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Challenges for Computational Reliabilism: Epistemic Warrants, Endogeneity and Error-
based Opacity in AI, ML and other Computational Methods   
 

1. Introduction 
 
The concept of computational reliabilism, originally coined in the context of epistemological 
problems related to computer simulations (Durán and Formanek, 2018), has been recently 
deployed to justify our reliance and trust in many other computational technologies, including 
machine learning methods in artificial intelligence such as deep neural networks (Durán and 
Jongsma, 2021). Roughly, these deployments can be understood as seeking to serve several— 
and often interrelated— purposes under the umbrella of a unified epistemological framework 
adept to account for a justified reliance on computational practices, methods and devices. In 
particular, an overarching hope of those championing such a framework is that computational 
reliabilism can: 
 

• Respond to or circumvent the challenges related to epistemic opacity in 
computational methods, and in doing so, 

• warrant or justify our beliefs regarding the reliability of computational processes 
and their results; and hence,   

• To reassure us of the possibility of trust in computational methods, practices and 
artifacts even if these are insurmountably opaque.1 

 
In this chapter I aim to elucidate what I deem to be three major challenges to computational 
reliabilism. I deem these challenges to have a bearing on its viability both as a general 
epistemological framework capable of dealing with the advent of computational methods, 
particularly in scientific inquiry, and as a pragmatic epistemic resolution to the justification 
problems related to the adoption of opaque computational methods, both of which are often cited 
as motivations for its adoption (Durán and Formanek, 2018; Durán and Jongsma, 2021). In 
particular, I focus on the following three challenges: 
 

1. The challenge of warrant transmission and reliability-crediting properties 
2. The challenge of the indispensability of endogenous features in artifactual reliability, and 
3. The challenge of error-related opacity  

 
 

2. Computational reliabilism as a kind of reliabilism 
 
Computational reliabilism, a term coined by Durán and Formanek (2018), is the view that in the 
context of computational methods such as AI systems or computer simulations researchers are 
justified in believing or trusting the results yielded by such methods “because there is a reliable 

 
1 That reliability and trustworthiness are not the same thing is well known and well-documented in the literature. 
Nevertheless, that points 2 and 3 are distinct is not always clear or explicitly stated. However, that they are clearly 
distinct issues is evidenced by the fact that trust can be had in things whose reliability is questionable and by the fact 
that otherwise reliable methods and practices are sometimes not trusted.  The relationship between epistemic efforts 
such as explainability, interpretability and trustworthiness, is a non-trivial issue that is the subject of important 
ongoing debates, some of which, despite their important insights, may be beyond the scope of this chapter.  
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process (i.e. the algorithm) that yields, most of the time, trustworthy results.” (Durán and 
Jongsma, 2021 p.332 italics mine) 2 According to Durán and Formanek, computational 
reliabilism borrows closely from Alvin Goldman’s epistemological reliabilism. In particular, it 
borrows from process reliabilism which suggests that a given inference/assertion can be deemed 
reliable if it is the product of a reliable process (2011). How such a process can be deemed 
reliable varies, but strictly speaking, the details do not matter that much: a reliable assertion need 
not include details about the reliable processes that produced it, the reliability in question is that 
of the assertion and not that of the processes by which it was produced, or so it is argued. 
Following from this, a process can be reliable even if the reasons why it is reliable are not 
accessible to an agent (Comesaña, 2010 p.571). In the context of perceptual claims, for example, 
the reliability of the process must be treated as somewhat of a brute fact. That is, we must simply 
accept that our perceptual system yields true beliefs more often than not, even if we do not know 
how or why it does so or how and why we know so.   
 
Although at times Durán and Formanek “heartily endorse” views of reliability that suggest that 
scientists are justified in trusting the results of their computational methods simply because they 
“trust the assumptions upon which they are built” (2018 p.652), as suggested by Beisbart (2017) 
and others, a closer look at their views suggests that computational reliabilism— rightly— 
forgoes these kinds of assumptions (ibid). Unlike conventional reliabilism, computational 
reliabilism needs not presuppose the reliability of the methods from which the results are 
obtained. Rather, it is suggested, computational reliabilism takes in consideration ‘reliability 
indicators’ as “markers of methodological and epistemological competence of the computer, 
algorithms and social processes involved in the formation of beliefs.” (Durán, this issue). 
Accordingly, Durán and Formanek suggest that computational reliabilism requires a 
retrospective reliability chain “that conditions the sources that attribute reliability to 
[computational methods] to be reliable in and by themselves.” Furthermore, such sources, they 
accept, “must be shown to be reliable.” (2018 p.656 italics mine).  
 
As we shall see in the next section, this last point seeks to make the reliability chain referred to 
by Durán and Formanek somewhat distinct from a simple appeal to a chain of epistemic 
entitlements—non-evidentiary epistemic warrants used to justify ordinary knowledge claims and 
widely believed to be epistemologically acceptable (if not necessary) in everyday epistemic 
endeavors (Graham, 2012). By contrast, the way in which computational methods, or their 
constitutive algorithms, are deemed reliable, according to computational reliabilism, is through 
the consideration of factors—external to the algorithms themselves— that function as reliability 
indicators. These include “identifying methods (formal or otherwise), metrics, expert 
competencies, cultures of research, and the like that make up for our best epistemic and 
normative efforts that might increase the degree of warrant we have to believe the outputs of ML 
systems” (Duran, this issue p.5). Reliability indicators for machine learning methods, more 
specifically, include the following (Durán, this issue): 

 
2 Other versions of reliabilism related to computational systems expand the foci of the processes in question beyond 
just the algorithms and suggest that in contexts such as AI, a sociotechnical understanding of such processes is 
required. Although Durán and Formanek original framing of the computational reliabilism is directed towards 
algorithmic processes, there is a sense in which later work (See Durán and Jongsa, 2021 and Durán, this volume) the 
considerations are broadened to include both technical details and social practices.  
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• Technical robustness of algorithms 
• Computer-Based scientific practice  
• Social construction of reliability 3  

 
According to this view, we can rely on the results of ML because they are the product of robust 
algorithms, which in turn come from trustworthy computer science practices, and because 
reliability is a contextual and socially negotiated concept that includes the input of a diverse 
group of experts, practitioners and users. These methods, metrics, practices and the processes 
that include them produce reliable results more often than when such methods, metrics and 
practices are absent.  
 
