

2. In this article, when we speak of a ‘non-relativistic spacetime’, we always mean a
classical spacetime (e.g. Galilean spacetime), in the sense of Malament (2012, ch. 4). Of
course, there is a more general sense in which Carroll spacetimes are also non-relativistic,
but we won’t use the word in that more liberal sense.
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événements est un invariant; inversement c’est ici la longueur de
l’intervalle spatial qui est invariante. (Lévy-Leblond 1965, p. 11)3

The point is that there is a very attenuated notion of causality in Carroll
spacetime, because almost any two events are elsewhere-related in such a
setting. Moreover, while “in Galilean theory the time interval between two
events is an invariant; conversely, here it is the length of the spatial inter-
val which is invariant” (p. 11, our translation). The name ‘Carroll gravity’
is an homage to Lewis Carroll’s Through the Looking-Glass, the world of
which often seems to lack well-defined time intervals and sensible notions of
causality.4

3. Here is a translation:

In reality, the paradoxical aspects of ‘Carrollian’ invariance come from the
fundamental condition [∆x/∆t ≫ 1] for the validity of this approximation of
relativistic invariance. The laws of the Carrollian transformation [(2)] can in
fact by hypothesis only be applied to large space-like intervals. But two events
separated by such an interval are obviously totally causally disconnected [...]
We can thus predict that at the corresponding non-relativistic limit the notion
of causality will lose almost all content. Indeed, as we see from the formulae
[(2)], by changing the appropriate reference system, we can modify at will the
time interval between two events and in particular change its sign, except in
the case where the spatial interval between the two events is zero. In other
words, the causal shadow of a given event is reduced to the very place where
this event takes place, for any time. This is also perfectly visible [...] when
we see in the Carrollian limit the cones ‘absolute future’ and ‘absolute past’
contracting on the axis of time, the region of ‘absolute elsewhere’ invading all
space-time. Finally, note that in Galilean theory the time interval between two
events is an invariant; conversely, here it is the length of the spatial interval
which is invariant.

The second sentence in this passage is justified since Lévy-Leblond is considering the
finite-interval (i.e., ∆t, ∆x⃗) version of the Carroll transformations.

4. E.g.:

“Well, in our country,” said Alice, still panting a little, “you’d generally get
to somewhere else if you run very fast for a long time, as we’ve been doing.”
“A slow sort of country!” said the Queen. “Now, here, you see, it takes all the
running you can do, to keep in the same place. If you want to get somewhere
else, you must run at least twice as fast as that!”

Or as Jay-Z later put it:

That’s called the Red Queen’s Race
You run this hard just to stay in place
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We return later (in §4) to a conceptual appraisal of Carroll gravity. Be-
fore doing so, however, in this article (in §2) we first provide a rigorous,
coordinate-independent presentation of the theory (aspirationally, in the style
of Malament (2012, ch. 4)), and then discuss in detail (in §3) how Carroll
gravity can be understood as the ultra-relativistic limit of a relativistic space-
time theory.

2 Carroll spacetimes and Carroll gravity
Let M be a differentiable four-manifold (assumed connected, Hausdorff, and
paracompact). A Carroll spacetime is a structure ⟨M,hab, s

ab,∇⟩, where
hab is a smooth, symmetric field with signature (0, 1, 1, 1), sab is a smooth,
symmetric field with signature (1, 0, 0, 0) satisfying sabhbc = 0, and ∇ is
a derivative operator satisfying ∇as

bc = 0 and ∇ahbc = 0. As in the non-
relativistic case, we will refer to the condition sabhbc = 0 as the orthogonality
condition and the conditions ∇as

bc = 0 and ∇ahbc = 0 as the compatibility
conditions.

The signature condition for hab is the requirement that, for every p ∈
M , the tangent space there have a basis

1

ζa, . . . ,
4

ζa such that, for all i, j ∈

{1, 2, 3, 4}, hab

i

ζa
j

ζb = 0 if i ̸= j, and5

hab

i

ζa
j

ζb =

{
0 if i = 1

1 if i = 2, 3, 4.
(3)

Likewise, the signature condition for sab is the requirement that, for every
p ∈ M , the cotangent space there have a basis 1

σa, . . . ,
4
σa such that, for all

i, j ∈ {1, 2, 3, 4}, sab i
σa

j
σb = 0 if i ̸= j, and

sab
i
σa

j
σb =

{
1 if i = 1

0 if i = 2, 3, 4.
(4)

Keep up the pace, baby
Keep up the pace.

5. This carries over straightforwardly from the notion of a signature in a non-relativistic
spacetime context, as presented by Malament (2012, pp. 249–50).
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At any point, we can find a vector ξa such that sab = ξaξb. We say
that a Carroll spacetime ⟨M,hab, s

ab,∇⟩ is temporally orientable just in case
there exists a continuous (globally defined) vector field ξa that satisfies this
decomposition condition at every point. Going forward, we will generally
assume temporal orientability and so consider Carroll spacetimes of the form
⟨M,hab, ξ

a,∇⟩. In such spacetimes, we have the orthogonality condition
ξahab = 0 and the compatibility condition ∇aξ

b = 0. From the compatibility
conditions there follows the condition £ξhab = 0,6 which is the analogue of
the (dt)ab = 0 condition in non-relativistic spacetimes (see Malament (2012,
p. 251)) and which renders meaningful absolute spatial relations between all
events in Carroll spacetimes.7

The objects ξa and hab induce a classification of vector fields as timelike
or spacelike. We will say that a vector field va is timelike iff hanv

n = 0
and spacelike otherwise. Similarly, ξa and hab also induce a classification
of covector fields as spacelike or timelike: a covector field σa is spacelike if
σnξ

n = 0 and timelike otherwise. We will say that a covector ta is unit
timelike iff tnξ

n = 1.
We also have the following (equivalent) characterisation of timelike and

spacelike vector and covector fields:

Proposition 1. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime. Then the follow-

ing statements hold:

(i) For any vector field va, hanv
n = 0 iff va = αξa for some α.

