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I argue that scientific determinism is not supported by facts, but results from the elegance of
the mathematical language physicists use, in particular from the so-called real numbers and their
infinite series of digits. Classical physics can thus be interpreted in a deterministic or indeterministic
way. However, using quantum physics, some experiments prove that nature is able to continually
produce new information, hence support indeterminism in physics.

I. INTRODUCTION

Imagine a beautiful starry sky on a clear night with no
light pollution. Humanity soon felt the need to tell the
story of this marvellous scene. The idea that the heav-
ens must be inhabited by perfect spheres came naturally.
This image is elegant and resonates well with the fascina-
tion we feel in front of this spectacle. However, thanks to
the first astronomical telescopes, Galileo saw mountains
on the moon. He understood that the moon was not a
perfect sphere. Similarly, Saturn is surrounded by rings.
Eventually, everyone saw the mountains on the moon and
realized that the stars were different from the ideal they
had imagined. A few decades later, Newton understood
that the terrestrial and celestial worlds obey the same
laws, the theory of universal gravitation. The elegance
of perfect spheres was replaced by the beauty of unifying
worlds and the elegance of mathematical formulas:
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where F' and G represent the force and constant of grav-

itation, respectively, r the distance between masses M

and m, and a the acceleration, i.e., the variation in ve-
locity over time.

Mankind thus understands that it’s the same force that
makes apples fall, holds kangaroos to the ground and
guides the moon in its orbit around the earth, as well as
the earth around the sun. This unification is absolutely
remarkable in its efficiency. Even today, rockets exploring
outer space are guided by Newton’s equation.

Newton’s theory, which quickly took on the title of
classical physics, seems to apply to everything from the
simplest systems, such as the earth-moon pair and clocks,
to the most complex systems, such as climate. Scientists
concluded that this was the ideal of scientific explanation
[1]. Intellectuals naturally deduced that the characteris-
tics of classical physics, in particular Newton’s equation,
are characteristics of nature. According to this logic,
since Newton’s equation is deterministic, nature must it-
self be deterministic, as Laplace so aptly put it. So, since
we can perfectly well calculate the dates and even the
times of eclipses, both past and future, the climate and
all other complex systems should be subject to the same
scientific determinism: given the initial conditions, all the

future and all the past are entirely determined. There is,
of course, one “small” difference: for complex systems,
there’s no question of solving the equations, we can only
calculate approximations or make statistical predictions.
But since these complex systems are governed by the
same equations, it’s natural to assume that their evo-
lution is equally deterministic. So, in classical physics,
everything is determined, there is no creativity, no spon-
taneity. But is this really so, or are we blinded by the
elegance of classical physics? In short, is scientific deter-
minism a consequence of the facts, or of our desire for
elegant explanations?

II. CHAOTIC SYSTEMS

We've all heard of the butterfly effect, that tiny
flap of a wing in Brazil which, as a result of an ex-
tremely complex chain of interactions between atmo-
spheric molecules, ends up influencing the weather in Eu-
rope, eventually triggering a storm. This butterfly effect
is a fine example of chaotic systems. Generally speak-
ing, chaotic systems are characterized by their hyper-
sensitivity to initial conditions: the slightest change in
initial conditions can totally alter the system’s evolution.
This evolution is therefore extremely unstable. Let’s il-
lustrate this with an unrealistic model, simplified enough
for everyone to understand the significance of this hyper-
sensitivity to initial conditions. Let’s imagine that the
weather is reduced to a simple number between 0 and 1,
such as the probability of rain. Let’s denote this proba-
bility by the letter . So, x = 0 means there’s no chance
of rain, and x = 1 means it’s sure to rain. The value
of x changes from hour to hour. Let’s assume, to illus-
trate a chaotic system, that the evolution of this system
is such that the probability of rain at time ¢+ 1, denoted
z(t + 1), can be obtained from the probability of rain at
time ¢, denoted z(t), simply by removing the first decimal
place from z(¢) and shifting all the other decimal places
one place to the left. By noting d;, ds, ds, ... the decimal
places of z(t) we obtain the following simple evolution:
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for example z(t) = 0.52314... becomes z(t + 1) =
0.2314.... This evolution of the weather is not very re-
alistic, but it illustrates the essential point of hyper-
sensitivity to initial conditions. Indeed, at the initial
instant tg, the tenth decimal place, dyqg, is of virtually
no importance, and the thousandth decimal place, diggg,
even less so. However, ten hours later, dig has become
the first decimal of x(to + 10), so it essentially describes
the probability of rain: dip = 9 means that at time ¢+ 10
there is at least a 90% chance of rain, and d;g = 0 means
that there is less than a 10% chance of rain. Similarly,
6 weeks later, which corresponds to around 1000 hours,
it’s the thousandth decimal diggg of the initial condition
that becomes decisive.

