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Abstract

This paper examines the transformation of the concepts of physical quantities and
reality within the framework of quantum mechanics, with a particular focus on the
philosophical shift from a materialistic universe rooted in classical local realism to an
information-theoretic universe based on quantum theory. Classical physics, grounded
in local realism, assumed that physical objects possess intrinsic properties indepen-
dent of observation. However, quantum mechanics challenges this view, suggesting
that physical quantities might not be attributes of physical objects, particularly in
light of phenomena such as quantum entanglement and the violation of Bell’s inequal-
ity. Building on John Wheeler’s “It from Bit” hypothesis, this paper argues that ‘It ’
emerges through informational processes, where the observer, the measuring appara-
tus, and the observed system interact. This shift in understanding critically examines
local realism, rooted in philosophical foundations, in light of the empirical demands
of quantum mechanics, leading to an interpretation of reality as ‘reality’, an emergent
phenomenon shaped by measurement and based on information. By reconstructing
physical quantities within the framework of algebraic quantum theory, the paper high-
lights the necessity of moving beyond traditional philosophical debates and embracing
a more relational and dynamic view of the universe.

1 Introduction

The nature of physical reality and the concept of physical quantities have been central con-
cerns in the foundations of quantum theory and the philosophy of physics since the advent
of quantum mechanics. Classical physics, grounded in local realism, assumes that physical
objects possess intrinsic properties independent of the observer and that causal influences
are limited by the speed of light. These concepts̶ intrinsic properties and causality̶are
rooted in the fundamental premises of Western philosophy and have profoundly shaped
the development of physical theories. However, quantum mechanics raises fundamental
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doubts about this classical framework, particularly in light of phenomena such as quantum
entanglement, the violation of Bell’s inequality (Bell-CHSH inequality), and the introduc-
tion of probabilistic elements into the description of physical systems. In response to these
challenges, this paper proposes a shift from the classical concept of reality to an information-
theoretic conception of ‘reality’, by examining the notions of physical quantities and reality
in quantum mechanics from both mathematical and information-theoretic perspectives.

To this end, it is necessary to consider the historical context. This paper, therefore, ex-
amines both the physical significance of the work of Einstein, Podolsky, and Rosen (EPR),
as well as the Bell-CHSH inequality and its violation, while addressing their broader philo-
sophical implications. In doing so, it becomes evident that the foundations of local realism
are deeply intertwined with the philosophical interpretation of physical quantities.

This paper explores the conceptual reconstruction of physical quantities within the
framework of algebraic quantum theory. The focus is on the relational nature of these
quantities, which depend on interactions between the observer, the measuring apparatus,
and the observed system. This analysis paves the way for an information-theoretic view
of the universe, aligning with John Wheeler’s ‘It from Bit’ hypothesis. Wheeler’s hypoth-
esis posits that physical ‘reality] does not exist as a static, intrinsic structure, but rather
emerges from informational processes.

In light of these challenges to local realism and classical assumptions about physical
reality, this paper proposes a reconceptualization of physical quantities and reality, aiming
to bridge philosophical realism with the empirical demands of quantum mechanics.

2 EPR

The 1935 paper by Einstein, Podolsky, and Rosen (EPR) had a profound impact on the
philosophical and scientific understanding of quantum mechanics, particularly concerning
the nature of physical reality and the completeness of quantum theory[6]. The central
question posed by EPR was whether quantum mechanics offers a complete description of
physical reality. According to EPR, for a theory to be considered complete, every element
of physical reality must be accounted for within that theory. This is often referred to as
the completeness criterion for a physical theory.

EPR introduced a sufficient condition for physical reality: if the value of a physical
quantity can be predicted with certainty (i.e., with probability 1) without disturbing the
system, then there exists an element of physical reality corresponding to that physical
quantity. This sufficient condition aligns with classical realism, where physical properties
exist independently of measurement.

However, the EPR paper critiques quantum mechanics for failing to meet this condition.
In quantum mechanics, certain physical quantities cannot be predicted with certainty before
measurement, which suggests that these properties do not exist until they are measured.
EPR concluded that while quantum mechanics is successful in predicting experimental
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outcomes, it does not provide a complete description of reality.
At the heart of the EPR argument is the concept of local realism, which asserts that

physical quantities possess definite values independent of observation, and that information
cannot travel faster than the speed of light. Locality means that two spatially separated
objects cannot instantaneously influence each other, while realism assumes that physical
objects have intrinsic properties regardless of observation. The concept of reality that
adheres to both causality and locality can be seen as a fundamental principle underlying
Western philosophy.

Albert Einstein, advocating local realism, believed that quantum mechanics’ failure to
meet the sufficiency condition indicated that the theory was incomplete1. On the other
hand, Niels Bohr defended quantum mechanics, arguing that its probabilistic nature did
not undermine its completeness but instead reflected a deeper understanding of nature[4].
This incompatibility between local realism and quantum mechanics sparked philosophical
debates about the nature of reality.

This incompatibility was regarded as a philosophical issue until 1964, and it was thought
that physics would not resolve it. However, in that year, John Bell formulated the famous
Bell’s inequality, providing an empirical method to compare the predictions of quantum
mechanics with the assumptions of local realism[3]. In the 1980s, experiments conducted
by Alain Aspect and others strongly demonstrated that quantum mechanics violates Bell’s
inequality, challenging the concept of local realism[2]. Bell’s work enabled physicists to
directly test these assumptions, and as a result, many have concluded that quantum me-
chanics, with its non-local and probabilistic nature, offers a more accurate description of
reality than classical local realism.