(ii) For any covector field σa, σnξ
n = 0 iff σa = hanσ

n for some σn.

Proof. The ‘if’ directions of the proposition are immediate. For the ‘only
if’ directions, consider first (i). Let va be a vector field, let p ∈ M , and let
i

ζa, i = 1, 2, 3, 4 be a basis for hab at p in the sense discussed above (so, in

particular),
1

ζa = ξa(p). Then va(p) = αξa(p) +
2
α

2

ζa +
3
α

3

ζa +
4
α

4

ζa for some α,
i
α. Thus if hanv

n = 0, it follows that va(p) = α(p)ξa(p) at each p ∈ M and
hence that va = αξa. The ‘only if’ direction of (ii) follows by dimensionality
considerations.

6. Here and throughout, £ denotes the Lie derivative.
7. We return to this in §4.1.
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Note that unlike in the case of non-relativistic spacetimes, the spacelike
vectors at some p ∈ M do not form a vector space. The spacelike covectors
at a point, however, do.

Analogously with the case of a non-relativistic spacetime, the inverse of
the degenerate metric hab is non-unique; however, one can specify an inverse
relative to an arbitrary unit timelike covector field:

Proposition 2. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime and let ta be an

arbitrary unit timelike covector field. Then there is a (unique) smooth, sym-
metric field ĥab on M satisfying the conditions:

taĥ
ab = 0, (5)

habĥ
bc = δca − taξ

c =: ĥc
a. (6)

Proof. We can define a symmetric field ĥab by specifying its action on ta and
on an arbitrary spacelike covector field µa. So consider the field ĥab which
annihilates the former (thereby satisfying the first of the above conditions)
and which makes the assignment

ĥabµb = σa − ξa(tcσ
c),

where σa is any vector such that σahab = µb; the particular choice of σa plays
no role here. From the way that we have defined ĥab, the second of the above
conditions then follows.

It is also worth dwelling further on the significance of the temporal com-
patibility condition. We have the following proposition:

Proposition 3. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime. Then parallel

transport of timelike vectors is (at least locally) path-independent.

Proof. Let p ∈ M and
p
va be an arbitrary timelike vector at p. To show

that parallel transport of timelike vector fields on M is (at least locally)
path independent, it will suffice to show that for some open set O containing
p, there is an extension of

p
va to a vector field va on O which is constant,

i.e. ∇av
b = 0. By proposition 1, it follows that

p
va =

p
αξa(p) for some

p
α.

Since ∇aξ
b = 0, we can find a constant vector field extending

p
va to some

open region O containing p if there exists a scalar field α on O satisfying
∇aα = 0 and which agrees with

p
α at p (we just take va = αξa). But since ∇

is torsion-free, constant scalar fields always exist locally.
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Let’s consider next the extent to which the derivative operator in a Carroll
spacetime is fixed uniquely by its compatibility with these objects. The
extent to which uniqueness breaks down is characterised by the following
proposition:

Proposition 4. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime and let ∇̃ be any

second derivative operator on M Then ∇̃ is compatible with ξa and hab iff
∇̃ = (∇, ξaκnmhbnhcm) for some symmetric κab.

Proof. For the ‘if’ direction, assume that ∇̃ has the stated form. Since ∇ is
compatible with ξa and hab, it follows from orthogonality of the metrics that

∇̃aξ
b = ∇aξ

b − Cb
anξ

n = ξbκrmharhnmξ
n = 0,

and

∇̃ahbc = ∇ahbc + Cn
abhnc + Cn

achbn

= ξnκrmharhbmhnc + ξnκrmharhcmhbn

= 0.

For the ‘only if’ direction, assume that ∇̃ is compatible with ξa and hab.
We know that ∇̃ = (∇, Ca

bc). Hence

∇̃aξ
b = ∇aξ

b − Cb
anξ

n = Cb
anξ

n = 0, (7)

∇̃ahbc = ∇ahbc + Cn
abhnc + Cn

achbn = Cn
abhnc + Cn

achbn = 0. (8)

Now consider Cabc = hanC
n
bc . It is spacelike, i.e. contraction on any index

with ξa yields 0. Moreover, it satisfies the following two conditions:

Cabc = −Ccab,

Cabc = Cacb,

where the first comes from (8) and the second from the symmetry of Ca
bc .

Hence
Cabc = −Ccba = −Ccab = Cbac = Cbca = −Cacb = −Cabc,

so Cabc = 0. Now let ta be a unit timelike covector field (so tnξ
n = 1) and

ĥab the corresponding spatial projector. Then 0 = ĥanCnbc = (δan − tnξ
a)Cn

bc

and hence
Ca

bc = tnC
n
bcξ

a. (9)
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Finally, consider κab = tnC
n
mr ĥ

amĥbr. It is symmetric, and we claim, satisfies
the conditions of the proposition. For this, we compute:

ξaκnmhbnhcm = ξatrC
r
st ĥ

nsĥmthbnhcm

= ξatrC
r
st(δ

s
b − tbξ

s)(δtc − tcξ
t)

= ξatrC
r
bc

= Ca
bc ,

where we have made use of (7) and the symmetry of Ca
bc in the third equality

and (9) in the fourth.

