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Marta Bielińska∗ & Caspar Jacobs†

September 19, 2024

Acknowledgments
We would like to thank the Committee for the Du Châtelet Prize in Philosophy of Physics
2023—Katherine Brading, Elena Castellani, Nina Emery, Bas van Fraassen, Marc Lange,
and Nancy Cartwright—for helpful feedback and discussion.

1 Introduction

The discovery of symmetries propels physics forward. The Galilean invariance of classical
mechanics eventually led to the concept of a unified space-time; the Lorentz symmetries of
electromagnetism spurred the development of special relativity; and the SU(3)×SU(2)×
U(1) gauge symmetry of the standard model gives rise to three of the four known funda-
mental interactions. Moreover, symmetries entail the conservation of certain quantities
via Noether’s theorem. Some symmetries are apparent from the geometry of a problem.
Others, however, are hidden from view. A well-known example is the Kepler problem.
Whereas the rotational symmetry is evident from the geometry of this system, which is
invariant under rotations in three-dimensional space, the system also displays another,
hidden symmetry.

Despite the fact that such hidden symmetries are frequently discussed in the physics
literature, they are all but absent from philosophical discussions of symmetries. This
is unfortunate, because we believe that hidden symmetries are highly relevant to topics
such as invariant quantities, spacetime structure and conservation laws. The aim of this
paper is to introduce philosophers to hidden symmetries and some of their philosophical
consequences.

On the one hand, hidden symmetries may seem distinct from other symmetries merely
because they are more difficult to discover. If this were the case, philosophical treatments
of symmetries should easily extend to hidden ones. We will show that this is not the case.
On the other hand, hidden symmetries may have no philosophical significance: they are
merely accidental artefacts of the mathematics. But this view belies the fact that hidden
symmetries are routinely used in the practice of physics, for example to derive planetary
orbits or the energy levels of the hydrogen atom. We will chart a middle view on which
hidden symmetries are a distinct yet philosophically significant type of symmetry.
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The plan is as follows. In §2, we discuss the definition of hidden symmetries, which is not
settled in the physics literature. §3 presents four detailed examples of hidden symmetries
drawn from a range of theories. In §4, we discuss hidden symmetries’ philosophical sig-
nificance with a consideration of invariant quantities, spacetime structure, and the nature
of lawhood. §5 concludes with an outlook.

2 Definitions of Hidden Symmetries

The concept of hidden symmetries comes from over a century of physics practice.1 It
refers to certain physical systems in which ‘non-obvious’ symmetries appear. An example
of such a system is the Kepler problem, which consists of two point masses in a gravita-
tional field. It is easy to identify two symmetries of this system, namely its translational
and rotational symmetry. These two symmetries correspond to two constants of motion:
energy and angular momentum.

It turns out, however, that there exists an additional constant of motion in the Kepler
problem, known as the Runge-Lenz vector, described in detail in section §3.1. With the
development of the formalism of Lie algebras and the language of group theory, it became
clear that this quantity corresponds to a ‘hidden’ symmetry. For negative energies, this
is an SO(4) symmetry, i.e. a rotation in four dimensions. In contrast to the rotational
symmetry described earlier, this new symmetry does not seem to correspond to any phys-
ically possible process. While it is possible to rotate an orbit in three-dimensional space,
it is unclear how to convey this in four dimensions. For this reason, physicists frequently
refer to SO(4) as a ‘hidden symmetry’ of the Kepler problem.

Physicists tend to refer to hidden symmetries in rather imprecise terms:

. . . a ‘hidden symmetry’ of the problem, in that its existence is not immediately
apparent from an inspection of the geometric symmetries of the force field.
(Prince and Eliezer 1979, after Cisneros and McIntosh 1970)

It remains unclear what exactly is meant here by “not immediately apparent” or the “ge-
ometric symmetries” of the force field. However, this quote does illustrate the widespread
tendency to think of hidden symmetries as, in some sense, non-geometric. Care is needed
here: it is not the case that an SO(4) rotation does not admit of any geometrical inter-
pretation, since such a rotation is perfectly plausible in four-dimensional space. But it is
hard to see how an SO(4) symmetry relates to the three-dimensional Euclidean geometry
on which the Kepler problem is set.

Frequently, this non-geometrical aspect of hidden symmetries is understood in terms of
the Hamiltonian. In such an approach, symmetries are considered as properties of the
Hamiltonian rather than of the “geometry of the system”. From this perspective, hidden
symmetries are those that are not “immediately clearly” the symmetries of the Hamilto-
nian (Györgyi and Révai 1965, p. 967). Indeed, it is easy to see from the r2-factor that
the Hamiltonian of the two-body problem has a rotational symmetry SO(3), but it is
not “immediately clear” that this Hamiltonian also has an SO(4) symmetry. This seems,

1This and the next section are based on Bielińska (2022).
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however, a mere matter of practice; someone unfamiliar with the Hamiltonian formalism
would not be able to identify the rotational symmetry either.

However, there also exist several formal definitions of hidden symmetries in the physics
literature. These are formulated in different mathematical frameworks, from Lie groups
to Killing vectors. It remains unclear whether these definitions are equivalent. In the
remainder of this section we present the most important ones.

Hidden symmetries are most often described from the perspective of Lie groups and sym-
metries. The formal definition of hidden symmetries in this framework reads as follows:

A hidden symmetry is a Lie point symmetry which appears in the target
differential equation after a change of order using a nonlocal transformation
and which does not have a point counterpart in the source equation. (Leach
et al. 2012, p. 2)

This definition requires a description of the system in terms of a set of differential equa-
tions. It has been advanced mainly by a group of physicsts and mathematicians working
on such equations, including Barbara Abraham-Shrauner (1993, 1994; with Guo: 1992,
1993; with Leach: 1993). In the case of the Kepler system, this would mean that the
hidden symmetries are found from the equations of motions, since they are differential
equations. But it is harder to apply this definition to some other examples of hidden
symmetries, such as the Carter constant discussed below.

An alternative definition in terms of Killing tensors is also possible. Tensors are de-
fined over differentiable manifolds, and for this reason they are used mainly in relativistic
theories; but they are consistent with classical mechanics, given that Rn is also a differ-
entiable manifold. Killing tensors are generalisations of Killing vectors. Recall that a
Killing vector Kµ is a vector field that preserves the metric; by definition, it obeys the
Killing equation:

K(µ;ν) = 0, (1)

where the round parentheses on the indices refer to the symmetric part. A second rank
Killing tensor Kµν is defined as

Kµν = K(µν), K(µν;λ) = 0. (2)

It is a well-known fact that Killing vectors, being the infinitesimal generators of isome-
tries, generate symmetries and, via Noether’s theorem, constants of motion. But it is less
well-known that Killing tensors also generate symmetries. As Crampin (1979) argues,
such symmetries are hidden. For example, it is possible to obtain the aforementioned
Runge-Lenz vector for a single particle moving under an inverse-square central force us-
ing Killing tensors, as well as the hidden symmetry of the harmonic oscillator discussed
below. Thus, hidden symmetries can alternatively be defined as symmetries that are ob-
tained from Killing tensors, but not from Killing vectors.

As far as we are aware, there is no proof that these definitions identify the same symme-
tries as hidden. The most extensive discussion of these two approaches is found in Cariglia
(2014), who defines hidden symmetries as “transformations in the whole phase space of
the system such that the dynamics is left invariant” (p. 2) but that are not “lifted from a
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set of simpler transformations defined on a configuration space” (p. 4).2 In any case, it is
unclear whether this difference is philosophically relevant. Instead, we observe that physi-
cists much more often refer to hidden symmetries in the slightly imprecise fashion recalled
earlier: as symmetries that are somehow less obvious, and not apparent from the geom-
etry of the system or from the Hamiltonian. In what follows we will mainly refer to this
informal characterisation of hidden symmetries, amplified by a number of key examples
presented in the next section. These examples cover the broad spectrum of theories with
hidden symmetries, from classical mechanics to quantum mechanics and special relativity.
Some of them, such as the Runge-Lenz symmetry of the Kepler problem, are relatively
well-known; others, such as the Fradkin tensor in the n-dimensional harmonic oscillator or
the Cartan constant, are entirely new to the philosophical literature. We omit discussion
of more ‘exotic’ hidden symmetries found in supersymmetric theories (cf. Cariglia 2014).

