
Optim Lett (2011) 5:575–585
DOI 10.1007/s11590-010-0221-y

ORIGINAL PAPER

Higher order numerical differentiation on the Infinity
Computer

Yaroslav D. Sergeyev

Received: 18 June 2009 / Accepted: 9 July 2010 / Published online: 24 July 2010
© Springer-Verlag 2010

Abstract There exist many applications where it is necessary to approximate numer-
ically derivatives of a function which is given by a computer procedure. In particular,
all the fields of optimization have a special interest in such a kind of information. In
this paper, a new way to do this is presented for a new kind of a computer—the Infinity
Computer—able to work numerically with finite, infinite, and infinitesimal numbers. It
is proved that the Infinity Computer is able to calculate values of derivatives of a higher
order for a wide class of functions represented by computer procedures. It is shown
that the ability to compute derivatives of arbitrary order automatically and accurate to
working precision is an intrinsic property of the Infinity Computer related to its way
of functioning. Numerical examples illustrating the new concepts and numerical tools
are given.

Keywords Higher order numerical differentiation · Infinite and infinitesimal
numbers · Infinity Computer

1 Introduction

In many practical applications related to the scientific computing (e.g., in global and
local optimization, numerical simulation, approximation, etc.) it is necessary to calcu-
late derivatives of a function g(x) which is given by a computer procedure calculating
its approximation f (x). Very often a user working with the computing code f (x)

Y. D. Sergeyev (B)
DEIS – University of Calabria, Via P. Bucci 42C, 87036 Rende (CS), Italy
e-mail: yaro@si.deis.unical.it

Y. D. Sergeyev
Software Department, N.I. Lobatchevsky State University, Nizhni Novgorod, Russia

123

576 Y. D. Sergeyev

is not the person who has written this code. As a result, for the user the program
calculating y = f (x) is just a black box, i.e., if it has as the input a value x then the
program returns the corresponding value y and the user does not know the internal
structure of the program. As a result, when for solving an applied problem the usage
of derivatives is required and a procedure for evaluating the exact value of f ′(x) is
not available, we face the necessity to approximate f ′(x) in a way.

In particular, this situation happens very often in the black box global and local
optimization (see [5,11,19,20]) and related application areas. Let us give a simple but
important example (see, e.g., [19,20,23]) related to the problem of finding the minimal
root of an equation f (x) = 0 where x ∈ [a, b] and f (x) is multiextremal (as a result,
there can be several different roots over [a, b]), given by a computer program and such
that f (a) > 0. This problem arises in many applications, such as time domain analysis
(see [3]), filter theory (see [7]), and wavelet theory (see [21]) and can be interpreted,
for instance, as follows.

It is necessary to know the behavior of a device over a time interval [a, b]. The
device starts to work at the time x = a and it functions correctly while for x ≥ a
the computer procedure calculating f (x) returns values f (x) > 0. Of course, at the
initial moment, x = a, the device works correctly and f (a) > 0. It is necessary either
to find an interval [a, x∗) such that

f (x∗) = 0, f (x) > 0, x ∈ [a, x∗), x∗ ∈ (a, b], (1)

or to prove that x∗ satisfying (1) does not exist in [a, b]. Efficient methods proposed
recently for solving this problem (see [6,18,19]) strongly use ideas developed in the
field of global optimization. They require calculating the first derivative f ′(x) of f (x)

and since a program calculating f ′(x) is usually not available, the problem of finding
an approximation of f ′(x) arises.

There exist several approaches to tackle this problem. First, numerical approxima-
tions are used for this purpose (see e.g., [9] for a detailed discussion). In applications,
the following three simple formulae (more complex and numerically more expensive
approximations can be found in [9]) are often used

f ′(x) ≈ f (x + h) − f (x)

h
, f ′(x) ≈ f (x) − f (x − h)

h
, (2)

f ′(x) ≈ f (x + h) − f (x − h)

2h
(3)

by practitioners. However, these procedures are fraught with danger (see [9]) since
eventually round-off errors will dominate calculation. As h tends to zero, both f (x+h)

and f (x − h) tend to f (x), so that their difference tends to the difference of two
almost equal quantities and thus contains fewer and fewer significant digits. Thus, it
is meaningless to carry out these computations beyond a certain threshold value of h.
Calculations of higher derivatives suffer from the same problems.