We now consider the curvature tensor Ra
bcd associated with ∇ and its

symmetry properties. Of course, it satisfies the conditions:8

Ra
[bcd] = 0, (10)

Ra
b(cd) = 0. (11)

The compatibility conditions ∇aξ
b = 0 and ∇ahbc = 0 further imply that

ξnRa
ncd = 0, (12)

R(ab)cd = 0, (13)

from which it follows that

Rabcd −Rcdab = 0, (14)
ξnRa

[bc]n = 0, (15)

ξnRabcn = 0. (16)

Now consider the Ricci tensor Rab = Rn
abn and the scalar curvature field

R = ξnξmRnm. Obviously the latter vanishes, and we claim the former is
symmetric. To verify this, let ta be an arbitrary unit timelike covector field.
We have

Rn
nab = ĥnmRnmab = 0. (17)

(Since ĥnmRnmab = (δsr − trξ
s)Rr

sab = Rs
sab, which together with (13) gives

us (17).) Thus from (10) and (11)

Rab −Rba = Rn
abn −Rn

ban = Rn
abn +Rn

bna = −Rn
nab,

8. See Malament (2012, prop. 1.8.2).
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so by (17) we have Rab = Rba.
We now consider some further properties of the curvature tensor Ra

bcd

associated with ∇ in a Carroll spacetime. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll

spacetime. Of course, we say that it is flat iff Ra
bcd = 0. In parallel, we

will say that it is spatially flat iff Rabcd = 0. To motivate this definition,
we need to say something about induced derivative operators on spacelike
hypersurfaces.

Let ta be a unit timelike covector field. We will say that a hypersurface S
is spacelike relative to ta iff, for all p ∈ S and all tangent vectors σa to S at
p, tnσn = 0. (Clearly, if S is spacelike relative to ta then it is also spacelike,
i.e. all smooth curves with images in S are spacelike.) Similarly, we will
say that a tensor field is spacelike relative to ta iff contraction on any of its
indices with ta or ξa yields 0. In what follows, let S be a hypersurface which
is spacelike relative to ta.9 We can think of tensor fields which are spacelike
relative to ta as living on S. Clearly hab and ĥab both qualify as spacelike
relative to ta, as does ĥa

b. Note that hab does not annihilate any non-zero
vectors which are spacelike relative to ta and ĥa

b preserves all vectors which
are spacelike relative to ta. In other words, we can think of hab as a non-
degenerate metric on S, which induces a unique derivative operator D on S.
The action of D on a tensor field is given by first acting with ∇ and then
projecting all contravariant indices as well as ∇ with ĥa

b. So, for example,
the action of D on αa

bc is given by

Daα
b
cd = ĥb

nĥ
m
a∇mα

n
cd. (18)

Tensor fields with other index structures are handled analogously. The pro-
jection ensures that the resultant field is spacelike relative to ta. There is no
need to project the other covariant indices, since ∇aξ

b = 0. (One can check
that D satisfies the conditions to be a derivative operator on S, and that
Dahbc = 0 and Daĥ

ab = 0.)
The following proposition then serves to motivate our above definition of

spatial flatness:

Proposition 5 (Spatial flatness). Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime.

Then given any unit timelike covector field ta and any spacelike hypersurface

9. Of course, such a hypersurface exists (at least locally) iff the distribution of spacelike
vectors relative to ta at each p ∈ M is integrable, i.e. t[adbtc] = 0. In what follows, we will
assume that this is the case.
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S relative to ta, Rabcd = 0 throughout S iff parallel transport of spacelike
covectors within S is (at least locally) path-independent.

Proof. Let ta be any unit timelike covector field, S a spacelike hypersurface
relative to ta, let σa be any spacelike covector field on S, and µa be any
vector field which is spacelike relative to ta. Then σa automatically qualifies
as spacelike relative to ta, and µnDnσa = µnĥm

n∇mσa = µn∇nσa, i.e. ∇ and
D induce the same conditions for parallel transport of spacelike covectors
throughout S. Hence for the proposition, it is sufficient to show that, at all
points in S,

Rabcd = 0 ⇔ Ra
bcd = 0,

where Ra
bcd = 0 is the Riemann tensor on S associated with D. For this,

note that the right hand side is equivalent to the requirement that, for any
spacelike covector field σa on S,

0 = Rn
abcσn = 2D[bDc]σa = 2ĥn

bĥ
m
c∇[n∇m]σa = ĥn

bĥ
m
cR

r
anmσr.

Hence, it is equivalent to the requirement that

0 = harĥ
n
cĥ

m
dR

r
bnm = ĥn

cĥ
m
dRabnm = (δnc − tcξ

n)(δmd − tdξ
m)Rabnm = Rabcd,

where we have made use of (16) and (11).

(One might be tempted to say that a Carroll spacetime ⟨M,hab, ξ
a,∇⟩

is spatially flat iff for any unit timelike covector field ta and any spacelike
hypersurface S relative to ta, parallel transport of spacelike vectors within S
is (at least locally) path-independent. But this will not work, since any Car-
roll spacetime which satisfied this condition would have to be flat simpliciter,
i.e. Ra

bcd = 0.)
The following proposition gives a characterisation of the relative strengths

of the curvature conditions Ra
bcd = 0 and Rabcd = 0:

Proposition 6. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime which is spatially

flat (Rabcd = 0). Then Ra
bcd = 0 iff (at least locally) there exists a unit

timelike covector field ta such that ∇atb = 0.

Proof. For the ‘if’ direction, suppose that such a unit timelike covector field
exists. Since Rabcd = 0, it suffices to show that tnR

n
bcd = 0. But tnR

n
bcd =

2∇[c∇d]tb = 0. For the ‘only if’ direction, let p ∈ M and let
p

ta be an arbitrary
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unit timelike covector at p, and let O be some open set containing p. Let ta

be the covector field which results from parallel transporting
p

ta, along any
curve(s), throughout O (this makes sense, since Ra

bcd = 0 implies that the
resulting covector field will be independent of the choice). By construction,
ta is unit timelike, and ∇atb = 0.

