
Can We Recover Spacetime Structure from

Privileged Coordinates?∗

Thomas William Barrett and JB Manchak

Abstract

We make a few brief remarks on the exchange between Barrett and
Manchak (2024a,b) and Gomes et al. (2024) concerning whether the struc-
ture of a relativistic spacetime can be recovered from its privileged coor-
dinates.

1 Introduction

The ‘Kleinian method’ of presenting a geometric space begins by singling out
a class of privileged coordinates for the space. One then looks to the transfor-
mations that carry us between these privileged coordinates and stipulates that
the geometric space is comprised of those features that are ‘invariant under’
these transformations. One naturally wonders which geometric spaces can be
given a Kleinian presentation. Norton attributes to Cartan (1927) the thought
that moving to general relativity “threw into physics and philosophy the antago-
nism that existed between the two principle directors of geometry, Riemann and
Klein. The spacetimes of classical mechanics and special relativity are of the
type of Klein, those of general relativity are of the type of Riemann” (Norton,
1999, p. 128).

Barrett and Manchak (2024a) have recently provided one way to rigorously
prove that Kleinian methods do not succeed in general relativity. Gomes et al.
(2024) have responded by claiming that Barrett and Manchak (2024a) are not
employing the correct Kleinian method. The aim of this paper is to make a few
brief remarks on this exchange. Gomes et al. (2024) claim to have isolated an
alternative Kleinian method that shows “clearly how an arbitrary Lorentzian
metric can be recovered just from the full set of its local Lorentz charts in a
manner clearly in the spirit of the Kleinian approach” (Gomes et al., 2024, p. 18).
We show that this is not the case; the proposed Kleinian method does not allow
one to recover the entire structure of a relativistic spacetime, only its conformal
structure. Along the way we take the opportunity to provide some additional

∗Thanks to Oliver Pooley, Henrique Gomes, and James Read for discussion. We’re espe-
cially grateful to David Malament for helpful comments on this material and (in particular)
the proof of the Proposition.
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motivation for the Barrett and Manchak (2024a) results, and we catalogue some
open questions for future work.

2 What are privileged coordinates?

We need to discuss what the ‘privileged coordinates’ of a spacetime might be.
We begin with an instructive case. If (M, gab) is a flat spacetime, then it seems
uncontroversial what the privileged coordinates of (M, gab) should be. For ev-
ery point p ∈ M , there is an open set U containing p and a diffeomorphism
φ : U → V such that φ∗(ηab) = gab, where V ⊂ Rn is some open set and ηab is the
Minkowski metric on Rn. One might call these charts (U, φ) the ‘Minkowskian
coordinates’ on (M, gab). It is then natural to say that the Minkowskian coor-
dinates of (M, gab) are its privileged coordinates. It is worth mentioning a few
features that Minkowskian coordinates have.

Feature 1. They form a locally G-structured space, in the sense of Wallace
(2019). In brief, a locally G-structured space can be thought of as a set
S (in this case M) with a collection C of maps from subsets of S to Rn
(in this case the maps φ) that satisfy a few basic conditions. That these
coordinates form a locally G-structured space follows from (Barrett and
Manchak, 2024a, Lemma 3.2.3).

Feature 2. They are symmetry matching. A collection of privileged coordi-
nates on (M, gab) gives rise to a pseudogroup Γ on M ; the elements of this
pseudogroup are generated by the ‘coordinate transformations’ φ◦ψ−1 for
privileged coordinate maps φ and ψ. One can show that in this case Γ
contains all and only those isometries between open subsets of M (Barrett
and Manchak, 2024a, Proposition 3.2.1). In other words, Γ is the isom-
etry pseudogroup of (M, gab). The ‘coordinate transformations’ between
privileged coordinates are just the isometries between open subsets of M .

Feature 3. They are adapted to the metric gab. In the case of flat space-
times, one can verify that if (U, φ) is a Minkowskian chart, then gab =
dau

1dbu
2 − . . .− daundbun everywhere on U , where ui are the coordinate

maps. (Indeed, Barrett and Manchak (2024b) define Minkowskian charts
in this manner.) In this sense, these privileged coordinates are ones in
which the metric ‘takes a simple form’; it looks exactly like the Minkowski
metric everywhere on U .

We will see that there are different ways to generalize from the flat case
depending on which of these features one takes to be salient. Different authors
emphasize different ones. Wallace (2019) discusses Feature 1 at length. The
atlas of a manifold M forms a locally G-structured space, and it is natural
to think of privileged coordinates as retaining this property. (It is also what
allows Barrett and Manchak (2024a) to prove that Feature 2 holds.) Regarding
Feature 2, it is common to speak of the structures ‘invariant under coordinate
transformations’ being the significant ones in a Kleinian privileged coordinate
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presentation. Norton (2002, p. 259) writes that under the Kleinian method a
“geometric theory would be associated with a class of admissible coordinate
systems and a group of transformations that would carry us between them.
The cardinal rule was that physical significance can be assigned just to those
features that were invariants of this group.” Similarly, North (2021, p. 48)
writes that “Klein suggested that any geometry can be identified by means
of the transformations that preserve the structure, likewise by the quantities
that are invariant under the group of those transformations.” Wallace (2019,
p. 135) remarks that the Kleinian method involves characterizing spaces “via
the invariance groups of the geometry under transformations.” One also often
sees endorsements of Feature 3. For example, North (2021, p. 112) writes that
“[a] preference for certain coordinates, in the sense that the laws take a simple or
natural form in them, is indicative of, it is evidence for, underlying structure.”
Wallace (2019, p. 131) also emphasizes coordinate transformations that leave
invariant “the form of the equations.”