Bell’s inequality encapsulates the assumptions of local realism in the form of an in-
equality. Therefore, if it is violated, this implies that local realism is not valid.The next
section will explore this concept in detail and show how the Bell’s inequality (Bell-CHSH
inequality) can be derived to provide a quantitative test for local realism.

3 Local Realism and Bell’s Inequality

Local realism, a concept deeply rooted in classical physics, asserts that physical properties
exist independently of observation and that no information or influence can propagate faster
than the speed of light. Bell’s inequality offers a mathematical framework to explore and
test this idea within the realm of quantum mechanics. Here, we will derive a specific form
of Bell’s inequality, known as the CHSH inequality (or Bell-CHSH inequality), using the

1It is undeniable that Einstein supported local realism, but the precise nature of the reality he envisioned
remains unclear[7][10][11][12]. In fact, in a letter to Schrödinger dated June 19, 1935, Einstein spoke about
the EPR paper as follows: ‘For reasons of language this [paper] was written by Podolsky after much
discussion. Still, it did not come out as well as I had originally wanted; rather the essential thing was, so
to speak, smothered by the formalism [gelehrsamkeit][8].’
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algebra of physical quantities[5]. This algebraic formulation is key to later applying tools
from algebraic quantum theory, ultimately showing the limits of local realism.

Consider an experimental setup with two observers, Alice and Bob, positioned far apart.
Each observer has access to two distinct measuring devices:

Alice’s devices: A1 and A2,
Bob’s devices: B1 and B2.

Pairs of entangled particles are emitted from a central source, traveling toward Alice
and Bob, who are positioned equidistant from the source. The spatial separation ensures
that no signal can travel faster than light between them, preserving the condition of locality.

During each trial, Alice and Bob randomly select which device to use. The result of any
measurement, regardless of the chosen device, is always either +1 or −1. The key question
that arises is what type of correlation exists between the outcomes observed by Alice and
Bob.

The correlation between their outcomes is captured by the expected value of the product
of their results. If both results are identical (either both +1 or both −1), the product is
+1; if the results differ, the product is −1.

Let’s denote the measurement outcomes as:

Ai for Alice’s result when using device Ai,
Bj for Bob’s result when using device Bj .

Both Ai and Bj take values in {+1,−1}. The relevant correlations are expressed through
the following expectation values:

⟨A1B1⟩, ⟨A1B2⟩, ⟨A2B1⟩, ⟨A2B2⟩. (1)

Next, we define the quantity ⟨S⟩ as:

⟨S⟩ := ⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩. (2)

Under the assumption of local realism, the outcomes of these measurements are deter-
mined by pre-existing local hidden variables, and no influence from one location affects the
outcomes at the other.

Now, consider the expression for S before taking expectation values:

S = A1B1 +A1B2 +A2B1 −A2B2. (3)

This can be reorganized and factored as follows:

S = A1(B1 +B2) +A2(B1 −B2). (4)

Applying the triangle inequality, we obtain:
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|S| = |A1(B1 +B2) +A2(B1 −B2)| ≤ |A1||B1 +B2|+ |A2||B1 −B2|. (5)

Since |A1| = |A2| = 1, this simplifies to:

|S| ≤ |B1 +B2|+ |B1 −B2|. (6)

Given that |B1| = |B2| = 1, we know that the maximum value of |B1 +B2|+ |B1 −B2|
is 2.
Therefore, we conclude:

|S| ≤ 2. (7)

Finally, taking the expectation value of this inequality yields:

|⟨S⟩| = |⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩| ≤ 2. (8)

Thus, we arrive at the Bell-CHSH inequality :

−2 ≤ ⟨S⟩ ≤ 2. (9)

If Alice and Bob’s measurement results satisfy this inequality, it follows that local realism
holds, as the inequality was derived from locally determined physical quantities. However,
quantum mechanics predicts that this inequality can be violated under certain conditions.
In the next section, we will examine the quantum mechanical framework and demonstrate
the violation of the Bell-CHSH inequality.

4 The violation of Bell-CHSH inequality

The Bell-CHSH inequality, which encapsulates the principle of local realism within quantum
mechanics, is famously violated according to the predictions of quantum theory. In other
words, local realism does not hold in quantum mechanics.

In this section, we will demonstrate the violation of the CHSH inequality using methods
from algebraic quantum theory [13]. We assume that the physical quantities measured by
Alice and Bob, denoted by A1, A2, B1, and B2, satisfy certain conditions derived from
quantum theory.

First, we impose the condition that the squares of the operators equal unity:

A2
1 = A2

2 = B2
1 = B2

2 = 1. (10)

This condition reflects the fact that each measurement performed by Alice or Bob yields
outcomes of either +1 or −1. Squaring these operators results in 1, consistent with the
binary outcomes typical in quantum measurements.

Next, the relations between Alice’s and Bob’s operators are given by:
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A2A1 = −A1A2, B2B1 = −B1B2. (11)

These relations indicate that Alice’s and Bob’s respective measurement operators do not
commute. In quantum mechanics, non-commuting operators are central to the uncertainty
principle, illustrating how Alice’s measurement of A1 affects her measurement of A2, and
similarly for Bob’s measurements.

Finally, we assume that Alice’s and Bob’s measurement operators commute with each
other:

A1B1 = B1A1, A1B2 = B2A1, A2B1 = B1A2, A2B2 = B2A2. (12)

These commutation relations ensure that Alice’s and Bob’s measurements are indepen-
dent when they are space-like separated, which is crucial for maintaining locality. This
independence is a critical condition in Bell-CHSH experiments that test whether quantum
mechanics respects local realism.

