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Abstract. One cannot justifiably presuppose the physical salience of structures
derived via decoherence theory based upon an entirely uninterpreted use of the
quantum formalism. Non-probabilistic accounts of the emergence of probability
via decoherence are thus unconvincing. An alternative account of the emergence
of probability involves the combination of quasi-probabilistic emergence, via a
partially interpreted decoherence model, with semi-classical emergence, via aver-
aging of observables with respect to a positive-definite quasi-probability function
and neglect of terms O(~). This approach avoids well-known issues with con-
structing classical probability measures in the context of the full set of states of a
quantum theory. Rather, it considers a generalised quasi-measure structure, par-
tially interpreted as weighting of possibilities, over a more general algebra, and
delimits the context in which the combination of decoherence and a semi-classical
averaging allows us to recover a classical probability model as a coarse-grained
description which neglects terms O(~).
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1. Introduction

The interpretation of probability is a variously contested subject in both
philosophy and the foundations of physics. There are, perhaps, two points of com-
mon ground, however. First, that formally a classical probability can be defined as
a mathematical structure given by a normalized, positive, and σ-additive measure
over a suitable algebra of events. Second, that in using such a structure to represent
physical states of affairs, we are committing to a partial interpretation of the mea-
sure as (in some sense) a weighting of possibilities. Whether such weightings, and
such possibilities, should be understood as epistemic or ontic; or, for that matter,
subjective or objective, is still left open by such a partial interpretation.1 Neverthe-
less, a probability is not purely a mathematical object when we are in the business
of physical representation, even absent a full interpretation.

These remarks prove enlightening when considered in the context of discus-
sions of probability and emergence in the Many Worlds or Everett approach to
the interpretation of quantum theory. In particular, consider the non-probabilistic
emergentist account of Wallace (2012); Saunders (2021b); Franklin (2023) in which
features of the evolution equations of quantum theory are claimed to be sufficient,
in some contexts to some degree, to justify a link between the Born weightings
and physical salience, without these weightings being understood probabilistically.
Decoherence, on this view, is a dynamical process under which probabilities emerge
without the need for any prior probabilistic assumptions.2

In Section 2 we argue that the non-probabilistic emergentist account of prob-
ability via decoherence is unconvincing. One cannot justifiably presuppose the phys-
ical salience of structures derived via decoherence theory based upon an entirely
uninterpreted use of the quantum formalism. We provide specific framing of this
dialectic in terms of similarity arguments. Justifications of the physical salience of
structures derived via decoherence theory purely based upon similarity to inter-
preted classical physics can never be satisfactory as an approach to the interpre-
tation of physical theory. Some prior generalised concept of quantum measure or
quantum probability as a weighting of possibilities must be assumed in the applica-
tion of decoherence theory. Non-probabilistic emergentism about probability based
on quantum decoherence fails. Nothing comes from nothing.

In response to this failure, we provide a novel account of the emergence of
probability through the combined application of a partially interpreted decoherence

1Following Carnap (1958), a partial interpretation is an assignment of meaning to theoretical
terms such that there is a range of admissible interpretations in the complete language. A partial
interpretation thus allows for the interpretation of theoretical terms to be strengthened by further
postulates (Suppe 1971; Andreas 2021).
2It should be noted that Franklin (2023) only explicitly claims to have established the non-
probabilistic emergence of ‘classical structures’ rather than probability.
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model and semi-classical averaging leading to a coarse-grained description which ne-
glects terms O(~). Our approach takes as its starting point a partially interpreted
generalised quantum quasi-probability structure and uses decoherence together with
semi-classical averaging to derive a classical probability model as a coarse-grained
description. Our account of the emergence of probability thus involves the com-
bination of a ‘diachronic’ quasi-probabilistic emergence, via a partially interpreted
decoherence model, with a ‘synchronic’ semi-classical emergence, via averaging of
observables and neglecting higher order terms. Emergence is understood to indicate
the derivation of a novel and robust behaviour following the accounts of Butterfield
(2011) and Palacios (2022).

There are well-known problems with constructing probability measures over
the full set of states of a quantum theory. In particular, not only are there general
grounds for thinking quantum interference is in tension with any probabilistic inter-
pretation of the quantum amplitudes (Wallace 2014), but one can in fact show that
there is a close formal relation between the absence of a well-defined joint proba-
bility distribution for non-commuting observables and violation of the Bell-CHSH
inequalities (Fine 1982a,b; Pitowsky 1989; Suppes and Zanotti 1993; Hartmann
2015). Relatedly, in quantum theory the probabilities that come into the theory
cannot be represented as measures induced by the integration of a genuine prob-
ability density function over phase space. Rather, they can at best be represented
in terms of the marginal probability distributions for position and momentum con-
sidered separately, with the density function taking the form of Wigner function,
which is formally a quasi-probability density function in a quantum phase space
representation (Wigner 1932, 1971).

Our approach is based upon consideration of a generalised quasi-measure
structure as induced by the Wigner function within the quantum phase space for-
malism. This structure is partially interpreted as weighting of possibilities such that
decoherence can be understood as the suppression of certain possibilities. We show
how semi-classical averaging allows us to recover a classical probability model as
a ‘coarse-grained’ description which neglects terms O(~). This is not, of course, to
offer a solution to the measurement problem in terms of a full interpretation of
the relevant possibility spaces. Rather, what we offer is a conceptual framework
for the analysis of classical and quantum probability within which any coherent
interpretation must be expected to operate.