To understand the intuitive geometric significance of proposition 6, note
that if ta is a unit timelike covector field such that ∇atb = 0, then for any
spacelike hypersurface S relative to ta, D and ∇ induce the same conditions
for parallel transport of spacelike vectors relative to ta in S. (So, M admits
a foliation into spacelike hypersurfaces with vanishing extrinsic curvature.)
Thus since Rabcd = 0, Ra

bcd = 0, and parallel transport of spacelike vec-
tors relative to ta within any such S is path-independent. Finally, take any
three mutually orthogonal vectors which are spacelike relative to ta at some
p ∈ M , and parallel transport them (along any curve(s)) throughout the
spacelike hypersurface S relative to ta containing p. Then parallel transport
them throughout M along ξa. The resulting vector fields are constant, and,
together with ξa, form a basis for the tangent space at each point.

The final curvature condition we will consider is ξnRa
bcn = 0. We have

the following proposition:

Proposition 7. Let ⟨M,hab, ξ
a,∇⟩ be a Carroll spacetime. Then the follow-

ing conditions are equivalent:

(i) ξnRa
bcn = 0.

(ii) The operator £ξ commutes with ∇ in its action on all smooth tensor
fields.

(iii) There exists (at least locally) a unit timelike covector field ta such that
£ξta = 0 and £ξ∇atb = 0.

Moreover, if the above conditions hold, then £ξR
a
bcd = 0.

Proof. The equivalence of (i) and (ii) follows from the compatibility condi-
tions and problem 1.8.3 of (Malament 2012). That (ii) implies £ξR

a
bcd = 0

follows from problem 1.9.4 of (Malament 2012). For the equivalence of (i)
and (iii), note that for any unit timelike covector field ta, we have

tmξ
nRm

bcn = 2ξn∇[c∇n]tb

= ∇cξ
n∇ntb − ξn∇n∇ctb. (19)
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Thus since ξnRabcn = 0, if there exists a unit timelike covector field such that
£ξta = 0 and £ξ∇atb = 0, then ξnRa

bcn = 0. Conversely, if ξnRa
bcn = 0,

then by (19) we must have that £ξ∇atb = 0 for any unit timelike covector
field such that £ξta = 0. But such a unit timelike covector field always exists
(at least locally): consider the restriction of any unit timelike covector field
to some spacelike hypersurface S and then parallel transport it throughout
some open region O along ξa. So we have (iii).

Proposition 7 provides the following interpretation of the curvature con-
dition ξnRa

bcn = 0. The conditions (i)–(iii) along with the compatibility
conditions tell us that if ξnRa

bcn = 0, then Ra
bcd is constant along the inte-

gral curves of ξa. When this condition holds, then facts about the geometry
of any spacelike hypersurface completely determine the geometry of the en-
tire Carroll spacetime. On the one hand, this property is absolutely crucial if
one wishes to e.g. make use of the properties of spacelike geodesics at a point
to characterise the Ricci curvature there (as we shall see in the following
proposition), since the timelike geodesics of a Carroll spacetime do not give
us any information about the degrees of freedom of the connection which
are not fixed by the compatibility conditions. On the other hand, one sees
that Carroll spacetime structure does not automatically preclude the possi-
bility of non-trivial ‘temporal evolution’ for spacetimes where ξnRa

bcn ̸= 0
(in the sense that Ra

bcd is not automatically fixed uniquely by its value on
any spacelike hypersurface).

Having discussed in some detail the geometrical structure of Carroll space-
times, we now move on to consider dynamics. We will assume that the stress-
energy content is represented by a symmetric tensor field T ab (intuitively, if ta
is a unit timelike vector field, then tnT

na represents the four-momentum rel-
ative to spacelike hypersurfaces relative to ta). Let T := hnmT

nm. Dynamics
are then given by:

Rab = 8π(Tab − 1/2habT ), (20)
∇nT

na = 0, (21)

where we have lowered indices with hab. The following proposition gives an
interpretation of (20):

Proposition 8. Let ⟨M, ξa, hab,∇⟩ be a Carroll spacetime satisfying ξnRa
bcn =

0, and let T ab be a smooth symmetric field on M . Then for all points p ∈ M ,
(20) holds at p iff for any unit spacelike vector field σa which is geodesic
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with respect to ∇, the average spatial relative acceleration (ARSA) of σa at
p satisfies

ASRA := −1

2

2∑
i=1

i

λrσ
n∇n(σ

m∇m

i

λr) = 4π(Tnm − 1/2hnmT )σ
nσm, (22)

where
i

λa, i = 1, 2 are any two connecting fields for σa which are spacelike
and mutually orthonormal at p.

Proof. First, note that

ASRA = −1

2

2∑
i=1

i

λrσ
n∇n(σ

m∇m

i

λr)

= −1

2

2∑
i=1

i

λrR
r
nmsσ

n
i

λmσs

= −1

2
Rr

nmsσ
nσs

2∑
i=1

i

λr

i

λm.

The orthonormality condition implies that, at p

2∑
i=1

i

λb

i

λa = δab − σaσb − tbξ
a

where ta is any unit timelike covector field which annihilates σa and the
i

λa at

p (contraction on both sides with σa, ξa, and the
i

λa yields the same result).
Note that such a unit timelike covector field always exists. Thus

ASRA = −1

2
Rr

nmsσ
nσs(δmr − σmσr − trξ

m).

