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Abstract

The goal of this paper is to apply the collection of mathematical tools known as themethod of arbitrary
functions to analyze how probability arises from quantum dynamics. We argue that in a toy model of
quantum measurement the Born rule probabilities can be derived from the unitary Schrödinger dynamics
when certain dynamical parameters are treated as themselves random variables with initial probability
distributions. Specifically, we study the perturbed double well model, in which the perturbation is
treated as a random variable, and we show that for arbitrary initial distributions within a certain class,
the dynamics yields the Born rule probabilities in the joint limits given by long times and small values of
Planck’s constant (the classical limit). Our results establish the Born rule as a type of universal limiting
behavior that is independent of the precise initial dynamical parameters.

1 Introduction

Quantum mechanics infamously gives rise to probabilistic predictions in measurement settings. These predic-
tions can be captured by the Born rule, which in one formulation (for projective measurements) asserts that
the probability Pr(P ) of getting a positive outcome to a measurement of a “yes-no” proposition represented
by a projection operator P is given by the formula

Pr(P ) = ⟨Ψ, PΨ⟩ (1)

when the system is in a state represented by a unit vector Ψ in the Hilbert space corresponding to the
system. While in the orthodox formulation of quantum mechanics, one often sees the Born rule treated as
an independent postulate, some have thought that it cries out for an explanation. One reason for desiring
an explanation might be the apparent conceptual gap between the Born rule and the other principles of
the theory, which typically are taken to not mention probability whatsoever. Indeed, proponents of various
solutions to the measurement problem have taken it upon themselves to attempt to explain the Born rule.

Fulfilling this explanatory duty—pressed upon us by the Born rule’s success—has been touted as a virtue
of certain interpretations of quantum theory. And so one might wonder: to what extent is it possible to
explain the Born rule in the absence of a full interpretation? In other words, is there any relationship between
the Born rule and the shared framework of quantum theory that the interpretations have in common? In
this paper, we will argue for a partial positive answer to this question.

We say only a partial positive answer because one might have the view that explanations in general
require some recourse to interpretation. We leave open this possibility in what follows. What we aim to
do specifically is to provide an explanation schema, which we hope could be filled in with the details of
particular interpretations—of both probability and quantum theory. We leave these interpretive tasks to
future work. In this paper, we present technical results that we hope could serve as the explanatory core for
the approach advocated here.
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The explanation schema we pursue here is inspired by methods developed to answer analogous questions
in the context of classical physics. Asking why the Born rule holds of the probabilities assigned to mea-
surement results is just one example of asking why a physical system that is understood as a chance setup
produces outcomes with certain probabilities. Other such physical systems that are standardly understood
as chance setups include flipped coins, spun roulette wheels, rolled dice, and more. For those systems—which
are modelled accurately enough using classical physics—one often motivates the need for an explanation by
pointing to an apparent and puzzling incompatibility between the probabilistic outcomes and the determin-
istic physical dynamics. In quantum theory, this issue does not disappear, but instead is transformed to the
puzzle of reconciling the probabilistic nature of measurement outcomes with the (standardly) deterministic
dynamics of Schrödinger evolution. Given the similarities between the explanatory question concerning the
Born rule at issue here and the analogues in the context of classical chance setups, we believe it is worth
investigating whether the methods used to attempt the analogous classical explanations can be imported to
the setting of quantum theory.

One collection of resources that have been employed for explaining the values of probabilities assigned
to outcomes of classical chance setups is known as the method of arbitrary functions. The rough idea is to
take the physical dynamics of the system as fixed, and to show that for arbitrary distributions (in a certain
class) over initial parameters governing time evolution, the system will evolve (often in an appropriate limit)
to one in which the distribution assigns probability values that are arbitrarily close to the ones we were
aiming to explain. We provide examples to illustrate these methods later on. Our task is to show that the
method of arbitrary functions can be applied to the dynamics of quantum physics as well—specifically, the
unitary Schrödinger evolution that all no-collapse interpretations of quantum mechanics share—and that
doing so leads to a derivation of the Born rule probabilities in certain examples. While we will only consider
particular measurement models, and so we leave much room for further mathematical work in this regard,
we hope to at least provide a proof of concept to motivate future work on this approach.

The specific model of quantum measurement that we consider here is the double well potential with the
“flea” perturbation investigated by Landsman and Reuvers [23]. They provide an interpretation of the model
in terms of which the ordinary unitary evolution drives states initially in superpositions arbitrarily close to
states with definite measurement outcomes. The model thus provides a possible mechanism for effective
collapse of the quantum state under only unitary evolution. However, van Heugten and Wolters [40] criticize
the interpretation of the model as relevant to the measurement problem on several grounds, including for
lacking the ability to explain the Born rule. Our goal is to respond by showing that the method of arbitrary
functions allows one to recover the Born rule, even for superpositions with unequal probabilities. Thus, our
results both bear on a local debate about the status of a particular approach to quantum measurement and
provide methods that may be used to explain quantum probabilities more generally.

The structure of the paper is as follows. In §2 we provide some background concerning explanations of
the Born rule in quantum mechanics. In §3, we review attempts to explain classical probabilities via the
method of arbitrary functions and illustrate a first, simplified application of the same mathematical tools
to quantum mechanics in the model of a simple harmonic oscillator. In §4, we move to our specific model
of quantum measurement, applying the method of arbitrary functions to the double well potential with the
flea. Finally, §5 concludes with some discussion of the results and some possible future directions.

2 Measurement and the Born Rule

It is now standard in the foundations of quantum mechanics to associate explanations of the Born rule with
the measurement problem. For example, Maudlin [25] classifies explaining the Born rule as a second problem
associated with quantum measurement—the “problem of statistics”—to be dealt with after one has a theory
that explains how measurements yield definite results—the “problem of outcomes”. However, proponents
of different solutions to the measurement problem have sometimes used radically different approaches to
explain the Born rule. (For accessible introductions to different solutions to the measurement problem, see,
e.g., [24, 26, 3].)

For example, consider the explanation of the Born rule in contemporary Bohmian mechanics. In Bohmian
mechanics—where measurement outcomes are determined by the positions of particles as their motion is
guided by the pilot wave—the condition known as quantum equilibrium is essential to the explanation of
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the Born rule. The condition of quantum equilibrium is that the initial distribution of particles (before
measurement) matches that given by the squared amplitude of the wavefunction. If a system is in quantum
equilibrium at any given time, then it will remain so for all future times. The explanation of the Born rule
in Bohmian mechanics due to Dürr et al. [7] comes in two steps. First, they attempt to justify the quantum
equilibrium condition by appealing to a typicality measure that is equivariant under the dynamics. Second,
they show that quantum equilibrium leads to subsystems like measuring devices typically displaying long
run frequencies that approximately match those given by the Born rule.

In contrast, consider the explanation of the Born rule in the contemporary many-worlds interpretation.
The version of the Everettian many-worlds theory developed by Wallace [43]—in which worlds are effective
quasi-classical structures emerging from the unitary evolution of the wavefunction in decoherence scenarios—
employs decision theory to explain the Born rule probabilities. Wallace relies on the “principal principle” to
treat probability as guiding the beliefs of a rational agent. He then proves a decision-theoretic representation
theorem to show that an agent in a quantum multiverse satisfying certain conditions, which he argues are
constraints of rationality, must set their degrees of belief according to the Born rule.

Neither of these Bohmian or Everettian approaches to explaining the Born rule is universally accepted.
For example, Valentini [38] provides an alternative Bohmian explanation of quantum equilibrium, and
Ruetsche [31] criticizes existing Bohmian explanations of the Born rule. Similarly, alternative approaches to
Everettian probability abound [32]. In light of the differences between explanations of quantum probabilities
within distinct interpretations of quantum mechanics, and given the disagreements among those party to
the debates, we believe it is fruitful to pursue the question of whether one could provide an explanation of
the Born rule without committing to an interpretation of quantum mechanics. This motivates considering a
recent proposal for understanding quantum measurement in the framework of standard quantum theory.

Landsman and Reuvers [23] argue that standard quantum theory has the resources to explain the pro-
duction of approximately determinate outcomes, which they claim provides a solution to the measurement
problem with no modification to quantum theory. The results are discussed further by Landsman [21, 22].
Their central idea is that small perturbations to the potential of a system from the environment can give
rise via the standard quantum dynamics to “effective collapse” of the wavefunction during measurement
processes. This proposal has been controversial, and so we will remain agnostic about the claim that this
provides a solution to the measurement problem. Instead, in this paper we will investigate their model
without endorsing all of their interpretational claims. Indeed, since one of the specific criticisms that van
Heugten and Wolters [40] level at Landsman and Reuvers is that one cannot provide an adequate explanation
of the Born rule in the effective collapse model, we take this as motivation to search for ways of associating
probabilities to this system, which is our goal in this paper.

We begin by describing the concrete model employed by Landsman and Reuvers [23]. The model is a
quantum system in a symmetric double well potential with Hamiltonian given by the unbounded operator
H0,ℏ on L2(R) defined by

H0,ℏ = − ℏ2

2m

d2

dx2
+ V0(x)

V0(x) =
1

4
λ(x2 − a2)2. (2)

Here, the parameters in the potential λ and a are positive constants determining, respectively, the shape of

the wells and the width of the barrier between them. In this case, the ground state wavefunction Ψ
(0)
ℏ of

the system contains two peaks above x = +a and x = −a. The ground state wavefunction is approximately
Gaussian in a neighborhood of each peak for small values of ℏ. For these reasons, Landsman and Reuvers
[23] interpret this ground state as a superposition of the two states localized in each well, analogous to
the state in which a measuring device is in a superposition of yielding two outcomes or the state in which
Schrödinger’s cat is in a superposition of being dead and alive.