In addition to having Feature 1, Feature 2, and Feature 3, Minkowskian co-
ordinates allow one to recover the structure of a flat spacetime (M, gab). Barrett
and Manchak (2024b) point out that there are (at least) two different ways in
which this recovery desideratum might hold of a geometric space X.

Determination. If another geometric space Y has the same privileged coordi-
nates as X, then X and Y are the same.

Kleinian Presentability. X can be presented in the framework of locally G-
structured spaces.

When Determination holds, the privileged coordinates of X ‘fix’ or ‘determine’
its structure, in the sense that no geometric space can have those privileged
coordinates without being ‘the same’ as X. Of course, in order to carefully
discuss Determination, one needs to make precise the sense in which the two
spaces might have ‘the same’ privileged coordinates, along with the sense of
‘sameness’ between the spaces this entails. Kleinian Presentability is simple.
Given a locally G-structured space (S,C), the maps in C determine manifold
structure on S along with the coordinate transformation pseudogroup Γ on
S. The natural way to recover geometric structure from this is to look to
those tensor fields on S that are ‘implicitly defined’ or ‘invariant’ under this
pseudogroup. Kleinian Presentability holds of X if there is some (S,C) that
allows one to recover the structure of X using (something like) this method.

We will shortly discuss the argument from Barrett and Manchak (2024b)
that Kleinian Presentability is strictly stronger than Determination; that argu-
ment is, in essence, the crux of the debate with Gomes et al. (2024). But it is
first instructive to mention that both of these recovery desiderata hold of flat
spacetimes and Minkowskian coordinates. First, Determination clearly holds
since if two flat spacetimes admit the same Minkowskian coordinates, then they
are equal (Barrett and Manchak, 2024b, Proposition 3). And second, one can
show that all flat relativistic spacetimes are determined (up to homothety) by
local isometry (Barrett and Manchak, 2024b, Proposition 4). This means that
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the only Lorentzian metrics implicitly defined on M by the coordinate trans-
formation pseudogroup Γ are scalar multiples of gab. In this sense, the locally
G-structured space of Minkowskian coordinates for (M, gab) allows one to re-
cover in a Kleinian manner the structure of (M, gab) (up to homothety).

One wants an account of privileged coordinates for arbitrary spacetimes, not
just flat ones. One can then ask whether it satisfies these recovery desiderata.
We will shortly present the competing accounts of Barrett and Manchak (2024a)
and Gomes et al. (2024). In brief, the former emphasizes Features 1 and 2,
while the latter emphasizes Feature 3. Neither has all three features. It is
therefore worth cataloguing the following question, which is closely related to
the “Revision 1” question posed by Barrett and Manchak (2024a):

Question 1. Is there an account of privileged coordinates for arbitrary rela-
tivistic spacetimes that satisfies Features 1, 2, and 3?

In order to answer this question, one would first need a precise statement
of Feature 3, and in particular, a clear account of what it is for a collection
of coordinates to be ‘adapted to’ gab. The exact sense in which Minkowskian
charts are adapted will clearly not do. For if gab = dau

1dbu
2 − . . . − daundbun

everywhere on U , then gab must be flat on U . Both Barrett and Manchak
(2024b) and Gomes et al. (2024) provide examples of different kinds of adapted
coordinates. But we lack a general account of what it is for coordinates to
be ‘adapted’ to gab. (See Jacobs (2024) and section 3 of Gomes et al. (2024)
for further discussion of this point.) The basic idea is that (U, φ) is adapted
to gab if on U (or perhaps on some part of U , for example, at the point p),
the form that gab takes in (U, φ) coordinates renders it some structure that Rn
‘naturally’ has — for example, the Euclidean metric or the Minkowskian metric.
The question, therefore, is whether or not one can make the relevant sense of
‘naturality’ precise. Without doing so, it seems that we lack a statement of
Feature 3 that is clear enough to allow one to answer Question 1. It is worth
cataloguing this as its own further question.

Question 2. Can one make Feature 3 precise? What is it for coordinates to be
adapted to a particular geometric structure on M?