The second term on the right hand side vanishes by (11). The third term on
the right hand side also vanishes, by (11) and using that ξnRa

bcn = 0. So we
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have

ASRA = −1

2
δmrR

r
nmsσ

nσs

=
1

2
δmr(R

r
msn +Rr

snm)σ
nσs

=
1

2
δmrR

r
snmσ

nσs

=
1

2
Rnmσ

nσm,

where we have made use of (10) in the second equality and (11) in the third.
Thus, if (20) holds, then ASRA = 4π(Tnm − 1/2hnmT )σ

nσm. Conversely,
given any unit spacelike vector

p
σa at some p ∈ M , we can always find a

spacelike vector field σa extending
p
σa which is geodesic. Thus Rnm

p
σn p

σm =

8π(Tnm − 1/2hnmT )
p
σn p

σm for any unit spacelike vector at p. But contracting
both sides of (20) with ξaξb or ξa

p
σb yields zero. So (20) must hold at p.

As in general relativity, there are a variety of ‘energy conditions’ one can
impose on T ab in Carroll spacetimes.10 One option is the following:

Strengthened dominant Carroll energy condition: For any p ∈ M and
any timelike covector µa at p, µnµmT

nm ≥ 0 and either T ab = 0 or
µnT

na is timelike.

The strengthened dominant Carroll energy condition implies that T ab =
ρξaξb, where ρ := tntmT

nm for any unit timelike covector field ta. In this
case, (20) and (21) become

Rab = 0, (23)
ξn∇nρ = 0. (24)

In other words, the matter dynamics become trivial: fluid elements necessar-
ily traverse the integral curves of ξa and the energy density ρ is constant along
any such integral curve. However, there are also weaker energy conditions
available, for example:

Weak Carroll energy condition: For any p ∈ M and any timelike covec-
tor µa at p, µnµmT

nm ≥ 0.

10. For energy conditions in general relativity, see Curiel (2016).
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The weak Carroll energy condition is compatible with non-trivial matter
dynamics; however, as a consequence, it also allows for stress-energy pro-
pogation along spacelike (as well as timelike) curves. We discuss this further
in §4.1.

3 The ultra-relativistic limit
Having presented the basic structure of Carroll gravity, we’ll now consider the
sense in which this theory is the ultra-relativistic limit of general relativity.
While of course there is already a literature on this topic—see in particular
(Lévy-Leblond 1965; Dautcourt 1998; Duval et al. 2014; Hansen et al. 2022;
Hansen 2021)—in this article we’ll take a more ‘geometrical’ approach to the
limit (§3.1 and §3.2), before comparing with those existing approaches to the
ultra-relativistic limit (§3.3).

3.1 A ‘geometric’ approach to the limit

Our approach will mirror that of Malament (1986) for the non-relativistic
limit. Let gab(λ) be a one-parameter family of (non-degenerate) Lorentzian
metrics on M , where λ ∈ [0, k] for some k. For the ultra-relativistic limit,
we are interested in the case where gab(λ) satisfies two conditions:

1. λgab(λ) → −hab as λ → 0 for some field hab of signature (0, 1, 1, 1).

2. gab(λ) → ξaξb as λ → 0 for some non-zero vector field ξa such that
£ξhab = 0.

Here, λ corresponds to c2; changing the value of λ then amounts to narrowing
the lightcones, and so provides the resources to take, in a ‘geometrical’ way,
an ultra-relativistic limit. Geometrically, one can understand this as the
lightcones narrowing until they become a congruence of curves (a ‘fibration’);
i.e. the integral curves of the vector field ξa.

Proposition 9. Let gab(λ) be a one-parameter family of Lorentzian metrics

on M , and for each gab(λ) let
λ

∇ be the associated Levi-Civita derivative
operator. Let ξa, hab be as in conditions (1) and (2). Then:

(i) There is a derivative operator ∇ on M satisfying
λ

∇ → ∇ as λ → 0.
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(ii) ⟨M,hab, ξ
a,∇⟩ is a Carroll spacetime.

Proof. Since λgab(λ) → −hab smoothly, there must exist fields vab, sab(λ), sab
satisfying

λgab(λ) = −hab + λvab + λ2sab(λ) (25)

sab(λ) → sab as λ → 0.

(i.e. the limit λ → 0 is twice-differentiable). Similarly, there must exist fields
hab, pab(λ), pab satisfying

gab(λ) = ξaξb − λhab + λ2pab(λ) (26)

pab(λ) → pab as λ → 0.

Since −λδab = λgbn(λ)g
na(λ), we have

−λδab = −hbnξ
nξa + λ(vanξ

nξa + hanh
na) + λ2(...),

so that in the limit λ → 0,
hanξ

n = 0. (27)

Next, let ∇̃ be an arbitrary derivative operator on M (such always exist

locally). We know that
λ

∇ = (∇̃, Ca
bc(λ)), where

Ca
bc(λ) = 1/2gan(λ)(∇̃ngbc(λ)− ∇̃bgnc(λ)− ∇̃cgnb(λ)).

Using (25) and (26), we have

Ca
bc(λ) = 1/2(ξaξn − λhan + λ2pan(λ))(−λ−1[∇̃nhbc − ∇̃bhnc − ∇̃chnb]

+ Vnbc + λSnbc(λ)),

where
Vabc = ∇̃avbc − ∇̃bvac − ∇̃cvab

and
Sabc(λ) = ∇̃asbc(λ)− ∇̃bsac(λ)− ∇̃csab(λ).

But we know that

£ξhab = ξn∇̃nhab + hnb∇̃aξ
n + han∇̃bξ

n

= ξn∇̃nhab − ξn∇̃ahnb − ξn∇̃bhan

= 0

16



where we have made use of (27), so that

Ca
bc(λ) = −1/2(−han + λpan(λ))(∇̃nhbc − ∇̃bhnc − ∇̃chnb)

+ 1/2(ξaξn − λhan + λ2pan(λ))(Vnbc + λSnbc(λ)).