The problem Landsman and Reuvers [23] consider is how the system might transition from the ground

state Ψ
(0)
ℏ to a state in which the system is effectively localized in one well, which is analogous to a state

in which there is an approximately determinate measurement outcome. Indeed, one can construct approxi-
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mately localized states by considering the first excited state Ψ
(1)
ℏ and defining the states

Ψ±
ℏ =

Ψ
(0)
ℏ ±Ψ

(1)
ℏ√

2
. (3)

Each of these wavefunctions Ψ±
ℏ has a single peak at x = ±a and is approximately Gaussian in a neighborhood

of that peak for small ℏ. So the task Landsman and Reuvers [23] propose can be reformulated as that of

finding a mechanism for the system to evolve from the ground state Ψ
(0)
ℏ to one of the localized states Ψ±

ℏ .
To that end, they consider adding a small, localized perturbation—labelled the “flea”–to the potential

of the system.

Hδ,ℏ = − ℏ2

2m

d2

dx2
+ Vδ(x), (4)

Vδ(x) =
1

4
λ(x2 − a2)2 + δ(x) (5)

The flea perturbation δ(x) is a smooth, compactly supported function of position x, whose support does
not include the minima of the potential and satisfies certain constraints [23, p. 387-388] Even a small
perturbation of this kind can drastically change the shape of the ground state wavefunction.1 They show
that for small values of ℏ, the ground state of the perturbed Hamiltonian is almost completely localized in
a single well as determined by the flea: the state is localized on the opposite side of a positive flea, or on
the same side as a negative flea, reflecting the minimization of energy. Moreover, Landsman and Reuvers
[23] provide a dynamical model in which the flea perturbation is added adiabatically to the unperturbed
Hamiltonian. They show that this produces a mechanism in which, for long enough times, the original
ground state becomes dynamically localized in one well, thus affecting a transition from a superposition to
one of its components.

The sense in which this localization produces an effective collapse, or approximately determinate measure-
ment outcome, is provided through the classical ℏ → 0 limit. (We will provide details on the mathematical
tools for taking the classical ℏ → 0 limit later in §3.) Landsman and Reuvers [23] pay homage to Bohr’s ideas
that measurement results should be described using classical physics, and so they interpret measurement

outcomes as the definite classical states at the positions x = ±a. The original ground state Ψ
(0)
ℏ of the

unperturbed Hamiltonian, which is a superposition of different localized states, has as its classical limit the
classical mixed state given by a probabilistic mixture, which we denote for points (x, p) in phase space as

ρ
(0)
0 =

1

2

(
δ(+a,0) + δ(−a,0)

)
, (6)

where δ(±a,0) is the delta-function or point-mass distribution centered at the phase space point with position

x = ±a and momentum p = 0 [23, p. 382].2 The classical limit of the unperturbed ground state ρ
(0)
0 does

not correspond to a single phase space point, and indeed it has nonzero variance in position. Landsman and

Reuvers [23] interpret ρ
(0)
0 as a state in which there is no classical determinate measurement outcome. On

the other hand, the ground state of the perturbed Hamiltonian becomes localized in one well, approaching
one of Ψ±

ℏ (as determined by the location of the perturbation). It’s classical limit is the classical pure state
given by the probability measure

ρ±0 = δ(±a,0), (7)

at the phase space point x = ±a and p = 0, which signifies that the wavefunction is localized around a
single peak at x = ±a [23, p. 388-9]. Since the classical limit of the perturbed ground state ρ±0 corresponds
to a single phase space point, Landsman and Reuvers [23] interpret it as one in which there is a classical
determinate measurement outcome.

1Despite calling the flea a “perturbation”, we will not be treating the resulting dynamics using the techniques regularly
called “perturbation theory” [10, Ch. 6, 9]. See also [18].

2The point mass distributions δ(±a,0) should not be confused with the flea perturbation function δ(x) which is denoted
without any subscript.
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As mentioned before, the work of Landsman and Reuvers has not been widely accepted as a solution to
the measurement problem. In particular, van Heugten and Wolters [40] provide a number of challenges to
the interpretation and generalization of the results in the double well model, which we can describe now that
we have presented the basics of Landsman and Reuver’s model. Do effective or approximate measurement
outcomes in the ℏ → 0 limit of the model suffice to explain the appearance of actual determinate measurement
outcomes for physically realistic values ℏ > 0? Can one justify treating the environmental influence via a
perturbation to the potential rather than an interaction with a further quantum system? Can one achieve
similar results in models that allow for more than two possible “outcome states” in a measurement process?
We set aside these important questions for future work. In what follows, we remain agnostic about whether
the results of Landsman and Reuvers [23] provide a solution to the measurement problem. Instead, we take
the double well potential as only an interesting model to investigate for the tools we develop to explain the
Born rule.

We note that our investigation is motivated by the current state of the literature because van Heugten
and Wolters [40] also argue that the explanation that Landsman and Reuvers [23] offer for the Born rule
is inadequate. Landsman and Reuvers claim that since the location of the flea perturbation determines
the measurement outcome on their interpretation, the statistics of measurement outcomes are determined
by the statistics of the flea. Put another way, our uncertainty about the outcome of the measurement is
determined by our uncertainty about the position of the flea within the potential. Thus, they explain the
equally weighted Born rule statistics produced by the unperturbed ground state superposition by arguing
from a principle of indifference; since we have no reason to expect the flea will favor one side over the other,
we should employ a probability distribution for the flea that gives equal weight to both sides, and hence
yields equal probabilities for the two measurement outcomes. van Heugten and Wolters [40] rightly point
out that this explanation of the Born rule probabilities is unsatisfactory because it makes the probabilities
depend only on the distribution or uncertainty governing the location of the flea perturbation and not on
the initial quantum state in the superposition. For example, this explanation leaves open the question: if
the system started in a superposition

Ψℏ = αΨ+
ℏ + βΨ−

ℏ (8)

with unequal weights |α|2 ̸= |β|2 governing the different localized components, why should we assign unequal
probabilities for the corresponding measurement outcomes?

We do not take this to invalidate the significance of work in the double well model. Rather, we take this
as a call to action for further investigation of probabilities in this framework. In the remainder of the paper,
we hope to provide an improved explanatory schema for the Born rule probabilities, and one that can yield
explanations even for unequal weights in the double well model. We now turn to the mathematical tools we
will use for our derivation of the Born rule.

3 The Method of Arbitrary Functions

The schema we propose for explaining the Born rule stems from the method of arbitrary functions as it has
been used to explain probabilities for outcomes in classical chance setups. The method of arbitrary functions
provides tools for showing how physical dynamics lead to universal probability assignments, i.e., probability
assignments that are at least approximately the same for a range of (initial) conditions. The general idea
is to show that for arbitrary uncertainty about the initial state of a system or parameters in the dynamical
equations, the distribution of the system will evolve in some approximate or limiting regime toward the same
final distribution.

For example, Poincaré [28] analyzes the spinning of a roulette wheel, in which any smooth enough
distribution over the initial angular velocity produces the result, in the regime of high enough velocities,
of approximately equal probabilities for the wheel to land on each outcome. Similarly, Diaconis et al.
[6] analyze the physical dynamics of flipping a coin and show that smooth enough distributions over the
initial orientation and angular velocity also lead to the result, in the regime of high enough velocities, of
approximately equal probabilities for heads and tails. Hopf [15] discusses further examples, including rolling
dice. Engel [8] provides comprehensive mathematical background that unifies many of these results in the
context of classical physical examples.
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Philosophers have also shown interest in the method of arbitrary functions for its role in understanding
chance [41]. Some—including Abrams [1], Strevens [37], Rosenthal [30], and Hoefer [14]—have argued that
the method of arbitrary functions provides a physical foundation for objective probabilities. On the other
hand, Myrvold [27] argues that the method of arbitrary functions only provides constraints from physics on
what rational agents should agree to believe about outcomes of chance setups. And de Canson [5] criticizes
the idea that the probabilities derived from the method of arbitrary functions could be sufficiently objective.
We take such philosophical discussions, although still controversial, to be evidence for the potential of the
method of arbitrary functions to bear on foundational issues regarding physical probability. In what follows,
we remain agnostic about the precise interpretation given to the method of arbitrary functions, especially
regarding subjective and objective notions of probability.

In the remainder of this section, we illustrate the application of the method of arbitrary functions to a
simple example: the harmonic oscillator. We first review the classical version of the harmonic oscillator,
which has been previously studied, and which will allow us to state certain technical results that we will
use in the rest of our investigation. Then we show how to apply the method to the quantum version of
the harmonic oscillator. This will serve as both a proof of concept and an opportunity to introduce the
mathematical tools we will need for considering the classical limit in later results.

For the classical harmonic oscillator in one dimension, e.g., a mass on a spring, the equation of motion
for a mass starting from rest is given by

x(t) = x(0) · cos(ωt), (9)

where x(t) is the position of the mass at time t, x(0) is its initial displacement, and ω is its frequency
of oscillation determined by the inertial mass and the so-called spring constant. If one has uncertainty
about any of the initial conditions or dynamical parameters, then one can treat x(t) as a random variable.
We consider specifically the case where we have uncertainty about the frequency and treat ω as a random
variable. The crucial mathematical ingredient is the realization that since the motion is periodic, we can
write

cos(ωt) = cos ((ωt)(mod 2π)) . (10)

This focuses our attention on the random variable (ωt)(mod 2π). Engel [8, Thm. 3.2 and Thm. 3.5] then
provides the following fundamental result.

Theorem 1. If the random variable ω possesses a density with respect to the Lebesgue measure on R+, then
in the limit t → ∞, the random variable (ωt)(mod 2π) approaches a uniform distribution on the interval
[0, 2π] in both the variation distance and the weak* topology.3

Engel [8, §3] determines explicit bounds on the rate of convergence for a random variable whose density has
bounded variation. One consequence we wish to highlight is that in the t → ∞ limit, the expectation value
of x(t) approaches 0. This establishes that a large class of uncertainties about the initial parameters of the
system all approach the same distribution, and same expectation values, in the limit of long times.