The “most of the time” or “more often than not” clauses above make sense of Durán’s suggestion 
that, at its core, computational reliabilism is meant to be a frequentist approach to reliability 
(Durán and Formanek, 2018; Durán and Jongsma, 2021; this issue). Accordingly, the reliability 
of a process must be understood as a tendency to produce “high proportion of true beliefs relative 
to false ones.” (ibid p.653) 4 For instance, Durán and Formanek explicitly state that 
computational reliabilism is predicated on whether or not “the probability that the next set of 
results of a reliable [computational method] is trustworthy is greater than the probability that the 
next set of results is trustworthy given that the first set was produced by an unreliable process by 
mere luck.”(2018, p.654) Trusting the results of computational methods therefore, according to 
this view, “depends on a chain of reliable processes that, in the end, allow researchers to be 
justified in believing the results” (p. 655) Where this chain ends, however, is simply left 
unanswered (ibid, fn.6 p.655).   
 
Still, as mentioned above, advocates of computational reliabilism deem the framework as 
capable of responding to the challenge of essential epistemic opacity in computational methods.5 
Because of this serious challenge, finding an epistemological framework capable of 
circumventing these obstacles seems highly desirable. Whether or not computational reliabilism 
is such a framework, as we will see, is not immediately obvious.  
 
 
 
 

 
3 While verification and validation techniques as well as expert knowledge are still discussed in the context of 
machine learning, Durán considers them as belonging to the categories of technical robustness and the social 
construction of reliability respectively. 
 
4 This is something echoed in Ferrario’s (2023) approach to their own, highly formalized, version of reliabilism. 
 
5 This is the kind of opacity that is not relative to an agent’s contingent epistemic limitations but is rather relative to 
their epistemic nature (Humphreys, 2009). Furthermore, in some instances, particularly in the context of 
computational methods, this kind of opacity arises in virtue of features of a system and not in virtue of any agential-
relative features. As such, the causes of such opacity are agent-independent—I.e. the opacity in these cases arises 
from factors that are independent of any limitations on the part of the agent— and because no agential resources can 
correct them, they are also agent-neutral: i.e., any epistemic agent would face the same challenges. See Alvarado’s 
discussion of Nagel’s agent-neutral reasons (2023 p.136). 
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3. The challenges 
 
In this section, I provide an overview of three challenges that I believe have a negative effect on 
the viability of computational reliablism as an epistemological framework that can appropriately 
capture the novel and/or unique epistemic issues associated with the use of computational 
methods, particularly in formal epistemic contexts such as scientific inquiry or in safety-critical 
contexts. In both of these contexts endogenous features— such as the nature and source of 
error— of a system are simply indispensable reliability indicators and computational reliabilism 
seems unable to account for them. As I will show, these challenges also elucidate the limitations 
of computational reliabilism even when it is framed solely as a pragmatic epistemic resolution to 
the justification problems related to the adoption of opaque computational methods.  
 

3.1. The challenge of warrant transmission and reliability-crediting properties 
 
Although argued for elsewhere by Symons and Alvarado (2019), it may prove useful to begin by 
briefly noting that one of the serious challenges for computational reliabilism as an epistemic 
framework is that it fails to account for the epistemic challenges related to warrant transmission, 
particularly as related to sanctioning novel computational technologies. As we saw in the 
previous section, the success of computational reliabilism strongly hinges on what Durán and 
Formanek call ‘reliability indicators.’ According to them these include “algorithmic-related 
methods and practices” that have “reliability-conferring” properties (Durán, in this volume p.7). 
According to these views, some of these practices can confer their reliability on to a process, a 
device that comes from such process, or the results of such a process. There is, however, a 
problem with the concept of reliability-conferring indicators and that is that there is no clear 
sense in which they can confer such reliability. This is particularly the case if the thing being 
conferred reliability to in virtue of established methods and processes is not itself a-yet-
established method or technology. For example, the best practices by the best experts in the best 
of settings behind the invention of a never-before-seen technology are not enough to ensure that 
such technology is itself reliable. As I have argued for elsewhere (Alvarado, 2023a p.72), even in 
the case of technological devices that are now considered paradigmatic scientific instruments 
such as the classic optical telescope, neither the name and reputation of Galileo nor those of 
Kepler alone sufficed to establish it as a scientifically reliable instrument. What is more, neither 
Galileo’s assertions that his theoretical approach resulted in a better instrument than the original, 
nor Kepler’s initial efforts to drum up consensus about the validity of Galileo’s instrument 
amongst the scholarly community proved to be sufficient warrant for its serious adoption 
(Alvarado, 2023). Rather, extensive testing as well as criteria for what constituted proper testing 
had to be designed and developed for telescopes to undergo before they were sanctioned as 
scientifically reliable instruments (Van Helden, 1994).  
 
The difficulties regarding the transferability of epistemic warrants, or the lack thereof, from 
methods, practices and people to technical artifacts, become clearer in epistemic contexts in 
which epistemic endeavors that require hard rigor depend on one another, where the scale of 
resources required demand significant efforts in preparedness and constraint, and in contexts that 
could cause significant harms to others. Deeming the atomic bomb as a reliable weapon both in 
its power and its limitations, for example, solely in virtue of the fact that it was made with the 
best available methods and by the best physicists at the time, without probing the artifact itself to 
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produce its own epistemic warrants, is clearly an inadequate epistemic strategy. As demonstrated 
by Symons and I (2019), epistemic warrants that justify reliance or trust on one method or on a 
group of experts are not simply transferable to the technical artifacts built with such a method or 
by such group of people. The notion that either existing reliable methods or human expertise can 
simply “credit reliability” forward to computational methods (or any technical artifact for that 
matter) as Durán suggests, is thus not immediately obvious.  
 