Hence, if we define

Ca
bc = 1/2han(∇̃nhbc − ∇̃bhnc − ∇̃chnb) + 1/2ξaξnVnbc,

then it follows that Ca
bc(λ) → Ca

bc as λ → 0 and hence that
λ

∇ → ∇ =
(∇̃, Ca

bc). Finally we then have that

λ

∇ag
bc(λ) → ∇a(ξ

bξc) as λ → 0

and
λ

∇aλgbc(λ) → ∇ahbc as λ → 0

so that ∇aξ
b = 0 and ∇ahbc = 0.

So, in the lightcone-narrowing limit λ → 0, a Lorentzian spacetime will
converge to a Carroll spacetime. One also sees that the condition £ξhab = 0
is necessary for convergence in the limit. But what of dynamics? Suppose
now in addition that for each λ we also have a (symmetric) stress-energy
tensor Tab, and suppose that

3. Einstein’s equation
λ

Rab = 8π(Tab(λ)− 1/2gab(λ)T (λ)) holds for all λ.

4. λ−2T ab(λ) → T ab as λ → 0 for some T ab.

where T (λ) := Tnm(λ)g
nm(λ).

Proposition 10. Let gab(λ) be a one-parameter family of metrics on M
which, together with the symmetric family T ab(λ), satisfies conditions (1)–
(4). Let ⟨M,hab, ξ

a,∇⟩ be the limit Carroll spacetime obtained in proposition
9. Then there exist a symmetric field Tab and a field T on M satisfying

(i) Tab(λ) → Tab as λ → 0.

(ii) λ−1T (λ) → −T as λ → 0.

(iii) Rab = 8π(Tab − 1/2habT ).
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(iv) ∇nT
na = 0.

Proof. Since λ−2T ab(λ) → T ab smoothly there must exist fields tab, uab(λ),
uab satisfying

λ−2T ab(λ) = T ab + λtab + λ2uab(λ), (28)

with
uab(λ) → uab as λ → 0.

Thus, from (25) and (28):

Tab(λ) = gan(λ)gbm(λ)T
nm(λ)

= (−λ−1han + van + λsan(λ))(−λ−1hbm + vbm + λsbm(λ))

× (λ2T nm + λ3tnm + λ4unm(λ)),

so that defining Tab = gangbmT
nm we have Tab(λ) → Tab as λ → 0. Similarly:

λ−1T (λ) = λgnm(λ)λ
−2T nm(λ)

= (−hnm + λvnm + λ2snm(λ))(T
nm + λtnm + λ2unm(λ)),

so that defining T = hnmT
nm, λ−1T (λ) → −T as λ → 0. Finally,

gab(λ)T (λ) = λgabλgnm(λ)λ
−2T nm(λ)

= (−hab + λvab + λ2sab(λ))(−hnm + λvnm + λ2snm(λ))

× (T nm + λtnm + λ2unm(λ)).

Since
λ

Rab → Rab as λ → 0, it follows that Rab = 8π(Tab − 1/2habT ). And
since

λ

∇nλ
−2T na(λ) → ∇nT

na as λ → 0

and (3) implies that
λ

∇nT
na(λ) = 0 for all λ, we have ∇nT

na = 0.

So, we have taken a ‘geometrical’, lightcone-narrowing limit of general
relativity, and have obtained Carroll gravity. We are far from the first to
consider the ultra-relativistic limit of general relativity, and in §3.3 we will
compare our approach with what has come before (in particular with the
work of Dautcourt (1998), Hansen et al. (2022), and Hansen (2021)). Before
doing so, however, some words on how the foregoing work can be set in the
broader context of the ‘frame theory’ developed by Ehlers (2019).
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3.2 Understanding the limit via frame theory

Consider again the non-relativistic, lightcone-widening limit of general rela-
tivity, as presented by Malament (1986). In order to make such a limit com-
pletely rigorous, it is convenient to avail oneself of the resources of ‘frame the-
ory’: a unified spacetime framework (hence the name) developed by Ehlers
(2019) which encompasses both relativistic and non-relativistic spacetime
models. One can then—à la Fletcher (2019)—make rigorous sense of the
non-relativistic limit by imposing a topology on this space of models and
then considering a limit in this topology.

In more detail (and following the presentation by Fletcher (2019)): the
models of frame theory are ⟨M, tab, s

ab,∇, T ab⟩, where tab and sab are (respec-
tively) symmetric temporal and spatial metrics, ∇ is a torsion-free derivative
operator compatible with tab and sab, and T ab is the stress-energy tensor. The
key generalisation offered by frame theory is that, at this point, one does not
specify the signatures of tab and sab; moreover, one does not impose orthog-
onality, but only the weaker condition that tabs

bc = κδca (where κ is known
as the ‘causality constant’ of the model); as a result, the theory encompasses
both Lorentizan spacetimes (where tab = gab and sab = −κgab and κ = c−2)
and non-relativistic spacetimes (where sab = hab and κ = 0).

Frame theory doesn’t purport to offer a deep physical sense of unification
of relativistic and non-relativistic spacetime theories, at least if unification
is understood along the lines presented by e.g. Maudlin (1996). However,
as already pointed out, it does afford the resources to make rigorous sense
of a geometrical non-relativistic limit. For example, helping oneself to the
C2 point-open product topology on the space of models of frame theory (see
Fletcher (2019, §3)), one can define the non-relativistic limit of a family of
relativistic spacetimes as follows:11

Definition 1. (Newtonian limit, Ehlers) Let ⟨M,
λ
tab,

λ
sab,

λ

∇,
λ

T ab⟩ with
λ ∈ (0, a) for some a > 0 be a one-parameter family of models of general
relativity. Then ⟨M, tab, s

ab,∇, T ab⟩ is a ‘Newtonian limit’ of the family when
it is a model of Newton-Cartan theory and

lim
λ→0

(
λ
tab,

λ
sab,

λ

∇,
λ

T ab

)
=

(
tab, s

ab,∇, T ab
)

in the C2 point-open product topology.