Given these conditions, we now explore the possible values of the following expression,
corresponding to equation (3).

S = A1B1 +A1B2 +A2B1 −A2B2. (13)

First, using conditions (10) and (11), we compute the following:

(B1 +B2)
2 = B2

1 +B1B2 +B2B1 +B2
2 = 1 +B1B2 −B1B2 + 1 = 2, (14)

(B1 −B2)
2 = B2

1 −B1B2 −B2B1 +B2
2 = 1−B1B2 +B1B2 + 1 = 2. (15)

Thus, the operators B1 +B2 and B1 −B2 take values ±
√
2.

Next, we consider the possible values of the product A1A2B1B2. Using (11) and (12),
we find:

(A1A2B1B2)
2 = (A1A2)

2(B1B2)
2 = (−1)(−1) = 1. (16)

Hence, A1A2B1B2 can take values ±1.
We can simplify (13) by grouping terms:

S = A1(B1 +B2) +A2(B1 −B2). (17)

Next, we compute S2 by expanding the square:

S2 = A2
1(B1 +B2)

2 +A1A2(B1 +B2)(B1 −B2)

+A2A1(B1 −B2)(B1 +B2) +A2
2(B1 −B2)

2 (18)

= 2 +A1A2(B
2
1 −B1B2 +B2B1 −B2

2) +A2A1(B
2
1 +B1B2 −B2B1 −B2

2) + 2 (19)
= 2 +A1A2(1−B1B2 −B1B2 − 1)−A1A2(1 +B1B2 +B1B2 − 1) + 2 (20)
= 4− 4A1A2B1B2. (21)
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Since A1A2B1B2 can take values ±1, the possible values of S2 are:

S2 = 4 + 4 = 8 or S2 = 4− 4 = 0. (22)

Thus, the possible values of S are:

S = ±2
√
2 or S = 0. (23)

Consequently, the maximum value of S is 2
√
2, and the minimum value is −2

√
2. Using

the linearity of expectation, we derive the following inequality:

−2
√
2 ≤ ⟨S⟩ ≤ 2

√
2. (24)

This result demonstrates that quantum mechanics allows values of ⟨S⟩ that exceed the
classical limit set by the Bell-CHSH inequality, as shown in (9). Thus, the predictions
of quantum mechanics fundamentally violate the classical bound, signifying a profound
departure from the principles of local realism.

In fact, in the 1998 experiment conducted by Zeilinger and colleagues, the Bell-CHSH
inequality was tested under conditions that closed the locality loophole, yielding a result of
|S| = 2.73 ± 0.02 [14]. The locality loophole refers to situations where particles could po-
tentially influence one another at subluminal speeds, violating Bell’s inequality. Zeilinger’s
team meticulously designed their experiment to ensure that no faster-than-light signals
could be exchanged between particles, maintaining locality. As a result, they experimen-
tally demonstrated that local realism is false.

The observed violation of the Bell-CHSH inequality necessitates a critical reassessment
of the classical assumptions surrounding locality and realism, which have traditionally un-
derpinned our understanding of physical quantities. If local realism fails to account for
the behavior of quantum systems, how should we then redefine physical quantities? This
calls for a reevaluation of the very foundations of physical quantities, particularly in the
context of quantum measurement. Taking quantum mechanics into consideration, such a
reconsideration is essential for advancing our understanding of the quantum realm.

5 Reconstruction of the Concept of Physical Quantities

In light of the challenges posed by the violation of Bell’s inequality (Bell-CHSH inequal-
ity), it becomes essential to reassess how physical quantities are defined and understood,
especially within the framework of quantum mechanics. Historically, physical quantities
were regarded as intrinsic properties of objects, independent of observation. This notion
reflects the deeply entrenched views in classical philosophy and physics, where objects were
thought to possess fixed attributes, regardless of whether they were being measured. How-
ever, quantum theory, with its focus on the measurement process and the active role of
the observer, challenges this classical perspective. It suggests that physical quantities may
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not be stable, intrinsic features of physical objects, but rather emerge from the interaction
between the observer, the measuring instrument, and the system being observed.

When we look back at the history of philosophy, discussions on the essence of physical
objects can be traced as far back as ancient Greece. Aristotle’s concept of “form” (ειδoς)
represents the essential qualities inherent in all physical beings, giving structure and iden-
tity to matter. Aristotle’s metaphysics, which sought to explain how physical entities
embody their essence, underpinned much of medieval and early modern thought. In tradi-
tional Western philosophy, the view that physical entities must possess essential qualities,
independent of human perception, was fundamental. This is reflected in the philosophical
notion that something cannot exist as a “substance” without its essence.

However, over time, philosophers began to question which qualities were essential to
an object and which were non-essential. In the modern period, John Locke made a pivotal
contribution to this debate in his Essay Concerning Human Understanding (1690), where
he distinguished between “primary qualities” and “secondary qualities.” According to Locke,
primary qualities̶such as solidity, extension, motion, and number̶are inherent in objects
and exist independently of the observer. These qualities, Locke argued, are properties of
reality, but ultimately, this leads to the assertion that the physical quantities addressed in
classical physics are real. In contrast, secondary qualities, like color and taste, depend on
the observer’s perception and are not inherent to the object itself.