Even in the case of highly cautious epistemic endeavors that require technological mediators, 
ensuring that such warrants transfer from one process to another requires that hard-to-attain 
epistemic conditions hold. Consider appeals to practices in computer-assisted mathematical 
proofs as an analogy to how we could trust computer simulations (Barberousse and Vorms, 
2014). One condition that these appeals must assume holds in both settings is that the methods 
involved are transparent conveyers of epistemic content— that is, that in the process of 
manipulating epistemic content that is supported by one kind of warrant, say an apriori epistemic 
warrant like the ones supporting mathematical inferences, did not introduce elements into the 
process that required the support of another kind of epistemic warrant, namely a posteriori 
epistemic warrants such as those provided by empirical evidence (Burge, 1993; 1998). The 
analogy between computer-assisted mathematical proofs and computer simulations, as elucidated 
by Symons and I, was already a dubious stretch given the distinct practices and distinct epistemic 
norms involved in each endeavor. As noted by Winsberg (2010; 2019) and others, computational 
methods such as computer simulations, involve a vast and non-trivially motley set of experts, 
practices and methods. These practices and methods are far removed from the rigorously 
cautious process of mathematical proofs. Transparent conveying of epistemic content is simply 
not something that can be easily achieved in such settings. The fact that we cannot simply trust 
the mathematics involved in such processes (which require an a priori warrant) but that we have 
to also trust practices and equipment (which require their own a posteriori warrants) 
demonstrates the non-transparency of the conveyers at play. Hence, epistemic warrants fail to 
simply transfer from one step to the next and each part of the process must muster its own 
through distinct means. 
 
It is worth noting that even in more ordinary epistemic contexts, the transfer of epistemic 
warrants is epistemically non-trivial. Take for example the problem of epistemic alchemy 
(McGlynn, 2014) in which a seemingly warranted proposition is derived from a poorly warranted 
one. In the case of epistemic entitlements, this would imply deriving a purportedly justified claim 
from claims supported by non-evidentiary warrants. While it may very well be the case that in 
ordinary epistemic practices this may not be too much of a problem (ibid), it is not clear that this 
practice or that epistemic entitlements themselves, such as the ones relied upon by Burge and 
others (see Barberousse and Vorms, 2014), are adequate in the context of scientific inquiry to 
start with. Rather, extensive sanctioning processes that are in fact reactionarily independent 
from— i.e., critically engaging with and seeking to overcome the limitations of— existing 
methods or current expertise consensus have to be designed and implemented for novel 
technologies to be appropriately sanctioned for scientific use (Alvarado, 2023a).    
 
This points to the fact that making the case that warrant transmission occurs, if it occurs at all 
between practices, methods, experts and their artifactual products, takes a non-trivial 
philosophical effort. Unfortunately, other than noting that these reliability-conferring properties 
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are not to be understood as ‘spooky’ (Durán, preprint), this effort is all but absent in accounts of 
computational reliabilism to date. Whatever version of computational reliabilism that strongly 
hinges on the notion of reliability-conferring, or reliability-crediting properties will have to 
seriously contend with the issues of warrant transmission. Until then, the future promissory note 
of existing computational reliabilism accounts seems to be of too high a denomination to just go 
unchecked, signaling a genuine and serious challenge to the viability of computational 
reliabilism as an epistemic framework.  
 
To be fair however, this is a major epistemological problem for most accounts of reliability. 
Hence, in what follows I will take it as a given that there may be such things as reliability 
indicators. As we will see, even if this is the case, major problems emerge for computational 
reliabilism for in the case of the reliability of artifacts, these indicators happen to be found 
elsewhere from where reliabilist accounts conventionally look for them.    
 
 

3.2. The challenge of the indispensability of endogenous features in artifactual 
reliability 

 
As we saw above, in reliabilism, whether something is reliable or not does not depend on an 
agent’s internal evidentiary threshold for justification to deem it so, as evidentialist views 
suggest (Goldman, 2011). Rather, under views of this type, the reliability of a process can be 
determined solely by considering exogenous elements of a process. In the case involving 
conventional epistemic agents, such as ourselves, and our claims to knowledge, reliabilism is 
supposed to give us a theoretical framework that makes sense of the intuition that we seem 
perfectly capable of justifiably relying on either our own perceptive systems or on the testimony 
of others without necessarily having to invoke exhaustive mechanistic details about how either of 
them functions.6  
 
As we saw in section 2 above, under views like these, the degree of reliability of a process 
depends on its proclivity, or lack thereof, to produce truthful outcomes and not on any internal 
properties of the process itself or on whether or not agents find them sufficiently justified to 
subscribe to them (Goldman, 2011; Goldman and Beddor, 2021). Process reliabilism extends this 
seemingly virtuous omission of conventional reliabilism to considerations about results or 
assertions that require or come from a procedure carried out by an agent or set of agents. 
Importantly, process reliabilism points towards exterior—often environmental—factors that can 
make or break an epistemically conducive setting. There is no point under these type of views, 
for example, in citing an agent’s good eyesight as a reliability indicator on a severely foggy day. 
It is the foggy day, or the lack thereof, that determines whether or not we have a reliable 
sighting; famously, seeing a farm from afar in a county littered with fake farm facades as tourist 
attractions is not sufficient to conclude that a farm has been sighted. Rather, a process by which a 
piece of knowledge could be relayed or come to be known under these circumstances has to be 

 
6 On a more common sensical sense, this safeguards the intuition that one does not have to know that one knows in 
order to know something and that one does not need to know how one knows something in order to know 
something, e.g., knowing that something was seen does not entail/require knowing how eyes, brains, nervous 
systems, etc., work. 
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reliable and the factors that deem it so are mainly external, exogenous to the agent in question, 
their inner workings or those of the process itself. Whiel pointing in the right direction, these 
examples fail to show that what reliabilism was really trying to keep at bay was the internalist 
notion that an agent’s inner sense of justification was all that sufficed for them to claim 
knowledge. Relibailism, in other word, is an externalist epistemic framework. 7 
 