Supposing that one is able to answer Question 2 in the affirmative, there
are some vague reasons to think that the answer to Question 1 will be “no.” In
particular, Features 2 and 3 seem to pull in opposite directions. Let (M, gab) be a
Heraclitus spacetime, i.e. one with a trivial isometry pseudogroup (Manchak and
Barrett, 2024). (That is, if U and V are open subsets of M , the only isometry φ :
U → V is the identity map.) Insofar as an account of privileged coordinates for
(M, gab) satisfies Feature 2, it cannot admit ‘too many’ coordinates as privileged,
since the coordinate transformations they determine must be few if they are
to form the trivial isometry pseudogroup (which only contains identity maps).
On the other hand, for the account to have Feature 3, it will likely have to
countenance many coordinates as privileged. It strikes one as unlikely that
there can be a ‘small’ collection of coordinates that reflect the ‘form’ of the
metric gab, given how asymmetric gab is.
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3 Two accounts

We turn to the account of privileged coordinates provided by Barrett and Man-
chak (2024a). Recall that to generate Minkowskian charts, one considers the
class of isometries between open regions of the given flat spacetime and open
regions of a fixed spacetime with underlying manifold Rn, which in this case
is Minkowski spacetime. One can generalize this exact idea to arbitrary space-
times, so long as one no longer considers isometries to Minkowski spacetime.
The basic idea behind the flat case will still hold; one will still be considering
the privileged coordinates to be isometries between open regions of the space-
time and open regions of some spacetime with underlying manifold Rn.

More precisely, one begins by showing that every relativistic spacetime has
a representation (Barrett and Manchak, 2024a, Lemma 3.2.2). We say that a
spacetime (Rn, g′ab) with underlying manifold Rn is a representation of (M, gab)
if for every point p ∈ M , there are open sets O ⊂ M and O′ ⊂ Rn such that
p ∈ O and (O, gab) is isometric to (O′, g′ab). One easily verifies that Minkowski
spacetime is a representation of every flat spacetime; it is in this sense that this
account of privileged coordinates is generalizing from the flat case. The exis-
tence of representations allows one to construct a locally G-structured space
from a relativistic spacetime (M, gab). Let (M, gab) be a relativistic space-
time with (Rn, g′ab) a representation of it. One then lets C be the collection
of isometries between open subsets of (M, gab) and open subsets of (Rn, g′ab),
i.e. diffeomorphisms c : U → V where U ⊂ M and V ⊂ Rn are open and
c∗(g′ab) = gab|U . The resulting (M,C) is a locally G-structured space (Barrett
and Manchak, 2024a, Lemma 3.2.3), and if one had picked a different represen-
tation, one would have constructed an isomorphic locally G-structured space
(Barrett and Manchak, 2024a, Proposition 3.2.3). The manifold recovered by
(M,C) is the manifold M , and the coordinate transformation pseudogroup that
(M,C) induces is the isometry pseudogroup of (M, gab) (Barrett and Manchak,
2024a, Proposition 3.2.1). One therefore has an account of privileged coordi-
nates that satisfies Features 1 and 2. It is a particularly natural account to
adopt if one wants to assert (without caveat) that the significant structures of
a spacetime are those ‘invariant under coordinate transformation.’ However,
because the representations for some spacetimes will have metrics whose ‘forms’
are various — certainly not as clean as the Minkowski metric — it would seems
that Feature 3 does not hold of this account, as Gomes et al. (2024) emphasize.
(This kind of account nonetheless has precedent. Jacobs (2024), for example,
also emphasizes the importance of symmetry over adaptedness when defining
privileged coordinates.)

The privileged coordinates resulting from this account do not satisfy Kleinian
Presentability. Indeed, the results of Barrett and Manchak (2024a,b) imply that
no account with Feature 1 and (in particular) Feature 2 can. Given a Heraclitus
spacetime (R2, gab), we know that if some locally G-structured space recovers
gab, it must be that the coordinate transformation pseudogroup Γ it induces is
trivial. For if not, Γ would contain a map that does not preserve gab, and hence
Γ would not implicitly define (and hence recover) gab. But we know that there
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are non-isometric metrics on R2 that are invariant under all and only those
maps in Γ. Indeed, one can show that there is another non-isometric Heraclitus
spacetime (R2, g′ab). The metric g′ab will then be one such example. So the data
provided by a symmetry matching account of privileged coordinates will not
suffice to recover gab in any strong sense; Kleinian Presentability cannot hold. In
addition, the locally G-structured spaces determined by (R2, gab) and (R2, g′ab)
will be isomorphic; the two spacetimes have (up to isomorphism) the ‘same’
privileged coordinates, despite the spacetimes themselves being non-isometric.
In this sense Determination fails too.

It takes some time to work through the technical details, but the basic idea
behind this argument is intuitive and (as we will discuss later) has precedent
in the literature. Gomes et al. (2024) suggest that “[d]espite the fifteen pages
of meticulous setup through which Barrett and Manchak take their reader in
order to get to this point, the result should not have come as a surprise. Char-
acterising a spacetime geometry via its symmetry group is simply a non-starter
when that spacetime lacks symmetries.” This remark glosses over an important
distinction. There is an ambiguity when one speaks of a “spacetime [that] lacks
symmetries.” One way in which a spacetime (M, gab) might lack symmetries
is that it might be ‘giraffe,’ in the sense of Barrett et al. (2023) and Manchak
and Barrett (2024). Giraffe spacetimes (M, gab) are such that the only isom-
etry from (M, gab) to itself is the identity map. Such spacetimes lack ‘global
symmetries.’ The existence of giraffe spacetimes is not surprising. (Indeed, it
is also pointed to in discussions of Kleinian methods by North (2021, p. 117),
Torretti (2016), and Norton (1999, p. 129–30).) But it is also not sufficient to
establish the above results. As we mentioned earlier, all flat spacetimes satisfy
a variety of Kleinian Presentability and Determination; some flat spacetimes
are giraffe (Barrett et al., 2023, Example 2). This means that the existence of
giraffe spacetimes does not by itself suffice to establish the above results. One
needs the existence of a Heraclitus spacetime to do this. It is much more difficult
to build Heraclitus spacetimes than giraffe spacetimes, as one can confirm by
examining the example in Manchak and Barrett (2024). And until recently, the
only ‘no symmetry’ idea in the philosophical discourse was the giraffe one. Only
once one has a Heraclitus existence result does the above argument go through.