The key results of the paper are as follows. In Section 3 we reconstruct the
quantum phase space formalism to provide a formalisation of quantum possibly
space models that are directly comparable to the classical possibility space model
given by a probability density function over a phase space. In Section 4, we demon-
strate the sense in which classical possibility space models can be understood to
emerge from quantum possibly space models. This demonstration depends upon
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two important results. First, that explicit models of decoherence in quantum phase
space show the generic feature that that show the Wigner quasi-probability distri-
bution is positive-definite after finite times of the order of the decoherence time.
This is the quasi-probabilistic emergence with Wigner positivity the relevant novel
and robust behaviour. Second, that the generalised Ehrenfest relations imply that
the classical and quantum moment evolution equations are syntactically isomor-
phic with the Wigner function playing the role of a probability density function.
A positive-definite Wigner function then displays localisation and conservation be-
haviour identical to that of a probability density function to the extent to which we
can neglect terms O(~). This is the semi-classical emergence with localisation and
conservation the relevant novel and robust behaviour. The combination of quasi-
probabilistic emergence and semi-classical emergence thus allow us to derive a clas-
sical possibility space model from a quantum possibility space model.

On our analysis, an account the role of probability in quantum mechanics
can most plausibly play out in only one of two ways. First, probability can be in-
troduced as a fully formed classical probability in connection with an extra posit
such as collapse, hidden variables, or observers. Second, one can abstain from extra
posits, and establish the probabilistic nature of quantum mechanics as an approxi-
mate, emergent concept. In the latter case, there is no plausible way to avoid adding
to pure wave mechanics a partial interpretation in terms of possibility weightings.
In particular, there is no way to understand decoherence in general, or the sup-
pression of small amplitudes in particular, absent a partially interpreted structure
that weights possibilities. Formally, such weightings can be expected to have the
structure of quasi-probabilities (or quasi-measures). On this approach, there are
no true classical probabilities at a fine-grained level of description, only quantum
probabilities that in some circumstances and to some extent resemble their classical
counterparts.

2. Emergence and Everett

2.1. Decoherence and Emergence. The role of probability in the interpretation
of quantum mechanics takes centre stage in the context of the relationship between
the Everett interpretation and decoherence. In particular, according to what might
be called the Oxford approach the Born rule can be extracted from the Many Worlds
branching structure based on principles of reasoning that leave the application of
the Born rule as the only rational way of betting on quantum outcomes open to
an agent on an Everettian branch of the wave function who endorses the Everett
interpretation.3

3See Deutsch (1999) and Wallace (2002) for the original proofs and Wallace (2012) for the sys-
tematic treatment in the context of the emergentist view. See also Saunders (2004, 2005); Wallace
(2009); Greaves and Myrvold (2010). Various critical responses (and counter responses) are Price
(2010); Rae (2009); Dizadji-Bahmani (2013); Adlam (2014); Dawid and Thébault (2014); Read
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Zurek (2005) and Baker (2007) have criticized the Oxford approach by point-
ing at a circularity in its line of reasoning: decoherence must already be assumed to
establish the branching of the wave function that provides the basis for identifying
an agent who can consider betting along the lines of the decision theoretic argu-
ment. But decoherence already relies on a probabilistic interpretation of the process.
In this context, Dawid and Thébault (2015) have argued that the the situation is
even worse: the notion of probability required for understanding decoherence in the
sense of a probabilistic suppression of off-diagonal elements of the density matrix is
stronger than the decision theoretic notion of probability offered. This approach to
extracting the Born rule therefore is not just circular but incoherent.

Against these critizisims, Saunders (2021b) and Franklin (2023) have sought
to buttress the emergentist approach building on earlier discussions by Wallace
(2010, 2012) and Saunders (2005). Franklin argues that “the neglect of terms with
relatively small amplitudes can be justified non-probabilistically [...] in contexts
where interference is rife, the probabilistic interpretation of the (mod-squared) am-
plitudes is ruled out [...] the Born rule, in such contexts, takes the form of an
averaging measure rather than a probability measure. [...] we should think of the
relation between small amplitudes and irrelevance as a dynamical phenomenon. The
relative magnitude of the amplitudes encodes the dynamical contribution of each
term.”

Saunders argues using slightly different language towards the same central
point. In particular, he claims that “Strongly peaked amplitude” does not, prior
to defining the branching structure of the state, have to be interpreted as “highly
probable.” [...] the “average values of local densities” are defined not by averaging
the densities, but as the values of the local densities on those trajectories on which
the amplitudes are (very sharply) peaked. In the case of Ehrenfest’s theorem, whilst
it is possible to interpret 〈x〉ψ operationally, in terms of multiple measurements [...]
it is also possible to interpret it realistically, as the location of the peak of the
wave-function as it evolves over time, in accordance with classical equations...”.

The original presentation of this form of similarity via dynamical irrelevance
argument can be found within the highly influential emergentist defence and devel-
opment of the Many Worlds interpretation due to Wallace (2012), who suggests that
“[w]e can think of the significance of the Hilbert space metric as telling us when
some emergent structure really is robustly present, and when it’s just a ‘trick of
the light’ that goes away when we slightly perturb the microphysics...What makes
perturbations that are small in Hilbert-space norm ‘slight’, [is] not the probabil-
ity interpretation of them. Ultimately, the Hilbert- space norm is just a natural

(2018); Brown and Porath (2020); Steeger (2022); March (2023). For other approaches to proba-
bility in Many Worlds Theory see, for example, Saunders (2021a); Short (2023). See also Saunders
(2024) for a recent ‘finite frequentist’ approach to quantum probability.
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measure of state perturbations in Hilbert space, and that naturalness follows from
considerations of the microphysical dynamics, independent of higher-level issues of
probability” (pp. 253–254).