11. This definition is due to Ehlers, but we use the terminology of Fletcher (2019).
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(Fletcher (2019) discusses other possible choices of topology on the space of
models of frame theory; we won’t go into this in further detail in this article.)

The main observation which we wish to make here is that frame theory
is already equipped to encompass the models of Carroll gravity (an so is
more than the mere union of models of general relativity and models of
non-relativistic gravity): one simply identifies sab = ξaξb and tab = hab and
imposes (as in the Newton-Cartan case) that κ = 0. Then, one can just as
well write down the following definition of an ultra-relativistic limit in frame
theory:

Definition 2. (Ultra-relativistic limit) Let ⟨M,
λ
tab,

λ
sab,

λ

∇,
λ

T ab⟩ with λ ∈
(0, a) for some a > 0 be a one-parameter family of models of general relativity.
Then ⟨M, tab, s

ab,∇, T ab⟩ is an ‘ultra-relativistic limit’ of the family when it
is a model of Carroll gravity and

lim
λ→0

(
λ
tab,

λ
sab,

λ

∇,
λ

T ab

)
=

(
hab, s

ab,∇, T ab
)

in the C2 point-open product topology.

(Of course, as before, other topologies on the space of models are available;
note also that this λ is clearly different from that in the previous definition.)
So—to repeat—this geometrical approach to the ultra-relativistic limit can
be made rigorous using frame theory.

3.3 Comparison with other approaches to the limit

In the case of the non-relativistic limit of general relativity, it’s by now ac-
knowledged that taking a geometrical approach to the limit is not per se
incompatible with approaches to the limit in terms of series expansions (in
say 1/c).12 In this subsection, we’ll make an analogous point—namely, that
our ‘geometrical’ approach to the ultra-relativistic limit isn’t incompatible
with other approaches to the limit in terms of series expansions.13

12. The point is made in the philosophy literature by Fletcher (2019) and in the physics
literature by Hartong, Obers, and Oling (2022).

13. It’s also not incompatible with approaches to obtaining Carroll gravity via dimen-
sional reduction. We won’t discuss those approaches further here, but see (Duval et
al. 2014; Hansen 2021) for further details.
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There is a straightforward point to be made here, alongside a deeper
point. The straightforward point is this. Assuming that objects such as
λ
tab are functions of some λ and have finite limits for λ → 0 should already
imply that one can consider a Taylor expansion around λ = 0—hence, no
incompatibility.

The deeper point is this. The approach to both the non-relativistic limit
and ultra-relativistic limit developed in recent works such as (Hartong, Obers,
and Oling 2022; Hansen 2021) is in fact somewhat novel compared with the
work on limits of general relativistic spacetime models which preceded it.14

This novelty lies in the fact that these authors do not begin with the stan-
dard objects of general relativity when taking the limit. Rather, in the non-
relativistic case, they begin with a more general connection built from ‘pre-
non-relativistic’ variables (see Hartong, Obers, and Oling (2022, §6.1); the
approach goes back to Van den Bleeken (2017))—a connection which gener-
ically has torsion!—and then perform a series expansion of that connection.
(Hence, it should be of little surprise that Type II Newton–Cartan theory is
compatible with spacetime torsion.) In the case of the ultra-relativistic limit,
Hansen et al. (2022) and Hansen (2021) have followed a similar approach,
building a connection in terms of ‘pre-ultra-relativistic’ variables; again, the
result they obtain has the potential to be more general than what we have
obtained here, but ipso facto isn’t incompatible with our results.

4 Conceptual assessment
Having presented Carroll gravity and clarified the sense in which it is the
non-relativistic limit of general relativity, we now interrogate some of its
philosophically interesting properties (§4.1), and assess the extent to which
the theory (along with the notion of a Carroll spacetime) is of any physical
importance (§4.2).

14. It is this novelty which, in the case of the non-relativistic limit, has allowed these
authors to construct a new, ‘Type II’ version of Newton–Cartan theory. This theory
has various interesting features—for example, as pointed out by Hansen, Hartong, and
Obers (2019), it admits an action principle. For further philosophical discussion of Type
II Newton–Cartan theory, see (Wolf, Sanchioni, and Read 2024).
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4.1 Properties of Carroll gravity

Widening the light cones of a general relativistic spacetime gives rise to a
non-relativistic spacetime, in which it is well-known that (i) for any two
spacetime points, there is a well-defined absolute temporal distance between
them, but (ii) it’s not the case that for any two spacetime points, there is
a well-defined absolute spatial distance between them (rather, this is true
only for co-temporal spacetime points). The situation is reversed in a Car-
rollian spacetime: (i′) for any two spacetime points, there is a well-defined
absolute spatial distance between them, but (ii′) it’s not the case that for
any two spacetime points, there is a well-defined temporal distance between
them (rather, this is true only for co-spatial spacetime points). This role-
reversal is one manifestation of a broader ‘duality’ between non-relativistic
and Carrollian spacetime structures—for more discussion of which, see (Du-
val et al. 2014).