Before we present these examples, let us briefly mention what hidden symmetries are
not. Firstly, they are not symmetries of a state. For example, the Schwarzschild solution
to GR is rotationally symmetric, but this is a symmetry of a particular state rather than
of the equations of motions. The Kepler system, to the contrary, is not highly symmetric
in this sense, yet it has a hidden symmetry. Secondly, hidden symmetries are not sponta-
neously broken symmetries. The latter refer to cases in which a particular solution does
not share the symmetries of the dynamics, such as when a magnet becomes polarised in
a specific direction. But hidden symmetries pertain to the dynamics themselves. Finally,
they are not the same as internal symmetries. The latter are simply non-spatiotemporal
symmetries, but they may be hidden or not. (That said, it may seem that local gauge
symmetries are hidden in the sense that they are non-obvious from the Hamiltonian. We
will not further discuss this suggestion here).

3 Examples of Hidden Symmetries

3.1 The Kepler problem

The Kepler problem is the most extensively discussed example of a hidden symmetry. It
is used in physics to derive the trajectories of a particle in a central potential. It is also
the only example of a hidden symmetry which we are aware of that is mentioned in the
philosophical literature. It is discussed by Belot (2013) as a counterexample to the princi-
ple that symmetry-related states are always equivalent; Wallace (2019) aims to defuse the
counterexample by a consideration of subsystem symmetries (see also Luc (2022), fn. 32).
We will discuss these in §4. Because of its central importance, we consider this example
in more detail than the others.

As mentioned above, the Kepler problem has two ‘obvious’ constants of motion: en-
ergy and angular momentum. In July 1845, however, William Rowan Hamilton, in a
paper delivered to the Royal Irish Academy (published in 1847), derived another constant
of motion which he called the eccentricity vector (for the explicit form of this vector see
§4.1). It found many applications in the problem of elliptical orbits, such as the derivation
of planetary trajectories.

2Notice the contrast between hidden symmetries, then, and symmetries as defined in Dewar (2020),
Jacobs (2021a), Gomes (2022).
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Interestingly, the contemporary name of this vector was only introduced in 1926 by Wolf-
gang Pauli, who used it in his pioneering derivation of the spectrum of the hydrogen atom
without the Schrödinger equation (for more details see §3.2). Pauli took this treatment
from Heinrich Lenz (1924), who credits the German mathematician Carl Runge. Runge
himself makes no claim of originality, however, and it is possible that one of his inspira-
tions was Vector Analysis (1901) by Josiah Willard Gibbs and Edwin Bidwell Wilson, in
which they derive the orbits in the two-body problem using a conserved vector. Another
scientist who independently discovered an additional constant of motion in the Kepler
problem was Pierre Simon de Laplace, in Traté de mécanique celeste published in 1798.
Thus, somewhat ironically, the Runge-Lenz vector owes its name to two scientists neither
of whom claimed its discovery.

We now turn to the Kepler problem itself. Recall that a Kepler system consists of two
point masses m1 and m2 interacting in a gravitational field through a gravitational force
Fg. The Lagrangian of this system is given by

L =
m1|ṙ1|2

2
+
m2|ṙ2|2

2
− V (|r1 − r2|), (3)

where r1 and r2 are vector positions of the two particles and V (|r1 − r2|) is the gravita-
tional potential.

This system has several invariants and, as such, can be simplified by reducing the La-
grangian. After moving to Jacobi coordinates and reducing the translational symmetry,
we obtain a reduced Lagrangian of the one-body problem. In the Hamiltonian formalism
it reads as follows:

Hred =
p2

2µ
+ V (|r|), (4)

where p := |p| is momentum, r, is the separation vector r := r1 − r2, and µ is a reduced
mass :

µ :=
m1m2

m1 +m2

. (5)

In the Kepler problem one is concerned with a central potential that is inversely propor-
tional to the distance r between the two bodies. Therefore,

V (r) =
k

r
, (6)

where k is a constant that indicates whether the force is repulsive (k > 0) or attractive
(k < 0), and r := |r|. In the case of a gravitational potential, which is the subject of this
section, the value of k is always negative.

The symmetry groups of the Kepler problem can be obtained by calculating the Pois-
son brackets of certain conserved quantities, which can be later compared to the Lie
brackets defining certain symmetry groups. A closed system of Poisson brackets for this
system involves a square root of the Hamiltonian in the denominator, however, so we need
to consider separately three intervals of the energy: negative, positive, and zero.

On the phase space which corresponds to the negative energy states, the span of vectors in
Poisson brackets correspond is isomorphic to a 6-dimensional algebra that is isomorphic
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to so(3) ⊕ so(3), which itself is isomorphic to so(4). Therefore, the Kepler problems for
negative energies has an SO(4) symmetry group, which consists of two independent ro-
tations. See Lévy-Leblond (1971) for an explicit expression for the associated coordinate
transformations.

In a similar way one can calculate Poisson brackets for E > 0 and E = 0. For positive
energy values, the hidden symmetry is (rather surprisingly!) a group of four-dimensional
non-compact rotations isomorphic to SO(3, 1), which is familiar as the Lorentz symmetry
group of Minkowski spacetime. For zero energies, it is an Euclidean E(3) symmetry.

3.2 The Hydrogen Atom

The hidden symmetry of the hydrogen atom was first discussed by Wolfgang Pauli in
1926. He was familiar with the classical Kepler problem, in which one can derive the
trajectories of the particle by means of the Runge-Lenz vector A. Idealising the hydrogen
atom as a two-body problem in which an electron revolves around a proton, Pauli used
the same method to correctly derive the hydrogen atom’s energy levels. Notably, Pauli de-
rived his result before the same energy levels were obtained from the Schrödinger equation.

A model of the hydrogen atom consists of a single electron of mass me in the field of
a nucleus with a single proton of mass mp, which are taken to be point particles. This
is another example of a quantum two-body problem, in which we are concerned with the
electromagnetic force Fe. We can neglect their gravitational interaction as it is signifi-
cantly weaker than the electromagnetic force. Because mp ≫ me, the centre of the mass
of the system is approximately identical to the proton location. Therefore we assume that
the electron revolves around the proton.

As in the classical two-body problem, we can reduce the hydrogen atom to a single point
mass moving in an external central potential. The reduced mass of this system is:

µ =
memp

me +mp

. (7)

The Hamiltonian of the system is then identical to one of a point mass µ in an external
central electric potential. In particular, we can make the same change of coordinates to
obtain the centre of mass reduction. The Hamiltonian of the non-relativistic hydrogen
atom in these new coordinates is

H = − 1

2µ
∇2ψ + V (|r|). (8)

where r now denotes the distance between the proton and the electron. Furthermore, the
potential of this system is

V (r) =
1

4πϵ0

e2

r
, (9)

where ϵ0 is the permittivity of space, and e is the charge of the proton; the electron has
the same charge, but with opposite sign. Therefore, the potential (9) always has negative
values.

The Lie algebra for the negative energy subspace of the hydrogen atom is so(4). Just

6



as in the case of negative-energy solutions to the Kepler problem, then, the hydrogen
atom possesses a hidden SO(4) symmetry on top of the expected SO(3) symmetry. The
latter is a consequence of the rotational invariance of the system in three-dimensional
space, but the former does not seem to have a readily apparent physical interpretation;
it represents a four -dimensional rotation of the system. Nevertheless, it is the SO(4)
symmetry that has allowed physicists to derive the degeneracy of the energy levels of the
hydrogen atom with respect to the quantum numbers l and m. We will discuss in §4 how
one can account for the occurrence of a four-dimensional rotational symmetry here. The
reader may rightly suspect that there exists a conserved quantity associated with this
symmetry; we introduce it in §4.1.