It is worth making one further remark about giraffe and Heraclitus space-
times. Gomes et al. (2024) claim that “spacetimes lacking symmetries are well-
known to be the generic case.” It certainly seems likely that both giraffe and
Heraclitus spacetimes are generic, but we are not aware of a full proof in either
case. The results of Ebin (1968) and Fischer (1970) concern giraffe spacetimes
in the Riemannian case with compact manifolds. Sunada (1985, Proposition 1)
generalizes to the Heraclitus context, but the result still concerns the Rieman-
nian case with compact manifolds. Mounoud (2015, Theorem 1) generalizes to
the context that includes the Lorentzian case but the result still concerns giraffe
spacetimes with compact manifolds. These results are certainly important. But
they do not fully establish the genericity of giraffe or Heraclitus spacetimes with
no restriction on the manifold topology. We therefore take this opportunity to
pose the following question again (Manchak and Barrett, 2024):
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Question 3. Are giraffe spacetimes generic? Are Heraclitus spacetimes generic?

One conjectures that both answers are “yes,” but further work is required to
be sure. Note that if the answer to the second part of Question 3 is “yes,” then
that (in conjunction with the discussion above) will imply that any account of
privileged coordinates with Feature 1 and Feature 2 will fail to satisfy Kleinian
Presentability and Determination for almost all relativistic spacetimes.

Barrett and Manchak (2024a) pose a few open questions about privileged
coordinates. In particular, they wonder whether there is another account of priv-
ileged coordinates (closely related to what they call “Revision 1”) or method
of recovery (closely related to what they call “Revision 2”) that might better
allow one to recover spacetime structure. Gomes et al. (2024) take up both of
these questions. Their account of privileged coordinates results from empha-
sizing Feature 3, rather than Features 1 and 2. It relies upon the existence of
Lorentz coordinates. Let (M, gab) be a relativistic spacetime with p ∈ M . We
will say that coordinates (U, φ) with p ∈ U are Lorentz coordinates at p if
φ(p) = (0, . . . , 0) ∈ Rn and the metric gab ‘takes a simple form’ at p in the sense
that

gab = dau
1dbu

1 − dau2dbu2 − . . .− daundbun

at p, where ui are the coordinate maps associated with (U, φ). It is well known
that for each point p ∈M , there are Lorentz coordinates (U, φ) for gab at p.

Gomes et al. (2024, p. 17–18) take the Lorentz coordinates as the privileged
coordinates of (M, gab). It is clear that there is a sense in which this account
has Feature 3. Indeed, Lorentz coordinates about p are adapted to gab, since
they are defined to be those in which the metric takes Minkowskian form at the
point p. (In general this will not hold anywhere in U apart from at the one
point p.) It is interesting to note that this account of privileged coordinates
for (M, gab) does not have Features 1 or 2. One can easily see that it does not
have Feature 2 by considering a Heraclitus spacetime (M, gab). In this case,
coordinate transformations between Lorentz coordinates — that is, the maps
in the collection Γ that these privileged coordinate induce — do not necessarily
preserve gab. Let p, q ∈M be distinct points and suppose that we have Lorentz
coordinates (U, φ) about p and (V, ψ) about q. Consider the ‘coordinate trans-
formation’ map ψ−1 ◦ φ. Since ψ−1 ◦ φ(p) = ψ−1(0, . . . , 0) = q, we know that
ψ−1 ◦ φ is not the identity map. Since (M, gab) is Heraclitus, ψ−1 ◦ φ cannot
be contained in its isometry pseudgroup, and hence (ψ−1 ◦φ)∗(gab) 6= gab. This
point is made by Barrett and Manchak (2024b), and it is recognized by Gomes
et al. (2024). Altogether this means that if one adopts Lorentz coordinates as
the privileged coordinates of (M, gab), one can no longer assert without caveat
that the significant structures of (M, gab) are those invariant under (privileged)
coordinate transformations.

Moreover, in general the Lorentz coordinates for (M, gab) do not form a
locally G-structured space. One can see this even in the case of two-dimensional
Minkowski spacetime (R2, ηab). One easily verifies that both of the following
charts are Lorentz coordinates at (0, 0): (R2, 1R2), where 1R2 is the identity map
on R2, and (B0, 1B0