What Wallace, Franklin and Saunders all seem to have in mind is that fea-
tures of the evolution equations of quantum theory are sufficient, in some contexts
to some degree, to justify a link between the Born weightings and physical salience,
without these weightings being understood probabilistically in any sense. The prob-
lems with such a strong emergentist view will be considered in the following section
in the context of the reliance on uninterpreted similarity arguments.

2.2. Similarity and Interpretation. The failure of non-probabilistic emergence
based on uninterpreted similarity arguments can be understood to arise from a basic
conflict with the principle that a scientific theory should allow for empirical testing
on its own terms. The key problem is the assumption that the set of rules that
specify an important part of the theory’s empirical import, namely the decoherence
of branches of the wave function, can be extracted from observing structural simi-
larities to a theory that serves as a limiting case of that theory – the model where
coherence terms are set to zero. In other words, a limiting theory serves as the basis
for extracting empirical implications of the fundamental theory.

The problem with this line of reasoning is that it does not explain what
measuring a certain value of an observable implies at the level of the full theory.
As long as no such understanding is forthcoming at the level of the full theory,
however, we have no basis to decide whether or not we are justified to call any
other theory a limiting theory of our full theory. Mere similarity arguments are
insufficient for making that decision for one reason: as long as the implications
of measurements cannot be spelled out at the level of the full theory, we remain
insensitive to the distinction between empirically relevant stable dynamics on the
one hand and spurious dynamics of parameterization prescriptions on the other. In
the limiting theory that sets coherence effects to zero, the set of allowed states are
confined to states that show no coherence effects. Any discovery of coherence effects
would therefore contradict the limiting theory. The question as to whether coherence
should be considered probable or improbable thus does not arise. Coherence is ruled
out. In the full theory, coherence is consistent with the theory. Coherence effects
are represented in the theory’s set of allowed states. To understand whether they
are suppressed or not, it is not sufficient to point at a small dimensionless number
that characterizes cohered states because small dimensionless numbers might, in
principle, also be extracted from specific parameterizations of the theory that bear
no physical significance. To rule out this possibility, one needs to find the basis for
a probabilistic analysis of those states at the level of the full theory.
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The similarity approach has a second, related problem. While a limiting
theory can be deduced from a fundamental theory, the opposite is not true. A prob-
abilistic interpretation of the non-cohered limiting theory (to the extent it can be
given) does not formally imply the probabilistic characteristics of the fully quantum
regime in terms of the full Born rule. In other words, we end up deploying two en-
tirely different lines of reasoning to establish what formally looks like one coherent
concept of quantum probability. All this is a far cry from the initial claim that
Many Worlds quantum mechanics has the attractive feature to require no posits
beyond the wave function equations. Indeed, an appeal to decoherence as a pre-
condition of interpretational content would render the Many Worlds approach of a
piece with precisely the pragmatic, neo-Bohrian outlook that the Many Worlds view
motivated by rejecting. For example, such an approach would involve implementing
the proscription on the use of the Born rule as a probabilistic rule due to Healey
(2017). Pragmatic approaches to quantum theory are without doubt interesting and
valuable in their own rights. However, we do not take a marriage with the Many
Worlds view of quantum mechanics to be a union that would be to the profit of
either party.

Viewing the similarity argument from a slightly different angle may con-
tribute to understanding both the reason for its intuitive appeal and the point where
it goes wrong. It is, of course, striking that the decohered limit of wave mechanics
looks so similar to a model with a classical probability function. If quantum mechan-
ics were new, no probabilistic interpretation of the mod-squared amplitudes were
known, and there were no understanding of the theory’s empirical implications, it
would be plausible to infer from the stated similarity argument alone that quantum
theory most probably has an interpretation that allows for neglecting small ampli-
tudes. The similarity just looks too nice to be accidental. Heuristic reasoning of this
kind is standard fare in physics and is often successful, which explains its intuitive
appeal. But a similarity argument cannot replace a conceptual understanding as
to how the theory of quantum mechanics provides the basis for the probabilistic
character of its phenomenology. While the former amounts to a heuristics of theory
selection, the latter is a matter of fully spelling out the theory.

In summary, returning to our principal argument: As long as no probabilistic
interpretation of the wave function is provided at the level of quantum mechanics, it
is not clear whether Born weights are a characteristic of physically relevant dynam-
ics or of mere parameterization. Therefore, it is not justified to infer the empirical
import of Many Worlds quantum mechanics from the fact that the resulting wave
function in a given limit looks strikingly similar to the empirical results of a non-
cohered theory. One might assert by fiat that the import of Many Worlds quantum
mechanics matches the import of the corresponding non-cohered theory in a given
limit. If one goes down that road, however, the non-cohered theory turns from a
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limiting theory of the full quantum theory into an essential element of quantum
theory that is needed for providing the link between the theory’s formal structure
and its empirical import. The result is a confusing compound of mutually depen-
dent theoretical posits. We cannot make valid inferences about the world based
upon uninterpreted similarity arguments combined with the formal structure of a
decoherence model.