3.3 N-dimensional Harmonic Oscillator

Soon after Pauli demonstrated that the hydrogen atom has a hidden SO(4) symmetry,
Josef-Maria Jauch and Edward Lee Hill (1940) determined that such hidden symmetries
are not unique to inverse square potentials, but exist for all central potentials. In partic-
ular, they noted that there exists a hidden symmetry for the isotropic multidimensional
harmonic oscillator. This result was further elaborated by David Fradkin in 1966, and
hence the associated constant of motion is known as the Fradkin tensor.

An N -dimensional quantum harmonic oscillator is defined by the Hamiltonian

H =
N∑
i=1

(
P 2
i

2m
+
mω2

2
X2

i

)
, (10)

where Xi is a position operator, Pi is a momentum operator, m is a mass and ω is
the angular frequency of oscillations. From this Hamiltonian, one can see that the N -
dimensional harmonic oscillator is mathematically equivalent to a system of N indepen-
dent one-dimensional harmonic oscillators with the same mass and frequency of oscilla-
tions. If the i’s are the labels of these point masses, then the Xi denote their positions and
Pi their momenta (where 1 ≤ i ≤ n). These operators satisfy the familiar commutation
relations.

Symmetry groups of this Hamiltonian can be, again, calculated from the Lie brackets
of certain conserved quantities of this system. These brackets correspond to the Lie al-
gebra of su(3), which in turn correspond to the special unitary group SU(3). One can
further show that the Hamiltonian is invariant under the symmetry group U(3), which is
a unitary group. Let’s define ladder operators:

ai =
1√
2mω

(mωXi + iPi), (11)

a†i =
1√
2mω

(mωXi − iPi). (12)

It is easy to see that these operators are self-adjoint: a∗i = a†i . Suppose that Uij is a
unitary matrix. We can then define two new operators:

b†i := Uija
†
j, bi := U †

ijaj. (13)
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It then follows that for all Uij ∈ U(3):

b†ibi = Uija
†
jU

†
ikak = UijU

†
ika

†
jak = δjka

†
jak = a†iai. (14)

Therefore, the Hamiltonian is also invariant under the symmetry group U(3), which is also
called the degeneracy group of the system. This observation extends to the N -dimensional
harmonic oscillator, which possesses the symmetry group U(N). Therefore, U(N) is a
hidden symmetry of the N -dimensional harmonic oscillator.

3.4 Kerr Black Holes

In 1968, Brandon Carter found an additional constant of motion in the Kerr solution to
the Einstein Field Equations, which after him was named the Carter constant. This dis-
covery enabled Carter to derive the equations for the trajectory of a test particle in Kerr
spacetime. His derivation was based on the observation that the geodesic equation of this
system is separable in specific coordinates. Roger Penrose and Martin Walker believed
that one should be able to derive such a significant result without appeal to particular
coordinates, and in 1970 they obtained the same solution by means of Killing tensors,
which correspond to symmetries of relativistic theories.

The Kerr solution represents the field of a rotating body of mass M in an asymptot-
ically flat spacetime. For simplicity, we will assume that the body has no charge; a
similar calculation for a charged mass is presented by Carter (1968). The Kerr metric g
in so-called Kerr-Newman coordinates has the form:

gµν = gttdt
2 + gtφdtdφ− 2a sin2 θdrdφ+ 2drdt+ ρ2dθ2 + gφφdφ

2. (15)

where the metric components are given by:

gtt := −1 +
Mr

ρ2
, (16)

gtφ := −Mra sin2 θ

ρ2
, (17)

gφφ :=

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ, (18)

with

ρ2 := r2 + a2 cos2 θ, ∆ := r2 − 2Mr + a2. (19)

Because the Carter constant is not as well-known as other hidden constants, we will
present it in slightly more mathematical detail than the previous examples. Consider a
test particle of mass m in a Kerr spacetime. The Lagrangian of this particle is

L =
1

2
gµν ẋ

µẋν , (20)

where an overdot denotes differentiation with respect to some affine parameter λ. Impos-
ing the normalising condition

m2 = −gµν ẋµẋν , (21)
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and setting m2 = ±1 we obtain, respectively, timelike and spacelike geodesics. The four-
momenta are given by

pµ = gµν ẋ
ν , (22)

and we can write down the Hamiltonian in terms of them:

H =
1

2
gµνpµpν . (23)

Because the Hamiltonian does not depend on the parameter λ, the particle’s rest mass is
a constant of motion:

m =
√

−gµνpµpν . (24)

The next two quantities conserved in this system are also straightforward and can be read
off directly from the Kerr metric. Firstly, it is axially symmetric, which means that it
remains the same when rotated around some axis. The associated Killing vector field is
∂
∂φ
. Secondly, it is stationary, which means that it admits a timelike Killing vector field

∂
∂t
. The associated constants of motion are usually denoted as:

Lz := pφ, E := −pt, (25)

referred to as the orbital angular momentum parallel respectively the energy. The third
constant of motion can be read off from the normalisation equation (21).

However, just like the classical Kepler problem, the hydrogen atom, and the multidi-
mensional harmonic oscillator, it turns out that the Kerr solution of the Einstein Field
Equations possesses some hidden symmetry. This symmetry doesn’t have any specific
name. Discovering it enabled Carter to obtain the trajectory equations for a test particle
(1968).

4 Philosophical Significance of Hidden Symmetries

Having presented the physics behind hidden symmetries, we now turn to their philosoph-
ical significance. The aim of the remainder of the paper is two-fold: first, to show that
hidden symmetries are neither just hard-to-find symmetries, nor merely accidental; and
second, to illustrate how hidden symmetries problematise certain popular positions on
symmetries in the philosophical literature.

As to the first point, we believe that the case is clear that hidden symmetries are not
merely accidental symmetries of no particular interest. Firstly, hidden symmetries are
formally similar to other symmetries, so at this level there is no difference. Moreover,
because of this formal similarity they also yield conserved charges via Noether’s theorem,
such as the Runge-Lenz vector. These constants are not spurious: the Runge-Lenz vector,
for example, is used by physicists to classify different orbits. Finally, hidden symmetries
may play a role in scientific explanations. The most famous example of this is Pauli’s
derivation of the spectrum of the hydrogen atom on the basis of a hidden SO(4) symmetry,
which is explained in more detail below. We will therefore proceed from the assumption
that hidden symmetries are not merely mathematical artefacts.

Given that hidden symmetries are not insignificant, we now ask the opposite: is there
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anything that distinguishes them from other symmetries apart from the fact that they
are ‘hidden’? We believe that this is indeed the case. In particular, various philosophi-
cal approaches to symmetries are not applicable to hidden symmetries. For example, we
show below that the Invariance Principle—which, roughly, states that only symmetry-
invariant quantities are physically real—does not apply to quantities that vary under
hidden symmetries. This means that hidden symmetries are importantly different from
the symmetries that philosophers typically discuss. In addition to the Invariance Princi-
ple, we discuss two other claims often made by philosophers: that a theory’s dynamical
symmetries should match its spacetime symmetries, and that a theory’s symmetries can
explain their conservation laws. In each case, hidden symmetries problematise common
wisdom and are thereby shown to differ from ‘ordinary’ symmetries.

4.1 Hidden Symmetries and Invariant Quantities

The main role of symmetries, from a philosopher’s perspective, is that they act as ‘a
guide to superfluous theoretical structure’ (Ismael and Van Fraassen 2003). Firstly, it
is often said that quantities that vary under a symmetry are not physically real. The
reason is that such quantities are, in virtue of their variance, in principle undetectable;
absolute velocity is a well-known example.3 This is called the Invariance Principle, and
is espoused by Saunders (2003), Baker (2010), Caulton (2015), Dasgupta (2016). The
Invariance Principle justifies a so-called symmetry-to-reality inference: quantity Q is vari-
ant, therefore unreal. The term ‘symmetry-to-reality inference’, due to Dasgupta, is a
misnomer: it is rather a variance-to-unreality inference, so we will use the latter expres-
sion in what follows.4 Secondly, it is often said that models of a theory related by a
symmetry merely represent the same state of affairs. For example, applying a Lorentz
transformation to a solution of special relativity results in another model that represents
the very same physical state. This principle is called Leibniz Equivalence, and is espoused
by Saunders (2003), Greaves and Wallace (2014) and Weatherall (2018). For a discussion
of the relation between these principles, see Jacobs (2021b).