The complex step method (see [8]) allows one to improve approximations of f ′(x)

avoiding subtractive cancellation errors present in (2), (3) by using the following for-
mula to approximate f ′(x)

123

Higher order numerical differentiation on the Infinity Computer 577

f ′(x) ≈ I m[f (x + ih)]
h

, (4)

where I m(u) is the imaginary part of u. Though this estimate does not involve the
dangerous difference operation, it is still an approximation of f ′(x) because it depends
on the choice of the step h.

Another approach consists of the usage of symbolic (algebraic) computations (see,
e.g., [4]) where f (x) is differentiated as an expression in symbolic form in contrast
to manipulating of numerical quantities represented by the symbols used to express
f (x). Unfortunately this approach can be too slow when it is applied to long codes
coming from real world applications.

There exist an extensive literature (see, e.g., [1,2,5] and references given therein)
dedicated to automatic (algorithmic) differentiation (AD) that is a set of techniques
based on the mechanical application of the chain rule to obtain derivatives of a function
given as a computer program. By applying the chain rule of derivation to elementary
operations this approach allows one to compute derivatives of arbitrary order auto-
matically with the precision of the code representing f (x).

Implementations of AD can be broadly classified into two categories that have their
advantages and disadvantages (see [2,5] for a detailed discussion): (i) AD tools based
on source-to-source transformation changing the semantics by explicitly rewriting the
code; (ii) AD tools based on operator overloading using the fact that modern program-
ming languages offer the possibility to redefine the semantics of elementary operators.
In particular, the dual numbers extending the real numbers by adjoining one new ele-
ment d with the property d2 = 0 (i.e., d is nilpotent) can be used for this purpose
(see, e.g., [1]). Every dual number has the form v = a + db, where a and b are real
numbers and v can be represented as the ordered pair (a, b). On the one hand, dual
numbers have a clear similarity with complex numbers z = a + ib where i2 = −1.
On the other hand, speaking informally it can be said that the imaginary unit d of dual
numbers is a close relative to infinitesimals (we mean here a general non formalized
idea about infinitesimals) since the square (or any higher power) of d is exactly zero
and the square of an infinitesimal is ‘almost zero’.

All the methods described above use traditional computers as computational devices
and propose a number of techniques to calculate derivatives on them. In this paper,
a new way to calculate derivatives numerically is proposed. It is made by using a
new kind of a computer—the Infinity Computer—introduced in [13–15] and able to
work numerically with finite, infinite, and infinitesimal quantities. This computer is
based on a new applied point of view on infinite and infinitesimal numbers (that is not
related to non-standard analysis) introduced in [12,14]. The new approach does not use
Cantor’s ideas and works with infinite and infinitesimal numbers being in accordance
with Aristotle’s principle ‘The part is less than the whole’.

We conclude this introduction by emphasizing that traditional approaches for dif-
ferentiation considered above have been developed ad hoc for solving this problem as
additional tools that should be used together with the traditional computers. Without
these additional tools the traditional computers are not able to calculate derivatives of
functions defined by computer procedures. In this paper, it is shown that the ability to
compute derivatives of arbitrary order automatically and accurate to working precision

123

578 Y. D. Sergeyev

is an intrinsic property of the Infinity Computer related to its way of functioning. This
is just one of the particular features offered to the user by the Infinity Computer. Natu-
rally, this is a direct consequence of the fact that it can execute numerical computations
with infinite and infinitesimal quantities explicitly.

2 Representation of numbers at the Infinity Computer

In [12,14,16,17], a new powerful numeral system has been developed to express finite,
infinite, and infinitesimal numbers in a unique framework. The main idea consists of
measuring infinite and infinitesimal quantities by different (infinite, finite, and infini-
tesimal) units of measure. In this section we give just a brief introduction to the new
methodology that can be found in a rather comprehensive form in the survey [14] or
in the monograph [12] written in a popular manner.