3. Probability and Possibility

The previous section demonstrated that a probabilistic understanding of
quantum mechanics needs to be established at the level of the full theory. This
conclusion stands in conflict, however, with a second step of reasoning put for-
ward by Franklin (2023). Franklin writes: “[A] probabilistic interpretation of the
mod-squared amplitudes is inapplicable before decoherence has occurred. In the
presence of interference amplitudes may cancel each other out – thus, interpreting
amplitudes in such contexts probabilistically will not do. It is only when interference
is sufficiently suppressed that mod-squared amplitudes approximately conform to
the probability axioms: any attempt to interpret mod-squared amplitudes as proba-
bilities in the presence of interference will be empirically undermined [...]. Therefore,
at least in some of the contexts where the Born rule measure is applied and expec-
tation values are discussed these are not to be given a probabilistic interpretation.”
(Franklin 2023, pp. 13-14).

Franklin thus argues that it is misguided to even look for a probabilistic in-
terpretation of the dynamics at the quantum level because quantum theory provides
no basis for a quantum probability measure that satisfies the Kolmogorov axioms.
On his reasoning, Zurek (2005), Baker (2007) and Dawid and Thébault (2015) are
not just wrong in claiming that decoherence needs to be based on a probabilistic
interpretation of quantum processes. They are already wrong in assuming that a
probabilistic interpretation of the quantum regime is a meaningful goal. Franklin
asserts that establishing a probabilistic account at the level of the limiting theory
is the only way to get from quantum mechanics to empirical predictions.

In this section and the next we will carry out a detailed analysis of this issue
and put forward a proposal for the precise sense in which probablistic concepts can
be understood at the level of the full theory despite the fact that the full theory
provides no quantum probability measure that satisfies the Kologorov axioms. We
start by introducing two important types of probability structures: quasi-probability
structures and classical probability structures. The first is a generalisation of the
second. Each will be understood as uninterpreted formal structures. We will then
show how the two structures can be augmented and partially interpreted to provide
representations of possibility space models that implement quasi-probability and
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classical probability structures respectively. These representations correspond to
quantum mechanics and classical statistical mechanics and respectively.

3.1. Probability and Quasi-Probability Structures. A quasi-probability
model is a triple (Ω,E, µ̃) where the three elements are defined as follows:4

I Sample Space: Ω is a non-empty set;
II Event Algebra: E is a non-empty collection of sub-sets of Ω such that:

i Ω \ α ∈ E for all α ∈ E (closed under comeplementation);
ii α ∪ β ∈ E for all α, β ∈ E (closed under finite union);

III Quasi-Measure: µ̃ is a set function µ̃ : E → R which is such that µ̃(Ω) = 1

(normalized).
By definition we have that ∅ ∈ E, Ω ∈ E, and E is closed under-finite intersection.

Two important features that a quasi-probability model does not have are
σ-additivity and positivity. The first is since we have not insisted that the event
algebra E is a σ-algebra; it need not be closed under countable unions.5 The second
is since we have not insisted that the quasi-measure µ̃ is a measure; it need not be
positive (nor indeed σ-additive). Strengthening the model to include these features
results in the familiar formal structure of a classical probability model.

A classical probability structure is a triple (Ω,Σ, µ) where the three elements
are defined as follows:

IV Sample Space: Ω is a non-empty set;
V σ-Algebra: Σ is a non-empty collection of sub-sets of Ω such that:

i Ω \ σ ∈ Σ for all σ ∈ Σ (closed under comeplementation);
ii σ1∪σ2∪σ3... ∈ Σ for all σ1, σ2, σ3... ∈ Σ (closed under countable union);

VI Probability Measure: µ is a set function µ : Σ → R such that:
i µ(Ω) = 1 (normalized)
ii µ(σ) ≥ 0 for all σ ∈ Σ (positive)
iii µ(σ1 ∪ σ2 ∪ σ3...) = µ(σ1) + µ(σ2) + µ(σ3)... for a countable collection

of mutually disjoint algebra elements σ1, σ2, σ3... ∈ Σ (σ-additivite).
Evidently, on these definitions every classical probability model is a quasi-

probability model. Moreover, whereas by design the probability measure in a clas-
sical probability model will satisfy the Kolmogorov probability axioms, a quasi-
probability measure in general will not. However, in the sub-set of quasi-probability
models where µ is positive and σ-additive will of course be representations of Kol-
mogvrovian probabilities.

3.2. Classical Possibility Space Models. A phase space representation of a
classical possibility space model is a triple (Γ,O, ρ) that takes the following form:
4Here we are using a slight generalisation of the framework set out in Dowker and Wilkes (2022).
5For a detailed discussion of relationship between forms of additivity and classical and quantum
probabilities see Arageorgis et al. (2017).
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VII State Space: Γ = R2N represents the space of possible states of system
as a 2N -dimensional symplectic manifold equipped with the closed non-
degenerate two form ω = dq ∧ dp and associated volume measure dq · dp in
the Darboux chart;

VIII Observable Algebra: O represents observables as a Poisson algebra given
by the space of real-valued smooth functions over Γ with the Cartesian
product · and Poisson bracket {, }, the relevant bilinear products. The dis-
tinguished function H ∈ O induces a time evolution automorphism via the
Poisson bracket: d

dt
A = {A,H} for all A ∈ O.