We should emphasise that neither principle is uncontroversial. We will in fact show
that those principles are inapplicable to hidden symmetries. Those already sceptical of
the Invariance Principle and Leibniz Equivalence may find that the difference between
hidden symmetries and ordinary symmetries here is relatively minor. Nevertheless, hid-
den symmetries provide a particularly stark case of the failure of those principles.

To show this, let us consider some examples of conserved quantities entailed by the hidden
symmetries introduced earlier. Let’s start with the Kepler problem. There are two con-
stants of motion that can be immediately seen from the Hamiltonian (4), namely energy
and angular momentum. The former corresponds to time translation and the latter is re-
lated to rotation in three dimensions, denoted by a symmetry group SO(3). However, as
we have mentioned earlier, there is another conserved quantity, known as the Runge-Lenz
vector:

A =
p×L

µ
− kr

r
(26)

3For discussion on this point, see Middleton and Murgueitio Ramı́rez (2021), Jacobs (2022) and Luc
(2023).

4We thank an anonymous reviewer for this suggestion.
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with components A = (Ax, Ay, Az). There is no straightforward way to see that the
Runge-Lenz vector is a constant of motion from the Hamiltonian (4). Therefore, one must
guess its explicit form and then verify that it is indeed conserved, i.e. demonstrate that
the total time derivative vanishes. The Runge-Lenz vector is used to define eccentricity
of the orbit e as follows:

e :=
A

k
. (27)

Both the Invariance Principle and Leibniz Equivalence seem to misfire when applied to
the Kepler problem, since one of the quantities that varies under the hidden symmetry in
question is the eccentricity of the planet’s orbit. The eccentricity is constant over time for
any solution to the Kepler problem, but it has a different value for solutions related by
the symmetry that generates it; compare this to linear momentum, which is also a con-
stant of motion but varies under boost transformations. But eccentricity is an observable
quantity, so the conclusion that it is unreal is contradicted by the available evidence. The
Invariance Principle delivers an incorrect verdict in this case. The same is true for Leibniz
Equivalence: if symmetry-related models represent the same state, then models that differ
over the eccentricity and orientation of the planet’s orbit would represent identical states.
This would also mean that eccentricity is not physically real, contrary to the evidence of
our senses.

(The alert reader may have noticed a discrepancy, namely that eccentricity is a three-
vector whereas the hidden SO(4) symmetry is four-dimensional. Shouldn’t we therefore
really look for a higher-dimensional invariant? We postpone discussion of such an ap-
proach to the next sub-section.)

Indeed, Belot (2013) uses the example of the Kepler problem to disprove Leibniz Equiv-
alence (‘D2’ in his paper). But Belot does not mention the connection to hidden sym-
metries, and his other counterexamples are drawn from elsewhere in physics. In the
remainder of this section, we wish to analyse this issue as it pertains to hidden symme-
tries in particular. This is an important problem, because hidden symmetries share many
important features of symmetries that are involved in successful variance-to-unreality
inferences: they are systematic transformations that leave the laws the same; they are
associated to conserved quantities via Noether’s theorem; and they feature in physical
explanations. What is needed to save variance-to-reality inferences is a criterion that
determines which symmetries it applies to. The correct criterion should exclude hidden
symmetries. We will show that current philosophical definitions of symmetries are not
sufficiently discriminatory in this respect.

It is helpful here to consider Dasgupta’s tripartite classification of definitions of sym-
metries into formal, ontic, and epistemic. These are not intended to recover the way the
term ‘symmetries’ is used by physicists, but rather as characterisations of a particular
class of symmetries that support variance-to-unreality inferences. The plan for the re-
mainder of this section is to discuss these definitions one-by-one in order to show tot none
of them can easily explain why hidden symmetries don’t support variance-to-unreality
inferences.
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Formal Definition

On a formal account, symmetries are defined in terms of a theory’s formalism shorn of
interpretation. For example, Wallace (2022) defines symmetries as bijections of phase
space that commute with the dynamics; Belot (2013) discusses a number of definitions,
from variational symmetries to classical and generalised symmetries.

The hidden symmetries we consider count as symmetries on most of these definitions, as
Belot and Wallace acknowledge in the case of the Kepler problem. It would seem, then,
that formal definitions conflict with variance-to-unreality inferences, since they would lead
to the conclusion that measurable quantities such as eccentricity are not real.

This may seem a reason to reject a formal account of symmetries, but Wallace (2022)
has recently defended a formal account from similar counterexamples. Wallace labels
symmetries such as the Runge-Lenz symmetry subsystem-specific: they apply only to a
particular subsystem, but as soon as one couples this subsystem to an environment the
symmetry disappears. The Runge-Lenz symmetry, for instance, only applies to the two-
body problem; as soon as one introduces an external environment the overall system has
no hidden symmetry anymore. But in order to measure the eccentricity of an orbit, one
has to introduce an external state for the measurement device. So, in the context of
measurement eccentricity is not symmetry-variant, and a variance-to-unreality inference
is inapplicable.

While we believe that Wallace’s analysis is formally correct, we think it does not explain
why quantities that vary under hidden symmetries are not subject to variance-to-unreality
inferences. For suppose that the universe were to consist solely of a Kepler system. Would
quantities such as eccentricity then become unreal? This seems implausible to us, because
eccentricity is an intrinsic property of a planet’s orbit; it does not depend on the existence
of any external systems. Granted: if one were to introduce a measurement device, one
would destroy the hidden symmetry for the total system. Wallace could simply restrict
variance-to-unreality inferences to symmetries to those symmetries that apply jointly to
the subsystem and its environment. But we are unpersuaded by this type of modal re-
sponse. If a planet’s eccentricity is real, then surely it is not so because of any putative
features the planet has with respect to a non-actual environment. Put differently, the
mere possibility of an external system cannot explain the planet’s actual features. Indeed,
this applies even if there is an external system: in order to find out the real features of
the planet’s orbit, one should not have to appeal to its environment.5 It should therefore
not be necessary to justify the non-applicability of variance-to-unreality inferences to ec-
centricity by an appeal to the environment.6

To show that external systems are a distraction, we present the example of the hydrogen
atom. The conserved quantity that corresponds to the hidden symmetry of this system

5We therefore don’t require what Wallace calls the ‘Cosmological Assumption’, that models of a theory
represent the state of the entire universe.

6Indeed, eccentricity is a dimensionless quantity: it does not depend on an arbitrary choice of length
unit. This means that the two-body system can itself act as a ruler. If the minor axis is set as a ‘unit’
of distance, then one can measure the major axis (and hence eccentricity) in terms of it (cf. Gryb and
Sloan 2021).
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is the quantum Runge-Lenz vector :

M :=
P ×L−L× P

2µ
− e2r

|r|
, (28)

where M = (Mx,My,Mz) and L = (Lx, Ly, Lz) is the orbital angular momentum op-
erator, defined as: L = r × P . The quantum Runge-Lenz vector plays a very similar
role to its classical counterpart in the Kepler problem, determining atomic orbitals. More
precisely, along with the orbital angular momentum operator, it can be used to define
ladder operators that act on the azimuthal quantum number l which specifies the shape
of the orbital and on the magnetic quantum number m which specifies the orientation of
the orbital.

If we were to apply the Invariance Principle to this case, it would imply that the shape
and orientation of the orbital are unreal. In this case, too, a Wallace-style response would
emphasise that the hidden symmetries is broken when the atom is coupled to an environ-
ment, such as an observer who measures the orbital.

However, the quantum Runge-Lenz vector has a further significance, which makes a
Wallace-style response implausible. Quantum numbers not only specify the shape and
orientation of an orbital, they also define the fine structure of the hydrogen atom. This
structure can be derived with the aforementioned ladder operators defined in terms of M :

M± =Mx ± iMy, (29)

and their action on quantum numbers is as follows:

M±|nll⟩ = − 1

n

√
2(l + 1)

(2l + 3)
(n2 − (l + 1)2)|n(l + 1)(±l ± 1)⟩. (30)

Moreover, the second quantum number can be lowered by analogous ladder operators
defined as L± = Lx ± iLy, which act on the quantum numbers as follows:

L±|nlm⟩ =
√
l(l + 1)−m(m± 1)|nl(m± 1)⟩. (31)

Therefore M+ is a raising operator, since it increases the value of the quantum number
l, giving rise to hydrogen’s fine structure. Hence, for a given energy level labelled by the
quantum number n, one can use M+ to obtain all possible values of the l states, and then
use L− to explore their degeneracy by finding all m states. An example for the energy
level n = 3 is presented in Figure 1.