Durán and Formanek (2018) try to safeguard this intuition of reliabilism in computational 
reliabilism. They suggest, as noted above, that computational reliabilism uses “reliability 
indicators (RIs) as markers of methodological and epistemological competence of the computer, 
algorithm, and social processes involved in the formation of beliefs.” Importantly, according to 
Durán and Formanek (ibid), these indicators, which “can be understood as algorithmic-related 
methods and practices” (Durán, in this volume p.7), are nevertheless to be considered 
“exogenous to the algorithm.” This is in large part what makes computational reliabilism a 
reliabilist epistemological account in the first place.8 And, it is also what allows it to be 
positioned, as we saw in previous sections, as a plausible solution to the challenges posed by the 
severe opacity many say to be characteristic of computational methods (Humphreys, 2009), 
particularly machine learning and other AI technologies (Burrell, 2016; Alvarado, 2020; 2021; 
2022). In other words, one of the main appeals (if not the main appeal) of computational 
reliablism vis-à-vis computational methods is that it is not supposed to need to take into 
consideration the inner working of a process, its endogenous features, in order to provide 
justification of our reliance on its results. Hence, the opacity— in its many varieties and however 
severe— of the inner workings of a system, device or process is supposed to be a non-challenge. 
This virtuous omission of computational reliabilism is what substantiates the claims in the 
literature that nobody really is, and nobody should be, afraid of black boxes (Durán and 
Jongsma, 2021), even —or particularly— if lives are at stake (London, 2021).  
 
Yet, a few issues for this view immediately emerge. First, the strong external/internal distinction 
that conventional reliabilism applies to considerations involving naturally-occurring epistemic 
agents, such as us, as well as to considerations regarding our surrounding environment, may not 
necessarily apply to considerations involving artifacts, or to processes generally understood as 
artifactual 9, or even to their products: be these propositions, results, computations, etc.10 This is 

 
7 This will become important at the end of this chapter when we briefly discuss the fact that computational 
reliabilism, as championed by Duran and coauthors, seems to be more of an evidentialist non-externalist epistemic 
account and not an externalist reliabilism after all.  
8 It must be noted that Durán’s insistence that the notion of reliability must be acknowledged as a social construct 
risks taking computational reliabilism more in the direction of evidentialism, a view which invokes an epistemic 
agent’s internal evidential thresholds as relevant determinants in the assessment of claims. 
   
9 Science in general and methodology in particular can be thought of as artifactual processes of inquiry: like 
technical artifacts, scientific methodology is designed and implemented with an aim, intention and hence a function.  
 
10 There may be something to such an externalist/internalist demarcation in cases in which agents such as ourselves 
are involved—e.g., perhaps due to phenomenological, biological or cognitive features that clearly separate us from 
our non-organic surroundings. There is us, the cohesive organism with reflective cognitive capacities, and there are 
certain external conditions that ought to be met, processes to be carried out, in order for someone to be in a position 
where they can be said to know something (see the barn example above). That this demarcation—as fuzzy as it may 
be— can be meaningfully made at all in the case of technical artifacts is not immediately obvious. 
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because technical artifacts are constituted by features without which they could not carry out 
their designed or adopted central function and which emerge in virtue of material or design 
properties that can only be seen as endogenous—i.e., arising from within. At the same time, their 
designed/assigned tasks also determine what these essential arrangements and materiality will 
and can be. How they were made, what they were made of, and how they do what they do in 
virtue of how they were made, what they were made of and what they were made for, are 
indispensable considerations to fully capture the nature of artifacts (Kroes, 2002; Symons, 2010) 
and hence for understanding their functional capacities and limitations (Alvarado, 2023b). 
Understanding their capacities and limitations is, in turn, essential for reliability assessments and 
for properly-grounded trust allocation (Simon, 2010; Alvarado, 2023a).11 As endogenous 
features, however, computational reliabilism is not supposed to need them to assess the 
reliability of a process, system, technology or their results. Yet ignoring them seems at best 
epistemically questionable, at worst epistemically irresponsible (Winsberg, et al, 2022).  
 
Consider a medical doctor telling you that a given pharmaceutical cures acne 95% of the time but 
could kill the other 5%. Also, imagine that when asked about what information there is about the 
5%, their reply is that there is not any more information beyond the rate and the extent of the 
risk: we know it fails this often, and we know that failure often implies death. Consider further 
that they tell you that they deem this substance to be very reliable because at least they know 
both the rate and the extent of failure. Consider even further that, rather than simply assuming 
the reliability of the process by which the medicine was brought about, the doctor cites some 
reliability indicators similar to those in computational reliabilism to justify their reliance on such 
a medicine. That is, rather than simply appealing to an epistemic entitlement and telling you that 
you should trust them, they insist that some endogenous factors should serve as reliability 
indicators to you as well. They tell us that not only does the medicine yield reliable results most 
of the time, but that the processes by which this medicine has been designed, developed and 
deployed are also reliable because they represent “methods (formal or otherwise), metrics, expert 
competencies, cultures of research, and the like that make up for our best epistemic and 
normative efforts that might increase the degree of warrant we have to believe the in the results 
of [such medicine].” The pill was developed in a world-renowned laboratory, it was produced 
with the best equipment and sanctioned by the most credible people. Imagine further that if you 
asked about how the most credible people sanctioned the pill, the answer is that you do not really 
need to know but if you insist and must know, they did it by testing it on roughly a hundred 
random people. Five of which died and ninety-five who got better. Once you take all these 
details into consideration, contemplate whether or not the question of whether this substance is 
reliable has been answered. In other words, can we still ask ‘yes, but is this substance reliable?” 
without being conceptually confused? We can go back to the atomic bomb example and the 
cases of warrant transmission discussed in the previous section for reference: the answer is yes, 
the reliability of such substance has not yet been determined.12  

 
11 This is further in alignment with some developments in the epistemology of trust in science and technology which 
(rightly) suggest that in order for trust to be appropriately allocated, or ‘grounded’, the reasons that justify such trust 
must align with actual properties, namely capacities, of the trustee (Buechner, et al, 2013; Simon, 2020; Oreskes, 
2021 p.55; Alvarado, 2022b; 2023b). 
 
