
OBSERVABILITY OF TURING MACHINES:
A REFINEMENT OF THE THEORY OF

COMPUTATION

Yaroslav D. Sergeyev∗ and Alfredo Garro†‡

Dipartimento di Elettronica, Informatica e Sistemistica,
Università della Calabria,
87030 Rende (CS) – Italy

Abstract

The Turing machine is one of the simple abstract computational devices
that can be used to investigate the limits of computability. In this paper, they
are considered from several points of view that emphasize the importance
and the relativity of mathematical languages used to describe the Turing ma-
chines. A deep investigation is performed on the interrelations between me-
chanical computations and their mathematical descriptions emerging when
a human (the researcher) starts to describe a Turing machine (the object of
the study) by different mathematical languages (the instruments of investiga-
tion). Together with traditional mathematical languages using such concepts
as ‘enumerable sets’ and ‘continuum’ a new computational methodology al-
lowing one to measure the number of elements of different infinite sets is
used in this paper. It is shown how mathematical languages used to describe
the machines limit our possibilities to observe them. In particular, notions
of observable deterministic and non-deterministic Turing machines are intro-
duced and conditions ensuring that the latter can be simulated by the former
are established.

Key Words: Theory of automatic computations, observability of Turing machines,
relativity of mathematical languages, infinite sets, Sapir-Whorf thesis.

∗Yaroslav D. Sergeyev, Ph.D., D.Sc., holds a Full Professorship reserved for distinguished sci-
entists at the University of Calabria, Rende, Italy. He is also Full Professor (a part-time contract)
at the N.I. Lobatchevsky State University, Nizhni Novgorod, Russia and Affiliated Researcher at the
Institute of High Performance Computing and Networking of the National Research Council of Italy.
yaro@si.deis.unical.it

†Alfredo Garro, Ph.D., is Assistant Professor at the University of Calabria, Rende, Italy.
garro@si.deis.unical.it

‡The authors thank the anonymous reviewers for their useful suggestions. This research was par-
tially supported by the Russian Federal Program “Scientists and Educators in Russia of Innovations”,
contract number 02.740.11.5018.

1

1 Introduction

The fundamental nature of the concept automatic computations attracted a great
attention of mathematicians (and later of computer scientists) since 1930’s (see
[5, 13, 14, 15, 17, 18, 21, 32] and more recent monographs [2, 6, 7, 11]). At that
time, this strong impetus for understanding what is computable was actively sup-
ported by David Hilbert who believed that all of Mathematics could be precisely
axiomatized. Several mathematicians from around the world proposed their in-
dependent definitions of what it means to be computable and what it means an
automatic computing machine. In order to perform a rigorous study of sequen-
tial computations, they worked with different mathematical models of computing
machines. Surprisingly, it has been discovered (see detailed discussions on this
topic in, e.g., [2, 6, 7]) that all of these models were equivalent, e.g., anything
computable in the λ-calculus is computable by a Turing machine.

In spite of the fact that the famous results of Church, Gödel, and Turing have
shown that Hilbert’s programme cannot be realized, the idea of finding an adequate
set of axioms for one or another field of Mathematics continues to be among the
most attractive goals for contemporary mathematicians as well. Usually, when it is
necessary to define a concept or an object, logicians try to introduce a number of
axioms describing the object. However, this way is fraught with danger because of
the following reasons.

First, when we describe a mathematical object or concept we are limited by
the expressive capacity of the language we use to make this description. A richer
language allows us to say more about the object and a weaker language – less.
Thus, development of the mathematical (and not only mathematical) languages
leads to a continuous necessity of a transcription and specification of axiomatic
systems. Second, there is no guarantee that the chosen axiomatic system defines
‘sufficiently well’ the required concept and a continuous comparison with practice
is required in order to check the goodness of the accepted set of axioms. However,
there cannot be again any guarantee that the new version will be the last and defini-
tive one. Finally, the third limitation already mentioned above has been discovered
by Gödel in his two famous incompleteness theorems (see [8]).

In linguistics, the relativity of the language with respect to the world around
us has been formulated in the form of the Sapir-Whorf thesis (see [4, 10, 16, 23])
also known as the ‘linguistic relativity thesis’ (that has also interesting relations to
the ideas of K.E. Iverson exposed in his Turing lecture [12]). As becomes clear
from its name, the thesis does not accept the idea of the universality of language
and postulates that the nature of a particular language influences the thought of its
speakers. The thesis challenges the possibility of perfectly representing the world
with language, because it implies that the mechanisms of any language condition
the thoughts of its speakers.

In this paper, we study the relativity of mathematical languages in situations
where they are used to observe and to describe automatic computations (we con-
sider the traditional computational paradigm mainly following results of Turing

2

(see [32]) whereas emerging computational paradigms (see, e.g. [1, 19, 34, 33])
are not considered here). Let us illustrate the concept of the relativity of mathe-
matical languages by the following example. In his study published in Science (see
[9]), Peter Gordon describes a primitive tribe living in Amazonia – Pirahã – that
uses a very simple numeral system1 for counting: one, two, ‘many’. For Pirahã, all
quantities larger than two are just ‘many’ and such operations as 2+2 and 2+1 give
the same result, i.e., ‘many’. By using their weak numeral system Pirahã are not
able to see, for instance, numbers 3, 4, and 5, to execute arithmetical operations
with them, and, in general, to say anything about these numbers because in their
language there are neither words nor concepts for that.

The numeral system of Pirahã has another interesting feature particularly inter-
esting in the context of the study presented in this paper:

‘many’+1 = ‘many’, ‘many’+2 = ‘many’, ‘many’+ ‘many’ = ‘many’. (1)

These relations are very familiar to us in the context of our views on infinity used
in the calculus

∞+1 = ∞, ∞+2 = ∞, ∞+∞ = ∞. (2)

Thus, the modern mathematical numeral systems allow us to distinguish a larger
quantity of finite numbers with respect to Pirahã but give similar results when we
speak about infinite numbers. Formulae (1) and (2) lead us to the following ob-
servation: Probably our difficulty in working with infinity is not connected to the
nature of infinity but is a result of inadequate numeral systems used to express in-
finite numbers. Analogously, Pirahã do not distinguish numbers 3 and 4 not due to
the nature of these numbers but due to the weakness of their numeral system.

This remark is important with respect to the computability context because of
the following reason. Investigations of traditional computational models (we do not
discuss emerging computational paradigms, see, e.g. [3]) executed so far used for
studying infinite computational processes mathematical instruments developed by
Georg Cantor (see [3]) who has shown that there exist infinite sets having different
number of elements. In the theory of computations, two infinite sets – countable
sets and continuum – are used mainly. Cantor has proved, by using his famous
diagonal argument, that the cardinality, ℵ0, of the set, N, of natural numbers is less
than the cardinality, C, of real numbers x ∈ [0,1].

Cantor has also developed an arithmetic for the infinite cardinal numbers. Some
of the operations of this arithmetic including ℵ0 and C are given below:

ℵ0 +1 = ℵ0, ℵ0 +2 = ℵ0, ℵ0 +ℵ0 = ℵ0,

1We remind that numeral is a symbol or group of symbols that represents a number. The differ-
ence between numerals and numbers is the same as the difference between words and the things they
refer to. A number is a concept that a numeral expresses. The same number can be represented by
different numerals. For example, the symbols ‘9’, ‘nine’, and ‘IX’ are different numerals, but they
all represent the same number.

3

C +1 = C, C +2 = C, C +C = C, C +ℵ0 = C.

Again, it is possible to see a clear similarity with the arithmetic operations used in
the numeral system of Pirahã.

Advanced contemporary numeral systems enable us to distinguish within ‘many’
various large finite numbers. As a result, we can use large finite numbers in com-
putations and construct mathematical models involving them. Analogously, if we
were be able to distinguish more infinite numbers probably we could understand
better the nature of the sequential automatic computations (remind the famous
phrase of Ludwig Wittgenstein: ‘The limits of my language are the limits of my
world.’).

The goal of this paper is to study Turing machines using a new approach intro-
duced in [24, 25, 26] and allowing one to write down different finite, infinite, and
infinitesimal numbers by a finite number of symbols as particular cases of a unique
framework. Its applications in several fields can be found in [24, 28, 29, 30, 31]. It
is worthy to mention also that the new computational methodology has given a pos-
sibility to introduce the Infinity Computer (see [25] and the European patent [27])
working numerically with finite, infinite, and infinitesimal numbers (its software
simulator has already been realized).

The rest of the paper is structured as follows. In Section 2, a brief introduction
to the new methodology is given. Due to a rather unconventional character of the
new methodology, the authors kindly recommend the reader to study the survey
[26] (downloadable from [25]) before approaching Sections 3 – 5.

Section 3 presents some preliminary results regarding description of infinite
sequences by using a new numeral system. Section 4 shows that the introduced
methodology applied together with a new numeral system allows one to have a
fresh look at mathematical descriptions of Turing machines. A deep investiga-
tion is performed on the interrelations between mechanical computations and their
mathematical descriptions emerging when a human (the researcher) starts to de-
scribe a Turing machine (the object of the study) by different mathematical lan-
guages (the instruments of investigation). Mathematical descriptions of automatic
computations obtained by using the traditional language and the new one are com-
pared and discussed. An example of the comparative usage of both languages is
given in Section 5 where they are applied for descriptions of deterministic and
non-deterministic Turing machines. After all, Section 6 concludes the paper.