This example shows that decimals of the initial con-
dition z(tg), which at the initial instant ¢, are of no
importance, gain in importance over the course of the
evolution until they practically determine the probabil-
ity of rain. The same applies to more realistic complex
systems, which is the very definition of a chaotic system.

So we can see that the future of any chaotic system is
hidden in the insignificant decimals of the initial condi-
tions (in our example, “initial condition” is singular be-
cause only one number describes our system). This raises
the question of the relevance of insignificant decimals: do
they have a physical reality, i.e. do they correspond to
a physical reality, or are they merely the reflection of a
mathematical language? In the former case, the evolu-
tion of chaotic systems is deterministic, in the latter case
not necessarily. Since Galileo asserted that nature is writ-
ten in mathematical language, and since in mathematics
the so-called real numbers have an infinite number of dec-
imal places, all well determined, the question no longer
seems to arise. But many physicists have sensed that
there is reason to doubt. For example, Max Born, one
of the fathers of quantum mechanics, wrote [2]: State-
ments like ‘a quantity x has a completely definite value’
(expressed by a real number and represented by a point
in the mathematical continuum) seem to me to have no
physical meaning.

It must be stressed here that these insignificant deci-
mals are hidden from us, intrinsically inaccessible [3]. So
it’s not the facts that impose the reality of these deci-
mals, but the mathematical language used in physics. Is
it a leap of faith to assert their reality?

III. WHAT IS A REAL NUMBER?

A real number is a number with a decimal point. It
begins with an integer, followed by a decimal point, then
an infinite number of decimals. Sometimes these deci-
mals stop, or more precisely, the sequence of decimals is
continues with an infinite sequence of zeros, for exam-
ple 1.500000... Generally, we truncate the Os and simply
write 1.5. Decimals of rational numbers always continue
with an infinitely repeating sequence of decimals, such as
1/3=0.33333... But we all know of other real numbers,

such as 7, the ratio of the circumference to the diameter
of a circle. In fact, how many real numbers do we know?
A finite number, of course. And how many real numbers
can we know? Knowing a number means we can give
it a name. In a more technical but equivalent way, this
“name” can be an algorithm that calculates the decimal
of this number!. An algorithm is a finite sequence of
symbols, a sort of complicated but convenient name. So
our question boils down to how many algorithms there
are. The answer is relatively simple: we can number the
names (and therefore the algorithms). Let’s start with
single-symbol names - there are as many as there are sym-
bols. Then 2-symbol names, then 3-symbol names, and
so on. There is therefore an infinite number of numbers
that can be known, but a discrete infinity. Like integers,
algorithms can be counted: 1, 2, 3, 4, ... The set of real
numbers, on the other hand, is much larger, and is re-
ferred to as continuous infinity. This is not surprising,
since real numbers can have an infinite number of dec-
imals, and these decimals can have no structure at all.
It’s hard to conceive of an absence of structure, but this
point is absolutely essential. If the decimals of a number
have a structure, e.g. they repeat, then we can use this
structure to name that number. So, the vast majority
of real numbers have no structure. In short, there are
calculable numbers and, infinitely more numerous, num-
bers without structure. The latter are called typical real
numbers.

A first consequence is that the “far”, “insignificant”
decimals of typical real numbers are random. As com-
plexity theorist Chaitin writes [4, 5], the best way to
conceive of a typical real number is to see it as the prod-
uct of a true random generator. And it should be these
real/random numbers that form the basis of scientific
determinism? We're beginning to feel that something
isn’t quite as clear-cut as that. A second consequence
of the structureless infinite series of decimals of typical
real numbers, pointed out by the famous mathematician
Borel [6], among others, is that a single real number can,
in principle, contain in its infinite series of decimals the
answers to all the (binary) questions that can be formu-
lated in any human language. This is quite intuitive,
since there is an infinite amount of information in each
typical real number. Briefly, all you have to do is number
all possible questions and encode the answers one after
the other in the decimals of this “omniscient number”.

In short, there are two kinds of real numbers. Numbers
that can be calculated using an algorithm, i.e. those with
a name. And the infinitely more numerous numbers that
have no names, that can’t be calculated. Since the latter
are infinitely more numerous than the former, we call
them typical real numbers.