12 It is in cases like these that a confusion may emerge between questions about reliability and trustworthiness. What 
the doctor is alluding in this case may be reasons for trust. They are citing trust indicators but not necessarily 
reliability indicators. Although tis is of course problematic, as we saw in the previous section, for the sake of 
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The argumentative element of the example above comes from the fact that the question—even if 
Durán’s considerations are true—is not already answered and asking it continues to make sense. 
In other words, even if a technology comes from methods (formal or otherwise), metrics, expert 
competencies, cultures of research, and the like that make up for our best epistemic and 
normative efforts that are alleged to increase the degree of warrant we have to believe in the 
results of such technology, whether or not that technology itself, both in kind or in token, is in 
fact reliable, remains an open question (Symons and Alvarado, 2019; Alvarado, 2021; 2023a). 
This signals at the very least that these exogenous details are not sufficient to determine the 
reliability of such an artifact, and/or that there must be something else, perhaps something more, 
that does so.  
 
Here is yet another example that illustrates this point. Consider the recent announcement by 
Google’s GraphCast researchers that GraphCast has “significantly outperformed conventional 
weather forecasting methods in predicting global weather conditions up to 10 days in advance.” 
(Edwards, 2023) Some may think that knowing that this system outperforms conventional 
weather prediction tools 90% of the time (Lam et al., 2022; 2023) could suffice to deem it as 
reliable or even as more reliable than the conventional tools it is being compared to. 
Nevertheless, notice that in such a context, since it is the kind of computational methods that is 
likely to be relied upon in order to make safety-critical decisions, knowing the source and nature 
of error— that is, why and to what extent it fails—becomes a non-trivial, indispensable 
consideration. The number of resources required for weather related interventions are such that 
decision-makers must be able to both prepare for and constraint their deployment with precision. 
Just knowing how often a system like this fails is not enough to assess its reliability. Further, 
note that in such cases, even just knowing how bad the system fails is not enough. It may prove 
irrelevant, for example, that the benchmark evaluation of one method over the other ranks as 
more accurate in average by 1 degree Celsius in normal weather, if once every month it is off by 
10 degrees in the case of unpredictably weather events, which is when these systems are the most 
needed/useful. 13  What would help deem this system reliable is knowing how and why it does 
better, where it can fail and why it can fail, and what about its inner workings makes it 
vulnerable to unreliability: in other words, knowing about its endogenous properties.   
 
Importantly, considering these aspects of a technical artifact is not only key in life-critical 
settings, but also in knowledge-critical processes—those processes in which acquiring, building 
on, or expanding genuine knowledge is the essential central task.14. In such contexts, questions 

 
argument we can say that you may have reasons other than the actual/factual reliability of the substance to trust it: 
the reliability of others, social pressure, lack of alternatives, etc. As pointed by Dretske (2000), these are simply not 
epistemic reasons, so even if they may be adequate for non-epistemic contexts or technology (e.g., in medicine), 
they are simply inadequate for epistemic trust in epistemic contexts (Alvarado, 2023b).   
13 Thanks to Mats Krüger Svensson whose comment on the news aggregator website HackerNews inspired this 
example. 
14 In some foundational scientific projects, for example, in which the aim is to simply know more about a 
phenomenon in order so that the underlying mechanisms of other higher-level phenomena could be elucidated and 
hence understood, simply knowing that a process yields consistent results the majority of the time does not suffice. 
In this context the task is to know more so that we can know more. Hence, if we fail at identifying the elements that 
could undermine our capacity to know more, then we are failing at trying to know more and our ability to know 
more about the higher-level phenomena is on flimsy epistemic grounds.  
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such as ‘why/how/where did the error happen?’ become epistemically relevant even when the 
technology functions correctly “most of the time.” Particularly if we want to appropriately, that 
is justifiably, rely on it.15 In a sense, this is the one thing that sections in scientific papers devoted 
to methodology seek to elucidate: that the methods used were crafted in such a way that those 
considerations that could directly undermine the validity of their results have been sufficiently 
addressed and hopefully assuaged. Importantly, when addressing the possibility of error in a 
technical artifact in these kinds of contexts, as we saw in the examples above, this does not 
simply mean gathering a rate of error, or even quantifying a magnitude of error when it does 
occur. Rather, it means having a general understanding of the nature and the source of such error 
such that we can speak to it, track it, and hopefully address it in future iterations of the process in 
question. These features, again, seem like centrally endogenous and not merely exogeneous 
features of both the technical artifact and the process by which it was made.    
 
Hence, when it comes to understanding the capacities and limitations of a technical artifact, 
elements such as its materiality, material arrangement, structural integrity and hence possible 
points of failure are indispensable features to consider, e.g., a hammer made of a single piece of 
cast iron will be able to perform distinct tasks in distinct settings from a hammer made of plastic 
or even a hammer made of more than one part. In the case of computational methods, hardware 
and software architectures, the way code functions are timed, the kinds of errors these 
architectures and specific programs are prone to, and the kinds of languages and/or techniques 
deployed to perform a function must be considered. These material, structural, or functional 
elements can be categorized as constitutive of—or at least coextensively defined with— 
“algorithmic-related methods and practices,” yet whether these elements are exogenous or not to 
the algorithm itself, external or internal to a process or results whose reliability is under 
consideration, is not entirely clear.  
 
And yet, whether these features are endogenous or exogenous, they must be accounted for. As 
briefly noted above, in the case of certain artifacts —computational or not— namely those used 
in both safety-critical settings, like medicine, and those used in foundational epistemic 
endeavors, such as science, endogenous features, such as the nature and source of failure points, 
become even more indispensable. This is not unique to computational methods, there is a reason 
why precision instruments and not less expensive alternatives are the norm in laboratories: 
because it is epistemologically relevant to consider endogenous properties of an artifact to deem 
it epistemically reliable (i.e., they serve epistemological values such as standardization, 
reproducibility, objectivity, etc.). Similarly, there is a reason why medical equipment is expected 
(and often forced) to undergo rigorous vetting and sanctioning processes before it is introduced 
into medical practice: because it is both medically and morally relevant to do so. Yes, it is an 
epistemic good to make sure that we can rely in the results of our instruments as we chose a path 
forward in a patient’s treatment, and yes, we have an epistemic responsibility not to take the 
reliability of systems that can affect people’s lives or well-being lightly (Harvard and Winsberg, 