A new infinite unit of measure has been introduced as the number of elements of
the set N of natural numbers. It is expressed by a new numeral ① called grossone. It is
necessary to emphasize immediately that the infinite number ① is not either Cantor’s
ℵ0 or ω and the new approach is not related to the non-standard analysis. For instance,
one of the important differences consists of the fact that infinite integer positive num-
bers that can be viewed by using numerals including grossone can be interpreted in the
terms of the number of elements of certain infinite sets. Another difference consists of
the fact that ① has both cardinal and ordinal properties as usual finite natural numbers.

Formally, grossone is introduced as a new number by describing its properties pos-
tulated by the Infinite Unit Axiom (IUA) (see [12,14]). This axiom is added to axioms
for real numbers similarly to addition of the axiom determining zero to axioms of natu-
ral numbers when integer numbers are introduced. Inasmuch as it has been postulated
that grossone is a number, all other axioms for numbers hold for it, too. Particularly,
associative and commutative properties of multiplication and addition, distributive
property of multiplication over addition, existence of inverse elements with respect to
addition and multiplication hold for grossone as for finite numbers. This means that
the following relations hold for grossone, as for any other number

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (5)

To express infinite and infinitesimal numbers at the Infinity Computer, records sim-
ilar to traditional positional numeral systems can be used (see [12–14]). Numbers
expressed in this new positional systems with the radix ① are called hereinafter gross-
numbers. In order to construct a number C in this system, we subdivide C into groups
corresponding to powers of grossone:

C = cpm ①pm + · · · + cp1①p1 + cp0①p0 + cp−1①p−1 + · · · + cp−k ①p−k . (6)

Then, the record

C = cpm ①pm . . . cp1①p1 cp0①p0 cp−1①p−1 . . . cp−k ①p−k (7)

123

Higher order numerical differentiation on the Infinity Computer 579

represents the number C , where finite numbers ci �= 0 called grossdigits can be
positive or negative. They show how many corresponding units should be added or
subtracted in order to form the number C . Grossdigits can be expressed by several
symbols.

Numbers pi in (7) called grosspowers can be finite, infinite, and infinitesimal, they
are sorted in the decreasing order with p0 = 0

pm > pm−1 > · · · > p1 > p0 > p−1 > · · · p−(k−1) > p−k .

In the record (7), we write ①pi explicitly because in the new numeral positional sys-
tem the number i in general is not equal to the grosspower pi (see [14] for a detailed
discussion).

Finite numbers in this new numeral system are represented by numerals having
only one grosspower p0 = 0. In fact, if we have a number C such that m = k = 0
in representation (7), then due to (5), we have C = c0①0 = c0. Thus, the number
C in this case does not contain grossone and is equal to the grossdigit c0 being a
conventional finite number expressed in a traditional finite numeral system.

The simplest infinitesimal numbers are represented by numerals C having only
finite or infinite negative grosspowers, e.g., 6.73①−4.756.7①−150. The simplest infin-
itesimal number is 1

①
= ①−1 being the inverse element with respect to multiplication

for ①:

①−1 · ① = ① · ①−1 = 1. (8)

Note that all infinitesimals are not equal to zero. Particularly, 1
①

> 0 because it is a
result of division of two positive numbers.

In the context of the numerical differentiation discussed in this paper, it is worth
mentioning that (without going in a detailed and rather philosophical discussion on
the topic ‘Can or cannot dual numbers be viewed as a kind of infinitesimals?’) there
exist two formal differences between infinitesimals C from (7) and dual numbers (see,
e.g., [1]). First, for any infinitesimal C it follows C2 > 0 (for instance, (①−1)2 > 0)
whereas for dual numbers we have d2 = 0. Second, in the context of [1] the element
d represented as (0, 1) has not its inverse and infinitesimals C have their inverse.