Let’s try to imagine a typical real number. For sim-
plicity’s sake, let’s imagine that it starts with a zero,

1 More precisely, a series of approximations that get closer and
closer to that number.



followed by the decimal point and then the decimals. We
can imagine these decimals, one after the other. With
patience, you can imagine a lot of them. But it never
ends, and there’s no structure. So we have to imagine
a sequence of decimals that goes on ad infinitum. If we
imagine these decimals on a sheet of paper, we have to
imagine a sheet so long that it overflows the earth, it
overflows our galaxy, and it’s never finished. That’s how
I intuitively imagine these numbers. But in fact, pure
mathematicians conceive these numbers differently. For
them, at least in principle, because I don’t think any of
them really do, you have to imagine all the decimals as
given at once. Boom: an infinite amount of information
given in a finite amount of time (in fact, zero time).

This way of conceiving - and properly defining, it must
be said - the real numbers of mathematicians is indis-
putably very elegant. But the question for the physi-
cist is whether these numbers are physical, whether they
represent a physical reality. In short, the challenge is
to ask: does the determinism of classical physics result
from facts, or from this mathematical language? Indeed,
the numbers that mathematicians call real are physically
random. A fact well summed up by the mnemonic slogan
“Real numbers aren’t really real” [7].

IV. THE IMPORTANCE OF LANGUAGE,
INCLUDING MATHEMATICAL LANGUAGE

Mathematics is often written in the plural, because
there are so many mathematical languages. However, at
school and university, only one mathematical language is
almost always taught: the classical one, which includes
infinities and the law of the excluded middle. Many other
mathematical languages reject infinities and the law of
the excluded middle. These finitist mathematics are
called constructivist mathematics. Here, it’s not enough
to postulate the existence of mathematical objects, such
as infinite sequences of structureless decimals, but we
limit ourselves to what can be constructed, at least in
principle. But then, how to describe the continuum, how
to represent a continuous set of points such as those con-
stituting a straight line or a circle? This dilemma was re-
solved by the Dutch mathematician L.E.J. Brouwer over
a century ago. Brouwer anticipated Chaitin’s idea that
the decimals of typical real numbers result from random
processes (truly random, not pseudo-random like those
of our computers). So, according to Brouwer’s so-called
intuitionist mathematics [8-11], decimals literally come
one after another?. Prior to their occurrence, their ran-
dom production, they do not exist, at least not yet, their
value is not yet determined. In a way, God or nature is

2 More precisely, intuitionistic numbers progress over time, con-
tinuously gaining in precision. This is almost equivalent to new
decimals gaining determined values one after the other, but not
quite. A negligible point here [12].

continually playing dice, continually producing new in-
formation. So, at any given moment, there is only a
finite quantity of information, a finite number of deci-
mals. But this finite quantity progresses without limit.
Classical mathematics and the continuum are found as a
limit “at the end of time”. Everything can be calculated
with intuitionistic mathematics, at least everything that
is physical, everything that is measurable or observable
at any given moment.

Brouwer’s intuitionistic mathematics is not very pop-
ular today. Yet I believe that the majority of physicists,
like myself, and computer scientists, necessarily, are do-
ing intuitionistic mathematics without realizing it. Let’s
take the example of the climate, the importance of which
we don’t need to remind ourselves of today. How can sci-
entists simulate the future climate? Obviously, they can’t
put real numbers as initial conditions into their comput-
ers, which are finite - gigantic, but finite. So they trun-
cate the initial conditions, keeping only a finite number
of decimal places. Then, in the course of their simula-
tions, when the truncated decimals become important,
they add random decimals [13]. In short, they do intu-
itionistic mathematics.

A consequence of finitist mathematics, such as intu-
itionism, is that the law of the excluded middle is not
valid: some propositions can be neither true nor false.
For example, the proposition “the decimal d,, is 5”7 can
be neither true nor false if the value of that decimal has
not yet been determined. This won’t surprise anyone who
believes in an open world, but it does upset many mathe-
maticians who like to prove a theorem by simply showing
that its negation is not tenable (the famous proofs by con-
tradiction). However, for a physicist inclined to believe
in an open world, and therefore in indeterminism, in or-
der to prove that the weather will be fine a year from
now, it’s not enough to show that it’s not certain that
it won’t rain; indeed, it may be that the weather in a
year from now is not yet determined, and that different
alternatives are still possible today.

To sum up, in intuitionistic mathematics, “nature”
is capable of continuously producing new information,
which is added - in finite quantities - to that which al-
ready exists. By contrast, in classical mathematics, in-
stead of a “god” who continuously plays dice, god rolled
all the dice at the big bang and encoded all the results in
a monstrous real number defining the initial conditions
of the universe. This is not to deny the elegance of Can-
tor’s infinities, but simply to doubt that this is physics:
our world is finite. Finite and continuously evolving.