), where B0 is the open ball of radius 1 centered at (0, 0)
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and 1B0 is the identity map on this open set. Now let B1 be the open ball of
radius 1 centered at (1, 0) and c : B1 → B0 be the diffeomorphism defined by
c : (x, y) 7→ (x−1, y). The chart (B1, c) forms Lorentz coordinates at (1, 0). Now
one can ask whether the compatibility condition of locally G-structured spaces
is satisfied. (See Barrett and Manchak (2024a) or Wallace (2019) for a precise
definition.) Suppose that it is. Then since (R2, 1R2) and (B1, f) are privileged,
this implies that the map 1 ◦ c−1 : B0 → B1, which one can easily verify is just
c−1 is in G. The compatibility condition implies that s◦c must be privileged for
each s ∈ G, so we see that c−1◦1B0

must be privileged. But this is just c−1, and
one can easily verify that (c−1, B0) is not Lorentz chart, since (0, 0) is not in its
range. In essence, it is the fact that Lorentz coordinates must map to open sets
surrounding the origin that prevents them from forming a locally G-structured
space. The fact that this account does not have Feature 1 addresses the question
of Gomes et al. (2024) as to why Barrett and Manchak (2024a) “tacitly forego
adapted coordinates.” The aim of Barrett and Manchak (2024a, p. 3) was to
“examine where the limits of [the framework of locally G-structured spaces] lie,”
so it was natural to restrict attention to account of privileged coordinates that
have Feature 1. Since Lorentz coordinates do not form a locally G-structured
space, they cannot lead to Kleinian Presentability in the exact way that Barrett
and Manchak (2024b) state that recovery desideratum.

There is a weaker sense, however, in which this account of privileged coor-
dinates has Features 1 and 2. We will return to this shortly. But first, it is
important to mention that it satisfies Determination. This is a simple result: if
two spacetimes admit the same Lorentz coordinates, then they must be equal.
Barrett and Manchak (2024b, Proposition 6) show this for ‘Lorentz normal co-
ordinates,’ and the same argument goes through here. Barrett and Manchak
(2024b) use exactly this case to argue that Determination and Kleinian Pre-
sentability come apart. The idea is that Lorentz coordinates do not lead to a
Kleinian presentation of (M, gab), since they do not form a locally G-structured
space, and even if they did, the induced coordinate transformation pseudogroup
would not implicitly define gab since Feature 2 does not obtain. Lorentz co-
ordinates do nonetheless determine spacetime structure, in the sense that a
spacetime can be exactly recovered from the data they provide. Indeed, con-
sider how one would go about recovering the metric gab from the class of Lorentz
coordinates of (M, gab). One would take a point p ∈ M , and find coordinates
(U, φ) in this class in which φ(p) = (0, . . . , 0). This guarantees that (U, φ) are
Lorentz coordinates at p, rather than at some other point in U . One then would
stipulate that the metric at p is dau

1dbu
1− dau2dbu2− . . .− daundbun in (U, φ)

coordinates. One does this for each point p ∈M and thereby defines gab.
Gomes et al. (2024) object to this point. They argue that Lorentz coordi-

nates lead to a different kind of Kleinian presentation of (M, gab). It will take a
moment to make this idea precise; it is closely related to the idea that this ac-
count of privileged coordinates has weaker versions of Feature 1 and Feature 2.
Let (U, φ) be Lorentz coordinates for (M, gab) about the point p ∈ M . Gomes
et al. (2024) notice that since φ : U → φ[U ] is a diffeomorphism, it induces
global coordinates on the tangent space TpM of p. These coordinates are given
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by the map φ∗ : TpM → Tφ(p)Rn. Since Tφ(p)Rn is effectively just a copy of
Rn, one has induced coordinates on TpM . One conjectures that indeed this
collection of φ∗ maps, for each (U, φ) that is Lorentz coordinates about p, form
a G-structured space with underlying set TpM . This would capture the weaker
sense in which the Gomes et al. (2024) account has Feature 1. While Lorentz
coordinates do not determine a locally G-structured space on M , they do on
the tangent space TpM for each p ∈M .

One now uses these coordinatizations of TpM to attempt to recover the
metric gab on M . For each point p ∈ M and Lorentz coordinates (U, φ) and
(V, ψ) about p, one can consider the ‘coordinate transformation’ φ∗◦ψ∗ : TpM →
TpM . One then looks to those structures that are left invariant by coordinate
transformations of this kind. The collection of maps of the form φ∗◦ψ∗ : TpM →
TpM for Lorentz coordinates (U, φ) and (V, ψ) about p is just the collection of
bijective linear maps TpM → TpM that preserve the generalized inner product
gab|p on TpM . (This follows from the discussion in the first paragraph of the
proof of the Proposition below.) This captures a weaker sense in which this
account of privileged coordinates has Feature 2. Lorentz coordinates do not
specify symmetries of (M, gab), but when we restrict attention to a point, they
do specify symmetries of TpM with its associated inner product structure. At
the very least, it is easy to see that these coordinate transformations all preserve
the value of the metric gab at p, in the sense that φ∗ ◦ ψ∗(gab|p) = gab|p. This
follows immediately from the defining condition of Lorentz coordinates. In this
sense, therefore, it would seem that the metric gab at p can be recovered in
a Kleinian fashion: for each point p ∈ M the value of the metric gab at p is
implicitly defined in the sense described above. Gomes et al. (2024, p. 18) claim
that this implies that their account of privileged coordinates satisfies a weaker
kind of Kleinian Presentability. It is not that (M, gab) can be presented via one
locally G-structured space, but rather the idea is that a family of G-structured
spaces (one for the tangent space TpM for each point p in M) can be used to
present its structure. Gomes et al. (2024, p. 18) suggest that this demonstrates
“clearly how an arbitrary Lorentzian metric can be recovered just from the full
set of its local Lorentz charts in a manner clearly in the spirit of the Kleinian
approach.”