We now provide our first novel illustration of the use of the method of arbitrary functions in quantum
mechanics by showing that the same methods can be applied to the quantum harmonic oscillator. The
quantum harmonic oscillator is described by a wave function Ψ ∈ L2(R) satisfying the Schrödinger equation
for the Hamiltonian

Hℏ
m,ω = − ℏ2

2m

∂2

∂x2
+

1

2
mω2x2, (11)

where ℏ is Planck’s constant. The time evolution of the quantum state yields

Ψℏ
m,ω(t) = e−iHℏ

m,ωt/ℏΨ (12)

for all t > 0, where the values of Planck’s constant ℏ, the mass m, and the frequency ω are fixed.
To analyze this system, we will use the classical ℏ → 0 limit. To that end, we employ the tools given

by Weyl quantization and Wigner functions [20]. The Weyl quantization maps Qℏ : C∞
c (R2) → B(L2(R))

3A sequence of measures (µn) on Rn converge to a measure µ in the weak* topology if the expectation values for all smooth
compactly supported functions f converge, i.e.

∫
f(x)dµn(x) →

∫
f(x)dµ(x) for all f ∈ C∞

c (Rn).
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take classical observables f ∈ C∞
c (R2) on the phase space R2 and transform them to quantum operators

according to the definition

(Qℏ(f)Ψ) (x) =

∫
R2

dqdp

2πℏ
eip·(x−q)/ℏf

(
1

2
(x+ q), p

)
Ψ(q) (13)

for all Ψ ∈ L2(R). The Wigner function associates any quantum state given by a wavefunction Ψ to a
classical quasi-probability density WΨ

ℏ : R2 → R on the classical phase space given by

WΨ
ℏ (x, p) =

2

ℏ

∫
R
Ψ(x+ y)Ψ(x− y)e2ip·y/ℏdy (14)

=
1

ℏ
⟨Ψ,ΩW

ℏ (x, p)Ψ⟩, (15)

where ΩW
ℏ (x, p) is the linear operator(

ΩW
ℏ (x, p)Ψ

)
(y) = 2e2ip(y−x)/ℏΨ(2x− y) (16)

for all Ψ ∈ L2(R). Putting together Weyl quantization and the Wigner function, the quasi-probability density
can be used to mimic classical expectation values for observables that agree with the quantum expectation
values of their quantized counterparts by satisfying the equality∫

R2

f(x, p)WΨ
ℏ (x, p)dxdp = ⟨Ψ,Qℏ(f)Ψ⟩ (17)

for all Ψ ∈ L2(R) and f ∈ C∞
c (R2).4 If there is a probability measure µΨ

0 on R2 such that

lim
ℏ→0

∫
R2

f(x, p)WΨ
ℏ (x, p)dxdp =

∫
R2

f(x, p)dµΨ
0 , (18)

for all f ∈ C∞
c (R2) (i.e., WΨ

ℏ dxdp approaches µΨ
0 in the weak* topology), then we will call µΨ

0 the classical
limit of the quantum state Ψ.

One useful feature of Weyl-Wigner quantization for analyzing the harmonic oscillator is that it commutes
with the corresponding time evolution in the sense that

W
Ψℏ

m,ω(t)

ℏ (x, p) = WΨ
ℏ (xm,ω(−t), pm,ω(−t)) (19)

for all t ∈ R, where the time evolution occurs with fixed values for the mass m and the frequency ω. Here,
Ψℏ

m,ω(t) represents the time-evolution of the initial quantum state Ψ by the Schrödinger equation for some
time t > 0, whereas the phase space point (xm,ω(−t), pm,ω(−t)) represents the reversed time evolution of the
initial classical state (x, p) by the classical harmonic oscillator dynamics for the same time t > 0. That is,
(xm,ω(−t), pm,ω(−t)) is the classical state that would evolve into (x, p) after a time t under the corresponding
classical harmonic oscillator dynamics. We now explicitly include the subscripts m and ω on the right hand
side to denote that the classical time evolution uses the dynamics with the same fixed value of the mass m
and the frequency ω that appears on the left hand side.

To apply the method of arbitrary functions to the quantum harmonic oscillator, we analyze both the limit
of long times and the classical limit under the supposition that the mass m and the frequency ω are random
variables. We suppose that mω is a constant in order to fix the possible classical trajectories. Moreover, we
suppose that the random variable ω has a density on R+. Then, for each point (x, p) ∈ R2, the value of the

time-evolved Wigner function W
Ψℏ

m,ω(t)

ℏ (x, p) is a random variable, where the evolution of Ψ is determined
by the values of m and ω. We have the following result for the limiting behavior of the quantum harmonic
oscillator: in the combined classical and long time limits, the Wigner function becomes uniformly distributed
over classical orbits in phase space.

4We use the convention of anti-linearity on the left, i.e. ⟨aψ, φ⟩ = a⟨ψ,φ⟩ where a is the complex conjugate of a ∈ C.
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Proposition 1. Suppose that ω and m are random variables with a joint distribution, and that mω is
constant. Suppose further that the random variable ω has a density dω on R+. Let Ψ ∈ L2(R) have a
classical limit µΨ

0 with density WΨ
0 with respect to the Lebesgue measure, so dµΨ

0 = WΨ
0 dxdp. Then we have

lim
ℏ→0

lim
t→∞

∫
R+

W
Ψℏ

m,ω(t)

ℏ (x, p)dω =

∫ 2π

0

WΨ
0 (x1(t), p1(t))dt (20)

in the weak* topology. On the right hand side, (x1(t), p1(t)) := (x1,1(t), p1,1(t)) denotes the classical time-
evolved state with fixed mass m = 1 and frequency ω = 1 and hence period 2π.

Proof. Consider Ψ ∈ L2(R) with a classical limit denoted as in the statement of the proposition. Note that
generically, we have

xm,ω(t) = x cos(ωt) +
p

mω
sin(ωt) pm,ω(t) = −mωx sin(ωt) + p cos(ωt). (21)

So we have for any f ∈ C∞
c (R2),

lim
t→∞

∫
R2

∫
R+

f(x, p)W
Ψℏ

m,ω(t)

ℏ (x, p)dωdxdp = lim
t→∞

∫
R2

∫
R+

f(x, p)WΨ
ℏ (xm,ω(−t), pm,ω(−t))dωdxdp (22)

=

∫
R2

lim
t→∞

∫
R+

f(x, p)WΨ
ℏ (xm,ω(−t), pm,ω(−t))dωdxdp (23)

=

∫
R2

∫ 2π

0

f(x, p)WΨ
ℏ (x1(t), p1(t))dtdxdp (24)

=

∫ 2π

0

∫
R2

f(x, p)WΨ
ℏ (x1(t), p1(t))dxdpdt. (25)

In lines (24)-(25), ω = 1 becomes a constant, whose sole role is to determine the period 2π. Line (22)
is justified by Eq. (19), while line (23) is justified by the dominated convergence theorem since, for fixed
ℏ ∈ (0, 1], the integrand is bounded by∣∣∣∣∫

R+

f(x, p)WΨ
ℏ (xm,ω(−t), pm,ω(−t))dω

∣∣∣∣ ≤ 2

ℏ
· sup
(x,p)∈R2

|f(x, p)|.

The crucial step is line (24), which is justified by Thm. 1—the fact that the random variable (ωt)(mod 2π)
approaches a uniform distribution on [0, 2π] implies that expectation values of the classical periodic motion
in Eq. (21) can be determined by averaging over a period. Since the result is an average over the period
of trigonometric functions we can replace −t with t. Finally, line (25) is obtained from the Fubini-Tonelli
theorem since, for fixed ℏ ∈ (0, 1], the integral is bounded by∫

R2

∫ 2π

0

|f(x, p)WΨ
ℏ (x1(t), p1(t))|dtdxdp ≤ 2π

ℏ

∫
R2

|f(x, p)|dxdp, (26)

which is finite since f ∈ C∞
c (R2).

We also know that ℏ 7→ ∥Qℏ(f)∥ℏ is continuous, and hence bounded for ℏ ∈ [0, 1], so we can apply the
dominated convergence theorem to find that

lim
ℏ→0

lim
t→∞

∫
R2

∫
R+

f(x, p)W
Ψℏ

m,ω(t)

ℏ (x, p)dωdxdp = lim
ℏ→0

∫ 2π

0

∫
R2

f(x, p)WΨ
ℏ (x1(t), p1(t))dxdpdt (27)

=

∫ 2π

0

∫
R2

f(x, p)WΨ
0 (x1(t), p1(t))dxdpdt (28)

since the integrand is bounded by∣∣∣ ∫
R2

f(x, p)WΨ
ℏ (x1(t), p1(t))dxdp

∣∣∣ ≤ sup
ℏ∈[0,1]

∥Qℏ(f)∥ℏ. (29)

This is what we set out to show. (In fact, it follows from what we have shown that the t → ∞ and ℏ → 0
limits commute in this case.)
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This result provides a first application of the method of arbitrary functions to quantum systems. The
example illustrates how one can control the limit of long times t → ∞ and the classical limit ℏ → 0 so as
to extract universal limiting behavior. The behavior is universal in that it captures a wide range of initial
distributions over the unknown frequency ω, all of which will approach the same limiting distribution in long
times. Physically, we see that the t → ∞ limit yields averages over periodic motions, while the ℏ → 0 limit
suppresses quantum interference terms. For example, if Ψ is a coherent state, then the Wigner function WΨ

ℏ
is a Gaussian whose width is proportional to ℏ. So while the classical limit WΨ

0 is a delta function at a
point (x, p) in phase space, the combined classical and long time limits smear out WΨ

0 to become a uniform
distribution over the classical orbit through (x, p) for the fixed value of mω. We emphasize that since the
classical and long time limits commute in this case, the result holds even when the time evolution is taken
according to the quantum dynamics. Employing the quantum, rather than classical, equations of motion is
our central conceptual innovation beyond the classical method of arbitrary functions.

We have shown that under certain assumptions, the combined t → ∞ and ℏ → 0 limits of the quantum
probabilities leads to universal behavior for the quantum harmonic oscillator. In this case, the universal
behavior we point to is the resulting uniform distributions along classical trajectories. Indeed, we wish to
show that for a toy model of quantum measurement, the same limits produce a different kind of universal
behavior. In the models we consider next, the method of arbitrary functions along with the t → ∞ and
ℏ → 0 limits yield the Born rule probabilities as universal probability values for the measurement outcomes.
We now turn to the toy model of quantum measurement governed by the double well potential.