Locke’s theory, however, was formulated before the advent of quantum mechanics, and
thus his classification of physical quantities was based on a pre-quantum understanding of
reality. His view aligns with the deterministic nature of classical physics, where objects are
assumed to have definite properties independent of observation. But with the development
of quantum theory in the 20th century, this classical view was upended. Quantum mechan-
ics shows that physical quantities are not fixed attributes of objects but arise from the
interaction between the observer and the system through measurement. In this framework,
properties such as position and momentum, except in eigenstates, are not well-defined
simultaneously until measured, casting significant doubt on the classical assumptions of
reality.

If physical quantities are not intrinsic attributes of physical reality, as classical physics
assumed, then key debates surrounding local realism and the Bell-CHSH inequality̶which
rest on the assumption that physical quantities are elements of reality̶must be reconsid-
ered. Quantum experiments that violate the Bell-CHSH inequality suggest that physical
quantities cannot be treated as independent of the observer’s role. Local realism, which
posits that physical properties exist independently of observation and that information
cannot travel faster than light, is incompatible with the results of these quantum experi-
ments. Therefore, the classical notion of physical quantities as fixed, observer-independent
properties is no longer tenable in the quantum context.

While physical quantities are still connected to physical reality, they cannot be viewed as
attributes of a reality that is entirely independent of observation. Instead, these quantities
are shaped by the dynamic relationship between the external world and the observer. In
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other words, physical quantities should be understood as relational properties that emerge
through the process of measurement, reflecting the context in which the observation is
made.

To address this conceptual shift, a method for mathematically defining physical quan-
tities will be introduced. This method involves considering a set of measuring instruments,
establishing an equivalence relation between them based on their measurement results,
classifying these instruments, and defining the representative elements after classification
as physical quantities. By adopting this approach, it becomes evident that viewing physical
quantities as inherent attributes of physical reality is an oversimplification. A more nuanced
definition, grounded in the interaction between observer and system, is necessary.

This reconceptualization of physical quantities as relational, shaped by the interactions
between the observer, the measuring instrument, and the system, calls for a deeper exami-
nation of how probabilities are assigned to measurement outcomes. Probability emerges in
the context of measurement during physical experiments. This brings us to the frequentist
interpretation of probability, which provides a framework for understanding measurement
outcomes over repeated trials in the quantum domain.

5.1 Probability based on frequentism

In the frequentist interpretation of probability, probability is understood as the long-term
relative frequency of an event occurring across repeated trials. Unlike subjective or Bayesian
interpretations, which focus on belief or degrees of certainty, the frequentist approach treats
probability as an inherent characteristic of a physical system, grounded in observable data
rather than personal judgment.

When an experiment or measurement is repeated under identical conditions, the propor-
tion of a particular outcome stabilizes and converges to a fixed value. In the ideal case, as
the number of trials approaches infinity, this stabilized value is taken to represent the prob-
ability of the outcome. Thus, frequentist probability emerges from the repeated observation
of phenomena, providing a concrete basis for predicting future occurrences.

In physical experiments, where the same procedure can be replicated under controlled
conditions, the frequentist approach is often more suitable than subjective methods. Physi-
cal systems, governed by laws of nature, tend to exhibit consistent behavior across repeated
trials, making frequentist probability an objective and reliable framework for analyzing out-
comes based on empirical data.

Let us now apply this framework to the measurement of a physical object. Suppose we
measure an object s using a measuring instrument A over N trials. If the measurement
yields the value a exactly na times during these N trials, the probability ProbAs (a) of
obtaining the measurement value a can be defined as:

ProbAs (a) := lim
N→∞

na
N
. (25)
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The frequentist interpretation offers a solid framework for understanding how mea-
surement outcomes stabilize through repetition. By incorporating probability in repeated
measurements, physical quantities can be rigorously defined within a consistent empirical
framework.

5.2 The concept of classical physical quantities

In the process of measuring physical objects, we employ a wide range of instruments, from
rudimentary tools such as rulers to sophisticated devices like gravitational wave detectors.
These instruments vary in their precision̶some offering high accuracy, while others may
be less reliable, and some may even malfunction. Let us denote the set of all conceivable
measuring instruments as A.

To begin, we examine the notion of a suitable measuring instrument within the frame-
work of classical theory. Let us represent the world of macroscopic objects̶the classical
world̶by the set Wc.

Consider a classical object ci ∈Wc, measured by an instrument Aj ∈ A. The probability
that the measured value lies within a certain interval ∆vij := [vij−∆/2, vij+∆/2], centered
around vij , is given by

Prob
Aj
ci (∆vij ) = 1, (26)

where ∆ represents the measurement error, understood as a technical limitation. The
smaller this interval, the more accurate the instrument.

Next, we consider the idealized case where the measurement error tends to zero, that is,
∆ → 0. In this scenario, the interval ∆vij converges to a single value vij , and the probability
expression becomes

Prob
Aj
ci (vij) = 1. (27)

When this condition holds, we describe Aj as an ideal classical measuring instrument. For
the sake of simplicity, we will refer to an ideal classical measuring instrument simply as a
classical measuring instrument.