 
15 The emphasis on appropriate justification for an epistemic technology is important here because, as a practical 
matter, we can and do rely on things for which we have no proper justification. We do this in certain instances of 
crises, but also in most our everyday activities. That we can do so, and that we do so, however, does not do much to 
the plight that in some circumstances doing otherwise is what should be done. In contrast with Durán and Formanek, 
I find little use in accommodating existing scientific practices in a normative inquiry. The reasons why we could or 
should rely on an artifact are not appropriately informed by the reasons why people actually do so.  
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2021; Winsberg et al., 2022; Harvard et al., 2022), but importantly, we are also morally required, 
in settings such as medicine or civil engineering, to safeguard people from error that may 
undermine the function of such systems. Doing so requires us to not neglect properties and 
features endogenous to both the artifact and the processes by which it was built. If this is the case 
then, as we will see, either computational reliabilism cannot account for such features and it is 
therefore an inadequate epistemological framework to deal with artifacts of any sort but 
particularly computational artifacts; or, computational reliabilism can and hence must account 
for such endogenous features, in which case it must directly address the challenge of epistemic 
opacity of a process’ endogenous features and not merely circumvent it.   
 
 

3.3. The problem of error-related essential epistemic opacity 
 
 
In this section I aim to show that what is at stake in instances of epistemic opacity is not merely 
the inaccessibility to essential features of how a process works. This has been a central 
misunderstanding within the literature. Rather, what is at stake is the opacity of how such a 
process may fail. The inability of computational reliabilism to take endogenous features into 
consideration makes this challenge a serious problem for the viability of the framework as a 
solution to the epistemic opacity of computational methods. However, as we will see, the 
insurmountable essential epistemic opacity of certain kinds of error in computational methods 
such as machine learning— particularly neural networks, which are at the center of more recent 
developments in large language models and generative pre-trained transformers—makes it so 
that the challenge is even more severe than mere conceptual inadequacy on the part of the 
epistemological framework.   
 
In the face of the challenges posed by the essential epistemic opacity of computational 
methods—elucidated first by Humphreys (2009) and later expanded by others (Burrell, 2016; 
Alvarado and Humphreys, 2017; Alvarado, 2020; 2021)— philosophers have come up with 
argumentative strategies that make sense of the fact that inquiry, even the inquiry that makes use 
of opaque methodology, can nevertheless be successful.16  Some of these strategies aim to 
undermine the severity, both conceptually and practically, of the challenge of epistemic opacity. 
San Pedro (2021), for example, suggests that epistemic opacity can be contextually assessed as a 

 
16 I take it that the reader is sufficiently acquainted with the nuance surrounding the concept of epistemic opacity, 
particularly as it relates to its kinds, its sources, and their respective strengths and implications (For a thorough 
review of this concept see Alvarado, 2021). Hence, here I will only focus on the essential epistemic opacity 
particular to computational artifacts and not on the general sense of opacity first identified by Humphreys (2004) 
and later expanded on by others to include social and contingent sources of opacity: e.g., scientific infrastructure, 
technical literacy (Kaminski et al., 2017), state and corporate secrecy (Burrell, 2016), natural resources, etc. 
Elsewhere (2020; 2021;2023a), heavily borrowing from the work of Symons and Horner (2014a; 2014b) and 
expanding on Humphreys’ (2009) views, I have argued that in the context of computational artifacts, essential 
epistemic opacity is uniquely— even if not exclusively or exhaustively— at play. This is particularly the case in 
AI/ML systems, whose architecture and analytic dimensionality further exacerbates the ‘too many everything 
problem” (Alvarado, 2020).     
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matter of degrees and that certain mitigating procedures can ease its impact.17 Similarly, after a 
thorough assessment of different kinds of sources for opacity in machine learning technologies, 
Jenna Burrell (2016) offers a series of best-practice remedies to assuage it. Others, mainly 
practitioners, simply deny that essential epistemic opacity is the case and offer evidence that 
suggests to them ways to make certain methods—for example, in machine learning— 
‘interpretable.’ Still others, accept that essential opacity is the case but deny that it makes a 
significant difference to the aims of inquiry (Durán and Jongsma, 2021; Duede, 2022). 18 
 
All of these argumentative strategies acknowledge that those seriously concerned with epistemic 
opacity have a certain commitment to the value of what is taken to be its opposite: transparency. 
And this is, to a certain extent, true. Transparency, however, can mean different things in 
different contexts, e.g., access to source code, surveyable or interpretable practices and 
components, explainable processes, etc. What is often assumed is that some level of access to 
‘how something works’ or ‘how something produces results’ is what is at play. Hence, as a way 
of undermining the challenge of opacity, some of these strategies aim to undermine the value of 
such a commitment to transparency. One may argue, for example, that it is simply unsound to 
think that every single part of a process ought to be maximally accessible (intelligible, 
surveyable, etc.,) to an agent in order for them to successfully rely on it. If this is the idea of 
transparency, one may argue, then we go back to thinking about opacity in such general terms 
that it ultimately trivializes the concept in at least two ways: a) everything is opaque to everyone 
at one level or another, and if so, b) then opacity does not seem to pose any meaningful challenge 
after all since life and inquiry goes on successfully despite its ubiquity.  
 
Additionally, it can be pointed out that while it is easy to understand some level of transparency 
of these methods as a desirable epistemic good, it is still possible to undermine the normative 
import of this good by diminishing the normative weight of this transparency: i.e., one could 
always argue that while it is good to have transparent methods, this transparency is by no means 
an epistemic necessity nor an obligation. It is well known, for instance, that transparency is not 
sufficient for explainability; someone could easily further argue that its necessity is equally 
questionable.19 Even more devastatingly, it could be argued that the kind of maximal 

 
17 This, of course, ignores or neglects the fact that the concept of essential epistemic opacity implies that it is 
impossible for agents of a limited epistemic nature to overcome it. This is a topic I address elsewhere (Humphreys, 
2009; Alvarado, 2021). 
 