4 Probability from the Flea

In this section, we will show how Born rule measurement probabilities can be derived from Schrödinger
time evolution in the toy model of quantum measurement due to Landsman and Reuvers [23], given certain
auxiliary assumptions. Recall that Landsman and Reuvers model quantum measurement using the one-
dimensional symmetric double well potential with the “flea” perturbation δ:

Vδ(x) =
1

4
λ(x2 − a2)2 + δ(x), (30)

where δ is a smooth, compactly supported function. The perturbed double well potential is intended to
represent the combined measured system and apparatus in a binary measurement which can take values
x = ±a. The values of x away from ±a represent other configurations the system can take in principle, while
the measurement outcomes correspond only to the minima of the wells. Landsman and Reuvers show that,
given a system whose initial state is approximately a superposition of Gaussians centered on the two wells,
taking the t → ∞ (with the perturbed double well dynamics) and ℏ → 0 limits of this state results in either
a state totally localized at x = +a or one totally localized at x = −a. With their toy model, Landsman and
Reuvers provide a mechanism that captures one aspect of quantum measurement: wavefunction collapse.

In this section, we aim to capture the other notable aspect of quantum measurement: that probabilities
of measurement outcomes are determined by the Born rule. We use the same perturbed double well model
as Landsman and Reuvers, but we consider a larger class of initial states. We now present some general
features of the system to establish background and notation. As discussed in Section 2, symmetric and

anti-symmetric superpositions of the ground state Ψ
(0)
ℏ and first excited state Ψ

(1)
ℏ result in states which are

approximately localized in the right and left wells, respectively:

Ψ±
ℏ =

Ψ
(0)
ℏ ±Ψ

(1)
ℏ√

2
. (31)

Many of the qualitative features of the double well and the perturbed double well models follow from the
phenomenon of asymptotic degeneracy, which has been studied in detail in double well systems [11, 12, 13,

16, 17, 33]: letting ∆ℏ = E
(1)
ℏ −E

(0)
ℏ denote the difference of the energy eigenvalues for the eigenstates Ψ

(1)
ℏ

and Ψ
(0)
ℏ of the unperturbed Hamiltonian, we have:

∆ℏ ∼ ℏ
√

2a2λ

eπ
e−dV /ℏ (ℏ → 0), (32)
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where dV is the typical WKB-factor

dV =

∫ a

−a

dx
√

V (x). (33)

We will consider initial states that are arbitrary superpositions of Ψ+
ℏ and Ψ−

ℏ , i.e.,

Ψℏ(t = 0) = αΨ+
ℏ + βΨ−

ℏ . (34)

This includes the ground state for α = β = 1√
2
, which Landsman and Reuvers consider, but also includes

other states, as well. The ℏ → 0 limits of the two approximately localized states Ψ±
ℏ , result in classical

states completely localized at x = ±a. So, we will interpret each state as approximating one which, upon
measurement, returns x = ±a with certainty (at least relative to some error bounds). With this in mind,
the Born rule tells us that the superposition state Ψℏ(t = 0) above should result in a measurement outcome
of x = +a with probability |α|2 and a measurement outcome of x = −a with probability |β|2.

We will show that this is exactly the case when we allow the “flea” perturbation δ to be a random variable
and the probabilities above to capture the results of measurements involving different fleas. That is, given
an arbitrary probability distribution over δ within a certain class, taking the t → ∞ and ℏ → 0 limits of
Ψℏ(t = 0) under the δ-perturbed double well time evolution, results in a state localized at x = +a for a set
of fleas δ with probability |α|2 and x = −a for a set of fleas δ with probability |β|2. This is the sense in
which Landsman and Reuvers’ approach to measurement can also capture the Born rule probabilities. We
will eventually show that this holds in the double well toy model, but we begin in §4.1 with a two-state
approximation to that model, which will illustrate some of the essential features of our analysis. We will
consider the full double well in §4.2.

4.1 Two State Model

Following Landsman and Reuvers, we begin by working with the “truncated” Hilbert space C2 spanned by
the two lowest energy eigenstates of the system. To do so, we replace the two approximately localized states
Ψ−

ℏ and Ψ+
ℏ with

Φ− =

(
1
0

)
, Φ+ =

(
0
1

)
(35)

in C2. The observables for the system span the C*-algebra M2(C) of 2 × 2 matrices. We consider the
(unperturbed) Hamiltonian

H0,ℏ =
1

2

(
0 −∆ℏ

−∆ℏ 0

)
(36)

where ∆ℏ is the difference in the energies of Ψ
(1)
ℏ and Ψ

(0)
ℏ , the energy eigenstates of the double well potential,

which we assume has the form given by Eq. (32). The energy eigenstates of the unperturbed two state
Hamiltonian H0,ℏ are

Φ
(0)
0 =

1√
2

(
1
1

)
, Φ

(1)
0 =

1√
2

(
1
−1

)
(37)

with respective energies E
(0)
0 = − 1

2∆ℏ and E
(1)
0 = 1

2∆ℏ. These energy eigenstates satisfy the following
relationship with the localized states

Φ± =
Φ

(0)
0 ∓ Φ

(1)
0√

2
, (38)

which mimics the relationship between the two lowest energy states of the double well and the approximately

localized states in Equation (31). The subscripts on the states Φ
(0)
0 and Φ

(1)
0 signify that they are eigenstates

corresponding to the unperturbed Hamiltonian H0,ℏ above.
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Now consider a new perturbed Hamiltonian in which a positive real number δ—a “flea”—has been added
to the left well, i.e.

Hδ,ℏ =

(
δ − 1

2∆ℏ
− 1

2∆ℏ 0

)
. (39)

For small ℏ, the value of δ will be large compared to ∆ℏ so even though we refer to δ as a “perturbation”,
standard perturbation theory techniques are not applicable. The resulting energy eigenvalues are [23, p.
391]

E
(0)
δ,ℏ =

1

2

(
δ −

√
δ2 +∆2

ℏ

)
E

(1)
δ,ℏ =

1

2

(
δ +

√
δ2 +∆2

ℏ

)
. (40)

The energy difference is

∆δ,ℏ = E
(1)
δ,ℏ − E

(0)
δ,ℏ =

√
δ2 +∆2

ℏ (41)

and the corresponding energy eigenstates are

Φ
(0)
δ,ℏ =

1√
2

(
δ2 +∆2

ℏ + δ
√
δ2 +∆2

ℏ

)−1/2
(

∆ℏ
δ +

√
δ2 +∆2

ℏ

)
; (42)

Φ
(1)
δ,ℏ =

1√
2

(
δ2 +∆2

ℏ − δ
√
δ2 +∆2

ℏ

)−1/2
(

∆ℏ
δ −

√
δ2 +∆2

ℏ

)
. (43)

Notice that limδ→0 Φ
(i)
δ,ℏ = Φ

(i)
0 for i = 0, 1 as we should expect.

As ℏ → 0, ∆ℏ rapidly approaches 0 according to Equation (32), and it can be shown that given any
δ > 0,

lim
ℏ→0

Φ
(0)
δ,ℏ = Φ+, lim

ℏ→0
Φ

(1)
δ,ℏ = Φ−. (44)

For δ < 0, these limits are swapped. These results are sensible since the former says that adding a positive
perturbation in the left well leads to a ground state which is approximately localized in the right well. They
also match onto the eigenvectors of the perturbed Hamiltonian Hδ,ℏ but with 0 substituted for ∆ℏ. So far,
this model is identical to the one treated in Landsman and Reuvers [23], but we will introduce a novel feature
by allowing δ to be a random variable instead of a real-valued parameter.

Now consider an initial state Ψ(0) = αΦ+ + βΦ− for α, β ∈ C, which at t = 0 undergoes a measurement
of the “position” observable

Q =

(
−1 0
0 1

)
, (45)

i.e. the observable which assigns the outcome Q = −1 to the left well state Φ− and the outcome Q = +1
to the right well state Φ+. According to conventional quantum mechanics, the Born rule tells us that a
measurement of Q will return +1 or −1 with respective probabilities

P (Q = +1) = |α|2 P (Q = −1) = |β|2. (46)

We can describe this Born rule result as the probabilistic mixture

ωB = |α|2ω+ + |β|2ω− (47)

where ω+ and ω− are the expectation value assignments

ω+(A) = ⟨Φ+, AΦ+⟩ ω−(A) = ⟨Φ−, AΦ−⟩ (48)

for all A ∈ M2(C).
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The following proposition says that we can recover the Born rule state ωB from the “flea model” of
measurement if we take a probabilistic approach to the flea perturbation, under which δ is a random variable
that is constant in time. Each value of δ determines a distinct time evolution of the initial state Ψ(0) to

Ψδ,ℏ(t) = e−iHδ,ℏt/ℏΨ(t = 0).

The uncertain final state at time t can thus be understood by averaging over different values of δ, weighted
by a probability distribution governing the perturbations. We encode this information by considering the
time evolved state at time t as a mixed state, i.e. a probabilistic mixture, of the algebraic states of the time
evolved pure state for each δ-dependent time evolution. In short, we consider a probability distribution µ
over values of δ, and evaluate the mixed state which combines the various δ-dependent time evolutions of
the initial state Ψ(0). We will show that in the t → ∞ and ℏ → 0 limits, the resulting state approaches the
Born rule state ωB above.