The simplest infinite numbers are expressed by numerals having positive finite
or infinite grosspowers. They have infinite parts and can also have a finite part and
infinitesimal ones. For instance, the number

1.5①14.2(−10.645)①57.89①081①−4.272.8①−60

has two infinite parts 1.5①14.2 and −10.645①5 one finite part 7.89①0 and two infin-
itesimal parts 81①−4.2 and 72.8①−60. All of the numbers introduce above can be
grosspowers, as well, giving so a possibility to have various combinations of quanti-
ties and to construct terms having a more complex structure.

A working software simulator of the Infinity Computer has been implemented and
the first application—the Infinity Calculator—has been realized. We conclude this

123

580 Y. D. Sergeyev

section by emphasizing the following important issue: the Infinity Computer works
with infinite, finite, and infinitesimal numbers numerically, not symbolically (see [15]).

3 Numerical differentiation

Let us return to the problem of numerical differentiation of a function g(x). We sup-
pose that a set of elementary functions (sin(x), cos(x), ax etc.) is represented at the
Infinity Computer by one of the usual ways used in traditional computers (see, e.g.
[10]) involving the argument x , finite constants, and four arithmetical operations. A
programmer writes a program P that should calculate g(x) using the said imple-
mentations of elementary functions, the argument x , and finite constants connected
by four arithmetical operations. Obviously, P calculates a numerical approximation
f (x) of the function g(x). As a rule, the programmer does not use analytical formulae
of f ′(x), f ′′(x), . . . f (k)(x) to write the program calculating f (x). We suppose that
f (x) approximates g(x) sufficiently well with respect to some criteria and we shall
not discuss the goodness of this approximation in this paper.

Then, as often happens in the scientific computing, a user takes the program P cal-
culating f (x) and is interested to calculate f ′(x) and higher derivatives numerically
by using this program. Computer programs for calculating f ′(x), f ′′(x), . . . f (k)(x)

and their analytical formulae are unavailable and the internal structure of the program
calculating f (x) is unknown to the user.

In this situation, our attention will be attracted to the problem of a numerical calcu-
lation of the derivatives f ′(x), f ′′(x), . . . f (k)(x) and to the information that can be
obtained from the computer procedure P calculating f (x) for this purpose when it is
executed at the Infinity Computer. The following theorem holds.

Theorem 1 Suppose that: (i) for a function f (x) calculated by a procedure imple-
mented at the Infinity Computer there exists an unknown Taylor expansion in a finite
neighborhood δ(y) of a finite point y; (ii) f (x), f ′(x), f ′′(x), . . . f (k)(x) assume
finite values or are equal to zero for x ∈ δ(y); (iii) f (x) has been evaluated at a point
y + ①−1 ∈ δ(y). Then the Infinity Computer returns the result of this evaluation in
the positional numeral system with the infinite radix ① in the following form

f (y + ①−1) = c0①0c−1①−1c−2①−2 . . . c−(k−1)①
−(k−1)c−k①−k, (9)

where

f (y) = c0, f ′(y) = c−1, f ′′(y) = 2!c−2, . . . f (k)(y) = k!c−k . (10)

Proof Due to its rules of operation (see (6), (7)), the Infinity Computer collects differ-
ent exponents of ① in independent groups cp−i ①

p−i with finite grossdigits cp−i when
it calculates f (y + ①−1). Since functions f (x), f ′(x), f ′′(x), . . . f (k)(x) assume
finite values or are equal to zero in δ(y) which is also finite, the highest grosspower
in the number (9) is necessary less or equal to zero. Thus, the number that the Infinity
Computer returns can have only a finite and infinitesimal parts.