Now, reconsider Wallace’s appeal to environment-states applied to the hidden symme-
try of the hydrogen atom. The natural proposal of Wallace’s is that the fine structure of
the atom is only real in virtue of the fact that the hidden symmetry is broken when the
hydrogen is coupled to an observer. This seems highly implausible, as the very existence
of the fine structure is an intrinsic feature of the hydrogen atom: it would still exist even
if some hydrogen atom were the only object in spacetime or if one were to consider the
atom in isolation. Therefore, the failure of the Invariance Principle on a formal definition
is not adequately explained by an appeal to subsystem symmetries.
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Figure 1: The degeneracy of energy
levels in the hydrogen atom for n =
3. The ladder operator M+ associated
with the quantum Runge-Lenz operator
raises by the value of one both quantum
number l corresponding to the operator
L2 and quantum numberm linked to the
operator Lz. Then, the degeneracy of l
is obtained using the lowering operator
L−.

In fact, a similar problem occurs even for the Kepler problem. Recall that for this system
the eccentricity varies under a hidden symmetry. But in fact there are three different
groups of hidden symmetries: which one the system exhibits depends on its energy value.
Consequently, the shape of the orbit varies with the type of hidden symmetry it has, too.
In polar coordinates, the trajectory equation is describes conic sections:

r(ϕ) =
r0

e cosϕ+ 1
. (32)

In particular, if e = 0 then the motion is along a circle; for 0 < e < 1 it is an ellipse;
for e = 1 a parabola; and a hyperbola for e > 1. We see that non-negative energies
correspond to hyperbolae or parabolae, and negative energies to ellipses.

Again, the shape of an orbit is clearly a feature that a system possesses even consid-
ered in isolation from the environment. While an ellipse and a circle are topologically
equivalent, the very formulation of the dynamics of the Kepler problem requires a metric
structure that distinguishes them (we return to the importance of metrical structure in the
next sub-section). Moreover, the difference between open and closed curves is definable
even topologically. Insofar as the shape of the planet’s orbit varies under hidden symme-
tries, then, its reality should not depend on the way the system couples to an environment.

Therefore, hidden symmetries remain a problem for formal accounts of symmetries in-
sofar as the Invariance Principle and Leibniz Equivalence do not apply to them. It is
possible that some other formal feature sets hidden symmetries apart from other symme-
tries: we will discuss one possibility, based on higher-dimensional symmetries, in the next
subsection. In the remainder of this subsection we discuss whether ontic and epistemic
definitions can account better for hidden symmetries.

Ontic Definition

On an ontic account, one first specifies a privileged class of physical quantities, and then
stipulates that a transformation that preserves the laws is a symmetry only if it also pre-
serves those quantities. The main question for ontic accounts is: what are the privileged
quantities?

Dasgupta (2016) suggests that they include “physical features like distance, mass, charge,
spin, and so on”. If distance is a quantity to be preserved by symmetry transformations,
then the Runge-Lenz transformation is not a symmetry. This may seem to neatly solve
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our problem: while hidden symmetries are symmetries in the formal sense, they act on
an irrelevant set of quantities, thereby failing to sustain variance-to-unreality inferences.

The problem with this response is that it falls prey to what Dasgupta calls an ‘infer-
ential circularity’. Why include distance as a physical quantity? If distances are physical,
then the Runge-Lenz transformation is not a symmetry. But if the Runge-Lenz trans-
formation is a symmetry, then distance is not physical. One person’s modus ponens is
another’s modus tollens. Indeed, while the circularity is pointed out by Dasgupta himself,
we believe that hidden symmetries provide the first concrete example of such circularity
that we are aware of. What we would need is an antecedent reason to consider a quantity
as physically real, such that the set of real quantities includes distance. As far as we are
aware, no such account exists.

It may seem as if we have missed an obvious response: distance is physical because it
is observable. This implies an epistemic definition of symmetry, to which we now turn.

Epistemic Definition

On an epistemic account, symmetries are defined as certain transformations that connect
empirically equivalent states. Definitions of this type are proposed by Ismael and Van
Fraassen (2003), Dasgupta (2016) and Read and Møller-Nielsen (2020).

The account of Ismael and Van Fraassen is particularly helpful. On their account, there
is a standard of qualitative identity of states which is external to the theory in question:
it is antecedently-known whether states are qualitatively distinct, that is, whether they
are ”distinguishable by even a gross discrimination of colour, texture, smell, and so on”
(p. 376). The transformations that sustain variance-to-unreality inferences are those that
both preserve the laws and preserve qualitative features. The quantities that vary under
these transformations are not physically real—they are surplus structure. For example,
Galilean boosts are symmetries that relate qualitatively identical states. Hence absolute
velocity, which vary under boosts, is not real.

This definition of symmetries would exclude hidden symmetries if the latter were to alter
the value of some qualitative quantity. In the first instance it seems that this is indeed the
case: whether an orbit is circular or elliptical is a qualitative matter. However, the issue
is more subtle. For on Ismael and Van Fraassen’s account, distance is not qualitative.
After all, it does not directly affect our sense of colour, smell and so on. The distinction
between non-qualitative and qualitative features here is broadly parallel to Locke’s dis-
tinction between primary and secondary qualities. For Locke, extension and shape are
primary qualities, whereas colour and smell are secondary. Since hidden symmetries seem
to leave such qualitative/secondary features invariant, they are in fact not excluded by
Ismael and Van Fraassen’s definition. In response, one may wonder whether the shape
of an orbit isn’t qualitative. If that were the case, then there is a qualitative difference
between solutions with different eccentricity. But there is an important difference between
the instantaneous shape of an object, and the shape traced out by the trajectory of an
object over time. While the former is, plausibly, a qualitative feature, the latter is not. In
the case of the Kepler problem, it is the shape traced out by the planet’s orbit that varies,
not the instantaneous shape of the two-body system. Therefore, the hidden symmetry of
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the Kepler problem is an empirical symmetry on Ismael and Van Fraassen’s definition.

Ismael and Van Fraassen consider not only actual qualitative differences, but also poten-
tial differences. Consider a transformation that takes an empty bucket at rest to one that
rotates. This transformation maps one physically possible state to another; it also pre-
serves the state’s qualitative features, since the empty bucket will look the same whether
it rotates or not. Nevertheless, Ismael and Van Fraassen argue that this transformation is
not a symmetry, because if one were to add water to the bucket, the (instantaneous) shape
of the surface would make a qualitative difference. The same response could account for
the Runge-Lenz symmetry: if one were to introduce an external measurement device, the
transformation would make a qualitative difference.

We are not convinced by this response. Firstly, it is reminiscent of Wallace’s subsys-
tem response in that both appeal to the state of an environment external to the system
in question in order to draw a difference between different states of it. We have already
objected to such responses. Secondly, it introduces a significant modal element to the
notion of symmetries. But the dissimilarity between orbits with different eccentricities
is surely real not because of their modal profile, but because they are actually distinct.
In this respect, the Kepler problem is different from the bucket, because the bucket does
look the same whether it rotates or not.7 Thirdly, once one considers potential quali-
tative differences the distinction between qualitative and measurable quantities becomes
moot. If the measurable quantities are defined as those that could have an effect on the
qualitative way the world looks, then it becomes circular to include such effects in one’s
definition of symmetries.

Of course, Ismael and Van Fraassen’s is not the only empirical account of symmetries.
Contrary to the former, Dasgupta (2016) explicitly classifies ”appearing from my perspec-
tive to be two feet away” as observable. Read and Møller-Nielsen (2020) too eschew the
qualitative-measurable distinction. Their proposal is to use various heuristics to find out
which quantities are detectable, in a broad sense, and define symmetries as those transfor-
mations that preserve the detectable quantities. However, and as Read and Møller-Nielsen
readily admit, this makes variance-to-unreality inferences redundant, since one already has
to know which quantities are measurable in order to determine which transformations are
symmetries.