IX Probability Density Function: ρ is a phase space probability density
function, ρ(q, p) : Γ → R, which is Lebesgue integrable with respect to the
volume measure, dq · dp, and induces a probability measure, µ, such that
for any event with probability, µ(B), there is a corresponding PDF, ρ(q, p),
that satisfies the conditions:

i µ(B) ≥ 0 for all B ∈ B (positive)
ii
∫
Γ
ρ(q, p)dq · dp = 1 (normalized)

iii If B1, ..., Bn, ... ∈ B with Bi ∩ Bj = ∅ for i 6= j then µ(∪∞
n=1Bn) =∑∞

n=1

∫
Bn
ρ(q, p)dq · dp (σ-additive)

where B ∈ B are the Borel sets B(R2N).
X Expectation Values: 〈A〉 is the expectation value or mean of an observable

defined as: 〈A〉 ≡
∫
Γ
A(q, p) · ρ(q, p)dq · dp for all A ∈ O

A stochastic phase space model provides a partial interpretation of a classical prob-
abilistic structure as follows: The state space Γ is the sample space Ω. The Borel
sets given by sub-regions of phase space B(R2N) are the σ-algebra (Feller 1991).
The probability measure p(B) is given by the integration of the probability den-
sity function ρ(q, p) with respect to the volume measure dq · dp over a sub-region
B ⊆ R2N . The connection between the conditions IXiii and VIiii is guaranteed
by the definition of σ-algebra. The model includes a deterministic sub-set since a
function that approximates a δ-function is an admissible PDF and thus the case in
which the singleton of the Borel sets is measure (almost) one and (almost) all other
points are measure zero is an admissible stochastic phase space model.

The conditions on the representation VII–X encode two features which will
be important for the comparison with phase space representations of quantum pos-
sibly spaces. These are the conservation and localisability of probability density.

The conservation of probability density is a well known feature of a phase
space representations of a classical possibly model. It is typically expressed via the
Liouville equation:

(1) dρ

dt
=
∂ρ

∂t
+ {ρ,H} = 0
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This equation guarantees that the additivity property of regions of phase space is
preserved over time. If we think of the probability like a fluid, we can understand
there to be a phase space 3-current given by the tuple (ρ, ρq̇, ρṗ). The Liouville
equation then expresses the conservation of the 3-current and is equivalent to the
statement that for any region B ⊂ Γ the net ‘efflux’ of probability is zero. This is
the characteristic property of a fluid with an incompressible flow and is a result of
the absence sources or sinks of the probability ‘fluid’ (Pathria and Beale 2011, p.
28), cf. (Gibbs 1902, p.11).

The localisability of probability density is much less discussed but will be
equally important for our discussions. The phase space representation given by con-
ditions VII–X is such that the essential support of the probability density function
ρ(q, p) is given by phase space points {q, p}. The essential support of a function,
ess sup(f), is a measure theoretic concept and indicates the smallest closed subset
in the domain of a measurable function such that the function can be zero ‘almost’
everywhere outside that subset. The ‘almost’ in this context is cashed out via the
measure such that the points which are outside the essential support and where the
function is non-zero are of measure zero. For any Lebesgue measurable function f

we have that ess sup(f) = sup(f) (Lieb and Loss 2001, p.13).
The important feature to hold in mind for our discussion is that essential

support (and support) of ρ(q, p) is given by the smallest possible phase space regions
such that the function can be zero (almost) everywhere else. These are phase space
points (the singleton elements of the Borel sets). This means that it is possible to
consider probability density functions that are (almost) entirely concentrated at a
single point which amounts to allowing the possibility that the probability density
function approximates a δ-function. Correspondingly, since its integral over phase
space is normalised, by concentrating a probability density function almost entirely
at one point we must allow that the function is unbounded from above.

3.3. Quantum Possibility Space Models. A phase space representation of a
quantum possibility space model is a triple (Γ,O, F ) that takes the following form:

XI State Space: Γ = R2N represents the space of possible states of system
as a 2N -dimensional symplectic manifold equipped with the closed non-
degenerate two form ω = dq ∧ dp and associated volume measure dq · dp in
the Darboux chart;

XII Observable Algebra: A represents observables as a (non-commutative)
Moyal algebra of real-valued smooth functions on phase space that are the
Wigner transform of the algebra of (Weyl ordered) bounded linear opera-
tors B(H) on a Hilbert space of square integral functions H = L2(R2N).
The binary operation is given by a ?-product operation which can be
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expressed as a pseudo-differential operator in powers of ~ and the non-
commutativity of the algebra is expressed via the fundamental relation that
[Â, B̂] = {{A,B}} ≡ 1

i~(A?B−A?B) for all A,B ∈ A and all Â, B̂ ∈ B(H).
The distinguished function H ∈ A induces a time evolution automorphism
via the Moyal bracket such that d

dt
A = {{A,H}} for all A ∈ A;

XIII Quasi-Probability Density Function: is a possibility space weighting
function F (q, p) : Γ → R that induces a quasi-measure µ̃ such that for any
event α with quasi-measure, µ̃(α), there is a corresponding quasi-density, F
that satisfies the conditions:

i µ̃(Γ) = limn→∞
∫
Bn
F (q, p) ? dq · dp = 1 (normalized)

ii | F (q, p) |≤ 1
ε

(bounded)
where Bn = {(q, p) | |q|2 + |p|2 ≤ rn} and limn→∞ rn = ∞ (Aniello 2016).