This unfortunately is not the case. One can see this by considering the
following example. Let (M, gab) be a spacetime with α a smooth scalar field on
M such that α > 0 (everywhere on M). One can now easily see that the Lorentz
coordinates of (M, gab) implicitly define the metric αgab in precisely the same
way as they define the metric gab. Let p ∈ M with (U, φ) and (V, ψ) Lorentz
coordinates about p. Then we easily see that

φ∗ ◦ ψ∗((αgab)|p) = α(p)(φ∗ ◦ ψ∗(gab|p)) = α(p)gab|p = (αgab)|p

The first equality holds since the pushforward and pullback are both linear at
p. The second equality holds since (U, φ) and (V, ψ) are Lorentz coordinates
(for gab) at p. The idea behind this point is simple. The Lorentz coordinates
only implicitly define gab at the point p up to scale factor since the generalized

9



inner product cgab|p on TpM admits precisely the same symmetries as gab|p
does, for any positive constant c. This means that the Lorentz coordinates will
also implicitly define the new metric αgab because, when one restricts attention
to p, (αgab)|p is just a scalar multiple of gab. Altogether, this means that the
method of Kleinian presentation that Gomes et al. (2024) propose can (at best)
characterize only the conformal structure of (M, gab), not its entire structure.
(Recall that metrics gab and g′ab on M are conformally equivalent if there is a
smooth positive scalar field α on M such that gab = αg′ab.) We note that this
is exactly the kind of problem that Barrett and Manchak (2024a) had isolated
for their account of privileged coordinates. Once again the proposed recovery
procedure recovers non-isometric metrics on M .

It would nonetheless be interesting to know whether or not the conformal
structure of (M, gab) can be presented in a Kleinian manner. We put forward
the following simple question.

Question 4. Let (M, gab) be a spacetime with p ∈ M and g′ab another metric
on M of Lorentzian signature. Suppose that both φ∗ ◦ ψ∗(gab|p) = gab|p and
φ∗ ◦ ψ∗(g′ab|p) = g′ab|p for all Lorentz coordinates (U, φ) and (V, ψ) for (M, gab)
about p. Is there a positive constant c such that gab|p = cg′ab|p?

If so, then this will imply that the Gomes et al. (2024) method of recov-
ering structure from Lorentz coordinates does recover the conformal structure
of (M, gab). For suppose that g′ab is implicitly defined on M by Lorentz co-
ordinates in the same way as gab is. We would know that at each point p,
gab|p = cg′ab|p, for some positive scalar c, and hence we would know that gab
and g′ab are conformally equivalent.

The answer to Question 4 is “no” in two dimensions. The following example
shows this. Let (R2, ηab) be two-dimensional Minkowski spacetime where ηab =
datdbt− daxdbx. Consider the spacetime (M, gab) where M is the t > 0 portion
of R2 and gab = tηab. Since we are working in two dimensions, the metric −gab
has the same Lorentzian signature as gab. And it is now easy to see that −gab
will be implicitly defined by the Lorentz coordinates of (M, gab) in exactly the
same way as gab is. At each point p ∈ M , the one is again a scalar multiple of
the other. But (M, gab) and (M,−gab) are not conformally equivalent (and not
isometric). Moreover, one can verify that the spacetimes are not even locally
isometric since no neighborhood of a point in one spacetime can be isometrically
mapped into any neighborhood of any point in the other. This follows since the
Ricci scalar is everywhere positive for (M, gab) and everywhere negative for
(M,−gab).

One might nonetheless conjecture that the answer to Question 4 is “yes” in
dimensions higher than two. We have the following proposition due to David
Malament.

Proposition. Let (M, gab) be a spacetime with dim(M) ≥ 3. Let p ∈ M and
g′ab be another metric on M of Lorentzian signature. Suppose that both φ∗ ◦
ψ∗(gab|p) = gab|p and φ∗ ◦ ψ∗(g′ab|p) = g′ab|p for all Lorentz coordinates (U, φ)
and (V, ψ) for (M, gab) about p. Then there is a positive constant c such that
gab|p = cg′ab|p.
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Proof. We first show that there is a close connection between Lorentz charts at
p and orthonormal bases of TpM . Let (U, φ) be a Lorentz chart at p ∈ U . One
easily sees that the corresponding coordinate vectors ( ∂

∂u1 )a, . . . , ( ∂
∂un )a form an

orthonormal basis with respect to gab at p. Conversely, given an orthonormal

basis
1

ξa, . . . ,
n

ξa for gab at p we can find a Lorentz chart (U, φ) with p ∈ U such

that
i

ξa = ( ∂
∂ui )a for each i (O’Neill, 1983, p. 72). Now suppose that (U, φ) and

(V, ψ) are Lorentz charts at p. One can easily verify that

(ψ∗ ◦ φ∗)(
∂

∂ui
)a = (

∂

∂vi
)a

where here again ( ∂
∂ui )a and ( ∂

∂vi )a are the coordinate vectors for (U, φ) and
(V, ψ). This means that ψ∗ ◦ φ∗ simply takes the orthonormal basis associated
with (U, φ) to the orthonormal basis associated with (V, ψ).