There is thus no definition of symmetries that plays well with hidden symmetries. They
either include hidden symmetries, which leads to erroneous variance-to-unreality infer-
ences, or they beg the question by assuming from the outset that the quantities that vary
under hidden symmetries are real. This shows that hidden symmetries are not just ordi-
nary symmetries that are harder to find: their philosophical consequences are relevantly
different from ordinary symmetries. Therefore, hidden symmetries pose a challenge to
definitions of symmetries, and perhaps a helpful test case for future proposals.

4.2 Hidden Symmetries and (Spacetime) Structure

The initial motivation for principles such as Leibniz Equivalence and the Invariance Prin-
ciple came from spacetime symmetries. The Galilean symmetry of Newtonian mechanics,

7Although, as Huggett (2006) notes, this ignores the deformation due to rotation.
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for instance, entail that spatial translations represent a ’distinction without a difference’,
and hence that absolute position does not exist. Are hidden symmetries different simply
because they are not spacetime symmetries?

We have already seen in §2 that physicists often define hidden symmetries as those that are
not related to the geometry of the problem. If variance-to-unreality inference applies only
to spacetime symmetries, there is no issue with hidden symmetries. But this is too quick.
On the one hand, variance-to-unreality principles have also been applied successfully to
non-spacetime symmetries, such as the local (gauge) symmetries of electrodynamics. On
the other hand, hidden symmetries sometimes act on spacetime variables. The Runge-
Lenz symmetry, for instance, alters the shape and orientation of a planet’s orbit. The
hidden conserved quantity in the Kerr solution, the Carter constant, is also related to
spatiotemporal variables.

Nevertheless, the relation between hidden symmetries and spacetime structure deserves
further discussion. It is helpful to introduce John Earman’s (1989) famous symmetry
principles:

SP1 Every dynamical symmetry is a spacetime symmetry

SP2 Every spacetime symmetry is a dynamical symmetry

Here, as a first approximation, a dynamical symmetry is a symmetry in the sense discussed
so far; roughly, a transformation that preserves the satisfaction of the laws (but see below
for an important caveat). On the other hand, a spacetime symmetry is an automorphism
of the theory’s spacetime structure. Formally: if ⟨M,A1, ..., An⟩ is a spacetime, where
M is a differentiable manifold and the Ai are geometric objects defined over M , then a
diffeomorphism d of M is a spacetime symmetry iff Ai = d∗Ai for all i, where d∗ is the
pushforward map of d.

The point of SP1 is to ensure that spacetime does not have too much structure. If a
transformation is a dynamical symmetry, then it makes no difference to the laws. If it
is nevertheless not a spacetime symmetry, then the theory’s spacetime structure enables
one to draw distinctions that are dynamically redundant. Consider a standard of abso-
lute velocity: such a structure plays no role in the dynamics of Newtonian mechanics.
Therefore, SP1 advocates its removal. The point of SP2, meanwhile, is to ensure that
spacetime does not have too little structure. If a spacetime symmetry is not a dynamical
symmetry, then certain transformations make a dynamical difference despite the fact that
spacetime structure does not enable one to discern states related by them. These cases
are rarer, so we will not discuss SP2 further here.

How are Earman’s symmetry principles applied to hidden symmetries? For ease of dis-
cussion we will focus on the Kepler problem for negative energy and discuss other cases
later on. To start with, it seems that the SO(4) symmetry of the negative-energy Kepler
problem seems to violate SP1: it is a dynamical symmetry but not a spacetime symme-
try. The latter is clear from the fact that the action of this symmetry on the planet’s
orbit is discernible by the structure of Euclidean three-dimensional space. From a more
abstract point of view, we can also point out that SO(4) is not a subgroup of the Galilean
symmetry group. It follows from SP1 that we would have to remove spacetime structure
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from Newtonian mechanics.

In particular, we would have to remove any structure that enables one to discern or-
bits with different eccentricities. This would result in a rather impoverished spacetime.
It would have no spatial metric, since one cannot measure the length of the orbit’s major
axis. Neither would it have any structure that determines angles, since eccentricity is
definable in terms of the angles of the minor and major axis. This rules out even shape
space, a formulation of Newtonian mechanics in which no appeal to distance is made. But
shape space is the weakest space for Newtonian mechanics. It is impossible to set New-
tonian mechanics on a spacetime with neither distance nor shape; how would one even
formulate Newton’s laws? Therefore, a crude application of SP1 to hidden symmetries is
clearly a dead end.

The reason this approach fails is that we have applied Earman’s symmetry principles
more liberally than intended. Earman’s definition of a dynamical symmetry is stricter
than just a transformation that preserves the dynamics. The dynamical symmetries to
which SP1 and SP2 apply are transformations of a theory’s models obtained as the ‘lift’
of a spacetime diffeomorphism. Formally: if ⟨M,Ai, Oi⟩ is a model of the theory, where
the Oi are geometric objects that represent dynamical fields, then a diffeomorphism d is a
dynamical symmetry iff ⟨M,Ai, Oi⟩ is a solution whenever ⟨M,Ai, d∗Oi⟩ is a solution for
all of the theory’s models. The Runge-Lenz transformations are not definable in this way;
indeed, Cariglia (2014) took this as a defining feature of hidden symmetries. It is true
that for any solution to the Kepler problem, one can define a diffeomorphism that takes it
into another solution with an arbitrary orientation and eccentricity. But one cannot de-
fine a diffeomorphism that takes any solution to the Kepler problem into another solution
with a different eccentricity. For example, a scale transformation fixed along the major
axis of an orbit maps that solution onto another one with a different eccentricity; but if
one translates the original orbit off the axis, the same transformation does not preserve
solutionhood. Therefore, SP1 is inapplicable to the Runge-Lenz symmetries. We should
note, however, that it is unclear whether the same is the case for the other examples of
hidden symmetries we have presented; this remains a question for further research.

Despite the dead end, there is more to the connection between hidden symmetries and
spacetime structure. On the one hand, the SO(4) symmetry of the Kepler problem
represents a rotation in four -dimensional space, so it was always awkward to try and
recover this symmetry from a three-dimensional space. On the other hand, space is
three-dimensional—so where does SO(4) even come from? It turns out, rather unexpect-
edly, that one can reconceptualise the Kepler problem as a dynamical system set on the
three-dimensional surface of a four -dimensional hypersphere. If one does so, the hidden
symmetry SO(4) becomes manifest: it is simply a consequence of the invariance of the
hypersphere under rotations in four dimensions. In the remainder of this section, we will
consider the implications of this fact.

Here is a brief account of this reformulation. Firstly, the n-sphere Sn is defined as the set

Sn = {x ∈ Rn+1 such that |x21 + ...+ x2n+1| = 1}. (33)

This is simply the generalisation of the definition of a three-dimensional sphere S2.
Next, we define the stereographic projection of the hypersphere S3 from a hyperplane

18



{(x1, x2, x3, x0) ∈ R4} as the map ϕ : R3 → S3 such that

ϕ(x1, x2, x3, x0) =
2x+ (|x|2 − 1)n⃗

|x|2 − 1
, (34)

where n⃗ = (0, 0, 0, 1). The physical interpretation of this map is that ϕ maps a point
p = (x, 0) of the hyperplane onto the point on S3 intersected by the line from p to the
north pole. Consider now a bound state r(t) of the Kepler problem. The momentum

function p : R → R3 is defined by p(t) = mṙ(t). The energy, E, is equal to E = p2

2m
− k

r(t)
.

Define pE =
√
−2mE. The space of momentum states of the system is isomorphic to

R3. It is a remarkable fact, discovered by Hamilton, that the momentum vector of a
planet with an elliptical orbit moves in a circle in momentum space. What is even more
remarkable is that this circle is mapped, by a stereographic projection u : R3 → S3 defined
from ϕ, onto a circular path on S3:

u(p, 0) = ϕ

(
p

2pE
, 0

)
=

2pEp+ (p2 − p2E)n⃗

p2 + p2E
. (35)

This is equivalent to the path of a free particle on S3’s surface! Therefore, one can recon-
ceive the Kepler system as a free particle that moves uniformly across great circles of a
four-dimensional hypersphere.