XIV Expectation Values: 〈A〉 is the expectation value or mean of an observable
defined as: 〈A〉 ≡

∫
Γ
A(q, p) ? F (q, p)dq · dp for all A ∈ A.

The model provides a partial interpretation of a quasi-probability structure
as follows: The state space Γ is the sample space Ω and the event algebra A is
given by regions of phase space of volume greater than or equal to some minimum
volume which depends upon ε. The quasi-measure µ̃ is given by the integral of
the quasi-probability density function with respect to the volume measure. Since
the quasi-probability density function is bounded it cannot be arbitrarily highly
peaked, which means that not only are δ-functions not admissible quasi-probability
density functions but, due to the unit norm, means that any function that leads to
localisation of the quasi-probably mass of order ε are excluded. We thus get a direct
connection between the essential support of the quasi-probability density function,
the bound, and the smallest element of the event algebra. Thus, by design, we are
guaranteed that for the smallest element of the event algebra there will be a quasi-
probability density function that induces a measure such that the event is measure
one and all other events are measure zero.

The contrast between classical and quantum possibly space models in their
respective phase space representations is greatly clarified by examining the failure of
conservation and localisability of quasi-probability density implied by the conditions
XI–XIV. Let us demonstrate this failure explicitly for the choice of Wigner function,
W as the quasi-probability density function.6

Failure of conservation of quasi-probability is a direct consequence of the
non-commutativity of the Moyal algebra of quantum phase space observables in
comparison to the Poisson algebra of classical phase space observables as encoded

6The Wigner function is the most important of the quasi-probability distributions on quantum
phase space that can be defined via different operator ordering conventions. Our discussion prin-
cipally draws upon details in Curtright et al. (2013) unless otherwise noted. See Section 4 for
further details on the Wigner function.
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in the relation {{A,B}} = {A,B}+O(~). We can show this explicitly by considering
the quasi-probability flux for some arbitrary region of phase space S with volume
greater than or equal to the minimum volume. This is given by the expression
(Curtright et al. 2013, p. 57):

d

dt

∫
S
dqdpW =

∫
S
dqdp

(∂W
∂t

+ q̇
∂W

∂q
+ ṗ

∂W

∂p

)
(2)

=

∫
S
dqdp

(
{{H,W}} − {H,W}

)
= O(~)

where we have used the Wigner transform of the Heisenberg equations of motion q̇ =
∂H
∂p

and ṗ = −∂H
∂q

and the Moyal equation d
dt
W = {{H,W}}. The quasi-probability

density associated with regions of phase space thus manifests a violation of additivity
over time in marked contrast to the classical probability density function in phase
space, cf. (Wallace 2021, p.23).

The failure of localisability can be understood as follows. A quasi-probability
functions need not in general be Lebesgue integrable over the entire phase space. In
the case of the Wigner quasi-probability density function, W , we find the possibility
of failure of Lebesgue integrability (Aniello 2016) accompanied with a restriction
of ess sup(W ) to volumes of phase space greater than equal to one in units of
~ (Dell’Antonio 2016, p.19). By the Cauchy–Schwarz inequality the function is
bounded such that −2

~ ≤ W (q, p) ≤ 2
~ and we thus have that ε = ~

2
. Correspondingly,

as already anticipated above, the event algebra is given by regions of phase space
with volume greater or equal to a minimum volume that depends upon ε. Thus,
in contrast to the classical case, it is not possible to concentrate quasi-probability
density almost entirely at a single point. This amounts to precluding the possibility
that the quasi-probability density function approximates a δ-function in phase space
(Leonhardt 2010, p.71). Phase space points are not in ess sup(W ) and we cannot
have a situation in which the Wigner function is non-zero at a point but zero
(almost) everywhere else.

Physically speaking, this measure theoretic subtlety can be understood as a
consequence of the Heisenberg uncertainty principle which, in turn, is a direct conse-
quence of the non-commutative structure induced by the ?-product. See (Curtright
et al. 2013, §5) and (Huggett et al. 2021, §5.1). That quasi-probability distributions
are not localisable in phase space corresponds to the fact that the algebra of events
does not include regions of phase space of arbitrarily small volume. That is, since
we have insisted that for any event α with quasi-measure, µ̃(α), there is a corre-
sponding quasi-density, F , we must exclude events corresponding to regions order
~ since assigning quasi-measure (almost) one to such regions is not consistent with
any quasi-probability density function. Thus A is inequivalent to the Borel sets of
R2N which by definition form a σ-algebra which includes phase space points.
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Furthermore, one can prove based upon the fact that a quasi-probability
density is not localisable that the induced measure cannot be σ-additive. The re-
lationship between the failure of σ-additivity and the failure of localisability is
expressed in qualitative terms in (Curtright et al. 2013, p. 54) but has not, to our
knowledge, previously been demonstrated explicitly. A short proof for the case of
the Wigner function is provided in Appendix A.

4. Decoherence and Classicality

In this section we demonstrate that the combination of ‘quasi-probabilistic
emergence’ and ‘semi-classical emergence’ allow us to derive a classical possibility
space model from a quantum possibility space model. This is not, of course, to
offer a solution to the measurement problem in terms of a full interpretation of
the relevant possibility spaces. Rather, what we offer is a conceptual framework
for the analysis of classical and quantum probability within which any coherent
interpretation must be expected to operate.