2 Methodology and a new numeral system

In this section, we give just a brief introduction to the methodology of the new
approach [24, 26] dwelling only on the issues directly related to the subject of the
paper. This methodology will be used in the subsequent sections to study Tur-
ing machines and to obtain some more detailed results related to the further un-
derstanding of what is effectively computable – the problem that was stated and
widely discussed in [5, 32].

4

We start by introducing three postulates that will fix our methodological posi-
tions (having a strong applied character) with respect to infinite and infinitesimal
quantities and Mathematics, in general.

Postulate 1. There exist infinite and infinitesimal objects but human beings and
machines are able to execute only a finite number of operations.

Postulate 2. We shall not tell what are the mathematical objects we deal with;
we just shall construct more powerful tools that will allow us to improve our capa-
bilities to observe and to describe properties of mathematical objects.

Postulate 3. The principle ‘The part is less than the whole’ is applied to all
numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and
infinite).

In Physics, researchers use tools to describe the object of their study and the
used instrument influences results of observations and restricts possibilities of ob-
servation of the object. Thus, there exists the philosophical triad – researcher, ob-
ject of investigation, and tools used to observe the object. Postulates 1–3 emphasize
existence of this triad in Mathematics and Computer Science, as well. Mathemat-
ical languages (in particular, numeral systems) are among the tools used by math-
ematicians to observe and to describe mathematical objects. As a consequence,
very often difficulties that we find solving mathematical problems are related not
to their nature but to inadequate mathematical languages used to solve them.

It is necessary to notice that due to the declared applied statement fixed by
Postulates 1–3, such concepts as bijection, numerable and continuum sets, cardi-
nal and ordinal numbers cannot be used in this paper because they belong to the
theories working with different assumptions. As a consequence, the new approach
is different also with respect to the non-standard analysis introduced in [22] and
built using Cantor’s ideas. However, the approach used here does not contradict
Cantor. In contrast, it evolves his deep ideas regarding existence of different infi-
nite numbers in a more applied way and can be viewed as a more strong lens of
our mathematical microscope that allows one, e.g., not only to separate different
classes of infinite sets but also to measure the number of elements of some infinite
sets.

By accepting Postulate 1 we admit that it is not possible to have a complete
description of infinite processes and sets due to our finite capabilities. For instance,
we accept that we are not able to observe all elements of an infinite set (this issue
will be discussed in detail hereinafter).

It is important to emphasize that our point of view on axiomatic systems is also
more applied than the traditional one. Due to Postulate 2, mathematical objects
are not defined by axiomatic systems that just determine formal rules for operat-
ing with certain numerals reflecting some properties of the studied mathematical
objects.

Due to Postulate 3, infinite and infinitesimal numbers should be managed in the
same manner as we are used to deal with finite ones. This Postulate in our opinion
very well reflects organization of the world around us but in many traditional in-
finity theories it is true only for finite numbers. Due to Postulate 3, the traditional

5

point of view on infinity accepting such results as ∞+1 = ∞ should be substituted
in a way ensuring that ∞+1 > ∞.

This methodological program has been realized in [24, 26] where a new pow-
erful numeral system has been developed. This system gives a possibility to ex-
ecute numerical computations not only with finite numbers but also with infinite
and infinitesimal ones in accordance with Postulates 1–3. The main idea consists
of measuring infinite and infinitesimal quantities by different (infinite, finite, and
infinitesimal) units of measure.

A new infinite unit of measure has been introduced for this purpose in [24, 26]
in accordance with Postulates 1–3 as the number of elements of the set N of natural
numbers. It is expressed by a new numeral ① called grossone.

It is necessary to emphasize immediately that the infinite number ① is not ei-
ther Cantor’s ℵ0 or ω. Particularly, it has both cardinal and ordinal properties as
usual finite natural numbers. Formally, grossone is introduced as a new number by
describing its properties postulated by the Infinite Unit Axiom (see [24, 26]). This
axiom is added to axioms for real numbers similarly to addition of the axiom de-
termining zero to axioms of natural numbers when integer numbers are introduced.
Again, we speak about axioms of real numbers in sense of Postulate 2, i.e., axioms
define formal rules of operations with numerals in a given numeral system.

Inasmuch as it has been postulated that grossone is a number, all other axioms
for numbers hold for it, too. Particularly, associative and commutative properties
of multiplication and addition, distributive property of multiplication over addi-
tion, existence of inverse elements with respect to addition and multiplication hold
for grossone as for finite numbers. This means, for example, that the following
relations hold for grossone, as for any other number

0 ·① = ① ·0 = 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (3)

Let us comment upon the nature of grossone by some illustrative examples (see
the survey [26] for a detailed discussion).

Example 2.1. Infinite numbers constructed using grossone can be interpreted in
terms of the number of elements of infinite sets. For example, ①−2 is the number
of elements of a set B = N\{b1,b2} where b1,b2 ∈ N. Analogously, ① + 1 is the
number of elements of a set A = N∪{a}, where a /∈ N. Due to Postulate 3, integer
positive numbers that are larger than grossone do not belong to N but also can be
easily interpreted. For instance, ①3 is the number of elements of the set V , where

V = {(a1,a2,a3) : a1 ∈ N,a2 ∈ N,a3 ∈ N}. 2

Example 2.2. Grossone has been introduced as the quantity of natural numbers.
Similarly to the set

A = {1,2,3,4,5} (4)

6

having 5 elements where 5 is the largest number in A, ① is the largest infinite
natural number2 and ① ∈ N. As a consequence, the set, N, of natural numbers can
be written in the form

N = {1,2,3, . . . ①−2, ①−1, ①}. (5)

Traditional numeral systems did not allow us to see infinite natural numbers . . .①−
2,①−1, ①. Similarly, the Pirahã are not able to see finite natural numbers greater
than 2. In spite of this fact, these numbers (e.g., 3 and 4) belong to N and are
visible if one uses a more powerful numeral system. Thus, we have the same
object of observation – the set N – that can be observed by different instruments –
numeral systems – with different accuracies (see Postulate 2). 2

As it has been mentioned above, the introduction of the numeral ① allows us
to introduce various numerals that can be used to express integer positive numbers
larger than grossone such as ①2, ①3 −4, and also 2①,10① + 3, etc. (their meaning
will be explained soon). This leads us to the necessity to introduce the set of
extended natural numbers (including N as a proper subset) indicated as N̂ where

N̂ = {1,2, . . . ,①−1,①,①+1,①+2,①+3, . . . ,①2 −1,①2,①2 +1, . . .}. (6)

It is useful to notice that, due to Postulates 1 and 2, the new numeral system
cannot give answers to all questions regarding infinite sets. A mathematical lan-
guage can allow one to formulate a question but not its answer. For instance, it is
possible to formulate the question: ‘What is the number of elements of the set N̂?’
but the answer to this question cannot be expressed within a numeral system using
only ①. It is necessary to introduce in a reasonable way a more powerful numeral
system by defining new numerals (for instance, ②, ③, etc.).

Example 2.3. Let us consider the set of even numbers, E, from the traditional point
of view. Cantor’s approach establishes the following one-to-one correspondence
with the set of all natural numbers, N, in spite of the fact that E is a part of N:

even numbers: 2, 4, 6, 8, 10, 12, . . .
l l l l l l

natural numbers: 1, 2, 3, 4 5, 6, . . .
(7)

This result can be viewed in the following way: traditional mathematical tools do
not allow us to distinguish inside the class of enumerable sets infinite sets having
different number of elements.

From the new point of view, the one-to-one correspondence cannot be used
as a tool for working with infinite sets because, due to Postulate 1, we are able
to execute only a finite number of operations and the sets E and N are infinite.

2This fact is one of the important methodological differences with respect to non-standard analy-
sis theories where it is supposed that infinite numbers do not belong to N.

7

However, analogously to (5), the set, E, of even natural numbers can be written
(see [26] for a detailed discussion) in the form

E = {2,4,6 . . . ①−4, ①−2, ①}, (8)

since ① is even and the number of elements of the set of even natural numbers is
equal to ①

2 . Note that the next even number is ①+ 2 but it is not natural because
①+2 > ① (see (6)), it is extended natural. Thus, we can write down not only initial
(as it is done traditionally) but also the final part of (7) as follows

2, 4, 6, 8, 10, 12, . . . ①−4, ①−2, ①

l l l l l l l l l

1, 2, 3, 4 5, 6, . . . ①
2 −2, ①

2 −1, ①
2

(9)

concluding so (7) in a complete accordance with Postulate 3. 2

Note that record (9) does not affirm that we have established the one-to-one
correspondence among all even numbers and a half of natural ones. We cannot do
this because, due to Postulate 1, we can execute only a finite number of operations
and the considered sets are infinite. The symbols ‘. . .’ in (9) indicate that there are
infinitely many numbers between 12 and ①−4 in the first line and between 6 and
①
2 −2 in the second line. The record (9) affirms that for any even natural number

expressible in the chosen numeral system it is possible to indicate the correspond-
ing natural number in the lower row of (9) if it is also expressible in this numeral
system.