Let αa and βa be any two unit timelike (with respect to gab) vectors at
p. And suppose that g′ab is another metric on M that satisfies the condition
in the statement of the proposition. Since we can build orthonormal bases

αa,
2

ξa, . . . ,
n

ξa and βa,
2

ξ′a, . . . ,
n

ξ′a for gab at p, the above discussion implies that
there are Lorentz charts (U, φ) and (V, ψ) for gab at p such that (ψ∗ ◦φ∗)(αa) =
βa. We compute the following:

g′ab|pβaβb = ((ψ∗ ◦ φ∗)(g′ab|p))βaβb

= g′ab|p((φ∗ ◦ ψ∗)(βa))((φ∗ ◦ ψ∗)(βb))
= g′ab|pαaαb

The first equality follows from our assumption about g′ab, the second from prop-
erties of the pushforward and pullback, and the third holds since (ψ∗◦φ∗)(αa) =
βa. Because αa and βa are unit vectors with respect to gab, this implies that

g′abα
aαb

gabαaαb
=
g′abβ

aβb

gabβaβb

This means that we have established that the ratio

g′abα
aαb

gabαaαb

is the same for all unit timelike (with respect to gab) vectors αa. Since the ratio
is uneffected if we rescale αa (i.e. if we replace αa by kαa for some non-zero k), it
follows that the ratio is the same for all timelike (with respect to gab) vectors αa.
Let this constant ratio be c. Altogether, this means that (g′ab − cgab)αaαb = 0
for all timelike (with respect to gab) vectors αa. Malament (2012, Proposition
2.1.3) implies that g′ab = cgab at p. Since gab and g′ab are of Lorentzian signature
and non-degenerate, the fact that dim(M) ≥ 3 implies that c > 0.

This proposition does not establish a method of recovering the entire struc-
ture of (M, gab) from its privileged coordinates, but it does take a step toward
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answering another question that Barrett and Manchak (2024a) suggest, closely
related to what they call “Reservation 2”: Can part of the structure of a rel-
ativistic spacetime (M, gab) be presented using privileged coordinates? This
result shows that the conformal structure of a spacetime (of dimension higher
than two) can be recovered from this kind of privileged coordinates by employing
a kind of ‘pointwise’ Kleinian method. One gets the feeling that the Barrett and
Manchak (2024a) account does not allow one to do that. Barrett and Manchak
(2024b, Lemma 4) show that there are Heraclitus spacetimes that are not related
by homothety; one conjectures that there are also Heraclitus spacetimes that
are not conformally equivalent. If so, then any account of privileged coordinates
with Feature 1 and Feature 2 will not allow one to recover conformal structure,
for the same reason as it does not allow one to recover metric structure up to
isometry (or homothety).

4 Conclusion

We have on hand two accounts of privileged coordinates in general relativity, one
due to Barrett and Manchak (2024a) and another due to Gomes et al. (2024).
Each represents a way to generalize an account of privileged coordinates from
the case of flat spacetimes, where the situation was clear. Gomes et al. (2024)
suggest that the account of privileged coordinates that Barrett and Manchak
(2024a) provide is “cumbersome,” “unnatural,” and “involved.” While we agree
that the proof that every spacetime has a representative is “involved” (Barrett
and Manchak, 2024a, Lemma 3.2.2), we have emphasized above that as a whole
the Barrett and Manchak (2024a) account is natural from a geometrical per-
spective and directly motivated by the case of flat spacetimes. One nonetheless
wonders which of these two accounts (if either) better captures what one has
in mind when one speaks of privileged coordinates and ‘Kleinian methods.’ We
conclude with a few brief remarks on this.

It is standard to understand Kleinian methods as ‘globally’ presenting the
structure of a geometric space, by singling out a collection of global coordinates
and associated group of global symmetries (which transform one between these
coordinates). As evidence for this, one notes that it is frequently remarked that
Kleinian methods struggle with giraffe spacetimes — those with trivial (global)
symmetry groups. We return to this point below. For now, we note that both
of the accounts considered above are extensions of Kleinian methods, at least
as traditionally understood. The account considered by Barrett and Manchak
(2024a) appeals to the ‘local’ coordinates and associated pseudogroup of (local)
symmetries of the space under consideration, not just its ‘global’ coordinates
and associated group of (global) symmetries. This idea is not novel; it is based
upon the transition that Wallace (2019) describes from G-structured spaces to
locally G-structured spaces. The Gomes et al. (2024) account attempts to go
‘even more local,’ by adopting a ‘pointwise’ Kleinian presentation. There one
aims to present the structure of (M, gab) by individually presenting its structure
at each p in M in a Kleinian manner. It is worth considering these pointwise
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Kleinian methods further. There might be other ones that fare better than the
one discussed above. Gomes et al. (2024, p. 21) gesture at some, but the details
remain to be worked out. We note here, however, that pointwise Kleinian
methods take a step back towards a traditional ‘Riemannian’ presentation of
gab, in which one characterizes the metric by explicitly presenting its value at
each point p in M . The success of a quasi-Kleinian method like this would
nonetheless yield some interesting philosophical payoffs. Wallace remarks that
“it seems too strong to say that geometry simpliciter in modern physics is
Riemannian in character” and “rather than one conception of geometry having
won out in modern physics, we actually have peaceful coexistence” (Wallace,
2019, p. 135). Barrett and Manchak (2024a, p. 22) agree when they write
that “it does seem that there is an echo of these Kleinian methods lurking
below the surface in general relativity.” If some pointwise Kleinian method —
which employs aspects of both traditional Riemannian and traditional Kleinian
approaches — were successful, that would provide a way to make this thought
precise.