Moreover, the same reformulation is available for the hydrogen atom, as was discovered by
Fock (1935). In brief, Fock showed that the Schrödinger equation in R3 is mathematically
equivalent to the Laplace equation on S3; and the space of square integrable functions
on S3 is a sum of irreducible representations of SO(4).8 In this way, Fock could explain
the degeneracy of the energy levels of the hydrogen atom by means of hidden symme-
tries. However, it is unknown whether similar higher-dimensional formulations exist for
our other examples of hidden symmetries.

More than a mere curiosity, this reformulation opens up another way to apply Earman’s
symmetry principles to the Kepler problem. The SO(4) symmetries of the Kepler system
are obtained by the lift of diffeomorphisms of S3, so they fit Earman’s definition of dy-
namical symmetries. Moreover, SO(4) is also the automorphism group of S3. Therefore,
there is a match between the dynamical symmetries and the ‘spacetime’ symmetries. Of
course, it is debatable whether S3 is equal to spacetime here, but this is not too wor-
risome: several philosophers have extended SP1 and SP2 to non-spacetime symmetries
(Hetzroni 2019, Dewar 2020, Jacobs 2021a). These generalisations state that a theory’s
dynamical symmetries are the same as its kinematical symmetries, which are defined as
the automorphisms of those structures—spatiotemporal or not—posited by the theory. If
S3 is part of Newtonian mechanics’ kinematical structure, then the Runge-Lenz symmetry
satisfies SP1 and SP2 after all.

But is the four-dimensional space hidden in the Kepler problem one of the theory’s
kinematical structures? We can understand this question in two ways: is it part of
the theory’s fundamental structures, or is it part of the theory’s derivative structures?
Let’s take these in turn. If the four-dimensional space is fundamental, it is either posited
instead of the spacetime structure of Newtonian mechanics, or in addition to. Consider

8For more details, see Weinberg (2011).
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the former option first. If we take the motion of our two-body system to take place on
the surface of a four-dimensional hypersphere instead of a three-dimensional Euclidean
space, then it would make sense to think of this four-dimensional space as the actual
space within which events unfold. The three-dimensional world we see around us is then
a mere ‘shadow’ of this space. This is akin to the idea that 6N -dimensional phase space,
rather than Euclidean 3D-space, is the fundamental arena of classical mechanics. This
is a radical revision of our metaphysics. We see two problems with it. The first con-
cerns the point that hidden symmetries only apply to particular subsystems. Although
the two-body problem is conceivable as motion on S3, general solutions of Newtonian
mechanics are not. Therefore, this route would foreclose the possibility to model more
complex systems accurately. The second problem is that S3 does not seem to have enough
structure to maintain empirical adequacy. Recall that different great circles on S3 corre-
spond to orbits with different eccentricities in ordinary spacetime. We started out with
the assumption that these orbits are empirically distinct, because eccentricity is a mea-
surable quantity. Because S3 is SO(4)-invariant, however, these trajectories on S3 are
symmetry-related. By a variance-to-unreality inference, they represent the same state.
This means that orbits with different eccentricities are physically equivalent, contrary to
our initial assumption.

These problems do not beset the latter option, on which S3 structure exists fundamentally
in addition to spacetime structure. This is similar to a position that takes phase space
to exist side-by-side with Euclidean space as theoretically equivalent descriptions. On
this view, any solution to Newtonian mechanics is modelled within a classical spacetime.
But those solutions—or parts of solutions—that have an SO(4) symmetry additionally
possess a formulation on S3. This means that for any approximately isolated Kepler sys-
tem within Euclidean space, E3, there is a four-dimensional hypersphere on which it also
lives. The E3 and S3 trajectories are, as it were, two sides of the same coin. Since the
trajectories on S3 are now projected down onto Euclidean space, they are discernible by
the shape of their projected orbit. It is unclear whether Earman’s principles are satisfied
in this case, however; they are if one considers the trajectories as described on S3, but
not if one considers the same trajectories as described on E3.

The previous picture mostly carries over if one takes the S3-structure as derivative on
ordinary space (to continue the analogy, if one takes phase space as less fundamental
than Euclidean space). Recall that the planet’s trajectories on S3 are definable from their
ordinary spacetime trajectories by a change of variables. Therefore, there is a sense in
which these structures are ‘already there’.9 This option is more parsimonious than the
previous ones, since it postulates less fundamental structure overall. Moreover, it ex-
plains a sense in which the Runge-Lenz symmetry is hidden: it concerns a metaphysically
derivative structure, rather than the theory’s fundamental spacetime. These considera-
tions makes the final option the most desirable.

Let us take stock. We have seen that in the Kepler problem, hidden symmetries not
only entail additional conserved quantities, but also reveal a hidden structure. This
structure has an explicit SO(4) symmetry to match the dynamical symmetries of the
Kepler problem. The same is the case for the hidden symmetry of the hydrogen atom.

9For more on (implicit) definability as a criterion for ontological commitment, see Barrett (2015) and
Jacobs (2022).
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But it is not clear whether this carries over to our other examples. What, for example,
is the hidden space in which the symmetry that ensures the conservation of the Carter
constant becomes apparent? Nevertheless, there is a valuable heuristic here. Ismael and
Van Fraassen construe the main role of symmetries in philosophy negatively: they are
signs of redundant structure. The hidden symmetries discussed above, however, play a
more positive role: they are guides toward novel theoretical structures. The fact that the
Kepler system possesses a dynamical hidden SO(4) symmetry is a hint that there is a
hidden structure for that system with the same symmetries. In this way, hidden symme-
tries once more are shown to differ importantly other symmetries, in particular spacetime
symmetries. For while the latter are connected to redundant structure, the former rather
lead to the discovery of novel structure.10

4.3 Hidden Symmetries and Conservation Laws

In this section, we turn to our final consideration: the relation between hidden symmetries
and laws of nature. In particular, we are interested in whether standard accounts of sym-
metries as laws carry over to hidden symmetries. We will see that here, too, the standard
lessons from the philosophical literature on symmetries don’t apply straightforwardly to
hidden symmetries.

The relation between hidden symmetries and laws of nature is particularly relevant be-
cause hidden symmetries, like ordinary symmetries, entail conservation laws. It is some-
times claimed that symmetries also explain their associated conservation laws. This re-
quires a particular account of symmetries. We will survey two such accounts: Lange’s
(2007, 2009) account of symmetries as meta-laws, and Humean accounts of symmetries.
We will argue that neither is fully compatible with hidden symmetries.

On Lange’s account, symmetries are meta-laws : higher-order laws that constrain other
laws rather than first-order facts. Just as the regularities in nature are either accidental
or lawlike, so are regularities in the laws. If, for example, the Galilean invariance of the
laws is a meta-law, then this means that the regularity that all laws are Galilean invariant
is lawlike rather than accidental. We can also put this in modal terms. If the Galilean
symmetry of the laws is itself lawlike, then even if the laws were different, they would have
the same symmetry; Galilean symmetries are ‘nomically stable’. The details of Lange’s
position are more involved, but for our purposes this informal sketch suffices.

Lange further claims that symmetry laws explain conservation principles because the
former, being meta-laws, are modally more robust: “The symmetry principle has greater
modal force than the conservation law and so can explain it, but the conservation law
lacks the symmetry principle’s modal force and so cannot explain it” (Lange 2009, p. 114).

It is this claim that we wish to call into question. Ordinary symmetries are nomically sta-
ble: for example, any Lagrangian that does not explicitly depend on the time coordinate
is time translation invariant. But hidden symmetries are highly dependent on the form

10Snell’s law, which is Lorentz-invariant, is perhaps another example. One may take the invariance to
indicate a hidden kinematical structure that is manifestly Lorentz-invariant, as argued by Janssen (2009).
But it took science nearly a millennium from the initial discovery of Snell’s law by Ibn Sahl in Baghdad
to realise this! We thank Michel Janssen for suggesting this example.