123

Higher order numerical differentiation on the Infinity Computer 581

Four arithmetical operations (see [14,15]) executed by the Infinity Computer with
the operands having finite integer grosspowers in the form (7) produce only results
with finite integer grosspowers. This fact ensures that the result f (y + ①−1) can have
only integer non-positive grosspowers in (9). Due to the rules of the positional system
(see (6), (7)), the number f (y + ①−1) from (9) can be written as follows

f (y + ①−1) = c0①0c−1①−1c−2①−2 . . . c−(k−1)①
−(k−1)c−k①−k

= c0①0 + c−1①−1 + c−2①−2 + · · · + c−(k−1)①
−(k−1) + c−k①−k . (11)

The Infinity Computer while calculates the value f (y + ①−1) does not use the Taylor
expansion for f (x), it just executes commands of the program. However, this unknown
Taylor expansion for f (x) (we emphasize that it is unknown for: the Infinity Computer
itself, for the programmer, and for the user) exists in the neighborhood δ(y) of the
point y, for a point x = y + h ∈ δ(y), h > 0. Thus, it should be true

f (y + h) = f (y) + f ′(y)h + f ′′(y)
h2

2
+ · · · + f (k)(y)

hk

k! + · · · (12)

By assuming h = ①−1 in (12) and by using the fact that ①0 = 1 (see (5)) we obtain

f (y + ①−1) = f (y)①0 + f ′(y)①−1 + f ′′(y)

2
①−2 + · · · + f (k)(y)

k! ①−k + · · ·
(13)

The uniqueness of the Taylor expansion allows us to obtain (9) by equating the first
k + 1 coefficients of ① in (13) with grossdigits c0, c−1, c−2, . . . c−(k−1), c−k in (11)
completing so the proof. 	

Let us comment upon the theorem. It describes a situation where a user needs
to evaluate f (x) and its derivatives at a point x = y but analytic expressions of
f (x), f ′(x), f ′′(x), . . . f (k)(x) are unknown and computer procedures for calcu-
lating f ′(x), f ′′(x), . . . f (k)(x) are unavailable. Moreover, the internal structure of
the procedure P calculating f (x) can also be unknown to the user. In this situation,
instead of the usage of, for instance, traditional formulae (2), (3) for an approximation
of f ′(x), the user evaluates f (x) at the point x = y + ①−1 at the Infinity Computer.
Note that if P has been written by the programmer for the Infinity Computer, then
the user just runs P without any intervention on the code of P . In the case when P
has been written for traditional computers, in order to transfer it to the Infinity Com-
puter, variables and constants used in P should be just redeclared as grossnumbers
(7). Traditional arithmetic operations are then overloaded due to the rules defined in
[14,15].

The operation of evaluation of f (x) at the point x = y + ①−1 returns a number in
the form (9) from where the user can easily obtain values of f (y) and f ′(y), f ′′(y), . . .

f (k)(y) as shown in (10) without any knowledge of the Taylor expansion of f (x) and
of the analytic formulae and computer procedures for evaluating derivatives. Due to the
fact that the Infinity Computer is able to work with infinite and infinitesimal numbers

123

582 Y. D. Sergeyev

numerically, the values f ′(y), . . . f (k)(y) are calculated exactly at the point x = y
without introduction of dangerous operations (2), (3) (or (4)) related to the necessity
to use finite values of h when one works with traditional computers. We emphasize
also that the user obtains the function value and the values of the derivatives after
calculation of f (x) at a single point.

It is worthy to notice that numerical operations that the Infinity Computer performs
when it executes the program f (x) can be viewed as an automatic rewriting of f (x)

from the basis in x into the basis in ① by setting x = y + ①−1 with y being a finite
number. The numerical finite value of y is then combined with other finite numbers
present in the program and they all are collected as finite coefficients (i.e., grossdigits)
of grosspowers of ①. In some sense this is similar to rearrangements that often are
executed when one works with wavelets (see [21]) or with formal power series (see
[22]).

Let us consider some numerical examples. Their results can be checked by the reader
directly on systems using symbolic calculations (e.g., MAPLE) by taking instead of
①−1 a symbolic parameter, let say, a, thinking about a as an infinitesimal number and
by calculating then f (y+a) where y is a number. The crucial difference of the Infinity
Computer with respect to systems executing symbolic computations consists of the
fact that the Infinity Computer works with infinite, finite, and infinitesimal numbers
numerically, not symbolically. Naturally, this feature of the Infinity Computer becomes
very advantageous when one should execute complex numerical computations.