18 Although some philosophers walk a fine line between the last two strategies, computational reliabilism is often 
championed as promising a way forward in line with the latter argumentative strategy: i.e., even in the case of 
essential epistemic opacity, so this strategy supposes, we can be justified in our reliance on certain computational 
methods and hence also in our trust on their results. Duede (2022), for examples justifies our reliance on deep 
learning techniques in science by attempting to contextualize its use in broader context of discovery. This is, as is 
often the case, yet another pragmatic defense for the utility of such an artifact. As I have argued here and elsewhere, 
if scientific inquiry is intrinsically an epistemic endeavor and not just merely a problem-solving one, this pragmatic 
approach is simply inadequate and can be reduced to an attempt to justify practices because ‘practitioners practice 
them’ and have happened to gain some utility from them, and not as I see it a critical epistemological inquiry.  
 
19 Full transparency of a complex and large source code, for example, in many instances of interest would not yield 
anything resembling interpretability or explainability. In other words, one can have access to all the details of a 
system without necessarily understanding them. Hence, transparency is not sufficient for understanding how 
something works. 
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transparency alluded to above could, in fact, get in the way of any actual epistemic good. A 
barrage of source code, for example, could obscure the functionality of a piece of software to 
someone investigating what it is supposed to do.  
 
One way to counter this last point is too simply say that not every single aspect of a process of a 
system can/must be relevant. We must discern between those things that ought to be accessible to 
an agent and those that do not need to be. Consider the following, according to Humphreys, a 
computational system, process or device is essentially epistemically opaque iff 
 

“it is impossible, given the nature of X, for X to know all of the epistemically 
relevant elements of the process.” (2009) 

 
Researchers of opacity have either taken this definition at face value and focused on the strength 
of the claim, i.e., the impossibility clause, or, as we saw above, on what the term ‘all’ implies. 
However, rather than focusing on the ‘all’ clause in the definition above, one can also focus on 
what Humphreys may have meant by the ‘epistemically relevant’ aspects of a process and try to 
see what those are. In a formal proof—be it in mathematics, geometry or logic— for example, 
one may find that every inferential step towards a result and hence every premise that informs 
such steps is an epistemically relevant element of the process. Durán and Formanek (2018) 
rightly point out, however, that in the context of computational methods, it is not immediately 
obvious which are the epistemically relevant elements of a process: is it every single line of 
code? Elements related to the overall aims and purpose of a software system? Or do the complete 
functions of underlying components such as compilers, circuitry, etc., count as epistemically 
relevant? Regardless of these difficulties, however, advocates of computational reliabilism claim 
to circumvent them by pointing out that transparency is simply not needed, and that having it 
may not do any good in the contexts where philosophers conventionally demand it. Although 
computational reliabilism does not simply assume the reliability of the methods in question, it 
can still make this latter claim by arguing, as we briefly saw, that there are some reliability 
indicators to help us ground our confidence and trust. 
  
All of these views are partially correct: yes, the value of transparency is often implied in those 
that see opacity as a genuine epistemic challenge; yes, the value of this transparency is not 
immediately obvious, particularly since it seems that full transparency of all the elements of a 
process is neither sufficient nor necessary for explanatory endeavors; furthermore, even if such 
transparency is an epistemic good, in many circumstances of interest, the value of these goods 
may be outweighed when considered against exceptional ethical, prudential and/or practical 
urgencies. It could even be said, without much controversy, that it is true that prioritizing 
epistemic concerns in certain circumstances of ethical, prudential or practical relevance may 
prove frivolous, irresponsible or even reprehensible. 
 
However, as we saw in the previous section, while we do not need a list of all the epistemically 
relevant elements of the technology being deployed, we definitely need some very specific ones, 
namely the elements related to error. As I have noted elsewhere “While the contents of an 
exhaustive list of epistemically relevant elements of a system may be debatable, that error and 
error assessment must be included is less controversial.” (2022a) For example, while we may be 
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able to forgo knowing exactly how an Aspirin works when we deploy it —as suggested by 
London (2019)— what a medical professional cannot forgo when deciding on its use, or the use 
of any pharmaceutical technology, is having a good idea of how and why it could fail and not just 
the rate at which it fails.  
 
While knowing that a given medical practice could fail (where failing implies the loss of life or 
the loss of quality therein) can help an individual calculate the risks they are willing to take on 
their own life or those of others, or help an institution to calculate the mortuary and legal 
resources they will need when deploying a given technology, thinking that these considerations 
suffice in such a context is at best limited and at worst seriously misguided. A medical 
practitioner deploying these pharmaceuticals should know not just how often they fail, but more 
or less when they can fail. This is more often than not informed by knowing why they may fail, 
which is in turned informed in part by the chemical substances in the pharmaceutical, their 
relative ratio to one another and even the order in which they were mixed. Hence, they also need 
to know why and how it can fail. In other words, they need to have an idea of the sources and the 
nature of possible errors.  
 
Simply stated, when it comes to technical artifacts in formal epistemic contexts such as rigorous 
scientific inquiry some things cannot not be in a list of relevant epistemic elements of any 
process: these include the nature and source of its possible errors.  
 
Importantly, this is different from requiring a system and its inner workings to be fully 
transparent, or from requiring a full explanation of all the epistemically relevant steps a system 
takes to achieve a function. While the reliability indicators associated with computational 
methods such as machine learning suggested by Durán include “methods (formal or otherwise), 
metrics, expert competencies, cultures of research, and the like that make up for our best 
epistemic and normative efforts that might increase the degree of warrant we have to believe the 
outputs of ML systems,” (2023, P.5) and while there is a sense in which the complete 
epistemically relevant elements of a given process remain elusive, there is an undeniable sense, 
as noted above, in which in certain settings knowing something about the ways in which 
something could fail is an indispensable element of any list of reliability indicators. 
 
Hence, so much is clear: the heart of the problem of epistemic opacity is not necessarily not 
knowing the details of how something works. The real problem is access to the nature and source 
of error in order to run an adequate reliability assessment.  
 