Now, let us consider an arbitrary classical object ci being measured by two classical mea-
suring instruments, A1 and A2. Suppose the measured values are vi1 and vi2, respectively.
We can express their measurement probabilities as

ProbA1
ci (vi1) = 1, ProbA2

ci (vi2) = 1. (28)

If the measurements agree (i.e., vi1 = vi2 = vi), then we have

ProbA1
ci (vi) = 1, ProbA2

ci (vi) = 1. (29)

To formalize this relationship, we define an equivalence relation between A1 and A2

with respect to ci and vi, denoted as A1
(ci,vi)∼ A2. Similarly, if A2 and A3 provide the same

measurement vi for ci, we denote their equivalence as A2
(ci,vi)∼ A3.
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This relation
(ci,vi)∼ satisfies the three essential properties of an equivalence relation:

Reflexivity:

Aj
(ci,vi)∼ Aj . (30)

Symmetry:

Ai
(ci,vi)∼ Aj ⇒ Aj

(ci,vi)∼ Ai. (31)

Transitivity:

Ai
(ci,vi)∼ Aj , Aj

(ci,vi)∼ Ak ⇒ Ai
(ci,vi)∼ Ak. (32)

We refer to instruments connected by this equivalence relation as mutually equivalent
classical measuring instruments.

To ensure generality across all classical objects and their corresponding measurements,
we extend this equivalence relation to encompass all pairs (ci, vi) in Wc × R. Specifically,

two instruments A and B are equivalent, denoted A
(ci,vi)∼ B, if for every ci ∈ Wc and

corresponding vi ∈ R, they satisfy

ProbAci(vi) = 1 if and only if ProbBci(vi) = 1. (33)

This generalized equivalence relation maintains reflexivity, symmetry, and transitivity
across all classical objects and measurements, ensuring a consistent partitioning of A into
equivalence classes.

The equivalence class of a classical measuring instrument Aj , with respect to all (ci, vi),
is defined as

[Aj ]c := {Al ∈ A | Al
(ci,vi)∼ Aj for all (ci, vi) ∈Wc × R}. (34)

Each equivalence class contains instruments that consistently measure classical objects with
identical probability distributions. We select a representative element from each equivalence
class, termed the representative classical measuring instrument, denoted as Aj . The selec-
tion of representatives can be performed using a well-defined criterion, such as choosing the
simplest instrument in each class or selecting based on specific operational characteristics.

Let Ac represent the set of all representative classical measuring instruments. When
the object ci is measured by a representative instrument Aj ∈ Ac, we have

Prob
Aj
ci (vi) = 1, (35)

indicating that Aj consistently returns the value vi for ci. Thus, we can treat the repre-
sentative classical measuring instrument Aj as a function mapping objects in Wc to real
values:

Aj(ci) = vi. (36)
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The mathematical details of the algebra consisting of representative classical measuring
instruments are provided in Appendix 1. This framework enables the interpretation of
the set of equivalence classes formed from the set of classical measuring instruments A as
Ac, with the representative classical measuring instruments in Ac understood as classical
physical quantities. Each physical quantity assigns a real number to a classical object
ci ∈Wc, representing measurable properties such as mass, length, or charge.

The functional interpretation of representative classical measuring instruments facili-
tates the application of algebraic operations within Ac. Specifically:

Addition of Physical Quantities:

The sum (αA+βB)(ci) represents a new physical quantity obtained by linearly
combining the measurements of A and B with weights α and β, respectively.

Multiplication of Physical Quantities:

The product (A · B)(ci) corresponds to a physical quantity derived from the
pointwise multiplication of the measurements of A and B, such as calculating
kinetic energy from mass and velocity.

These operations preserve the algebraic structure, ensuring that Ac remains closed under
addition and multiplication. The commutative nature of the algebra aligns with the classical
assumption that physical quantities can be simultaneously measured and combined without
interference.

In classical physics, physical quantities are regarded as stable, deterministic properties
that can be measured using classical instruments and are inherent to the reality of objects.
Within this framework, these quantities are seen as inherent characteristics of the objects,
independent of the observer. However, this interpretation becomes unnatural when physical
quantities are defined in the context of measurement, highlighting that quantities cannot
be fully defined without the act of measurement by the observer.

As we transition from the macroscopic classical world to the microscopic quantum realm,
the relationship between objects and their measurable properties becomes increasingly am-
biguous. In quantum mechanics, physical quantities no longer behave as intrinsic attributes
of objects; rather, they emerge from the probabilistic nature of quantum interactions. Con-
sequently, measurement plays a more fundamental role in defining physical quantities in
quantum theory, necessitating a reconsideration of their conceptual foundation.

5.3 The concept of quantum physical quantities

Building upon the methods of Araki[1] in algebraic quantum theory, we revisit the concept
of quantum physical quantities.

12



In this context, we explore the notion of a suitable measuring instrument within quantum
theory. The set of all microscopic quantum objects is denoted by Wq, representing the
quantum world. The set of all measuring instruments is denoted by A.

Consider a quantum object qi ∈Wq measured by a measuring instrument Aj ∈ A. The
probability that the measurement yields a value within a specific range ∆v := [v−∆/2, v+
∆/2] is given by:

0 ≤ Prob
Aj
qi (∆v) ≤ 1. (37)

Here, ±∆/2 represents the measurement accuracy, with smaller ∆ indicating higher
precision, constrained by the uncertainty principle2.

In quantum mechanics, particularly for measurements with continuous spectra, the con-
cept of point probabilities must be handled carefully. Instead, we define the probability
of obtaining a measurement outcome within an interval ∆v using the spectral measure
associated with the measuring instrument Aj . Specifically, the probability is given by:

Prob
Aj
qi (∆v) = ωqi(E

Aj (∆v)) ∈ [0, 1], (38)

where EAj (∆v) is the projection operator (or spectral projection) associated with the
measuring instrument Aj and the interval ∆v, and ωqi is the quantum state corresponding
to the quantum object qi.

Unlike classical measurements, in quantum mechanics, the outcome of a measurement
is inherently probabilistic, and the probabilities depend on both the quantum system and
the observable being measured.