Let’s hone in on two particularly interesting features of Carroll spacetimes
which were identified by Lévy-Leblond (1965) in the passage quoted in §1:

1. An attenuated notion of causality, in the sense that almost every pair
of events in spacetime is spacelike-related.

2. A lack of absolute temporal distance between spatially separated events.

The ontological picture presented by (1) is certainly spare: every body is
causally isolated from every other, despite their standing in absolute spatial
relations to one another.15,16 Lévy-Leblond’s point here is echoed by e.g.

15. In some sense, this seems to be a realisation of a Leibnizian monadology. Consider
e.g.:

There is no way of explaining how a monad can be altered or changed inter-
nally by some other creature, since one cannot transpose anything in it, nor
can one conceive of any internal motion that can be excited, directed, aug-
mented, or diminished within it, as can be done in composites, where there
can be change among the parts. The monads have no windows through
which something can enter or leave. Accidents cannot be detached, nor can
they go about outside of substances, as the sensible species of the Scholastics
once did. Thus, neither a substance nor an accident can enter a monad from
without. (Leibniz 1989, Monadology 7)

We’re grateful to Oliver Pooley for suggesting this connection.
16. Of course, this relies on its being the case that the causality relation is tethered to

the spacetime structure of Carroll gravity; one might resist this in light of some of the
points which we’ll go on to make below.
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Hansen et al. (2022, p. 3): “Particles with non-zero energy cannot move in
space anymore, and for these particles there can be no interactions between
spatially separated events.” On the other hand, however, it seems to be
resisted by e.g. Bergshoeff, Gomis, and Longhi (2014, p. 9), who argue that
while it is true that a single free particle in a Carroll spacetime cannot move,
this is not true for multi-particle systems in Carroll gravity, where “only
the center of mass cannot move, but [...] the separate particles can have
non-trivial dynamics.”17,18 In particular, they claim that

to lowest order [...] the velocity of the centre of mass is conserved,
i.e.,

M1
dx⃗1

dt
+M2

dx⃗2

dt
= constant.

This implies non-trivial dynamics for the separate particles!

One might be confused here: how can it be the case that in a Carroll space-
time, (a) spacelike-separated bodies are causally isolated, and yet (b) their
dynamics are nevertheless coupled, according to e.g. the above equation?

The underlying point here is the following. If one assumes that stress-
energy propagation is timelike at the outset, then it is indeed the case that
the matter dynamics in Carroll spacetimes become trivial; however, this is of
course consistent with non-trivial dynamics for matter if one allows stress-
energy to propagate along spacelike (as well as timelike) curves. This is nicely
illustrated by our discussion of Carroll energy conditions from §2. Suppose
that one adopts the strengthened dominant Carroll energy condition. Then
there can be no propagation of stress-energy (i.e., given this energy condition,
the energy density ρ) off the integral curves of ξa (i.e., no spacelike propaga-
tion of stress-energy content); this, in turn, seems to underwrite the claims
made by Lévy-Leblond (1965) and Hansen et al. (2022). On the other hand,
if one invokes only e.g. the weak Carroll energy condition, then there can be
spacelike propagation of stress-energy content, which seems better reconcil-
able with the conclusions of Bergshoeff, Gomis, and Longhi (2014).19 Indeed,

17. To continue the theme of the previous footnote: Leibniz seems to have anticipated
this in the above-quoted passage, when he wrote that for composites, “there can be change
among the parts”.

18. Bergshoeff, Gomis, and Longhi (2014) also show that after gauging the Carroll algebra
one can couple even a single Carrollian particle to the background gauge fields, but we
won’t consider this further here.

19. It is on this approach that one might not wish to tether the causal relation to the
timelike-separated relation in Carroll gravity.
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if Bergshoeff, Gomis, and Longhi (2014) wish to maintain both (a) something
akin to the strengthened dominant Carroll energy condition, alongside (b)
their claims about non-trivial interactions between multi-particle Carrollian
systems, then given the lack of spacelike stress-energy propagation, they will
(it seems to us) need to invoke more recherché metaphysics—e.g., an appeal
to some version of Leibniz’ doctrine of pre-established harmony.

Moving on, let’s return to point (2) above. This is certainly also puzzling,
albeit perhaps somewhat less so by virtue of its being already familiar from
relativistic physics. Indeed, the lack of an absolute temporal standard is
not regarded as a problem in the relativistic context so long as one can
build and operationalise suitable clocks in relativistic spacetimes (for recent
discussion see e.g. Fletcher (2013) and Menon, Linnemann, and Read (2018)).
In principle, one can say the same thing of Carroll spacetimes, although here
again point (1) is relevant, for the ‘causal disconnectedness’ (to return to the
way of putting things from Lévy-Leblond (1965)) of all bodies might stand in
the way of any such operationalisation (evidently, our discussion of Carroll
energy conditions will be relevant here also).

4.2 Physical significance of Carroll gravity

Stepping back somewhat, what is the significance of Carroll gravity for con-
temporary physics at large—or is it a mere foundational curiosity? In fact,
recent studies in physics reveal a diverse range of applications for Carroll
gravity. For example, Duval et al. (2014) show that future and past null
infinity form Carroll spacetimes, and that the BMS algebra forms a confor-
mal extension of the Carroll algebra. For this reason, Carroll spacetimes are
evidently of physical importance—even in the actual world—when modelling
asymptotics. (And for that reason, Carroll spacetimes also have an impor-
tant role to play in the study of holography.) Moreover, given the ubiquity
of ultra-relativistic limits in physics, from contexts ranging from the kinetic
theory of gases to neutrino oscillations, there’s a case to be made that Car-
roll spacetimes are in fact the correct spacetime setting for a diverse range
of physical scenarios.20

20. At least if, following Wallace (2020), one takes it to be the case that different space-
time settings can ‘emerge’ in different physical context: a position which we endorse.
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