Proposition 2. Let µ be a probability measure over real nonzero values of δ that has a density with respect
to the Lebesgue measure over values δ ∈ R. Let Ψ(0) be the initial state

Ψ(0) = αΦ+ + βΦ− (49)

for α, β ∈ C with |α|2 + |β|2 = 1. Consider the time-evolved state Ψδ,ℏ(t) = e−iHδ,ℏt/ℏΨ(0) with the
corresponding expectation value assignment ωΨδ,ℏ(t)(A) = ⟨Ψδ,ℏ(t), AΨδ,ℏ(t)⟩ for all A ∈ M2(C) . Then the
mixed state

ωt
µ ≡

∫
ωΨδ,ℏ(t)dµ(δ) (50)

approaches the Born rule state ωB in the weak* topology under the t → ∞ and then ℏ → 0 limits. That is,
for all A ∈ M2(C)

lim
ℏ→0

lim
t→∞

∣∣ωt
µ(A)− ωB(A)

∣∣ = 0 (51)

Proof. First, we will treat the case where µ has support only over positive values of δ. Arbitrary probability
measures (with a density) will be treated at the end of the proof. By definition,

lim
ℏ→0

lim
t→∞

∣∣ωt
µ(A)− ωB(A)

∣∣ = lim
ℏ→0

lim
t→∞

∣∣∣∣ ∫ ωΨδ,ℏ(t)(A)dµ(δ)− ωB(A)

∣∣∣∣ (52)

= lim
ℏ→0

lim
t→∞

∣∣∣∣ ∫ ⟨Ψδ,ℏ(t), AΨδ,ℏ(t)⟩dµ(δ)− |α|2ω+(A)− |β|2ω−(A)

∣∣∣∣ (53)

We now calculate the above limits for a basis of observables in M2(C). We consider the basis consisting of:
the right well projection operator Π+ = |Φ+⟩⟨Φ+|, the left well projection operator Π− = |Φ−⟩⟨Φ−|, and the
off-diagonal matrices A+− = |Φ+⟩⟨Φ−| and A−+ = |Φ−⟩⟨Φ+|. We treat the expectation value of each basis
element in turn.

First, setting A to the right well projection operator Π+ = |Φ+⟩⟨Φ+|, we get

lim
ℏ→0

lim
t→∞

∣∣ωt
µ(Π+)− ωB(Π+)

∣∣ (54)

= lim
ℏ→0

lim
t→∞

∣∣∣∣ ∫ ⟨Ψδ,ℏ(t),Φ
+⟩⟨Φ+,Ψδ,ℏ(t)⟩dµ(δ)− |α|2

∣∣∣∣ (55)

= lim
ℏ→0

lim
t→∞

∣∣∣∣∣
∫ ∣∣∣〈Φ+,Φ

(0)
δ,ℏ

〉∣∣∣2 · ∣∣∣〈Φ(0)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ) (56)

+

∫ ∣∣∣〈Φ+,Φ
(1)
δ,ℏ

〉∣∣∣2 · ∣∣∣〈Φ(1)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ) (57)

+

∫ 〈
Φ

(0)
δ,ℏ,Φ

+
〉〈
Φ+,Φ

(1)
δ,ℏ

〉〈
Ψ(0),Φ

(0)
δ,ℏ

〉〈
Φ

(1)
δ,ℏ,Ψ(0)

〉
e−i∆δ,ℏt/ℏdµ(δ) (58)
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+

∫ 〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ+,Φ

(0)
δ,ℏ

〉〈
Ψ(0),Φ

(1)
δ,ℏ

〉〈
Φ

(0)
δ,ℏ,Ψ(0)

〉
ei∆δ,ℏt/ℏdµ(δ)− |α|2

∣∣∣∣∣ (59)

≤

∣∣∣∣∣ limℏ→0
lim
t→∞

∫ ∣∣∣〈Φ+,Φ
(0)
δ,ℏ

〉∣∣∣2 · ∣∣∣〈Φ(0)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ) (60)

+ lim
ℏ→0

lim
t→∞

∫ ∣∣∣〈Φ+,Φ
(1)
δ,ℏ

〉∣∣∣2 · ∣∣∣〈Φ(1)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ)− |α|2
∣∣∣∣∣ (61)

+

∣∣∣∣∣ limℏ→0
lim
t→∞

∫ 〈
Φ

(0)
δ,ℏ,Φ

+
〉〈
Φ+,Φ

(1)
δ,ℏ

〉〈
Ψ(0),Φ

(0)
δ,ℏ

〉〈
Φ

(1)
δ,ℏ,Ψ(0)

〉
e−i∆δ,ℏt/ℏdµ(δ)

∣∣∣∣∣ (62)

+

∣∣∣∣∣ limℏ→0
lim
t→∞

∫ 〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ+,Φ

(0)
δ,ℏ

〉〈
Ψ(0),Φ

(1)
δ,ℏ

〉〈
Φ

(0)
δ,ℏ,Ψ(0)

〉
ei∆δ,ℏt/ℏdµ(δ)

∣∣∣∣∣ (63)

=

∣∣∣∣∣
∫

lim
ℏ→0

∣∣∣〈Φ+,Φ
(0)
δ,ℏ

〉∣∣∣2 · ∣∣∣〈Φ(0)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ) (64)

+

∫
lim
ℏ→0

∣∣∣〈Φ+,Φ
(1)
δ,ℏ

〉∣∣∣2 · ∣∣∣〈Φ(1)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ)− |α|2
∣∣∣∣∣ (65)

=

∣∣∣∣∣
∫ ∣∣∣〈Φ+,Φ+

〉∣∣∣2 · ∣∣∣〈Φ+,Ψ(0)
〉∣∣∣2dµ(δ) + ∫ ∣∣∣〈Φ+,Φ−〉∣∣∣2 · ∣∣∣〈Φ−,Ψ(0)

〉∣∣∣2dµ(δ)− |α|2
∣∣∣∣∣ (66)

=

∣∣∣∣∣|α|2
∫

dµ(δ)− |α|2
∣∣∣∣∣ = 0. (67)

In lines (56)-(59), we have used the Schrödinger evolution of Ψ(0) and the inequality on the next line (60)
follows from the triangle inequality. The integrals on lines (62) and (63) vanish by Thm. 1 because for all
ℏ, ei∆δ,ℏt/ℏ weakly approaches a uniform distribution over the unit circle as t → ∞. Then, the following
equality on line (64) follows from the dominated convergence theorem with a constant unit bounding function.
Finally, lines (66) and (67) follow from Equation (44) and from evaluating the inner products, respectively.
Since Π− = 1−Π+ it is easy to see that Equation (51) holds for A = Π− as well.

Now consider the off-diagonal matrix A+− = |Φ+⟩⟨Φ−|. Using Equation (53), we have

lim
ℏ→0

lim
t→∞

∣∣ωt
µ(A+−)− ωB(A+−)

∣∣ (68)

= lim
ℏ→0

lim
t→∞

∣∣∣∣ ∫ ⟨Ψδ,ℏ(t),Φ
+⟩⟨Φ−,Ψδ,ℏ(t)⟩dµ(δ)− 0

∣∣∣∣ (69)

= lim
ℏ→0

lim
t→∞

∣∣∣∣∣
∫ 〈

Φ
(0)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(0)
δ,ℏ

〉∣∣∣〈Φ(0)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ) (70)

+

∫ 〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(1)
δ,ℏ

〉∣∣∣〈Φ(1)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ) (71)

+

∫ 〈
Φ

(0)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(1)
δ,ℏ

〉〈
Ψ(0),Φ

(0)
δ,ℏ

〉〈
Φ

(1)
δ,ℏ,Ψ(0)

〉
e−i∆δ,ℏt/ℏdµ(δ) (72)

+

∫ 〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(0)
δ,ℏ

〉〈
Ψ(0),Φ

(1)
δ,ℏ

〉〈
Φ

(0)
δ,ℏ,Ψ(0)

〉
ei∆δ,ℏt/ℏdµ(δ)

∣∣∣∣∣ (73)

≤
∣∣∣∣ limℏ→0

lim
t→∞

∫ 〈
Φ

(0)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(0)
δ,ℏ

〉∣∣∣〈Φ(0)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ)∣∣∣∣ (74)

+

∣∣∣∣ limℏ→0
lim
t→∞

∫ 〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(1)
δ,ℏ

〉∣∣∣〈Φ(1)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ)∣∣∣∣ (75)

+

∣∣∣∣ limℏ→0
lim
t→∞

∫ 〈
Φ

(0)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(1)
δ,ℏ

〉〈
Ψ(0),Φ

(0)
δ,ℏ

〉〈
Φ

(1)
δ,ℏ,Ψ(0)

〉
e−i∆δ,ℏt/ℏdµ(δ)

∣∣∣∣ (76)
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+

∣∣∣∣ limℏ→0
lim
t→∞

∫ 〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(0)
δ,ℏ

〉〈
Ψ(0),Φ

(1)
δ,ℏ

〉〈
Φ

(0)
δ,ℏ,Ψ(0)

〉
ei∆δ,ℏt/ℏdµ(δ)

∣∣∣∣ (77)

=

∣∣∣∣ ∫ lim
ℏ→0

〈
Φ

(0)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(0)
δ,ℏ

〉∣∣∣〈Φ(0)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ)∣∣∣∣ (78)

+

∣∣∣∣ ∫ lim
ℏ→0

〈
Φ

(1)
δ,ℏ,Φ

+
〉〈
Φ−,Φ

(1)
δ,ℏ

〉∣∣∣〈Φ(1)
δ,ℏ,Ψ(0)

〉∣∣∣2dµ(δ)∣∣∣∣ (79)

=

∣∣∣∣ ∫ 〈
Φ−,Φ+

〉〈
Φ−,Φ+

〉∣∣∣〈Φ−,Ψ(0)
〉∣∣∣2dµ(δ)∣∣∣∣ (80)

+

∣∣∣∣ ∫ 〈
Φ+,Φ+

〉〈
Φ−,Φ+

〉∣∣∣〈Φ+,Ψ(0)
〉∣∣∣2dµ(δ)∣∣∣∣ (81)

= 0. (82)

The above calculation follows similarly to the previous one. In lines (70)-(73), we have used the
Schrödinger evolution of Ψ(0) and the triangle inequality to get line (74). The integrals on lines (76)
and (77) vanish again by Thm. 1. The dominated convergence theorem gives (78) and (79). Finally, line
(80) follows from Equation (44), and the final line follows from evaluating the inner products.

The limit similarly vanishes for the other off-diagonal matrix A−+ according to an analogous argument.
Since these four matrices, Π+,Π−, A+−, and A−+ span M2(C), the triangle inequality, along with linearity
of ωt

µ and ωB , tells us that for every A ∈ M2(C)

lim
ℏ→0

lim
t→∞

|ωt
µ(A)− ωB(A)| = 0. (83)

An analogous argument shows that the above result also holds if µ is a probability measure with support
over only negative values of δ. The only significant difference in this argument is that in the analogue of line
(66) the left integrand vanishes and the right integrand becomes∣∣∣〈Φ+,Φ+

〉∣∣∣2∣∣∣〈Φ+,Ψ(0)
〉∣∣∣2, (84)

which gives the same result. Likewise, the same change occurs in line (80). An arbitrary probability measure
satisfying the assumptions of the theorem is a convex combination of a probability measure µ+ over positive
values of δ and a probability measure µ− over negative values of δ. Then, from the definition of ωt

µ we can
see that it is a convex combination of ωt

µ+
and ωt

µ−
. So, another appeal to the triangle inequality completes

the proof.