It’s clear, then, that determining whether Newton’s
classical mechanics is deterministic or not is not a scien-
tific question; it depends on the meaning we attribute to
the real numbers, and, ultimately, on the mathematical
language we use. So far, the two alternatives - classical
mathematics and classical deterministic physics, or intu-
itionistic mathematics and indeterministic physics - are
both tenable options [14]: it’s a question of opinion, of a
feeling of elegance, even of faith. To decide, we need the



equivalent of Newton’s astronomical telescope.

V. THE QUANTUM PHYSICS “TELESCOPE”

No telescope or microscope will ever allow us to see the
insignificant decimals directly - they’re too far after the
decimal point. However, quantum physics does allow us
to “see” randomness, and thus to answer the question of
determinism. Historically, quantum physics introduced
the idea of randomness very early on. Who hasn’t heard
of Young’s two-slit experiment, or Schrodinger’s cat su-
perposed between life and death? But the Young’s slit
experiment can be explained without any chance at all
(it’s de Broglie’s pilot wave idea, developed by Bohm),
and no cat has ever been seen in such a state, half a fin-
ger away from death. Quantum physics has much better
to offer.

Imagine two physicists at a distance from each other
[15]. In theory, this distance could be astronomical, but
in practice it’s limited to a few kilometers or tens of kilo-
meters. The important thing is that they can’t commu-
nicate during the experiment. This impossibility can be
guaranteed by running the experiment so fast that com-
munication would require a speed greater than the speed
of light. But the absence of communication can also be
guaranteed by physical constraints, such as a huge wall or
field of bombs separating our two physicists. In practice,
of course, we’re content with common sense, although
some experiments have gone so far as to impose that
any communication would have to travel at least 100,000
times the speed of light [16]. In short, let’s imagine our
two physicists at a distance with no means of communi-
cation. It’s a hypothesis, an extremely natural hypothe-
sis, but since our aim is to rigorously prove the existence
of chance - and therefore of indeterminism - we need a
mathematical theorem, and all theorems are based on
hypotheses. So we’ll assume that space does exist, and
that therefore physicists who are far enough apart can-
not communicate at arbitrarily high speeds. We need
a second assumption. Owur physicists must be able to
choose “freely” which measurements they will carry out,
each one a measurement. We leave each of them only the
choice between two possible measurements. In fact, it’s
not even necessary for their choices to be of their own
free will; it’s enough for their choices to be independent
of each other and of the system on which they’re going to
carry out their measurements. For example, the exper-
iment has been prepared by a third party, and our two
physicists’ choices dictated by two old digitized films, one
by Charlie Chaplin, the other by Louis Lumiere [17]. In
such a case, it’s practically self-evident that the choices
of measurements are independent of each other and of
the way in which the experiment has been prepared.

The above description may seem extremely cumber-

3 Today many experiments have obtained statistics close enough to

some, even pedantic. However, it is necessary because
this quantum “telescope”-experiment has actually been
carried out [18-21], it has even resulted in the 2022 No-
bel Prize in Physics. What’s more, this quantum physics
experiment leads to the rigorous conclusion that our two
physicists’ measurement results are necessarily random.
This conclusion follows logically from the two hypothe-
ses summarized above, as well as from observation of the
statistics of the results obtained by the two physicists®
[22]. It’s impossible to overestimate the importance of
this rigorous conclusion, which is unfortunately still all
too often ignored.

Thus, the “quantum telescope” makes it possible to see
“mountains” on the ideal of scientific determinism: this
determinism is not smooth, in fact it is untenable. Stars
are not perfect spheres, and nature - even if limited to
physics - is not deterministic.

VI. CONCLUSION

Classical physics can be interpreted in a determinis-
tic or indeterministic way, depending on the status we
attribute to real numbers and which mathematical lan-
guage we favour. Ultimately, it’s a question of elegance.
The elegance of determinism and real mathematical num-
bers, versus the elegance of an open world and intuition-
istic mathematics.

On the other hand, to maintain determinism in quan-
tum physics, one must abandon at least one of the two
hypotheses formulated above, i.e. either abandon the no-
tion of distance - or equivalently allow for infinite speeds
- or abandon the idea that certain phenomena - an old
film and a source of quantum particles - are independent
of each other. Some of my colleagues are still working
on abandoning one or the other of the above hypotheses.
But frankly, determinism is dead: we’ve seen mountains,
irregularities on this beautiful old idea of determinism.
Nature is capable of creative acts, of continually creating
new information, of producing events that were not nec-
essary. At least, that’s clearly my preferred choice. To
abandon either of the above hypotheses is repugnant to
me. Elegance forces quantum chance on us, although it’s
hard to imagine [15].

In conclusion, as we have seen from the example of
determinism in physics, it seems that scientific truths are
not only based on facts, but also on our violent desire for
elegance.
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