Both the Barrett and Manchak (2024a) and Gomes et al. (2024) extensions
of standard Kleinian methods have benefits and drawbacks. Recall the Norton
and Cartan assertion that “the spacetimes of classical mechanics and special
relativity are of the type of Klein.” The Barrett and Manchak (2024a) account
of privileged coordinates makes good on this remark. On that account, one can
present all flat relativistic spacetimes up to homothety (Barrett and Manchak,
2024b, Corollary 1) and Minkowski spacetime up to isometry (Barrett and Man-
chak, 2024a, Proposition 4.1.1); one conjectures that analogous results hold of
flat classical spacetimes (Barrett and Manchak, 2024b, p. 18). The Barrett and
Manchak (2024a) account therefore has one of the benefits standardly attributed
to Kleinian methods. As it currently stands, the Gomes et al. (2024) method
does not. When one applies the Gomes et al. (2024) account of privileged co-
ordinates to flat spacetimes, one recovers only the spacetime up to conformal
factor. Since there are spacetimes conformally equivalent to Minkowski space-
time that are not flat, one cannot use the Gomes et al. (2024) method to even
tell whether the spacetime we began with was flat, let alone to present its entire
structure.

Recall also the Norton and Cartan assertion that the spacetimes “of general
relativity are of the type of Riemann” and not of Klein. North (2021, p. 117)
suggests too that there are geometric spaces that “lie beyond the scope of Klein’s
program.” Torretti (2016) directly writes that

Klein’s conception is too narrow to embrace all Riemannian geome-
tries, which include spaces of variable curvature. Indeed, in the
general case, the group of isometries of a Riemannian n-manifold
is the trivial group consisting of the identity alone, whose structure
conveys no information at all about the respective geometry.

See Norton (1993, p. 832–3) and Norton (1999, p. 129–30) for similar remarks.
The Gomes et al. (2024) account allows one to sidestep this kind of worry; that
pointwise Kleinian method at least allows one to present the conformal structure
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of giraffe spacetimes. The same holds even of Heraclitus spacetimes. The kind
of triviality problem for Kleinian methods that Norton, Cartan, North, Torretti,
and others are pointing to is thus partially dodged; at least some of the structure
of spacetimes with ‘no symmetries’ can be presented using pointwise Kleinian
methods.

The Barrett and Manchak (2024a) account also partially dodges this worry.
As our earlier discussion of the distinction between Heraclitus and giraffes il-
lustrates, the Kleinian method considered by Barrett and Manchak (2024a) is
more powerful than the one that (for example) Torretti has in mind in the
above quote. One sees this by recalling again that there are flat relativistic
spacetimes that are giraffe, i.e. whose isometry groups are trivial. Since they
are flat, such spacetimes will be presentable up to homothety on the Barrett and
Manchak (2024a) account. (For a closer approximation of the kind of Kleinian
method Torretti has in mind, see the discussion of G-structured spaces — rather
than locally G-structured spaces — in Barrett and Manchak (2024a) and Wal-
lace (2019). The framework of G-structured spaces does struggle with mere
giraffes.) In this sense, this account improves upon some of the shortcomings
that are standardly attributed to Kleinian methods. But in addition, it allows
one to extend and make precise the simple idea behind the triviality worry sug-
gested by Norton, Cartan, North, Torretti, and others. It allows one to capture
the common intuition that the Kleinian project breaks down for spaces with ‘no
symmetries.’ For this more powerful Kleinian method, this breakdown occurs
not at the giraffe level, but rather at the higher Heraclitus level. This point
could not be appreciated until recently, since the only ‘no symmetry’ idea in the
discourse was that of spacetimes with trivial isometry groups, i.e. giraffe space-
times (Manchak and Barrett, 2024). Altogether, this means that the drawbacks
that the Barrett and Manchak (2024a) account of privileged coordinates has
are in the same vein as the ones standardly attributed to Kleinian methods,
and this suggests that the Barrett and Manchak (2024a) account is a natural
descendent of the traditional Kleinian method.

We conclude with the following suggestion. There are various desiderata
that one wants an account of privileged coordinates and Kleinian methods to
satisfy. Features 1, 2, and 3 provide a few examples. There is an account of
privileged coordinates of flat spacetimes where all of these desiderata hold, but
it is difficult to maintain all of them when generalizing to the arbitrary case (see
Questions 1 and 2). As a result, it is important to acknowledge that there are
different things one might mean by ‘privileged coordinates’ in general relativity.
There is value in cataloguing the possibilities and then assessing their costs
and benefits regarding whether, and to what extent, they allow one to recover
spacetime structure.
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