We conclude the discussion upon Example 2.3 by the following remark. With
respect to our methodology, the mathematical results obtained by Cantor in (7) and
our results (9) do not contradict each other. They both are correct with respect to
mathematical languages used to express them. This relativity is very important and
it has been emphasized in Postulate 2. The result (7) is correct in Cantor’s language
and the more powerful language developed in [24, 26] allows us to obtain a more
precise result (9) that is correct in the new language.

The choice of the mathematical language depends on the practical problem
that is to be solved and on the accuracy required for such a solution. The result
(7) just means that Cantor’s mathematical tools do not allow one to distinguish two
observed mathematical objects, namely, the number of elements of the sets E and
N from the point of view of the number of their elements. If one is satisfied with
this accuracy, this answer can be used (and was used since Cantor has published
his results in 1870’s) in practice.

However, if one needs a more precise result, it is necessary to introduce a more
powerful mathematical language (a numeral system in this case) allowing one to
express the required answer in a more accurate way. Obviously, it is not possible
to mix languages. For instance, the question ‘what is the result of the operation
‘many’+4?’, where ‘many’ belongs to the numeral system of Pirahã, is nonsense.

8

3 Infinite sequences

In the traditional definition of the Turing machine the notion of infinity is used in
a strong form (see [32] and, e.g., [7]). First, the Turing machine has an infinite
one-dimensional tape divided into cells and its outputs are computable (infinite)
sequences of numerals. Second, an infinite sequence of operations can be exe-
cuted by the machine and it is supposed the availability of an infinite time for the
computation. Turing writes in pages 232 and 233 of [32]:

Computing machines.
If an a-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called
symbols of the second kind), then the machine will be called a com-
puting machine. If the machine is supplied with a blank tape and set
in motion, starting from the correct initial m-configuration, the subse-
quence of the symbols printed by it which are of the first kind will be
called the sequence computed by the machine. The real number whose
expression as a binary decimal is obtained by prefacing this sequence
by a decimal point is called the number computed by the machine. [...]

Circular and circle-free machines.
If a computing machine never writes down more than a finite number
of symbols of the first kind it will be called circular. Otherwise it is
said to be circle-free. [...]

Computable sequences and numbers.
A sequence is said to be computable if it can be computed by a circle-
free machine.

It is clear that the notion of the infinite sequence becomes very important for
our study of the Turing machine. Thus, before considering the notion of the Turing
machine from the point of view of the new methodology, let us explain how the
notion of the infinite sequence can be viewed from the new positions.

Traditionally, an infinite sequence {an},an ∈ A, n ∈ N, is defined as a function
having the set of natural numbers, N, as the domain and a set A as the codomain. A
subsequence {bn} is defined as a sequence {an} from which some of its elements
have been removed. In spite of the fact of the removal of the elements from {an},
the traditional approach does not allow one to register, in the case where the ob-
tained subsequence {bn} is infinite, the fact that {bn} has less elements than the
original infinite sequence {an}.

From the point of view of the new methodology, an infinite sequence can be
considered in a dual way: either as an object of a mathematical study or as a
mathematical instrument developed by human beings to observe other objects and
processes (see Postulate 2). First, let us consider it as a mathematical object and
show that the definition of infinite sequences should be done more precise within

9

the new methodology. The following result (see [24, 26]) holds. We reproduce
here its proof for the sake of completeness.

Theorem 3.1. The number of elements of any infinite sequence is less or equal
to ①.

Proof. The new numeral system allows us to express the number of elements
of the set N as ①. Thus, due to the sequence definition given above, any sequence
having N as the domain has ① elements.

The notion of subsequence is introduced as a sequence from which some of
its elements have been removed. Due to Postulate 3, this means that the resulting
subsequence will have less elements than the original sequence. Thus, we obtain
infinite sequences having the number of members less than grossone. 2

It becomes appropriate now to define the complete sequence as an infinite se-
quence containing ① elements. For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numbers are not complete because

they have ①
2 elements each (see [24, 26]). Thus, the new approach imposes a more

precise description of infinite sequences than the traditional one.
To define a sequence {an} in the new language, it is not sufficient just to give

a formula for an, we should determine (as it happens for sequences having a finite
number of elements) its number of elements and/or the first and the last elements
of the sequence. If the number of the first element is equal to one, we can use the
record {an : k} where an is, as usual, the general element of the sequence and k is
the number (that can be finite or infinite) of members of the sequence.

In connection with this definition the following question arises inevitably. Sup-
pose that we have two sequences, for example, {bn : k1} and {cn : k2}, where both
k1 and k2 are infinite numbers such that k1 < ① and k2 < ① but k1 + k2 > ①. Can
we create a new sequence, {dn : k}, composed from both of them, for instance, as
it is shown below

b1, b2, . . . bk1−2, bk1−1, bk1 , c1, c2, . . . ck2−2, ck2−1, ck2

and which will be the value of the number of its elements k?
The answer to this question is ‘no’ because due to Theorem 3.1, a sequence

cannot have more than ① elements. Thus, the longest sequence is {dn : ①}. After
arriving to the last element d①, the sequence {dn : ①} will stop. However, the
second sequence can then be started.

Example 3.1. Suppose that k1 = 2①
5 and k2 = 4①

5 . Then starting from the ele-
ment b1 we can arrive at maximum to the element c 3①

5
being the element d① in the

sequence {dn : ①} which we construct. Therefore, k = ① and

b1, . . . b 2①
5
, c1, . . .c 3①

5︸ ︷︷ ︸
① elements

, c 3①
5 +1, . . . c 4①

5︸ ︷︷ ︸
①
5 elements

.

10

The remaining members c 3①
5 +1, . . . c 4①

5
of the sequence {cn : 4①

5 } will form the

second sequence, {gn : l} having l = 4①
5 − 3①

5 = ①
5 elements. Thus, we have

formed two sequences, the first of them is complete and the second is not. 2

We have already seen the influence of Postulates 2 and 3 on the notion of the
infinite sequence. Let us study now what Postulate 1 gives us in this context. First,
since the object of the study – the sequence – has an infinite number of members,
it follows from Postulate 1 that we cannot observe all of them. We can observe
only a finite number of its elements, precisely, those members of the sequence for
which there exist the corresponding numerals in the chosen numeral system.

Example 3.2. Let us consider the numeral system, P , of Pirahã able to express only
numbers 1 and 2. If we add to P the new numeral ①, we obtain a new numeral
system (we call it P̂). Let us consider now a sequence of natural numbers {n : ①}.
It goes from 1 to ① (note that both numbers, 1 and ①, can be expressed by numerals
from P̂). However, the numeral system P̂ is very weak and it allows us to observe
only ten numbers from the sequence {n : ①} represented by the following numerals

1,2︸︷︷︸
f inite

, . . .
①

2
−2,

①

2
−1,

①

2
,
①

2
+1,

①

2
+2

︸ ︷︷ ︸
in f inite

, . . . ①−2,①−1,①︸ ︷︷ ︸
in f inite

. (10)

The first two numerals in (10) represent finite numbers, the remaining eight nu-
merals express infinite numbers, and dots represent members of the sequence of
natural numbers that are not expressible in P̂ and, therefore, cannot be observed if
one uses only this numeral system for this purpose. 2

Note that Pirahã are not able to see finite numbers larger than 2 using their
weak numeral system but these numbers are visible if one uses a more powerful
numeral system. In particular, this means that when we speak about sets (finite or
infinite) it is necessary to take care about tools used to describe a set. In order to
introduce a set, it is necessary to have a language (e.g., a numeral system) allowing
us to describe both the form of its elements in a way and the number of its elements.
For instance, the set A from (4) cannot be defined using the mathematical language
of Pirahã.

Analogously, the words ‘the set of all finite numbers’ do not define a set from
our point of view. It is always necessary to specify which instruments are used to
describe (and to observe) the required set and, as a consequence, to speak about ‘the
set of all finite numbers expressible in a fixed numeral system’. For instance, for
Pirahã ‘the set of all finite numbers’ is the set {1,2} and for another Amazonian
tribe – Mundurukú3 – ‘the set of all finite numbers’ is the set A from (4). As it
happens in Physics, the instrument used for an observation bounds the possibility

3Mundurukú (see [20]) fail in exact arithmetic with numbers larger than 5 but are able to compare
and add large approximate numbers that are far beyond their naming range. Particularly, they use the
words ‘some, not many’ and ‘many, really many’ to distinguish two types of large numbers (in this
connection think about Cantor’s ℵ0 and ℵ1).

11

of the observation and determines its accuracy. It is not possible to say what we
shall see during our observation if we have not clarified which instruments will be
used to execute the observation.