4.1. Wigner Negativity and Decoherence. The Wigner function is at the cen-
tre of the phase space approach to quantum mechanics.7 Representing the quantum
state of a system via a density matrix, ρ̂, the Wigner function, W (q, p), takes the
form:

(3) W (q, p) =
1

2π~

∫
dq′ 〈q − q′| ρ̂ |q + q′〉 e−iq′p/~

The transformation between the density matrix ρ̂ and the Wigner function W can
be generalised to an arbitrary operator Â as:

(4) A(q, p) =
1

2π~

∫
dq′〈q − q′ | Â | q + q′〉e−iq′p/~

Where we understand A(q, p) to be the Wigner transform for the operator Â. The
Wigner transform coverts an operator on Hilbert space, with a preferred Weyl op-
erator ordering, into a function on phase space.

An important property of the Wigner transform is that the trace of the
product of two operators Â and B̂ is expressed in phase space in terms of the
integral of the product of the relevant Wigner transforms:

(5) Tr[ÂB̂] =
1

~

∫ ∫
A(q, p)B(q, p)dqdp

7A concise and very clear introduction to the Wigner function and the quantum phase space
formalism is Curtright et al. (2013). Further useful discussions can be found in O’Connell and
Wigner (1981); Hillery et al. (1984); Case (2008); De Gosson (2017); Leonhardt (2010). The small
philosophical literature is principally comprised of the discussions found in Suppes (1961); Cohen
(1966); Sneed (1970); Friederich (2021); Wallace (2021).
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This immediately implies that we can express the expectation value of an operator
as:

(6) 〈A〉 = Tr[ρ̂Â] = 1

~

∫ ∫
W (q, p)A(q, p)dqdp

The Wigner function behaves like a density in that we obtain the average value of
a quantity by integrating over that quantity multiplied by the Wigner function.

The Wigner function has the important feature that it reproduces the mar-
ginal probability densities for position and momentum given by by the mod-squared
amplitude since we have that:

µ(q) =

∫
W (q, p)dp = 〈q| ρ̂ |q〉(7)

µ(p) =

∫
W (q, p)dq = 〈p| ρ̂ |p〉(8)

Significantly, it can be proved that any quasi-probability distribution function of
the form F (q, p) = 〈ψ| Â(q, p) |ψ〉 which and reproduces the marginal probability
densities cannot also be positive semi-definite (Wigner 1971).

Wigner negativity has been variously recognised as the distinctive non-
classical feature of the Wigner function and has been shown to have direct impli-
cations for both contextually and entanglement (Delfosse et al. 2017; Booth et al.
2022). The size of the regions of negativity in phase space are of order ~ which will
be important in what follows. Significantly, the sub-set of Wigner functions that
correspond to minimum uncertainty coherent states can be shown to be everywhere
positive (and visa versa) (Hudson 1974; Mariño 2021).

Despite its negativity, the Wigner function has a number of attractive fea-
tures that mark it out as privileged among the quasi-probability distribution func-
tions. In particular, the density and marginal features noted above crucially depend
upon the ?-product associated to the Wigner function being the Moyal ?-product.
This is what allows one ?-product to be dropped inside an integral via integration
by parts leading to formal behaviour that matches that of a genuine probability
density function for the marginals and expectation values.8

Let us now consider the behaviour of the Wigner function within a simple
model of decoherence with a focus on the role of Wigner negativity. The general
framework for the study of decoherence is quantum master equations for the reduced
density matrix of a quantum system. For our purposes it will suffice to consider the
most basic master equation, that due to Joos and Zeh (1985). The Joos-Zeh equation
can be derived based on a idealised decoherence model with recoilless scattering

8This feature is in contrast to the Husimi Q-function for which the associated ?©-product cannot be
integrated out and leads to marginals distributions that do not correspond to those of quantum
mechanics (Curtright et al. 2013, §13). For further discussion of quasi-probability distributions
and probability interpretations see Leonhardt (2010); Schroeck (2013); Friederich (2021); Stoica
(2021); Umekawa et al. (2024).
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that carries away information but not momentum of a quantum particle. It is a
minimal model for position localisation of a quantum particle via the destruction
of coherence. More realistic models include noise and dissipation terms but share
the central formal feature of Gaussian-smoothing.

Explicitly, the Joos-Zeh master equation takes the form:

(9) dρ̂

dt
= − i

2m
[p̂2, ρ̂]− D

2
[q̂, [q̂, ρ̂]]

where we have assumed a free particle Hamiltonian and the decoherence time scale
will be t0 =

√
m/D. Physically, the localisation rate, D, measures how fast inter-

ference between different positions disappears for distances smaller than the wave-
length of the scattered particles. It has units cm−2 s−1 and includes a factor of ~−2

and a linear dependance on temperature (Joos et al. 2013, §3.2.1).
The quantum phase space equation corresponding to (9) is given by a Fokker-

Planck equation for the Wigner function:

(10) ∂W

∂t
= − p

m

∂W

∂q
+
D

2

∂2W

∂p2

Although it has the same functional form this equation must not be understood to
be equivalent to a Fokker-Planck equation for a classical probability density function
since the Wigner function is of course a quasi-probability density and has various
non-classical features as per our earlier discussion.