Prop. 2 shows that the two state model of measurement, when combined with a probabilistic treatment
of the flea perturbations, can account for the Born rule probabilities. The method of arbitrary functions in
this case thus leads to universal limiting probabilistic behavior. This shows that, at least in this simple case,
the Born rule can be understood as an effective result following from the Schrödinger equation and fairly
mild assumptions about the distribution of perturbations. In the next subsection we show that a similar
result holds, under further assumptions, when treating the full double well potential.

4.2 Double Well Potential

We now turn to the full double well potential, i.e. the potential

V0(x) =
1

4
λ(x2 − a2)2

for a > 0 and λ > 0, which has minima at x = ±a. Recall that we interpret this model as describing the
potential of a binary measurement which takes values x = ±a. The flea perturbations to this potential are
interpreted as uncontrolled contributions from the measuring apparatus or environment during the measuring
process. In the last subsection, we showed that if we truncate the Hilbert space (and dynamics) to the
two lowest energy eigenstates, the Born rule probabilities for measurements of superposition states can be
recovered from the Schrödinger time evolution under the description of measurement employed by Landsman
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and Reuvers using the joint t → ∞ and ℏ → 0 limits. In this section, we show that the Born rule probabilities
can also be recovered in the full model if some additional assumptions are satisfied.

The perturbed Hamiltonian corresponding to the above double well potential is

Hδ,ℏ = − ℏ2

2m

∂2

∂x2
+

1

4
λ(x2 − a2)2 + δ(x). (85)

where δ is a function of position, representing the flea perturbation. The specifics of the flea perturbations
δ will be filled in according to assumptions which require that the ground state and first excited state of the
perturbed Hamiltonian converge sufficiently rapidly to particular approximately localized states. Further,

we use the notation Ψ
(n)
δ,ℏ to denote the nth energy eigenstate of the Hamiltonian Hδ,ℏ with perturbation δ

and Planck’s constant set to ℏ > 0.
Consider the ground state Ψ

(0)
0,ℏ and first excited state Ψ

(1)
0,ℏ of the unperturbed double well potential.

As mentioned previously, their symmetric and antisymmetric superpositions are each then approximately
localized in one of the two wells. So, we define

Ψ±
ℏ =

Ψ
(0)
0,ℏ ±Ψ

(1)
0,ℏ√

2
(86)

and choose the phases of Ψ
(0)
0,ℏ and Ψ

(1)
0,ℏ so that Ψ+

ℏ is approximately localized in the right well and Ψ−
ℏ

is approximately localized in the left well.5 For small ℏ, each wave function Ψ±
ℏ approximates a Gaussian

centered on its respective well.
We now state precisely the previously mentioned assumptions about the space of flea perturbations.

Recall that we aim to treat the flea perturbation δ as a random variable carrying a probability distribution.
To that end, the assumptions we now present will characterize the space of perturbations in a way that
makes the treatment of probability measures over the perturbations tractable. This specific restriction on
the space of perturbations is motivated by results of Landsman and Reuvers [23, p. 389-390] using numerical
methods and the WKB approximation [cf. 11, 12, 16, 13, 33].

Let D̃ be the set of smooth, real-valued, compactly supported functions on R. We will define the set
of all flea perturbations of our potential as a subset of D̃ by introducing a series of restrictions to isolate
perturbations of interest. First, we restrict to the two subsets

D̃± =
{
δ ∈ D̃ | lim

ℏ→0
ℏ−1||Ψ(0)

δ,ℏ −Ψ±
ℏ || = 0 and lim

ℏ→0
ℏ−1||Ψ(1)

δ,ℏ −Ψ∓
ℏ || = 0.

}
(87)

where Ψ
(0)
δ,ℏ and Ψ

(1)
δ,ℏ are the ground state and first excited state, respectively, of the double well potential

with a perturbation of δ.
The subsets D̃± restrict to fleas for which the resulting ground state and first excited state converge

sufficiently rapidly to the approximately localized states in the ℏ → 0 limit. As mentioned before, Lands-
man and Reuvers [23, p. 389-390] provide evidence that this localization occurs for the perturbed energy
eigenstates through both numerical methods and the WKB approximation. In what follows, we make this
structural assumption about the allowed perturbations, motivated by known mathematical results.

The difference between D̃+ and D̃− lies in which of the two approximately localized states each of the

perturbed energy eigenstates converges to. In D̃+, we have Ψ
(0)
δ,ℏ → Ψ+

ℏ and Ψ
(1)
δ,ℏ → Ψ−

ℏ , while in D̃−, we

have Ψ
(0)
δ,ℏ → Ψ−

ℏ and Ψ
(1)
δ,ℏ → Ψ+

ℏ . We will treat the general situation by considering both perturbations in

D̃+ and D̃−.
Recall that to apply the method of arbitrary functions, we need to make some “smoothness” assumptions

about the probability measures we consider over the possible flea perturbations. In particular, we need to
understand the space of possible perturbations as carrying a background measure (analogous to the Lebesgue
measure) so that we can restrict to probability measures that possess a density. To that end, we will provide
a numerical representation of our space of perturbations in terms of their corresponding sequences of energy
eigenvalues. This will allow us to treat distributions over (differences of) those energy eigenvalues.

5The sign convention here is different than the one in Eq. (38).
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Notice that our measure over the space of perturbations gives rise to a stochastic process given by the

random variables (E
(n)
δ,ℏ )n∈N, each denoting the nth energy eigenvalue of the double well Hamiltonian Hδ,ℏ

for perturbation δ, i.e.,

Hδ,ℏΨ
(n)
δ,ℏ = E

(n)
δ,ℏΨδ,ℏ. (88)

The index set of this stochastic process thus corresponds to the sequence of energy levels n = 0, 1, 2, ... of the
system. In what follows, we will assume that all quantities of interest (e.g., inner products of eigenfunctions)
can be thought of as functions that depend only on these energy eigenvalues, or in other words that the space
of allowed perturbations can be identified with a space of sequences of corresponding energy eigenvalues.

To state this more precisely, notice that for each perturbation δ in D̃ and ℏ ∈ (0,∞), there is a corre-

sponding sequence of real numbers (E
(n)
δ,ℏ )n∈N in the space RN of countable sequences of real numbers . Let

ϵℏ be the map D̃ → RN which sends a perturbation δ to that corresponding sequence of energy eigenvalues
in RN. We now restrict our space of perturbations D̃+ further by requiring that ϵℏ is injective for all positive
ℏ less than some value ℏ0. Label the resulting subspace D+. For every ℏ < ℏ0, we can then use ϵℏ to identify
D+ with some subset ϵℏ(D

+) ⊂ RN. The space ϵℏ(D
+) thus consists of sequences of energy eigenvalues

for the corresponding perturbed Hamiltonians Hδ,ℏ. The consequence of the assumption that the map ϵℏ is
injective is that every probability measure on D+ can be understood as a measure on some subset of RN and
every random variable dependent on δ can be thought of as a random variable on this same subset of RN.
Likewise, denote by D− a corresponding subset of D̃− for which the map ϵℏ is injective. Finally, note that
the set RN carries the countable product of Lebesgue measures on R as a reference measure, denoted by ν.

The restriction from D̃ to D± can be motivated by the two-state approximation. The original space
of perturbations is D̃ = {( δ 0

0 0 ) : δ ∈ R}. In this setting, the set of δ which have perturbed ground state

preferring the right well is the set of all δ < 0, so D̃+ is the corresponding subset of D̃. Recall that restricting

to δ < 0 was an important simplification in the proof of Proposition 2. Since δ = −
√

∆2
δ,ℏ −∆2

ℏ, we see that

the map δ 7→ (E
(0)
δ,ℏ , E

(1)
δ,ℏ) is already injective without any further restriction, so D+ = D̃+. Likewise, D−

corresponds to all values δ > 0. In the two-state approximation, we showed that probability measures over
positive δ and probability measures over negative δ both lead to states which approach the Born rule state
in the combined t → ∞ and ℏ → 0 limits. This meant that convex combinations of such measures would
also have this property. A similar strategy yields the same result in the more general case of the double well.

Theorem 2. Suppose µ is a measure on D+ ∪D− such that for every ℏ > 0, ϵ∗ℏµ is absolutely continuous
with respect to ν on RN. Given a state Ψℏ(t = 0) = αΨ+

ℏ + βΨ−
ℏ , the corresponding time evolved Wigner

distributions satisfy

lim
ℏ→0

lim
t→∞

W
Ψδ,ℏ(t)
ℏ = |α|2 · δ(+a,0) + |β|2 · δ(−a,0) (89)

with the limits in the weak* topology. Specifically, for every f ∈ C∞
c (R2),

lim
ℏ→0

lim
t→∞

∫
dµ(δ)dxdp f(x, p)

(
W

Ψδ,ℏ(t)
ℏ (x, p)−

(
|α|2 · δ(+a,0) + |β|2 · δ(−a,0)

))
= 0 (90)

Proof. It suffices to deal first with the states Ψ+
ℏ and Ψ−

ℏ , whose Wigner functions are known to converge in
the weak* topology to δ(+a,0) and δ(−a,0), respectively. We will show that the following difference vanishes
in the limit:

lim
ℏ→0

lim
t→∞

∫
dµ(δ)dxdp f(x, p)

(
W

Ψδ,ℏ(t)
ℏ (x, p)−

(
|α|2 ·WΨ+

ℏ + |β|2 ·WΨ−

ℏ
))

= 0. (91)

The time evolution of an initial state Ψℏ(0) under the Hamiltonian Hδ,ℏ is given by

Ψδ,ℏ(t) =

∞∑
k=0

c
(k)
δ,ℏΨ

(k)
δ,ℏe

−iE
(k)
δ,ℏt/ℏ (92)
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where c
(k)
δ,ℏ = ⟨Ψ(k)

δ,ℏ ,Ψℏ(0)⟩. So, then the corresponding Wigner function is

W
Ψδ,ℏ(t)
ℏ (x, p) = ℏ−1

〈
Ψδ,ℏ(t),Ω

W
ℏ (x, p)Ψδ,ℏ(t)

〉
(93)

= ℏ−1
∞∑

j,k=0

c
(j)
δ,ℏc

(k)
δ,ℏe

i(E
(j)
δ,ℏ−E

(k)
δ,ℏ)t/ℏ

〈
Ψ

(j)
δ,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
δ,ℏ

〉
(94)

where ⟨·, ·⟩ is the inner product of L2(R) and ΩW
ℏ (x, p) is the linear operator defined by Eq. (16).