Let us consider now infinite sequences as one of the instruments used by math-
ematicians to study the world around us and other mathematical objects and pro-
cesses. The first immediate consequence of Theorem 3.1 is that any sequential
process can have at maximum ① elements. This means that a process of sequential
observations of any object cannot contain more than ① steps4. Due to Postulate 1,
we are not able to execute any infinite process physically but we assume the exis-
tence of such a process. Moreover, again due to Postulate 1, only a finite number
of observations of elements of the considered infinite sequence can be executed by
a human who is limited by the numeral system used for observation. However, the
researcher can choose how to organize the required sequence of observations and
which numeral system to use for it, defining so which elements of the object he/she
can observe. This situation is exactly the same as in natural sciences: before start-
ing to study a physical object, a scientist chooses an instrument and its accuracy
for the study.

Example 3.3. Let us consider the set, N̂, of extended natural numbers from (6) as
an object of our observation. Suppose that we want to organize the process of the
sequential counting of its elements. Then, due to Theorem 3.1, starting from the
number 1 this process can arrive at maximum to ①. If we consider the complete
counting sequence {n : ①}, then we obtain

1,2, 3, 4, . . . ①−2,①−1,①,①+1,①+2,①+3, . . .

xxxx x x x

︸ ︷︷ ︸
① steps

(11)

In this formula, a more powerful (with respect to P̂ from (10)) numeral system,
P̃ , is used. It allows us to see also numbers three and four through the numerals

3 and 4 and, of course, such numbers as ①−4, ①
3 , ①

4 −3, and other numbers that
can be viewed through numerals obtained as combinations of symbols ‘+’, ‘-’, and
‘/’ and numerals 1, 2, 3, 4, and ① similarly to (10) (we assume that finite numbers
larger than 4 are not expressible in P̃). We omit them in the record (11) due to a
straightforward similarity with (10).

Analogously, if we start the process of the sequential counting from 3, the

4It is worthy to notice a deep relation of this observation to the Axiom of Choice. Since Theo-
rem 3.1 states that any sequence can have at maximum ① elements, so this fact holds for the process
of a sequential choice, as well. As a consequence, it is not possible to choose sequentially more than
① elements from a set. This observation also emphasizes the fact that the parallel computational
paradigm is significantly different with respect to the sequential one because p parallel processes can
choose p ·① elements from a set.

12

process arrives at maximum to ①+2:

1,2,3, 4, . . . ①−2,①−1,①,①+1,①+2,①+3, . . .xx x x xx x

︸ ︷︷ ︸
① steps

The corresponding complete sequence used in this case is {n+2 : ①}. We can also
change the length of the step in the counting sequence and consider, for instance,
the complete sequence {2n−1 : ①}:

1,2,3,4, . . . ①−1,①,①+1,①+2, . . . 2①−3,2①−2,2①−1,2①,2①+1, . . .xx x x xx x

︸ ︷︷ ︸
① steps

If we use again the numeral system P̃ , then among finite numbers it allows us to
see only numbers 1 and 3 because already the next number in the sequence, 5, is
not expressible in P̃ . The last two elements of the sequence are 2①−3 and 2①−1
and P̃ allows us to observe them. 2

The introduced definition of a sequence allows us to work not only with the
first but also with the last element of any sequence (if they are expressible in the
chosen numeral system) independently whether it has a finite or an infinite number
of elements. Let us use this new definition together with Postulate 2 for studying
infinite sets of numerals, in particular, for calculating the number of points at the
interval [0,1) (see [24, 26]). To do this we need a definition of the term ‘point’
and mathematical tools to indicate a point. Since this concept is one of the most
fundamental, it is very difficult to find an adequate definition. If we accept (as is
usually done in modern Mathematics) that a point A belonging to the interval [0,1)
is determined by a numeral x, x ∈ S, called coordinate of the point A where S is
a set of numerals, then we can indicate the point A by its coordinate x and we are
able to execute the required calculations.

It is worthwhile to emphasize that we have not postulated that x belongs to the
set, R, of real numbers as it is usually done, because we can express coordinates
only by numerals and different choices of numeral systems lead to various sets of
numerals. This situation is a direct consequence of Postulate 2 and is typical for
natural sciences where it is well known that instruments influence the results of
observations. Remind again the work with a microscope: we decide the level of
the precision we need and obtain a result which is dependent on the chosen level
of accuracy. If we need a more precise or a more rough answer, we change the lens
of our microscope.

We should decide now which numerals we shall use to express coordinates of
the points. After this choice we can calculate the number of numerals expressible
in this system and, as a result, we obtain the number of points at the interval [0,1).
Different variants (see [24, 26]) can be chosen depending on the precision level we

13

want to obtain. For instance, we can choose a positional numeral system with a
finite radix b that allows us to work with numerals

(0.a−1a−2 . . .a−(①−1)a−①)b, a−i ∈ {0,1, . . .b−2,b−1}, 1 ≤ i ≤ ①. (12)

Then, the number of numerals (12) gives us the number of points within the in-
terval [0,1) expressed by these numerals. Note that a number using the positional
numeral system (12) cannot have more than grossone digits (contrarily to sets dis-
cussed in Example 3.3) because a numeral having g > ① digits would not be ob-
servable in a sequence. In this case such a record becomes useless in sequential
computations because it does not allow one to identify numbers since g−① nu-
merals remain non observed.

Theorem 3.2. If coordinates of points x ∈ [0,1) are expressed by numerals (12),
then the number of the points x over [0,1) is equal to b①.

Proof. In the numerals (12) there is a sequence of digits, a−1a−2 . . .a−(①−1)a−①,
used to express the fractional part of the number. Due to the definition of the se-
quence and Theorem 3.1, any infinite sequence can have at maximum ① elements.
As a result, there is ① positions on the right of the dot that can be filled in by one
of the b digits from the alphabet {0,1, . . . ,b−1}. Thus, we have b① combinations
to express the fractional part of the number. Hence, the positional numeral system
using the numerals of the form (12) can express b① numbers. 2

Corollary 3.1. The number of numerals

(a1a2a3 . . .a①−2a①−1a①)b, ai ∈ {0,1, . . .b−2,b−1}, 1 ≤ i ≤ ①, (13)

expressing integer numbers in the positional system with a finite radix b in the
alphabet {0,1, . . .b−2,b−1} is equal to b①.

Proof. The proof is a straightforward consequence of Theorem 3.2 and is so
omitted. 2

Corollary 3.2. If coordinates of points x ∈ (0,1) are expressed by numerals (12),
then the number of the points x over (0,1) is equal to b① −1.

Proof. The proof follows immediately from Theorem 3.2. 2

Note that Corollary 3.2 shows that it becomes possible now to observe and to
register the difference of the number of elements of two infinite sets (the interval
[0,1) and the interval (0,1), respectively) even when only one element (the point
0) has been excluded from the first set in order to obtain the second one.

4 The Turing machines viewed through the lens
of the new methodology

In the previous section, we studied static infinite mathematical objects – sets – by
using infinite sequences as tools of the research. Let us establish now what can we

14

say with respect to physical and mathematical processes viewed as objects of ob-
servation having in mind the triad ‘object, instrument, and researcher’ emphasized
by Postulate 2. Our main attention will be focused on processes related to the Tur-
ing machines and various manifestations of infinity taking place during the work
of the machines and during mathematical descriptions of the machines performed
by researchers.

Remind that traditionally, a Turing machine (see, e.g., [11, 32]) can be defined
as a 7-tuple

M =
〈
Q,Γ, b̄,Σ,q0,F,δ

〉
, (14)

where Q is a finite and not empty set of states; Γ is a finite set of symbols; b̄ ∈ Γ is
a symbol called blank; Σ ⊆{Γ− b̄} is the set of input/output symbols; q0 ∈ Q is the
initial state; F ⊆ Q is the set of final states; δ : {Q−F}×Γ 7→ Q×Γ×{R,L,N} is
a partial function called the transition function, where L means left, R means right,
and N means no move.

Specifically, the machine is supplied with: (i) a tape running through it which is
divided into cells each capable of containing a symbol γ ∈ Γ, where Γ is called the
tape alphabet, and b̄ ∈ Γ is the only symbol allowed to occur on the tape infinitely
often; (ii) an head that can read and write symbols on the tape and move the tape
left and right one and only one cell at a time. The behavior of the machine is
specified by its transition function δ and consists of a sequence of computational
steps; in each step the machine reads the symbol under the head and applies the
transition function that, given the current state of the machine and the symbol it
is reading on the tape, specifies (if it is defined for these inputs): (i) the symbol
γ ∈ Γ to write on the cell of the tape under the head; (ii) the move of the tape (L for
one cell left, R for one cell right, N for no move); (iii) the next state q ∈ Q of the
machine.

Following Turing (see [32]), we consider machines that have finite input and
output alphabets, inputs of a finite length, a finite number of internal states but can
work an infinite time and are able to produce outputs of an infinite length. Here-
inafter such a machine is called an imaginary Turing machine, T I . In order to
study the limitations of practical automatic computations, we also consider ma-
chines, T P , that can be constructed physically. They are identical to T I but are
able to work only a finite time and can produce only finite outputs. We study both
kinds of machines:

- from the point of view of their outputs called by Turing ‘computable num-
bers’ or ‘computable sequences’;

- from the point of view of algorithms that can be executed by a Turing ma-
chine.