21



of the Lagrangian. In the Kepler problem, for instance, the Runge-Lenz vector is only
conserved when the particle moves in a central potential. For any other potential, there
exists no hidden symmetry. Likewise, the constant of motion that corresponds to the
hidden symmetry in the Kerr solution to general relativity, known as the Carter constant
and defined as follows:

C := p2θ + cos2 θ

(
a2(m2 − E2) +

(
Lz

sin θ

)2
)
, (36)

is conserved in the Kerr solution, but not in every other solution to the Einstein Field
Equations. In fact, historically the first discovery of this constant by Carter was based
on an observation that the Hamilton-Jacobi equation is solvable by a separation of vari-
ables. Martin Walker and Roger Penrose [67] felt underwhelmed by the fact that Carter’s
method is based on such a “peculiar feature” of the class of Kerr solutions in a particu-
lar coordinate system. In 1970, they showed that the separability follows from the fact
that there exists an irreducible second-rank Killing tensor Kµν in terms of which one
can define the constant which corresponds with the hidden symmetry of the Kerr black
hole. Walker’s and Penrose’s discovery does not change the fact, however, that the hidden
symmetry associated with the Carter constant depends on the form of the Lagrangian,
namely it vanishes for even small modifications of the dynamics of the system.

Therefore, hidden symmetries are often highly unstable, for they may fail even if the
laws are held the same. This rules out any explanation of hidden conserved quantities
on the basis of their associated hidden symmetries’ nomic stability. Nevertheless, these
conserved quantities are far from spurious, as discussed at the start of §4. So, hidden
symmetries pose a counterexample to Lange’s account of symmetries as meta-laws.

In response, an advocate of Lange’s account could claim that the conservation of the
Runge-Lenz vector or the Carter constant is not a law, but a mere fact. But Lange’s
account was only intended to explain conservation laws, so it is untouched by our coun-
terexamples.11 Perhaps conservation facts are explained by hidden symmetry facts, but
in a way that does not appeal to nomic stability; or conservation facts and hidden sym-
metry facts have a common explanation in the system’s dynamics (i.e. the Hamiltonian);
or they have no explanation at all. We find the first possibility implausible in light of the
formal similarities between hidden and non-hidden conserved quantities. In both cases,
one can derive the existence of conserved charges from the symmetries of the Lagrangian
by Noether’s theorem. Why would the explanation of conservation facts by symmetry
facts proceed differently from that of conservation laws by symmetry laws? The second
case falters on the same point: both hidden and non-hidden-symmetries are entailed by
the relevant system’s Hamiltonian, so why would the explanatory arrow run in different
directions? Finally, to say that conservation facts have no explanation at all is simply
an admission of defeat rather than a response to our puzzle. Of course, the advocate
of Lange’s account could provide some reason to ignore the formal similarities in favour
of a different explanatory structure for hidden symmetries than for ordinary symmetries.
Lange’s explanation of conservation laws based on nomic stability would then only apply
to the former. Even if we were to restrict Lange’s account in this way, however, it would
illustrate our broader point: hidden symmetries require a different treatment from the

11We thank a reviewer for pointing out the availability of this response.
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non-hidden symmetries that philosophers ordinarily discuss. Whether such a treatment
should replace Lange’s in order to cover any conserved quantity, or whether it should
merely supplement it is just a further question.12

Next, consider Humean accounts of laws. Humeanism espouses ‘Humean Supervenience’,
the view that “all there is to the world is a vast mosaic of local matters of particular fact,
just one little thing and then another.” (Lewis 1986, ix) The laws, for a Humean, are the
axioms and theorems of the system that best systematises these matters of fact. This
means that candidates for the elements of the best system must supervene on local states
of affairs. For example, the proposition “copper is an electricity conductor” is a good
candidate for an element of the best system because, to our best knowledge, whenever
any piece of copper in the physical world is connected to an electrical current, it conducts
electricity. Similarly, the proposition “the Kepler problem has an SO(3) symmetry” is
a good candidate for an element of the best system because different two-body systems
that are related to each other by a three-dimensional rotation have the same dynamics.

However, this looks very different for hidden symmetries such as those of the Kepler
problem. Consider the proposition “the Kepler problem has an SO(4) symmetry (when
E < 0)”. From a purely mathematical perspective, there is no difference between the
SO(3) and SO(4) symmetry in this system. But there are no pairs of two-body systems
in the actual world related to each other by a four -dimensional rotation (unless one reifies
S4 as discussed in §4.2), so it is hard to see how this proposition offers a decent systema-
tisation of the Humean mosaic.

In light of this observation, a Humean can either claim that no symmetries (neither
hidden nor ‘non-hidden’) are candidates laws, or claim that only ‘non-hidden’ symmetries
are candidate laws, whereas hidden symmetries are not. The first option faces the problem
that many Humeans want to admit at least ordinary symmetries as candidate laws (for
recent discussions, see Townsen-Hicks (2019) and Friend (2023)). After all, symmetries
are powerful generalisations that feature in physical explanations. If they are not laws,
then whence their explanatory power?

The second option, meanwhile, is to claim an in principle difference between ordinary
and hidden symmetries, such that only the former are candidate laws. The Humean view
of laws offers a basis for this distinction: as we discussed above, ordinary symmetries
are based on generalisations over different systems in the actual world, whereas hidden
symmetries don’t possess such a natural supervenience basis. However, while this option
seems more natural for the Humean, it runs counter to the practice of physicists, who
consider hidden symmetries as genuine symmetries and use them in physical explanations.
As Emery (2022) argues, “when we are doing scientifically-informed metaphysics we ought
to pay attention to the principles of scientific practice”. The burden lies with the Humean
to explain why the symmetries that account for the conservation of angular momentum
are laws, whereas those that account for the conservation of the Runge-Lenz vector are not.

The existence of hidden symmetries therefore poses a fairly general problem for any ac-

12Another option is that hidden conserved quantities require no explanation at all. In that case, Lange’s
account does not even require supplementation. But such a position is unsatisfactory, given the law-like
relation between hidden symmetries and conserved quantities.
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count of laws. On the one hand, laws are usually accorded explanatory powers that
accidental generalisations are not. To the extend that hidden symmetries are explana-
tory, they should count as laws. On the other hand, hidden symmetries are very different
from other laws in that they only pertain to particular solutions; they seem to lack the
required generality. Thus, one either has to give up the claim that hidden symmetries are
explanatory; or the claim that a symmetry principle is explanatory only if it is a law; or
the claim that laws are general. Neither option is entirely satisfactory; it remains to be
seen which of them is preferable.

5 Outlook

We hope to have illustrated the philosophical interest of hidden symmetries in this pa-
per. As we have seen, they are not merely accidental symmetries with no philosophical
import. If that were the case, they would not entail the existence of physically signifi-
cant conserved quantities or play a role in scientific explanations. Neither are they just
symmetries that are harder to find, but otherwise exactly the same. For as we have seen,
symmetry principles that are widespread in the philosophical literature often don’t apply
to hidden symmetries. In this way hidden symmetries present ‘problem cases’ for various
popular views in the philosophical literature: variance-to-unreality inferences, Earman’s
symmetry principles and both Humean and non-Humean accounts of symmetries as law-
like. In some cases, we have suggested potential solutions; in other cases, we pose these
cases as open challenges to philosophers working on symmetries.

We should also note some limitations to our work. Firstly, a precise technical definition
of hidden symmetries remains an open question, not answered by the physics literature.
Even without such a definition, however, hidden symmetries are widely discussed in the
practice of physics, so philosophers should not await one before they enter these discus-
sions. Secondly, because of this it is not always clear whether our considerations apply
unrestrictedly to every example of hidden symmetries. Finally, it would be worthwhile
to discover further examples of hidden symmetries, both those that already exist in the
physics literature and those that are still unknown.

Nevertheless, it is already clear that hidden symmetries are neither ordinary symmetries
that are less obvious, nor purely accidental symmetries with no philosophical relevance.
For this reason, we would like to encourage philosophers to carry out further research into
this so far neglected branch of physics.
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