It follows that

lim
t→∞

∫
dµ(δ)dxdpf(x, p)W

Ψδ,ℏ(t)
ℏ (x, p) (95)

= ℏ−1
∞∑
j=0

∞∑
k=0

lim
t→∞

∫
dµ(δ)dxdpf(x, p)

(
c
(j)
δ,ℏc

(k)
δ,ℏe

i(E
(j)
δ,ℏ−E

(k)
δ,ℏ)t/ℏ

〈
Ψ

(j)
δ,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
δ,ℏ

〉)
(96)

=

∞∑
k=0

∫
dµ(δ)dxdpf(x, p)|c(k)δ,ℏ |

2W
Ψ

(k)
δ,ℏ

ℏ (x, p) (97)

+ ℏ−1
∞∑
k=0

∑
j ̸=k

lim
t→∞

∫
dµ(δ)dxdpf(x, p)

(
c
(j)
δ,ℏc

(k)
δ,ℏe

i(E
(j)
δ,ℏ−E

(k)
δ,ℏ)t/ℏ

〈
Ψ

(j)
δ,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
δ,ℏ

〉)
(98)

=

∞∑
k=0

∫
dµ(δ)dxdpf(x, p)|c(k)δ,ℏ |

2W
Ψ

(k)
δ,ℏ

ℏ (x, p) (99)

=

∫
dµ(δ)dxdpf(x, p)

( ∞∑
k=0

|c(k)δ,ℏ |
2W

Ψ
(k)
δ,ℏ

ℏ (x, p)
)

(100)

In line (96) we have appealed to the Fubini-Tonelli theorem and the dominated convergence theorem since
||ΩW

ℏ (x, p)|| = 2 gives 2|f(x, p)| as an upper bound on the absolute value of the integrand and since this
has a finite integral the Fubini-Tonelli theorem says that we can interchange the sums and integral. In line
(99) we have used the fact that the j ̸= k integrals vanish in the limit t → ∞. This follows from Thm. 1

since the factor ei(E
(j)
δ,ℏ−E

(k)
δ,ℏ)t/ℏ is uniformly distributed over the unit circle in this limit. This is shown in

detail in Appendix A. Line (100) follows from the bound
∣∣WΨ

(j)
δ,ℏ

ℏ (x, p)
∣∣ ≤ 2ℏ−1 and another application of

the Fubini-Tonelli theorem.
So we have

lim
ℏ→0

lim
t→∞

∫
dµ(δ)dxdpf(x, p)

(
W

Ψδ,ℏ(t)
ℏ (x, p)−

(
|α|2WΨ+

ℏ
ℏ (x, p) + |β|2WΨ−

ℏ
ℏ (x, p)

))
(101)

= lim
ℏ→0

∫
dµ(δ)dxdpf(x, p)

( ∞∑
k=0

∣∣c(k)δ,ℏ
∣∣2WΨ

(k)
δ,ℏ

ℏ (x, p)−
(
|α|2WΨ+

ℏ
ℏ (x, p) + |β|2WΨ−

ℏ
ℏ (x, p)

))
(102)

= lim
ℏ→0

∫
dµ(δ)dxdpf(x, p)

(∣∣c(0)δ,ℏ
∣∣2WΨ

(0)
δ,ℏ

ℏ (x, p)− |α|2WΨ+
ℏ

ℏ (x, p)
)

(103)

+ lim
ℏ→0

∫
dµ(δ)dxdpf(x, p)

(∣∣c(1)δ,ℏ
∣∣2WΨ

(1)
δ,ℏ

ℏ (x, p)− |β|2WΨ−
ℏ

ℏ (x, p)
)

(104)

+ lim
ℏ→0

∫
dµ(δ)dxdpf(x, p)

( ∞∑
k=2

∣∣c(k)δ,ℏ
∣∣2WΨ

(k)
δ,ℏ

ℏ (x, p)
)

(105)

= 0 (106)

Line (103) vanishes because ∣∣∣∣∣c(0)δ,ℏ
∣∣2 − |α|2

∣∣∣ ≤ 2||Ψ(0)
δ,ℏ −Ψ+

ℏ ||,∣∣∣WΨ+
ℏ

ℏ (x, p)
∣∣∣ ≤ 4ℏ−1,
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∣∣∣WΨ
(0)
δ,ℏ

ℏ (x, p)−W
Ψ+

ℏ
ℏ (x, p)

∣∣∣ ≤ 4ℏ−1||Ψ(0)
δ,ℏ −Ψ+

ℏ ||.

Line (104) vanishes because analogous inequalities hold for c
(1)
δ,ℏ, β, Ψ

(1)
δ,ℏ, and Ψ−

ℏ . For line (105),∣∣∣ ∫ dµ(δ)dxdpf(x, p)W
Ψ

(k)
δ,ℏ

ℏ (x, p)
∣∣∣ ≤ sup

ℏ∈[0,1]

∥Qℏ(f)∥ℏ (107)

since Qℏ is a strict quantization [19]. So, the dominated convergence theorem yields that

lim
ℏ→0

∫
dµ(δ)

∞∑
k=2

∣∣c(k)δ,ℏ
∣∣2 ∫ dxdpf(x, p)W

Ψ
(k)
δ,ℏ

ℏ (x, p) (108)

=

∫
dµ(δ)

∞∑
k=2

lim
ℏ→0

(∣∣c(k)δ,ℏ
∣∣2 ∫ dxdpf(x, p)W

Ψ
(k)
δ,ℏ

ℏ (x, p)
)

(109)

= 0 (110)

since limℏ→0

∣∣c(k)δ,ℏ
∣∣2 = 0 for k ≥ 2 which follows from the assumption of Eq. (87). This is because the

perturbed energy eigenstates for k ≥ 2 are orthogonal to the perturbed energy eigenstates for k = 0, 1 which
approach the approximately localized states that the initial state is a superposition of.

Hence, we have established Eq. (91). Now, Eq. (90) follows from the triangle inequality and the fact
that

lim
ℏ→0

∫
dxdp f(x, p)

(
WΨ±

ℏ − δ(±a,0)

)
= 0. (111)

This theorem states that the t → ∞ and ℏ → 0 limits of the time evolved Wigner distribution W
Ψδ,ℏ(t)
ℏ

lead to a probabilistic mixture of distributions totally localized at x = ±a. Moreover, the coefficients |α|2
and |β|2 are exactly the ones we would expect from the Born rule since for small enough ℏ, the component
Ψ+ represents a state arbitrarily well localized at x = +a, and likewise the component Ψ− represents a state
arbitrarily well localized at x = −a. Thus, according to the Born rule, measurement of the state αΨ+

ℏ +βΨ−
ℏ

should result in a value of x = +a with probability |α|2 and a value of x = −a with probability |β|2, as we
have found. So, Theorem 2 says that the model Landsman and Reuvers provide for a binary measurement
in the perturbed double well can also capture the Born rule probabilities in the t → ∞ and ℏ → 0 limits.

5 Conclusion and Future Directions

In this paper, we have shown that one can reproduce the Born rule by applying the method of arbitrary
functions to a toy quantum mechanical model of a measurement setup. Specifically, we showed that the
probabilities predicted by the dynamical evolution of the quantum state under the Schrödinger equation for
the perturbed double well Hamiltonian come arbitrarily close to the Born rule probabilities for large enough
times and small enough values of Planck’s constant. This statement is captured by our results in Prop. 2
and Thm. 2 about the successive t → ∞ and ℏ → 0 limits. We now make a number of remarks about the
interpretation and significance of our results.

The explanatory schema that we have proposed does not attempt to derive probabilities from non-
probabilistic facts. In other words, we have not attempted to give an explanation of why probabilities arise
within physics in the first place. Rather, as Myrvold [27, p. 118] emphasizes, the method of arbitrary
functions always begins by assuming the existence of certain probabilities. We assume that there is an
initial probability distribution over some of the parameters—namely, governing the flea perturbation—in
the dynamics of the physical system. From this, we can derive the Born rule probabilities for the outcomes
of a measurement in the double well toy model as universal probabilities arising in the t → ∞ and ℏ → 0
limits. So ultimately, we have derived some probabilities from others. What is interesting is that in this
case the initial distribution over the dynamical parameters can be chosen arbitrarily, and as long as it comes
from within our assumed class of distributions, it will lead to the Born rule probabilities in those limits.
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Of course, for this explanatory schema to generate an actual explanation, one should rightly ask for an
interpretation of those initial probability distributions over the dynamical parameters governing the system.
What is the physical significance of the probability distributions over the flea perturbation? One option is
that they signify a kind of objective or physical probability. In this case, such a physical probability might be
associated with the mechanism by which the flea perturbation is produced as an effective potential from the
interaction of some other physical system with the measurement apparatus or double well system. Another
option is that the distributions represent the reasonable beliefs of a rational agent modeling the system who
does not have precise knowledge of the form of the perturbation. Analogous interpretive options have been
characterized and discussed in the literature on the classical method of arbitrary functions [1, 30, 14, 27, 5];
that same discussion is warranted when applying the method of arbitrary functions to quantum systems,
but we leave it to future interpretive work. The exact status of the explanation generated by the method
of arbitrary functions—both the explanandum and the explanans—may differ depending on what the initial
probability distributions are taken to represent.