Example 1 Suppose that we have a computer procedure implementing the follow-
ing function g(x) = x3 as f (x) = x · x · x and we want to evaluate the values
f (y), f ′(y), f ′′(y), and f (3)(y) at the point y = 5. The Infinity Computer executes
the following operations

f (5 + ①−1) = 5①01①−1 · 5①01①−1 · 5①01①−1

= 25①010①−11①−2 · 5①01①−1 = 125①075①−115①−21①−3. (14)

From (14), by applying (10) we obtain that

f (5) = 125, f ′(5) = 75, f ′′(5) = 2! · 15 = 30, f (3)(5) = 3! · 1 = 6,

that are correct values of f (x) and the derivatives at the point y = 5.
Let us check this numerical result analytically by taking a generic point y. Then

we obtain

f (y + ①−1) = (y + ①−1)3 = (y + ①−1) · (y + ①−1) · (y + ①−1) (15)

= y3 + 3y2①−1 + 3y①−2 + ①−3 = y3①03y2①−13y①−21①−3. (16)

By applying (10) we have the required values

f (y) = y3, f ′(y) = 3y2, f ′′(y) = 2! · 3y = 6y, f (3)(y) = 3! · 1 = 6.

123

Higher order numerical differentiation on the Infinity Computer 583

That coincide with the respective analytical derivatives calculated at the point x = y:

f ′(x) = 3x2, f ′′(x) = 6x, f (3)(x) = 6.

	

Example 2 Suppose that we have the following function g(x) = x + sin(x) and it is
represented in the Infinity Computer as

f (x) = x + ˜sin(x), (17)

where ˜sin(x) is a computer implementation of sin(x). If we want to evaluate f (x),

f ′(x), f ′′(x), and f (3)(x) at a point y, by taking k = 3 in (9) we obtain

f (y + ①−1) = (y + ˜sin(y))①0(1 + ˜sin
′
(y))①−1

˜sin
′′
(y)

2
①−2

˜sin
(3)

(y)

3! ①−3,

where the result depends on the way of implementation of ˜sin(x). For example, sup-
pose for the illustrative purpose that in the neighborhood of the point y = 0 the Infinity
Computer uses the following simple implementation

˜sin(x) = x − x · x · x

6

being the first two items in the corresponding Taylor expansion. Then the computer
program f (x) becomes

f (x) = x + x − x · x · x

6

and the Infinity Computer with y = 0 works as follows

f (0 + ①−1) = 0 + ①−1 + 0 + ①−1 − (0 + ①−1) · (0 + ①−1) · (0 + ①−1)

6

= 2①−1 − ①−3

6
= 2①−1(−0.166667)①−3.

By applying (10) we have the required values

f (0) = 0, f ′(0) = 2, f ′′(0) = 2! · 0 = 0, f (3)(0) = 3! · (−0.166667) = −1.

That, obviously, coincide with the respective analytical derivatives (that, we emphasize
this fact again, were not used by the Infinity Computer)

f ′(x) = 2 − 0.5x2, f ′′(x) = −x, f (3)(x) = −1

calculated at the point y = 0. 	

123

584 Y. D. Sergeyev

Example 3 Suppose that we have a computer procedure f (x) = x ·x+1
x implementing

the function g(x) = x2+1
x and we want to calculate the values f (y), f ′(y), f ′′(y), and

f (3)(y) at a point y = 3. We consider the Infinity Computer that returns grossdigits
corresponding to the exponents of grossone from 0 to −3. Then we have

f (3 + ①−1) = (3 + ①−1) · (3 + ①−1) + 1

3 + ①−1 = 10①06①−11①−2

3①01①−1

= 3.333333①00.888889①−10.037037①−2 − 0.0123457①−3.