We define a quantum physical quantity (observable) as an equivalence class of mea-
suring instruments that yield the same probability distributions for all quantum systems.
Specifically, two measuring instruments A1 and A2 are considered equivalent if:

ProbA1
qi (∆v) = ProbA2

qi (∆v), ∀qi ∈Wq, ∀∆v. (39)

Then the instruments A1 and A2 are considered equivalent with respect to qi and the

probability, denoted by A1
(qi,Prob)∼ A2.

This relation
(qi,Prob)∼ satisfies the properties of an equivalence relation:

Reflexivity:

Aj
(qi,Prob)∼ Aj . (40)

Symmetry:

Ai
(qi,Prob)∼ Aj ⇒ Aj

(qi,Prob)∼ Ai. (41)
2The limits imposed by the uncertainty principle must be considered when refining measurement accu-

racy.
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Transitivity:

Ai
(qi,Prob)∼ Aj , Aj

(qi,Prob)∼ Ak ⇒ Ai
(qi,Prob)∼ Ak. (42)

We refer to instruments related by
(qi,Prob)∼ as mutually equivalent quantum measuring in-

struments.
To generalize this across all quantum objects and measurement outcomes, we extend

the equivalence relation to encompass all pairs (qi,Prob) in Wq × [0, 1]. Specifically, two

instruments A and B are equivalent, denoted A
(qi,Prob)∼ B, if for every qi ∈ Wq and for all

probability values of the measurement outcomes,

ProbAqi(∆v) = ProbBqi(∆v). (43)

This generalized equivalence relation maintains reflexivity, symmetry, and transitivity
across all quantum objects and their measurements, partitioning A into distinct equivalence
classes.

The equivalence class of a quantum measuring instrument Aj , encompassing all instru-
ments equivalent to Aj , is defined as

[Aj ]q := {Al ∈ A | Al
(qi,Prob)∼ Aj for all (qi,Prob) ∈Wc × [0, 1]}. (44)

Each equivalence class comprises instruments that yield identical probability distributions
for all quantum objects and measurement outcomes. We select a representative element
from each equivalence class, termed the representative quantum measuring instrument, de-
noted as Aj . The selection of representatives can be guided by criteria such as simplicity
or specific operational properties.

Let Aq denote the set of all representative quantum measuring instruments. At the
expense of some mathematical rigor, the expectation value ω(Aj) of a measurement outcome
for Aj ∈ Aq is defined as follows:

ω(Aj) =
∑
v

vProb
Aj
qi (∆v), (45)

where ω : Aq → R is interpreted as a quantum state.
The mathematical details of the algebra, specifically a C∗-algebra, comprising represen-

tative quantum measuring instruments, are provided in Appendix 2. This framework allows
us to interpret the set of equivalence classes formed from the set of quantum measuring
instruments A as Aq, with the representative quantum measuring instruments in Aq inter-
preted as quantum physical quantities. Each quantum physical quantity corresponds to a
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bounded operator on the Hilbert space H, representing measurable properties such as spin,
energy, or momentum.

The functional interpretation of representative quantum measuring instruments facili-
tates the application of algebraic operations within Aq. Specifically:

Addition of Quantum Physical Quantities:

The sum αA + βB represents a new quantum physical quantity obtained by
linearly combining the measurements of A and B with coefficients α and β,
respectively.

Multiplication of Quantum Physical Quantities:

The product A · B corresponds to the composition of measurements of A and
B, capturing the non-commutative interactions intrinsic to quantum systems.

These operations preserve the C∗-algebraic structure, ensuring that Aq remains closed
under addition, multiplication, and involution. The non-commutative nature of the algebra
aligns with the quantum mechanical principle that the order of measurements affects the
outcomes, reflecting the inherent probabilistic and operator-based structure of quantum
theory.

In summary, the construction of the C∗-algebra Aq provides a robust mathematical
framework for quantum physical quantities, enabling a systematic and rigorous analysis of
quantum measurements and the algebraic relationships between quantum observables.

6 It from Bit: From Reality to ‘Reality’

The notion of reality, particularly in the quantum realm, has undergone significant transfor-
mations since the advent of quantum mechanics. Classical physics treated physical entities
as possessing definite, intrinsic properties, independent of observation. However, the viola-
tion of Bell’s inequality and the rise of quantum information theory have challenged these
classical intuitions. One of the most profound responses to these challenges came from
John Wheeler, who famously introduced the phrase “It from Bit” during a lecture titled
Information, Physics, Quantum: The Search for Links at the 3rd International Symposium
on the Foundations of Quantum Mechanics in Tokyo in 1989[15]. This phrase resonates
with Eastern philosophy and encapsulates Wheeler’s revolutionary idea: reality itself arises
from information, not the other way around.

Wheeler’s “It from Bit” hypothesis suggests that the fundamental building blocks of
the universe are not physical particles or forces, but information itself. He argued that
every physical “it”̶every object or phenomenon in the universe̶derives its existence from
binary choices, or bits, elicited through the process of measurement. As Wheeler explained
in his own words:
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I, like other searchers, attempt formulation after formulation of the central
issues and here present a wider overview, taking for working hypothesis the
most effective one that has survived this winnowing: It from bit. Otherwise
put, every it― every particle, every field of force, even the spacetime continuum
itself ― derives its function, its meaning, its very existence entirely ― even if
in some contexts indirectly ― from the apparatus-elicited answers to yes or no
questions, binary choices, bits.