The problem for computational reliabilism is thus twofold. The first issue is that they must, as we 
saw in the previous section, concede that at least some of the internal details of a process or 
device qua process or device must be known in order to appropriately rely on it. Note how this is 
in sharp contrast to the view that computational reliabilism can rely only on elements exogenous 
to the process/device itself to ascribe reliability. If this is so, then the main appealing feature of 
computational reliabilism—namely that it can ensure an appropriate epistemic framework even 
without appeals to transparency or without caring for opaque elements of a process—seems to be 
no longer. The second problem is, that if they do concede to the points above, then they must 
face the challenge of essential epistemic opacity concerning the nature and source of error in 
most computational systems of interest, and particularly those involving machine learning. 
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In particular, these views have failed to acknowledge the severity of the challenges posed by the 
irreversibility of probabilistic, stochastic models whose results are multiply realizable and 
overdetermined (Symons and Boschetti, 2013). They also neglect to consider the 
catastrophic/strange nature of error in ML technologies such as deep neural networks (Alvarado, 
2022). Both of these are instances in which tracking the source of error and the nature of such 
error is simply unachievable. In the first case, the fact that a computational system may take 
several distinct paths to reach its results even in the case of identical input, makes it so that 
determining which path was actually taken is not possible (Symons and Boschetti, 2013). If this 
is the case and there is an error, tracking where the error happened is simply not achievable. This 
is a particularly severe challenge in the case of computational technologies such as deep neural 
networks and transformer models which require a significant number of layers of analysis.  
 
In the second case, the kinds of error that these computational methods are prone to, are simply 
too extreme and unpredictable. This is exemplified by issues such as hallucinations in generative 
AI (Ji et al., 2023; Lee, 2023), but also in the case of adversarial attacks to neural networks in 
which a random positioning of a single pixel could alter the analysis of an image. Importantly, in 
recent research similar results to these adversarial attacks have been found to emerge even in 
non-modified images that involve complex textures such as those of natural foliage or intricate 
fence designs. Elsewhere (Alvarado, 2022) I note the following: 
 

“There are at least thousands of naturally occurring examples of images that 
contain information that works just as an artificially induced adversarial attack 
would and that can mislead well-known image classifiers. Furthermore, it has 
been shown that even well-established defense strategies that ensure some 
widespread image classifiers remain resilient versus some artificial adversarial 
attacks are nevertheless unable to defend against naturally occurring examples.”  

 
As further noted there, these naturally occurring adversarial examples can include simple 
elements such as “inclement weather conditions and obscured objects, and it can also include 
objects that are anomalous.” (Hendrycks et al, 2019) This means that the neural network does not 
need to be intentionally targeted to produce unexpected error. Rather, features intrinsic to natural 
images can make neural networks yield unpredictable errors. Although this signals that we can at 
least recognize certain patterns that elicit this kind of error, the fact that non-manipulated images 
of random scenes and objects can cause this kind of error means that there can be an infinite 
number of patterns out there that can do the same in a myriad of fields: telescope imagery, x-
rays, etc. Non-surprisingly, this kind of issue can even be found in cases of text-based analysis 
(Zhang, et al, 2023). If this is so, then any kind of machine learning data analysis may be prone 
to such a problem. Interestingly, these errors are “different “bugs” from traditional software” 
(Sun et al., 2018) Moreover, this is not the only way in which errors of this type in these types of 
systems are opaque. For example, due to their highly distributed computing, neural networks also 
fail in what is called a ‘graceful’ manner with minute deviations from weigh to weigh and layer 
to layer (Alvarado, 2022). This makes it so that such errors carry on distributed in the very many 
weights of deep neural networks and the automated optimization changes that these systems 
undergo in their many layers of analysis. And lastly, the arrangement of these networks 
structures is such that this error is not easily detected either internally by the network or 
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externally by those supervising it. Thus, these errors are delivered with the same degree of 
confidence as truthful results. 
 
This last point illustrates, once more, the essential epistemic opacity of computational methods 
and the severity of the challenge it represents for epistemic frameworks seeking to justify our 
reliance in such methods, particularly when they are used in context where reliability is crucial. 
The section before this one showed the indispensability of endogenous features of processes and 
devices to the reliability assessments of artifacts. This discussion also showed the further 
indispensability to reliability assessments of the nature and source of error, particularly in 
knowledge-critical and safety critical contexts. In this section, we saw that it is precisely these 
two elements, the source and nature of error that matters most when we talk about epistemic 
opacity. The last point in the paragraph above illustrates that such a challenge in the context of 
computational methods such as deep neural networks may very well be, as Humphreys (2009) 
once suggested of other computational methods, essentially insurmountable and thus, a genuine 
challenge to computational reliabilism. Importantly, the essentiality of such an opacity need not 
arise from internal features of an epistemic agent such as its nature, as Humphreys suggested. 
Rather, it can be traced to endogenous features of the system in question and as such be agent-
neutral and agent-independent. That is, they arise in virtue of features that have little or nothing 
to do with an agent’s epistemic limitations (hence, agent-independent) and it is the kind of 
opacity that would apply to any given agent with sufficiently similar epistemic limitations 
(agent-neutral) (Alvarado, 2021).  
 

4. Conclusion 
 
In this chapter I have presented three distinct yet interrelated challenges to computational 
reliabilism and its viability as an epistemic framework that can provide justificatory grounds for 
our reliance in novel and opaque computational technologies, particularly those related to novel 
AI methodology such as machine learning. In particular, I argued that the challenges related to 
warrant transmission, the indispensability of endogenous features such as the source and nature 
of error in reliability assessments, and the ultimate opacity of the latter, as exemplified by the 
irreversibility of such systems and the intractable nature of errors related to adversarial 
disruptions, represent a serious problem for the viability of computational reliabilism. With 
regards to the second of these challenges, I also showed that it is the same virtues for which the 
epistemic framework is lauded that make it incapable of accounting for such endogenous 
features as the source and nature of error in an artifact. With regards to the third challenge, I also 
showed that, contrary to conventional interpretations in the literature, what is at play in the 
challenge of epistemic opacity is not just any kind of general transparency regarding how 
something works, but rather the access—or lack thereof— to the nature and source of error. In 
doing so, I hope to have also shown that these challenges are not only serious but maybe even 
insurmountable for such an epistemic framework as computational reliablism as currently 
articulated in the literature. Nevertheless, I do not aim for this analysis to constitute a final 
devastating critique of computational reliabilism. My hope is rather that, along with other recent 
efforts (Smart, et al., 2021; Ferrario, 2023), these observations serve as a starting point to rescue 
it from its present inadequacy. 
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