By applying (10) we obtain that

f (3) = 3.333333, f ′(3) = 0.888889,

f ′′(3) = 2! · 0.037037 = 0.074074, f (3)(3) = 3! · (−0.0123457) = −0.074074,

that are values which one obtains by using explicit analytic formulae

f (x) = x2 + 1

x
, f ′(x) = 1 − x−2, f ′′(x) = 2x−3, f (3)(x) = −6x−4

for f (x) and its derivatives at the point x = 3. 	

Acknowledgments This research was partially supported by the Russian Federal Program “Scientists
and Educators in Russia of Innovations”, contract number 02.740.11.5018.

References

1. Berz, M.: Automatic differentiation as nonarchimedean analysis. In: Computer Arithmetic and Enclo-
sure Methods. pp. 439–450. Elsevier, Amsterdam (1992)

2. Bischof, C., Bücker, M.: Computing derivatives of computer programs. In: Modern Methods and Algo-
rithms of Quantum Chemistry Proceedings NIC Series, vol. 3, 2 edn, pp. 315–327. John von Neumann
Institute for Computing, Jülich (2000)

3. Chua, L.O., Desoer, C.A., Kuh, E.S.: Linear and Non linear Circuits. MacGraw Hill, Singapore (1987)
4. Cohen, J.S.: Computer Algebra and Symbolic Computation: Mathematical Methods. A K Peters,

Ltd, Wellesley (1966)
5. Corliss, G., Faure, C., Griewank, A., Hascoet, L., Naumann, U. (eds.): Automatic Differentiation of

Algorithms: From Simulation to Optimization. Springer, New York (2002)
6. Daponte, P., Grimaldi, D., Molinaro, A., Sergeyev, Ya.D.: An algorithm for finding the zero-crossing

of time signals with lipschitzian derivatives. Measurement 16, 37–49 (1995)
7. Lam, H.Y.-F.: Analog and Digital Filters-Design and Realization. Prentice Hall Inc, New Jersey (1979)
8. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM J. Numer.

Anal. 4, 202–210 (1967)
9. Moin, P.: Fundamentals of Engineering Numerical Analysis. Cambridge University Press, Cambridge

(2001)
10. Muller, J.M.: Elementary Functions: Algorithms and Implementation. Birkhäuser, Boston (2006)
11. Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Applied Optimization. Oxford University

Press, New York (2002)
12. Sergeyev, Ya.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS (2003)
13. Sergeyev, Ya.D.: http://www.theinfinitycomputer.com (2004)
14. Sergeyev, Ya.D.: A new applied approach for executing computations with infinite and infinitesimal

quantities. Informatica 19(4), 567–596 (2008)

123

http://www.theinfinitycomputer.com

Higher order numerical differentiation on the Infinity Computer 585

15. Sergeyev, Ya.D.: Computer system for storing infinite, infinitesimal, and finite quantities and executing
arithmetical operations with them. EU patent 1728149, (2009)

16. Sergeyev, Ya.D.: Numerical computations and mathematical modelling with infinite and infinitesimal
numbers. J. Appl. Math. Comput. 29, 177–195 (2009)

17. Sergeyev, Ya.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infin-
itesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A Theory Methods
Appl. 71(12), e1688–e1707 (2009)

18. Sergeyev, Ya.D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization prob-
lems arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1), 1–21 (1999)

19. Sergeyev, Ya.D., Kvasov, D.E.: Diagonal Global Optimization Methods. Fizmatlit, Moscow (2008, in
Russian)

20. Strongin, R.G., Sergeyev, Ya.D.: Global Optimization and Non-Convex Constraints: Sequential and
Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

21. Walnut, D.F.: An Introduction to Wavelet Analysis. Birkhäuser, Boston (2004)
22. Wilf, H.S.: Generatingfunctionology, 3rd edn. A K Peters, Ltd., Wellesley (2006)
23. Wolfe, M.A.: On first zero crossing points. Appl. Math. Comput. 150, 467–479 (2004)

123

	Higher order numerical differentiation on the Infinity Computer
	Abstract
	1 Introduction
	2 Representation of numbers at the Infinity Computer
	3 Numerical differentiation
	Acknowledgments
	References