4.1 Computable sequences

Let us consider first a physical machine T P . We suppose that its output is written
on the tape using an alphabet Σ containing symbols {0,1, . . .b− 2,b− 1} where

15

b is a finite number (Turing in [32] uses b = 10). Thus, the output consists of a
sequence of digits that can be viewed as a number in a positional system B with
the radix b.

It follows from Postulate 1 (reflecting a fundamental law existing in the real
world) that T P should stop after a finite number of iterations. The magnitude of
this value depends on the physical construction of the machine, the way the notion
‘iteration’ has been defined, etc., but in any case this number is finite. The machine
stops in two cases: (i) it has finished execution of its program and stops; (ii) it has
not finished execution of the program and stops just because of a breakage of some
of its components. In both cases the output sequence

(a1a2a3 . . .ak−1,ak)b, ai ∈ {0,1, . . .b−2,b−1}, 1 ≤ i ≤ k, (15)

of T P has a finite length k. Suppose that the maximal length of the output sequence
that can be computed by T P is equal to a finite number KT P . Then it follows
k ≤ KT P . This means that there exist problems that cannot be solved by T P if
the length of the output necessary to write down the solution outnumbers KT P . If
a machine T P has stopped to write the output after it has printed KT P symbols
then it is not clear whether the obtained output is a solution or just a result of the
depletion of its computational resources. In particular, with respect to the halting
problem it follows that all algorithms stop on T P .

Let us call a person working with the machine and reading the output as a
researcher (or a user). Then, in order to be able to read and to understand the
output, the researcher should have his/her own positional numeral system U with
an alphabet {0,1, . . .u− 2,u− 1} where u ≥ b from (15). Otherwise, the output
cannot be understood and decoded by the user. Moreover, he/she should be able to
read and to interpret output sequences of symbols with the length KU ≥ KT P . If
the situation KU < KT P holds, then this means that the user is not able to interpret
the obtained result. Thus, the number K∗ = min{KU ,KT P } defines the length of
the outputs that can be computed and then observed and interpreted by the user.
As a consequence, algorithms producing outputs having more than K∗ positions
become less interesting from the practical point of view.

It is possible to make analogous considerations with respect to alphabets and
numeral systems used for input sequences restricting so again the number of al-
gorithms useful from the practical point of view. Finally, the algorithm should be
written down someway. This operation is executed by using an alphabet and a
numeral system used for writing down the algorithm introduces limitations to the
algorithms that can be proposed for executing them on a machine. These consid-
erations are important because on the one hand, they establish limits of practical
automatic computations and on the other hand, they emphasize the role of numeral
systems in codifying algorithms and interpreting results of computations.

Let us turn now to imaginary Turing machines T I . Such a machine can pro-
duce outputs (15) with an infinite number of symbols k. In order to be observable
in a sequence, an output should have k ≤ ① (remind that the positional numeral

16

system B includes numerals being a sequence of digits, in order to be a numeral,
the output should have k ≤①). Outputs observable in a sequence play an important
role in the further consideration.

Theorem 4.1. Let M be the number of all possible complete computable sequences
that can be produced by imaginary Turing machines using outputs (15) being nu-
merals in the positional numeral system B . Then it follows M ≤ b①.

Proof. This result follows from the definitions of the complete sequence and
the positional numeral system considered together with Theorem 3.2 and Corol-
lary 3.1. 2

Corollary 4.1. Let us consider an imaginary Turing machine T I working with the
alphabet {0,1,2} and computing the following complete computable sequence

0,1,2,0,1,2,0,1,2, . . . 0,1,2,0,1,2︸ ︷︷ ︸
① positions

. (16)

Then imaginary Turing machines working with the output alphabet {0,1} cannot
produce observable in a sequence outputs that codify and compute (16).

Proof. Since the numeral 2 does not belong to the alphabet {0,1} it should be
coded by more than one symbol. One of the coding using the minimal number of
symbols in the alphabet {0,1} necessary to code numbers 0,1,2 is {00,01,10}.
Then the output corresponding to (16) and computed in this codification should be

00,01,10,00,01,10,00,01,10, . . . 00,01,10,00,01,10. (17)

Since the output (16) contains grossone positions, the output (17) would contain
2① positions. However, in order to be observable in a sequence, (16) should not
have more than grossone positions. This fact completes the proof. 2

At first glance results established by Theorem 4.1 and Corollary 4.1 sound
quite unusual for a person who studied the behavior of Turing machines on infinite
computable sequences using traditional mathematical tools. However, they do not
contradict each other. Theorem 4.1 and Corollary 4.1 do not speak about all Tur-
ing machines. They consider only those machines that produce complete output
sequences. If the object of observation (in this case – the output) contains more
than grossone elements, it cannot be observed and, therefore, is less interesting
from the point of view of practical computations.

It is important to emphasize that these results are in line with the situation that
we have in the real world with a finite number of positions in the output sequences.
For instance, suppose that a physical Turing machine T P has 6 positions at its
output, the numeral system {0,1,2}, and the sequence 0,1,2,0,1,2 is computed.
Then there does not exist a Turing machine working with the output alphabet {0,1}
able to calculate the sequence 0,1,2,0,1,2 using the output having 6 positions.

In order to understand Theorem 4.1 and Corollary 4.1 better, let us return to the
Turing machine as it has been described in [32] and comment upon connections

17

between the traditional results and the new ones. First, it is necessary to mention
that results of Turing and results of Theorems 3.2, 4.1, and Corollary 4.1 have been
formulated using different mathematical languages. The one used by Turing has
been developed by Cantor and did not allow Turing to distinguish within continuum
various sets having different number of elements. The new numeral system using
grossone allows us to do this.

Cantor has proved, by using his famous diagonal argument, that the number of
elements of the set N is less than the number of real numbers at the interval [0,1)
without calculating the latter. To do this, he expressed real numbers in a positional
numeral system. We have shown that this number will be different depending on
the radix b used in the positional system to express real numbers. However, all
of the obtained numbers, b①, are larger than the number of elements of the set of
natural numbers, ①.

Thus, results presented in Theorem 4.1 and Corollary 4.1 should be considered
just as a more precise analysis of the situation related to the existence of different
infinities discovered by Cantor. The usage of a more powerful numeral system
gives a possibility to distinguish and to describe more mathematical objects within
the continuum, in the same way as the usage of a stronger lens in a microscope
gives a possibility to distinguish more objects within an object that seems to be
indivisible when viewed by a weaker lens.

As a consequence, the mathematical results obtained by Turing and those pre-
sented in Theorems 3.2, 4.1, and Corollary 4.1 do not contradict each other. They
are correct with respect to mathematical languages used to express them and cor-
respond to different accuracies of the observation. Both mathematical languages
observe and describe the same object – computable sequences – but with different
accuracies. This fact is one of the manifestations of the relativity of mathematical
results formulated by using different mathematical languages.

Another manifestation of this relativity is obviously related to the concept of
the universal Turing machine and to the process of establishing equivalence be-
tween machines. Notice that Theorem 4.1 and Corollary 4.1 emphasize depen-
dence of the outputs of Turing machines on a finite alphabet {0,1, . . .b−2,b−1}
used for writing down computable sequences. Therefore, when a researcher de-
scribes a Turing machine, there exists the dependence of the description on the
finite numeral system used by the researcher. First, the description is limited by
alphabets {0,1, . . .b − 2,b− 1} known to the humanity at the present situation.
Second, by the maximal length, KU , of the sequence of symbols written in the
fixed alphabet that the researcher is able to read, to write, and to understand.

It is not possible to describe a Turing machine (the object of the study) without
the usage of a numeral system (the instrument of the study). Our possibilities to
observe and to describe Turing machines and to count their number are limited by
the numeral systems known to the humanity at the moment. Again, as it happens
in natural sciences, the tools used in the study limit the researcher. As a result,
it becomes not possible to speak about an absolute number of all possible Turing
machines T I . It is always necessary to speak about the number of all possible

18

Turing machines T I expressible in a fixed numeral system (or in a group of them).
The same limitations play an important role in the process of simulating one

machine T I by another. In order to be able to execute this operation it is necessary
to calculate the respective description number (see [32]) and this will be possible
only for description numbers expressible in the finite alphabets known at the cur-
rent moment to the researcher and the length of these numbers will be limited by
the number KU . A machine T I having the description number not satisfying these
constraints cannot be simulated because the instrument – a numeral system – re-
quired for such re-writing is not powerful enough (as usual, devil is in the details).

Let us consider now from positions of the new numeral system including gross-
one the situation related to the enumerability of machines T I studied by Turing.

Theorem 4.2. The maximal number of complete computable sequences produced
by imaginary Turing machines that can be enumerated in a sequence is equal to ①.

Proof. This result follows from the definition of a complete sequence. 2

Let us consider the results of Theorems 4.1 and 4.2 together. Theorem 4.1 gives
an upper bound for the number of complete computable sequences that can be com-
puted using a fixed radix b. However, we do not know how many of b① sequences
can be results of computations of a Turing machine. Turing establishes that their
number is enumerable. In order to obtain this result, he used the mathematical lan-
guage developed by Cantor and this language did not allow him to distinguish sets
having different infinite numbers of elements, e.g., in the traditional language that
he used the sets of even, natural, and integer numbers all are enumerable.