We take the universal limiting behavior as t → ∞ and ℏ → 0 to provide an approximation by showing
that the probabilities for measurement outcomes in the toy model of the double well come arbitrarily close to
the Born rule probabilities for large enough times and small enough values of Planck’s constant. But one can
do better with the method of arbitrary functions. Proofs of convergence in limits like those analyzed in this
paper involve calculating explicit error bounds on how far the probabilities can deviate from the universal
behavior [27, p. 108]. If one desires those bounds, one can work backwards from mathematical results in the
method of arbitrary functions [8, §3] concerning bounds for random variables whose density has bounded
total variation. Convergence in the appropriate limits encodes the fact that such error bounds must exist.

The explanation schema we have offered here is intended to be neutral among different interpretations of
quantum mechanics.6 Since our results rely only on the standard quantum dynamics, they may be employed
in any no-collapse interpretation that involves unitary Schrödinger evolution, including Bohm-type pilot wave
theories and Everettian many worlds theories. Our results might also be understood to bear on spontaneous
collapse dynamics [9, 4], insofar as those dynamics approximately mimic Schrödinger evolution for small
enough values of ℏ. As such, we would expect that proponents of any of those interpretations would fill
in details of the explanation corresponding to their preferred physical understanding of the measurement
process. Here, our only aim was to set out the explanatory schema, so we leave it as an open question
whether any of these more specific interpretations can fill in details compatible with their solution to the
measurement problem. We believe it is worth further investigation to see whether our explanatory schema
is compatible with those interpretations. In this paper though, we refrain from taking on any particular
solution to the measurement problem.

We also allow that there may be more than one way to provide an explanation of the Born rule proba-
bilities. Our results form the backbone of one type of explanation. Typicality arguments [7] and decision-
theoretic approaches [42] might provide others. We take no position here on whether these should be seen
as rivals; we leave open the possibility that alternative explanations might peacefully coexist.

Likewise, in this paper we remain agnostic about the view of Landsman and Reuvers [23] that the flea
model provides a novel solution to the measurement problem. Our claim is that the Born rule can be seen to
follow from structural features of the Schrödinger dynamics in these measurement-type scenarios. We have
borrowed the dynamical model used by Landsman and Reuvers to illustrate these structural features, but
our results are independent of how one interprets the flea dynamics to bear on the appearance of determinate
measurement outcomes.

What we take from the discussion of the double well by Landsman and Reuvers [23] is that the flea
perturbation leads to a quantum dynamics that evolves initial quantum superpositions so that they become
arbitrarily close to states that are approximately localized at the minima of the wells for large enough times
and small enough values of Planck’s constant. Those results use only the standard unitary evolution of
quantum theory, so any interpretation of quantum mechanics employing the unitary dynamics has access to
those facts. It is a further step to the view that these results suffice to explain the appearance of classical
measurement outcomes [23, 22]. For the significance of our results, one might subscribe to Landman’s
view, or one might instead attempt to use a different interpretation of quantum mechanics to fill in details
concerning how measurement outcomes appear in this model. We leave open these possible interpretations

6Compare this with the claim by Steeger [36] that the Deutsch-Wallace derivation of the Born rule is interpretation neutral
and thus applies beyond Everettian many worlds theories.
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and only claim to have derived results that follow from the standard quantum dynamics.
While we have worked in the context of the particular toy model of measurement provided by the

perturbed double well potential, the source of our explanatory schema relies only on certain structural
features of the dynamics that other models might share. In our explanatory schema, it is the t → ∞ limit
that makes interference terms vanish in the unitary evolution of a superposition of energy eigenstates, thus
yielding a mixture of those energy eigenstates. Then it is the ℏ → 0 limit that brings the resulting energy
eigenstates to approximate definite outcome states. After these two steps, we see that the components of the
resulting mixture are the outcome states carrying the Born rule probabilities as weights in a convex sum.

In the first step of our explanatory schema governed by the t → ∞ limit, we rely only on quite general
features of quantum mechanics to suppress the interference terms. Specifically, the double well example
illustrates how cross-terms in relevant inner products or integrals of Wigner functions will involve periodic
functions whose frequency is proportional to an energy gap. The method of arbitrary functions will apply
whenever the frequency of a time evolution is a random variable. So whenever it is appropriate to treat
the energy gaps of the system as random variables—whose probabilistic nature arises from some uncertainty
about the exact form of the Hamiltonian—we conjecture that universal limiting behavior will arise. Thus,
it is likely that the method of arbitrary functions has wider application to other quantum systems.

On the other hand, the second step of our explanatory schema relies on special features of the double
well model, and we do not know if those features are present in other models. It is a special feature of
the double well model that in the ℏ → 0 limit, the first two perturbed energy eigenstates come arbitrarily
close to the localized outcome states for small enough values of Planck’s constant. Our assumptions require
that the difference of these vectors converges to zero in norm sufficiently rapidly as ℏ → 0. There is good
numerical and theoretical evidence for convergence [23], but we also make strong assumptions about the rate
of convergence, which are required for our results. Our assumptions can be thought of as encoding constraints
on the possible forms of the perturbation to the potential, restricting to only those that have this special
property as ℏ → 0. Alternatively, this can be thought of as a restriction on the initial distributions over
possible perturbations, limiting to only those distributions whose support lies on the space of perturbations
with the relevant convergence properties. Either way, the assumption that the perturbed energy eigenstates
come arbitrarily close to outcome states in the ℏ → 0 limit deserves further discussion. In particular, further
investigation is necessary to determine if this is an appropriate constraint on perturbations in physical models
of measurement, or if this is a reasonable assumption about the initial distributions over the perturbations.
As such, further investigation of the assumptions governing ℏ → 0 convergence may be tied to how one
chooses to interpret the initial probability distributions over the possible perturbations.

However one answers these interpretive questions, this paper establishes novel results governing universal
probabilistic limiting behavior in quantum systems. We have thus shown that the method of arbitrary
functions applies beyond classical physics. We hope this approach, and the results it yields, engender further
discussion and better understanding of physical probabilities in quantum systems.

To conclude, we point out some possible directions for future research expanding on the present results.
First, one might consider toy models that allow for more than two outcome states. One way to model such
a setup is with a multiple-well system such as a cosine potential on a closed interval as considered by van
Heugten and Wolters [40, §4.2.1]. One might also wish to study toy models that allow for measurements of
continuous quantities, with a corresponding continuous infinity of outcome states. One way to model such a
system is with a higher dimensional quartic potential (See [22, p. 416] and [39, p. 79]). Finally, one might
wish to study more realistic models of measurement [35, 34, 2], like the physical dynamics governing the
motion of an electron in a Stern-Gerlach device [29, 44]. Do the results of this paper generalize to derivations
of probabilities in any of these other models? At the very least, we believe the method of arbitrary functions
deserves further investigation as an approach to generating explanations of quantum probabilities.
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Appendix A Calculations

In this appendix we show why it is that the off-diagonal integrals in the proof of Theorem 2 vanish. Recall
that µ is a probability measure on D+ ∪ D− such that for every ℏ > 0, ϵ∗ℏµ is absolutely continuous with
respect to ν on RN, where ν is the countable product of Lebesgue measures on R. Let g be the corresponding
density for ϵ∗ℏµ on RN so that we may replace integrals over the variable δ with respect to the measure dµ(δ)

by substituting for integrals over the variable E = (E
(j)
δ,ℏ)j∈N denoting a sequence of energy eigenvalues with

respect to the measure g(E)dν(E) . Now, for j ̸= k we get that

lim
t→∞

∫
dµ(δ)

(
c
(j)
δ,ℏc

(k)
δ,ℏe

i(E
(j)
δ,ℏ−E

(k)
δ,ℏ)t/ℏ

〈
Ψ

(j)
δ,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
δ,ℏ

〉)
(112)

= lim
t→∞

∫ ∏
l

dE(l)g(E)

(
c
(j)
E,ℏc

(k)
E,ℏe

i(E
(j)
E,ℏ−E

(k)
E,ℏ)t/ℏ

〈
Ψ

(j)
E,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
E,ℏ

〉)
(113)

= lim
t→∞

∫ ∏
l ̸=j,k

dE(l)

∫
dE(j)dE(k)g(E)

(
c
(j)
E,ℏc

(k)
E,ℏe

i(E
(j)
E,ℏ−E

(k)
E,ℏ)t/ℏ

〈
Ψ

(j)
E,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
E,ℏ

〉)
(114)

=
1

2
lim
t→∞

∫ ∏
l ̸=j,k

dE(l)dv

∫
du g(E)

(
c
(j)
E,ℏc

(k)
E,ℏe

iut/ℏ〈Ψ(j)
E,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
E,ℏ

〉)
(115)

=
1

2
lim
t→∞

∫ ∏
l ̸=j,k

dE(l)dv

∫
duαℏ

x,p(E)eiut/ℏ (116)

=
1

2

∫ ∏
l ̸=j,k

dE(l)dv lim
t→∞

∫
duαℏ

x,p(E)eiut/ℏ (117)

=
1

2

∫ ∏
l ̸=j,k

dE(l)dv lim
t→∞

Eα[e
iut/ℏ] (118)

= 0. (119)

In the line (115) we have used the substitutions u = E
(j)
E,ℏ −E

(k)
E,ℏ and v = E

(j)
E,ℏ +E

(k)
E,ℏ. In the line (116) we

have simply relabeled most of the integrand using the function

αℏ
x,p(E) = g(E)c

(j)
E,ℏc

(k)
E,ℏ

〈
Ψ

(j)
E,ℏ,Ω

W
ℏ (x, p)Ψ

(k)
E,ℏ

〉
. (120)

Line (117) follows from the dominated convergence theorem with the bound∣∣∣ ∫ duαℏ
x,p(E)eiut/ℏ

∣∣∣ ≤ ∫
du |αℏ

x,p(E)| ≤ 2

∫
du|g(E)| (121)

which is finite since g is a probability density for RN. Finally, the last two steps involve recognizing that
the integral over u is simply the expectation value (denoted Eα) of the random variable eiut/ℏ for a complex
density αℏ

x,p and then using the fact that this expectation value approaches 0 in the t → ∞ limit [8].
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