It from bit symbolizes the idea that every item of the physical world has at
bottom ― at a very deep bottom, in most instances ― an immaterial source
and explanation; that what we call reality arises in the last analysis from the
posing of yes-no questions and the registering of equipment-evoked responses;
in short, that all things physical are information-theoretic in origin and this is
a participatory universe.

(Wheeler, 1990, pp.354-368)

This conceptual shift from a substance-based to an information-based view of reality
aligns naturally with the peculiarities of quantum mechanics. In fact, the results of quan-
tum experiments, particularly the violation of Bell-CHSH inequalities, suggest that reality
does not adhere to the classical tenets of local realism, where properties exist indepen-
dently of measurement, and causal influences are confined by the speed of light. Instead,
quantum correlations defy these classical constraints, pointing to a deeper structure where
information plays a central role in the manifestation of physical phenomena.

However, the term ‘It ’ used here can sometimes hinder our conceptual understanding
of reality. Some philosophers might argue that Wheeler’s phrase “It from Bit,” meaning
‘reality arising from information,’ is misleading and does not hold as a valid concept of
reality. Indeed, such a claim may be considered a valid counterargument within traditional
philosophical debates, but it is based merely on the worldview of Western philosophy.

One of the key issues with the concept of reality as traditionally discussed in philosophy
is that it was treated as a metaphysical notion, independent of any observer’s perspective.
However, the conclusions drawn from quantum mechanics reveal that we do not have direct
access to this Reality. Instead, what we experience is always a version of ‘Reality’̶a reality
shaped by our interactions with the world and our measurement processes.

This idea challenges traditional views of objectivity and reality in western philosophy
and science. In classical physics, we assume that physical properties exist independently
of whether we measure them. But quantum mechanics, and especially its informational
interpretation, suggests that ‘reality’ is more fluid. It is contingent upon the interaction
between the observer, the measuring apparatus, and the system being measured. Physical
quantities in quantum mechanics, as demonstrated earlier, are not intrinsic properties of
objects but arise from the act of measurement itself.

This perspective requires careful wording. After all, what physics describes is an emer-
gent phenomenon, not reality in the western philosophical sense. In other words, we have no
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choice but to treat emergent phenomena as ‘reality’ in quotation marks. The importance of
observation in experiments has already been discussed, but fundamentally, our human sen-
sory organs can also be seen as devices for observing the external world, developed through
the process of evolution. Through these innate observation tools, we gather information
from the external world and construct the ‘reality’ as it exists for us.

Wheeler’s statement, “It from Bit,” captures this conceptual shift: the world as we
know it emerges not from physical “it” but from informational “bits.” In quantum theory,
information precedes ‘reality’. The violation of the Bell-CHSH inequality suggests that
classical local ‘realism’ fails to fully capture emergent phenomena, that is, the ‘reality’
as it exists for us. Quantum mechanics points to a world where entanglement and non-
local correlations naturally arise from the underlying information structure. We should
straightforwardly regard such a world as ‘reality’ emerging from information. The problem
lies in our use of the traditional concept of reality as something independent of us.

Indeed, the conceptual shift from reality to ‘‘reality’ ’̶the latter symbolizing a more
dynamic and information-based understanding̶ is a philosophical challenge posed by quan-
tum mechanics. In this view, the notions of objectivity and reality dissolve into something
more contingent and emergent. Such a perspective would likely be unacceptable within the
framework of conventional Western philosophy. However, just as a paradigm shift occurred
from the geocentric to the heliocentric model, there should be no issue with a conceptual
paradigm shift regarding objectivity and reality. Quantum mechanics, with its inherent
probabilistic nature and dependence on measurement, invites us to move from a static,
classical notion of reality to a more relational and informational understanding.

7 Conclusion

This paper has examined the conceptual changes in the notions of physical quantities and
reality within the framework of quantum mechanics, focusing on the philosophical shift from
local realism to an information-theoretic view of the universe. By reconstructing the concept
of physical quantities through the lens of algebraic quantum theory, we have demonstrated
the inadequacy of classical notions, which assume intrinsic, observer-independent properties
as fundamental. Quantum phenomena, such as the violation of Bell’s inequality, challenge
these classical assumptions and prompt a deeper reconsideration of the nature of reality.

The central insight of this study is the understanding that physical quantities are not
inherent attributes of objects but rather relational properties that arise from the interaction
between the observer, the measuring apparatus, and the system being observed. This shift
from a substance-based to an information-based concept challenges traditional realism and
suggests that quantum mechanics does not support the classical view of an objective, fixed
reality. By demonstrating that physical quantities can indeed be defined within the context
of measurement, this study shows that the quantum mechanical perspective is, in fact, more
natural.
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John Wheeler’s “It from Bit” hypothesis aligns with this analysis. We do not have
access to the old notion of reality ; only ‘reality’̶ ‘It ’ we experience̶makes conceptual
sense. Furthermore, this ‘reality’ is participatory, shaped by the informational processes
underlying measurement and observation. Rather than viewing reality as a static, pre-
existing structure, Wheeler emphasizes that ‘reality’ emerges for us through interactions
with the world and the information we derive from it.

This approach differs from the idea of reality as having a fixed essence, a notion central
to philosophical thought since Aristotle. It may be difficult for some to accept, but this is
a matter of ‘belief’ rather than scientific attitude. Certainly, an independent reality may
exist, but what emerges from information are the physical objects for us, the ‘Reality’ as
we experience it. Therefore, we should adopt a notion of ‘reality’ that is meaningful to us.