The introduction of grossone gives a possibility to execute a more precise

analysis and to determine that these sets have different numbers of elements: ①
2 ,①,

and 2①+1, respectively. If the number of complete computable sequences, MT I , is
larger than grossone, then there can be different sequential enumerating processes
that enumerate complete computable sequences in different ways. Theorem 4.2
states that, in any case, each of these enumerating sequential processes cannot con-
tain more than grossone members.

We conclude this subsection by noticing that the results presented in it establish
limitations for the number of computable sequences only from the point of view of
the output sequences and their alphabets. An analogous analysis can be done using
limitations imposed by the number of states of Turing machines, their inputs, and
the respective finite alphabets, as well.

4.2 Processes of automatic computations and their descriptions

First, we take notice that if we want to observe a process of computations A per-
formed by a Turing machine (T P or T I) while it executes an algorithm, then we
do it by executing observations of the machine in a sequence of moments. In fact,
it is not possible to organize a continuous observation of the machine. Any instru-
ment used for an observation has its accuracy and there will always be a minimal
period of time related to this instrument allowing one to distinguish two different

19

moments of time and, as a consequence, to observe (and to register) the states of
the object in these two moments. In the period of time passing between these two
moments the object remains unobservable.

Hence, the observations are made in a sequence (that is an instrument of the
research) and the process of computations A is the object of the study. In the
simplest case we observe A only two times: at the starting point when we supply
the input data and at the ending point of the process of computation when we read
the results. In alternative, observations are made to look at intermediate results or
even at particular moves of the parts of the machine (e.g., reading a symbol, writing
a symbol, etc.).

On the one hand, since our observations are made in a sequence, it follows
from Theorem 3.1 that the process of observations can have at maximum ① ele-
ments. This means that inside a computational process it is possible to fix more
than grossone steps (defined someway) but it is not possible to count them one by
one in a sequence containing more than grossone elements. For instance, in a time
interval [0,1), numerals (12) can be used to identify moments of time but not more
than grossone of them can be observed in a sequence.

On the other hand, it is important to stress that any process itself, considered
independently on the researcher, is not subdivided in iterations, intermediate re-
sults, moments of observations, etc. This is a direct consequence of Postulate 2,
the consequence that is also in line with the Sapir–Whorf thesis, particularly, with
results of Whorf (see [4]) related to his analysis of the differences between Western
languages and the Hopi language (a Uto-Aztecan language spoken by the Hopi peo-
ple of northeastern Arizona, USA). Analyzing the relationship between language,
thought, and reality in these two types of languages (see also recent experimental
data and the relative discussion in [10, 16]) Whorf raises a barrier between them.

Western languages tend to analyze reality as objects in space. There exist other
languages, including many Native American languages, that are oriented towards
processes. To monolingual speakers of such languages, the constructions of West-
ern languages related to objects and separate events may make little sense. On
the other hand, due to Whorf, the relativistic physics – a subject being very hard
for understanding for a Western language speaker – a Hopi speaker would find
fundamentally easier to grasp. Whorf writes:

We dissect nature along lines laid down by our native language. The
categories and types that we isolate from the world of phenomena we
do not find there because they stare every observer in the face; on the
contrary, the world is presented in a kaleidoscope flux of impressions
which has to be organized by our minds – and this means largely by
the linguistic systems of our minds. We cut nature up, organize it into
concepts, and ascribe significances as we do, largely because we are
parties to an agreement to organize it in this way – an agreement that
holds throughout our speech community and is codified in the patterns
of our language [. . .]

20

The Sapir–Whorf thesis is interesting for us because, in a complete accordance
with our methodological positions, it separates the object of observations from its
representation by one or another language. In particular, with respect to automatic
computations we emphasize that a machine (a physical or an imaginary one) ex-
ecuting a computation does not distinguish an importance of one moment during
the execution of an action with respect to another and does not count them. Certain
milestones inside a process (computational steps defined someway, operations, it-
erations, etc.) are introduced from outside of the studied process by the researcher
because these specific points are interesting for the observer for some reasons and
can be expressed in his language. The notion ‘sequence’ is a tool invented by hu-
man beings, it is a part of the modern mathematical languages (developed mainly
in the frame of Western languages dissecting processes in separate events), it does
not take part of the object of the study.

When we speak about a computer executing iterations of a certain algorithm,
we subdivide the process of computations on iterations and we count them. As
a result, it is necessary to speak about the computational power of computers (in
particular, of Turing machines) coupled with our possibilities to use them, to fol-
low computational processes, to be able to provide input data, and to read results
of computations. The understanding of the fact that computations executed by a
computer and our observations and descriptions of these computations are different
processes lead to the necessity to rethink such notions as iteration and algorithm.

At the moment when we decide what is an iteration of our algorithm, we are
choosing the instrument of our investigation and the further results will depend on
the chosen accuracy (or granularity) of observations. For instance, with respect
to Turing machines an iteration can be a single operation of the machine such as
reading a symbol from the tape, or moving the tape, etc. Another possible example
of such a choice (that is usually used in the Computer Science literature) is to
observe the machine when its configuration has been changed. All these choices
produce different sequences of observations that form an algorithm if we add to
them an input and an output being the symbols present on the tape of T I at the first
and at the last observation, respectively.

In order to conclude our discussion on the notion of the algorithm it is necessary
to remind that any sequence cannot contain more then grossone steps. Thus, after
we have chosen what is the iteration of our algorithm, the maximal number of these
iterations cannot outnumber ①. As usual, the choice of the numeral system used
to describe iterations and their results determines what will be observable for the
researcher. Similarly, the choice of the numeral system (and, in general, of the
mathematical language) used to describe the algorithm will limit the type of the
algorithms that can be described.

The notion of the result of a computation on T I has the same sense as it was
for T P . If T I has not stopped after ① observations, then this means that we have
finished our possibilities of observations and we cannot say whether the symbols
present at the tape during this observation are effectively the solution to the prob-
lem. By a complete analogy with T P , computations finish either because the ma-

21

chine T I stops or because we are not any more able to observe computations (since
T I is an imaginary one, the possibility of its breakage is not taken into consider-
ation). In particular, this means that with respect to the halting problem all algo-
rithms stop but this does not mean that the obtained result is a solution.

The analysis given above shows us that it is not possible to speak about the
computational power of a Turing machine without taking into consideration a num-
ber of limitations introduced by the languages. Among them there are at least the
following: the language used to describe the algorithm and iterations it consists
of; the language used to describe the process of computations; and the language
used to describe the Turing machine itself (its input and output alphabets, its states,
etc.). Notice that this situation with a description of automatic computations is just
a particular case of the situation emphasized by Postulate 2: when we study an
object it is necessary to be aware of the accuracy and the capability of instruments
used for the study.

The obtained picture of the computability is significantly richer and complex
with respect to traditional views (see [5, 6, 7, 13, 14, 15, 17, 21, 32]). The classic
Turing theory contains a number of theoretical results showing the same compu-
tational power of different variants of Turing machines and establishing that the
differences among machines T I

1 and T I
2 result only in the different number of

steps that will be necessary to each machine for computing the required output.
Some of the limitations on this point of view have been already discussed in Sec-
tion 4.1. In this section, we have emphasized a number of additional limitations.
Again, as it was in Section 4.1, the difference with the traditional results is not a
contradiction. These differences arise because the mathematical language used for
these traditional studies did not allow people to see the differences among various
models of computations.

5 Usage of traditional and new languages for comparing
deterministic and non-deterministic Turing machines

In order to illustrate the new way of reasoning, let us discuss the traditional and new
results regarding the computational power of deterministic and non-deterministic
Turing machines. For simplicity, we do not take into consideration limitations
described in Section 4.1. Let us first remind the traditional point of view.

A non-deterministic Turing machine (see [11]) can be defined (cf. (14)) as a
7-tuple

MN =
〈
Q,Γ, b̄,Σ,q0,F,δN

〉
, (18)

where Q is a finite and not empty set of states; Γ is a finite set of symbols; b̄ ∈ Γ
is a symbol called blank; Σ ⊆ {Γ− b̄} is the set of input/output symbols; q0 ∈ Q
is the initial state; F ⊆ Q is the set of final states; δN : {Q−F}×Γ 7→ P (Q×Γ×
{R,L,N}) is a partial function called the transition function, where L means left, R
means right, and N means no move.

22

Figure 1: The computational tree of a non-deterministic Turing machine MN hav-
ing the non-deterministic degree d = 3

As for a deterministic Turing machine (see (14)), the behavior of MN is speci-
fied by its transition function δN and consists of a sequence of computational steps.
In each step, given the current state of the machine and the symbol it is reading on
the tape, the transition function δN returns (if it is defined for these inputs) a set of
triplets each of which specifies: (i) a symbol γ ∈ Γ to write on the cell of the tape
under the head; (ii) the move of the tape (L for one cell left, R for one cell right,
N for no move); (iii) the next state q ∈ Q of the Machine. Thus, in each computa-
tional step, the machine can non-deterministically execute different computations,
one for each triple returned by the transition function.

An important characteristic of a non-deterministic Turing machine (see, e.g., [2])
is its non-deterministic degree

d = ν(MN) = max
q∈Q−F,γ∈Γ

|δN(q,γ)|

defined as the maximal number of different configurations reachable in a single
computational step starting from a given configuration. The behavior of the ma-
chine can be then represented as a tree whose branches are the computations that
the machine can execute starting from the initial configuration represented by the
node 0 and nodes of the tree at the levels 1, 2, etc. represent subsequent configura-
tions of the machine.

23

Let us consider an example shown in Fig. 1 where a non-deterministic machine
MN having the non-deterministic degree d = 3 is presented. The depth of the com-
putational tree is equal to k. In this example, it is supposed that the computational
tree of MN is complete (i.e., each node has exactly d children). Then, obviously,
the computational tree of MN has dk = 3k leaf nodes.

An important result for the classic theory on Turing machines (see e.g., [2])
is that for any non-deterministic Turing machine MN there exists an equivalent
deterministic Turing machine MD. Moreover, if the depth of the computational tree
generated by MN is equal to k, then for simulating MN , the deterministic machine
MD will execute at most

KMD
=

k

∑
j=0

jd j = O(kdk)

computational steps.
Intuitively, for simulating MN , the deterministic Turing machine MD executes

a breadth-first visit of the computational tree of MN . If we consider the example
from Fig. 1 with k = 3, then the computational tree of MN has dk = 27 leaf nodes
and dk = 27 computational paths consisting of k = 3 branches (i.e., computational
steps). Then, the tree contains dk−1 = 9 computational paths consisting of k−1 = 2
branches and dk−2 = 3 computational paths consisting of k−2 = 1 branches. Thus,
for simulating all the possible computations of MN , i.e., for complete visiting the
computational tree of MN and considering all the possible computational paths of
j computational steps for each 0 6 j 6 k, the deterministic Turing machine MD

will execute KMD
steps. In particular, if MN reaches a final configuration (e.g., it

accepts a string) in k > 0 steps and if MD could consider only the dk computational
paths which consist of k computational steps, it will executes at most kdk steps for
reaching this configuration.

These results show an exponential growth of the time required for reaching
a final configuration by the deterministic Turing machine MD with respect to the
time required by the non-deterministic Turing machine MN , assuming that the time
required for both machines for a single step is the same. However, in the classic
theory on Turing machines it is not known if there is a more efficient simulation
of MN . In other words, it is an important and open problem of Computer Science
theory to demonstrate that it is not possible to simulate a non-deterministic Turing
machine by a deterministic Turing machine with a sub-exponential numbers of
steps.

Let us now return to the new mathematical language. Since the main interest
to machines (18) is related to their theoretical properties, hereinafter we start by
a comparison of imaginary deterministic Turing machines, T I , with imaginary
machines MN from (18) denoted as T I N . Physical machines T P and T P N are
considered at the end of this section.

Due to the analysis made in Section 4.2, we should choose the accuracy (gran-
ularity) of processes of observation of both machines, T I and T I N . In order to

24

be close as much as possible to the traditional results, we consider an application
of the transition function of the machine as our observation granularity. With re-
spect to T I N this means that the nodes of the computational tree are observed.
With respect to T I we consider sequences of such nodes. For both cases the initial
configuration is not observed, i.e., we start our observations from level 1 of the
computational tree.

This choice of the observation granularity is particularly attractive due to its
accordance with the traditional definitions of Turing machines (see definitions (14)
and (18)). A more fine granularity of observations allowing us to follow internal
operations of the machines can be also chosen but is not so convenient. In fact,
such an accuracy would mix internal operations of the machines with operations of
the algorithm that is executed. A coarser granularity could be considered, as well.
For instance, we could define as a computational step two consecutive applications
of the transition function of the machine. However, in this case we do not observe
all the nodes of the computational tree. As a consequence, we could miss some
results of the computation as the machine could reach a final configuration before
completing an observed computational step and we are not able to observe when
and on which configuration the machine stopped. Then, fixed the chosen level of
granularity the following result holds immediately.

Theorem 5.1. (i) With the chosen level of granularity no more than ① computa-
tional steps of the machine T I can be observed in a sequence. (ii) In order to give
possibility to observe at least one computational path of the computational tree of
T I N from the level 1 to the level k, the depth, k ≥ 1, of the computational tree
cannot be larger than grossone, i.e., k ≤ ①.

Proof. Both results follow from the analysis made in Section 4.2 and Theo-
rem 3.1. 2

Corollary 5.1. Suppose that d is the non-deterministic degree of T I N and S is
the number of leaf nodes of the computational tree with a depth k representing the
possible results of the computation of T I N . Then it is not possible to observe all
S possible results of the computation of T I N if the computational tree of T I N is
complete and dk >①.

Proof. For the number of leaf nodes of the tree, S, of a generic non-deterministic
Turing machine T I N the estimate S ≤ dk holds. In particular, S = dk if the com-
putational tree is complete, that is our case. On the other hand, it follows from
Theorem 3.1 that any sequence of observations cannot have more than grossone
elements. As a consequence, the same limitation holds for the sequence of obser-
vations of the leaf nodes of the computational tree. This means that we are not
able to observe all the possible results of the computation of our non-deterministic
Turing machine T I N if dk >①. 2

Corollary 5.2. Any sequence of observations of the nodes of the computational
tree of a non-deterministic Turing machine T I N cannot observe all the nodes of
the tree if the number of nodes N is such that N >①.

25

Proof. The corollary follows from Theorems 3.1, 5.1, and Corollary 5.1. 2

These results lead to the following theorem again under the same assumption
about the chosen level of granularity of observations, i.e., the nodes of the compu-
tational tree of T I N representing configurations of the machine are observed.

Theorem 5.2. Given a non-deterministic Turing machine T I N with a depth, k, of
the computational tree and with a non-deterministic degree d such that

d(kdk+1 − (k +1)dk +1)

(d −1)2 6 ①, (19)

then there exists an equivalent deterministic Turing machine T I which is able to
simulate T I N and can be observed.

Proof. For simulating T I N , the deterministic machine T I executes a breadth-
first visit of the computational tree of T I N . In this computational tree, whose depth
is 1 6 k 6①, each node has, by definition, a number of children c where 0 6 c 6 d.
Let us suppose that the tree is complete, i.e., each node has c = d children. In this
case the tree has dk leaf nodes and d j computational paths of length j for each
1 6 j 6 k. Thus, for simulating all the possible computations of T I N , i.e., for a
complete visiting the computational tree of T I N and considering all the possible
computational paths consisting of j computational steps for each 1 6 j 6 k, the
deterministic machine T I will execute

KT I =
k

∑
j=1

jd j (20)

steps (note that if the computational tree of T I N is not complete, T I will execute
less than KT I). Due to Theorems 3.1 and 5.1, and Corollary 5.2, it follows that
in order to prove the theorem it is sufficient to show that under conditions of the
theorem it follows that

KT I 6 ①. (21)

To do this let us use the well known formula

k

∑
j=0

d j =
dk+1 −1

d −1
, (22)

and derive both parts of (22) with respect to d. As the result we obtain

k

∑
j=1

jd j−1 =
kdk+1 − (k +1)dk +1

(d −1)2 . (23)

Notice now that by using (20) it becomes possible to represent the number KT I as

KT I =
k

∑
j=1

jd j = d
k

∑
j=1

jd j−1.

26

This representation together with (23) allow us to write

KT I =
d(kdk+1 − (k +1)dk +1)

(d −1)2 (24)

Due to assumption (19), it follows that (21) holds. This fact concludes the proof of
the theorem. 2

Corollary 5.3. Suppose that the length of the input sequence of symbols of a non-
deterministic Turing machine T I N is equal to a number n and T I N has a complete
computational tree with the depth k such that k = nl , i.e., polynomially depends on
the length n. Then, if the values d,n, and l satisfy the following condition

d(nldnl+1 − (nl +1)dnl
+1)

(d −1)2 6 ①, (25)

then: (i) there exists a deterministic Turing machine T I that can be observed and
able to simulate T I N ; (ii) the number, KT I , of computational steps required to a
deterministic Turing machine T I to simulate T I N for reaching a final configura-
tion exponentially depends on n.

Proof. The first assertion follows immediately from theorem 5.2. Let us prove
the second assertion. Since the computational tree of T I N is complete and has the
depth k, the corresponding deterministic Turing machine T I for simulating T I N

will execute KT I steps where KT I is from (21). Since condition (25) is satisfied for
T I N , we can substitute k = nl in (24). As the result of this substitution and (25)
we obtain that

KT I =
d(nldnl+1 − (nl +1)dnl

+1)

(d −1)2 6 ①, (26)

i.e., the number of computational steps required to the deterministic Turing ma-
chine T I to simulate the non-deterministic Turing machine T I N for reaching a fi-
nal configuration is KT I 6 ① and this number exponentially depends on the length
of the sequence of symbols provided as input to T I N . 2

Results described in this section show that the introduction of the new math-
ematical language including grossone allows us to perform a more subtle analy-
sis with respect to traditional languages and to introduce in the process of this
analysis the figure of the researcher using this language (more precisely, to empha-
size the presence of the researcher in the process of the description of automatic
computations). These results show that there exist limitations for simulating non-
deterministic Turing machines by deterministic ones. These limitations can be
viewed now thanks to the possibility (given because of the introduction of the new
numeral ①) to observe final points of sequential processes for both cases of finite
and infinite processes.