The interpretation of physical quantities in this paper is also framed within the context of
the ‘reality’ that is meaningful to us. In fact, moving beyond the constraints of local realism,
this paper proposes a more nuanced interpretation of physical quantities, one that fully
embraces the relational and informational dimensions of quantum theory. This approach
offers a pathway to bridge the gap between longstanding philosophical debates on realism
and the empirical challenges posed by quantum mechanics. It also opens new avenues
for exploring the deeper informational structure of the universe. From this perspective,
the universe itself is understood as a dynamic interaction of information, reshaping our
understanding of physical ‘reality’ and the role of the observer within it.
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Appendix 1: The Algebra of Classical Physical Quantities

This appendix provides the mathematical details of the algebra consisting of representative
classical measuring instruments, allowing this algebra to be interpreted as the algebra of
classical physical quantities.

To formalize the algebraic structure, consider Ac as a set of functions A :Wc → R. For
A,B ∈ Ac and scalars α, β ∈ R, we define the following operations:

Addition:
(αA+ βB)(ci) := αA(ci) + βB(ci), (A.1)

Multiplication:
(A ·B)(ci) := A(ci) ·B(ci). (A.2)
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These operations are pointwise and ensure that both αA+βB and A ·B remain within
Ac, provided that A(ci) and B(ci) yield real numbers for all ci ∈Wc.

Under these operations, Ac forms a vector space over the real numbers R. Furthermore,
the multiplication operation is distributive over addition and satisfies both associative and
commutative properties:

Associativity:
A · (B · C) = (A ·B) · C, ∀A,B,C ∈ Ac, (A.3)

Commutativity:
A ·B = B ·A, ∀A,B ∈ Ac, (A.4)

Distributivity:

A · (B + C) = A ·B +A · C, ∀A,B,C ∈ Ac. (A.5)

Additionally, if there exists a multiplicative identity I ∈ Ac such that

I(ci) = 1, ∀ci ∈Wc, (A.6)

then Ac possesses a unit element, further solidifying its structure as a unital commutative
algebra.

Thus, Ac possesses the structure of a commutative algebra, demonstrating that combi-
nations of classical measuring instruments can be treated algebraically.

Appendix 2: The Algebra of Quantum Physical Quantities

This appendix provides the mathematical details of the C∗-algebra consisting of represen-
tative quantum measuring instruments, enabling the interpretation of this algebra as the
algebra of quantum physical quantities.

In quantum mechanics, observables are represented by self-adjoint operators acting on
a Hilbert space H. We formalize Aq as a set of bounded linear operators on H that form a
C∗-algebra.

For A,B ∈ Aq and α, β ∈ C, we define the operations:

Addition:
(αA+ βB)ψ = αAψ + βBψ, ∀ψ ∈ H. (A.7)

Multiplication:
(AB)ψ = A(Bψ), ∀ψ ∈ H. (A.8)

Involution (∗-operation):

A∗ is the adjoint of A, A∗ ∈ Aq. (A.9)
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These operations satisfy the properties of a C∗-algebra:

Associativity of Multiplication:

A(BC) = (AB)C. (A.10)

Distributivity:

A(B + C) = AB +AC, (A+B)C = AC +BC. (A.11)

Bilinearity:
(αA)B = A(αB) = α(AB). (A.12)

Involution Properties:
(A∗)∗ = A, (AB)∗ = B∗A∗. (A.13)

C∗-Identity:
∥A∗A∥ = ∥A∥2, (A.14)

where ∥ · ∥ denotes the operator norm.
The set Aq is complete with respect to this norm, making it a C∗-algebra.
A state ωqi on Aq is a positive linear functional associated with the quantum system qi:

ωqi : Aq → C, (A.15)

satisfying:

Linearity:
ωqi(αA+ βB) = αωqi(A) + βωqi(B). (A.16)

Positivity:
ωqi(A

∗A) ≥ 0, ∀A ∈ Aq. (A.17)

Normalization:
ωqi(I) = 1, (A.18)

where I is the identity operator in Aq.

The expectation value of an observable Aj ∈ Aq in the state ωqi is given by:

ωqi(Aj) =

∫
σ(Aj)

v dω
Aj
qi (v), (A.19)

where σ(Aj) is the spectrum of Aj , and ωAj
qi is the probability measure on σ(Aj) induced

by the state ωqi and the spectral measure EAj :
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ω
Aj
qi (∆v) = ωqi(E

Aj (∆v)). (A.20)

In cases where Aj has a purely discrete spectrum, the expectation value simplifies to:

ωqi(Aj) =
∑

v∈σ(Aj)

v ωqi(E
Aj ({v})). (A.21)

Here, EAj ({v}) is the projection onto the eigenspace corresponding to the eigenvalue v.
The probabilities of measurement outcomes are determined via the spectral theorem,

which associates projection operators with measurement outcomes.
By applying the Gelfand-Naimark-Segal (GNS) construction, we represent the abstract

C∗-algebra Aq concretely on a Hilbert space Hωqi
, with the state ωqi inducing a cyclic

representation[9][11]. In this representation, observables act on the Hilbert space, and
states correspond to vectors or density operators in Hωqi

.
This framework provides a rigorous mathematical foundation for quantum mechanics,

capturing the non-commutative nature of quantum observables and the fundamental role
of states as positive linear functionals that encode the properties of quantum systems.

In contrast to classical physical quantities, which are represented by commutative alge-
bras of functions (reflecting the deterministic nature of classical physics), quantum physical
quantities form a non-commutative C∗-algebra, reflecting the inherent uncertainties and
probabilistic outcomes in quantum measurements.
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