Theorems 5.1, 5.2, and their corollaries show that the discovered limitations
and relations between deterministic and non-deterministic Turing machines have

27

strong links with our mathematical abilities to describe automatic computations
and to construct models for such descriptions. Again, as it was in the previous
cases studied in this paper, there is no contradiction with the traditional results
because both approaches give results that are correct with respect to the languages
used for the respective descriptions of automatic computations.

We conclude this section by the note that analogous results can be obtained for
physical machines T P and T P N , as well. In the case of imaginary machines, the
possibility of observations was limited by the mathematical languages. In the case
of physical machines they are limited also by technical factors (we remind again
the analogy: the possibilities of observations of physicists are limited by their in-
struments). In any given moment of time the maximal number of iterations, Kmax,
that can be executed by physical Turing machines can be determined. It depends on
the speed of the fastest machine T P available at the current level of development
of the humanity, on the capacity of its memory, on the time available for simulating
a non-deterministic machine, on the numeral systems known to human beings, etc.
Together with the development of technology this number will increase but it will
remain finite and fixed in any given moment of time. As a result, theorems pre-
sented in this section can be re-written for T P and T P N by substituting grossone
with Kmax in them.

6 Conclusion

The problem of mathematical descriptions of automatic computations (the concept
of the Turing machine has been used as a model of a device executing such com-
putations) has been considered in this paper from several points of view. First,
the problem has been studied using a new methodology emphasizing in a strong
form the presence in the process of the description of automatic computations of
the researcher who describes a computational device and its properties. The role
of the philosophical triad – the researcher, the object of investigation, and tools
used to observe the object – has been emphasized in the study. A deep inves-
tigation has been performed on the interrelations that arise between mechanical
computations themselves and their mathematical descriptions when a human (the
researcher) starts to describe a Turing machine (the object of the study) by different
mathematical languages (the instruments of investigation).

Along with traditional mathematical languages using such concepts as ‘enu-
merable sets’ and ‘continuum’ to describe the potential of automatic computations,
a language introduced recently and the corresponding computational methodology
allowing one to measure the number of elements of different infinite sets have been
used in this paper. It has been emphasized that mathematical descriptions obtained
by using different languages depict the object of the study – the Turing machine – in
different ways. It has been established that the obtained descriptions, even though
in certain cases they give different answers to the same questions, do not contra-
dict each other. All of them are correct with respect to the language used for the

28

observation and the description of the machines.
It has been established that there exists the relativity of mathematical descrip-

tions of the object and there cannot be ever any assurance that a language chosen
for the current description expresses the object in an absolutely correct and com-
plete way. A richer language allows the researcher to reflect better the properties of
the studied object and a weaker language does this worse (however, this fact can be
noticed only if a richer language is already known to the researcher). This situation
is similar to the work with a microscope where, when we need a more precise or
a more rough answer, we change the lens of our microscope. For instance, sup-
pose that by using a weak lens A we see the object of observation as one black
dot while by using a stronger lens B we see that the object of observation consists
of two (smaller) black dots. Thus, we have two different answers: (i) the object
consists of one dot; (ii) the object consists of two dots. Both answers are correct
with respect to the lens used for the observation.

The new mathematical language applied in this study has allowed the authors
to establish a number of results regarding sequential computations executed by the
Turing machine and results regarding computable sequences produced by the ma-
chine. Deterministic and non-deterministic machines have been studied using both
the traditional and the new languages. The obtained results have been compared
and discussed.

It has been emphasized that all mathematical (and not only mathematical) lan-
guages (including the new one used in this study) have limited expressibilities.
This fact leads to several important reflections. First, for any fixed language there
always exist problems that cannot be formulated using it (these problems often can
be seen when a new, sufficiently powerful for this purpose language is invented).
Second, there always exist problems such that questions regarding these problems
can be formulated in a language but this language is too weak to express the de-
sired answer or the accuracy of the obtained answer is insufficient for the practical
needs. Finally, in any given moment of time for each concrete problem there exists
a finite number of languages that can be used to attack the problem. Then, the most
powerful language among them defines computational bounds for the problem that
exist both for physical and imaginary Turing machines (i.e., in both cases when a
maximal finite or a maximal infinite number of iterations is considered).

References

[1] A. Adamatzky, B. De Lacy Costello, and T. Asai. Reaction-diffusion comput-
ers. Elsevier, Amsterdam, 2005.

[2] G. Ausiello, F. D’Amore, and G. Gambosi. Linguaggi, modelli, complessità.
Franco Angeli Editore, Milan, 2 edition, 2006.

[3] G. Cantor. Contributions to the founding of the theory of transfinite numbers.
Dover Publications, New York, 1955.

29

[4] J.B. Carroll, editor. Language, Thought, and Reality: Selected Writings of
Benjamin Lee Whorf. MIT Press, 1956.

[5] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345–363, 1936.

[6] S. Barry Cooper. Computability Theory. Chapman Hall/CRC, 2003.

[7] M. Davis. Computability & Unsolvability. Dover Publications, New York,
1985.

[8] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme. Monatshefte für Mathematik und Physik, 38:173–198,
1931.

[9] P. Gordon. Numerical cognition without words: Evidence from Amazonia.
Science, 306(15 October):496–499, 2004.

[10] J.J. Gumperz and S.C. Levinson, editors. Rethinking Linguistic Relativity.
Cambridge University Press, Cambridge, 1996.

[11] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading Mass., 1st edition, 1979.

[12] K.E. Iverson. Notation as a tool of thought. Communications of the ACM,
23:444–465, August 1980.

[13] S.C. Kleene. Introduction to metamathematics. D. Van Nostrand, New York,
1952.

[14] A.N. Kolmogorov. On the concept of algorithm. Uspekhi Mat. Nauk,
8(4):175–176, 1953.

[15] A.N. Kolmogorov and V.A. Uspensky. On the definition of algorithm. Us-
pekhi Mat. Nauk, 13(4):3–28, 1958.

[16] J.A. Lucy. Grammatical Categories and Cognition: A Case Study of the
Linguistic Relativity Hypothesis. Cambridge University Press, Cambridge,
1992.

[17] A.A. Markov Jr. and N.M. Nagorny. Theory of Algorithms. FAZIS, Moscow,
second edition, 1996.

[18] J.P. Mayberry. The Foundations of Mathematics in the Theory of Sets. Cam-
bridge University Press, Cambridge, 2001.

[19] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, 2000.

30

[20] P. Pica, C. Lemer, V. Izard, and S. Dehaene. Exact and approximate arithmetic
in an amazonian indigene group. Science, 306(15 October):499–503, 2004.

[21] E. Post. Finite combinatory processes – formulation 1. Journal of Symbolic
Logic, 1:103–105, 1936.

[22] A. Robinson. Non-standard Analysis. Princeton Univ. Press, Princeton, 1996.

[23] E. Sapir. Selected Writings of Edward Sapir in Language, Culture and Per-
sonality. University of California Press, Princeton, 1958.

[24] Ya.D. Sergeyev. Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS,
2003.

[25] Ya.D. Sergeyev. http://www.theinfinitycomputer.com. 2004.

[26] Ya.D. Sergeyev. A new applied approach for executing computations with
infinite and infinitesimal quantities. Informatica, 19(4):567–596, 2008.

[27] Ya.D. Sergeyev. Computer system for storing infinite, infinitesimal, and fi-
nite quantities and executing arithmetical operations with them. EU patent
1728149, 2009.

[28] Ya.D. Sergeyev. Evaluating the exact infinitesimal values of area of Sierpin-
ski’s carpet and volume of Menger’s sponge. Chaos, Solitons & Fractals,
42(5):3042–3046, 2009.

[29] Ya.D. Sergeyev. Numerical computations and mathematical modelling with
infinite and infinitesimal numbers. Journal of Applied Mathematics and Com-
puting, 29:177–195, 2009.

[30] Ya.D. Sergeyev. Numerical point of view on Calculus for functions assum-
ing finite, infinite, and infinitesimal values over finite, infinite, and infinitesi-
mal domains. Nonlinear Analysis Series A: Theory, Methods & Applications,
71(12):e1688–e1707, 2009.

[31] Ya.D. Sergeyev. Counting systems and the First Hilbert problem. Nonlin-
ear Analysis Series A: Theory, Methods & Applications, 72(3-4):1701–1708,
2010.

[32] A.M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of London Mathematical Society, series 2,
42:230–265, 1936-1937.

[33] Žilinskas A. and Žilinskas J. Interval arithmetic based optimization in non-
linear regression. Informatica, 21(1):149–158, 2010.

[34] G.W. Walster. Compiler Support of Interval Arithmetic With Inline Code Gen-
eration and Nonstop Exception Handling. Tech. Report, Sun Microsystems,
2000.

31