Following Diósi and Kiefer (2002), the Fokker-Plank equation for the Wigner
function can be demonstrated to be equivalent to a progressive Gaussian-smoothing
of an initial Wigner function W (Γ; 0). In particular, we can re-write the Equation
(10) as a convolution of the form:

(11) W (Γ; t) = g(Γ;CW (t)) ∗W (x− pt/m, p; 0)

where g(Γ;CW (t)) is a generalised Gaussian function with time dependent correla-
tion matrix:

(12) CW (t) = Dt

(
t2/3m2 t/2m

t/2m 1

)
and we have used the ∗ symbol for the convolution operation to avoid confusion
with the Moyal star product.

Convolution with a Gaussian function, as per the heat equation, has the
general effect of smoothing the Wigner function.9 The regions of Wigner negativ-
ity are of order ~ and a Gaussian smoothing can be shown to be such that it will

9More generally, we can understand decoherence in terms of convolution of the Wigner function
with a Gaussian according to a Weierstrass transform. This is, in fact, precisely to transform a
Wigner function into a Husimi Q-function (Curtright et al. 2013, §13). We should not expect
the quantum mechanical marginal probabilities to be fully recoverable from the reduced state
post-decoherence. Which is perhaps unsurprising.
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progressively render any initial Wigner function positive-definite.10 Indeed, Diósi
and Kiefer (2002) show that by Equation (11), any initial state will be such that
Wigner function will be strictly positive after a finite time tD which is of the or-
der of the decoherence timescale t0 defined above. The result of Diósi and Kiefer
(2002) demonstrates that even for the most simple model of decoherence the dynam-
ical equations serve to smooth out structure of the Wigner function and eliminate
Wigner negativity almost immediately. 11 Generically, we can expect that Wigner
positivity is a novel and robust behaviour that emerges via decoherence based upon
a partially interpreted quasi-probability structure.

4.2. Probability and Semi-Classicality. The previous section provided a simple
illustration of how the non-classical feature of Wigner negativity can be eliminated
via decoherence. These methods as a basis for describing the emergence of classical-
ity can generalised to more realistic models. Perhaps most famously, this approach
was extended to the study of non-linear models, such as that of the classically
chaotic orbit of Hyperion, by Habib et al. (1998) leading to the iconic illustrations
reproduced in Figure 1.VOLUME 80, NUMBER 20 P HY S I CA L REV I EW LE T T ER S 18 MAY 1998

FIG. 2(color). (a) Wigner distribution function from a solu-
tion of Eq. (2) at time t ≠ 8T , where T is the period of the
driving force. The diffusion constant D ≠ 0. The box repre-
sents a phase space area of 4h̄. (b) Wigner distribution function
at time t ≠ 8T , with diffusion constant D ≠ 0.025, illustrating
the destruction of large scale quantum coherence. (c) Classical
distribution function from a solution of Eq. (3) at time t ≠ 8T ,
with diffusion constant D ≠ 0.025.

in such a way that quantum and classical distributions and
expectation values both converge to each other. Thus, one
concludes that the decohered quantum evolution does go
over to the classical Fokker-Planck limit.
In summary, we have provided evidence that in a quan-

tized classically chaotic system, for fixed h̄, classical and
quantum expectation values diverge from each other af-
ter a time ,th̄. In the case studied here, the discrepancy
is #10% of the typical magnitude of the expectation val-
ues. Decoherence was shown to substantially reduce this
discrepancy as well as to bring the Wigner and classi-
cal distributions very close to each other. In this com-
bined sense, decoherence restores the quantum-classical
correspondence. Our results complement previous stud-
ies which have focused more on the phase space aspects
of the correspondence and the destruction of dynamical lo-
calization by noise and dissipation [17].
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and R. Scharf, Z. Phys. B 65, 381 (1987); J. Ford and
G. Mantica, Am. J. Phys. 60, 1086 (1992); see also
G. Casati and B. Chirikov, Quantum Chaos (Cambridge
University Press, Cambridge, England, 1995).

[3] S. Tomsovic and E. Heller, Phys. Rev. Lett. 67, 664
(1991); D. Provost and P. Brumer, ibid. 74, 250 (1995).

[4] G. P. Berman and G.M. Zaslavsky, Physica (Netherlands)
91A, 450 (1978); G.M. Zaslavsky, Phys. Rep. 80, 157
(1981).

[5] M. Berry and N. L. Balazs, J. Phys. A 12, 625 (1979).
[6] W.H. Zurek and J. P. Paz, in Quantum Measurements,

Irreversibility, and the Physics of Information, edited by
P. Busch et al. (World Scientific, Singapore, 1993); Phys.
Rev. Lett. 72, 2508 (1994); Physica (Amsterdam) 83D,
300 (1995).

[7] K. Takahashi, Prog. Theor. Phys. Suppl. 98, 109 (1989).
[8] W.H. Zurek, Phys. Rev. D 26, 1862 (1982); Phys. Today

44, 36 (1991); Prog. Theor. Phys. 89, 281 (1993); E. Joos
and H.D. Zeh, Z. Phys. B 59, 223 (1985); R. Omnés,
Rev. Mod. Phys. 64, 339 (1992); M. Gell-Mann and J. B.
Hartle, Phys. Rev. D 47, 3345 (1993); D. Giulini et al.,
Decoherence and the Appearance of a Classical World in
Quantum Theory (Springer, New York, 1996).

4364

Figure 1. Illustrations of the results of numerical simulations from
Habib et al. (1998) with warm (cold) colours marking regions of posi-
tive (negative) density. The figures (a) and (b) both show the Wigner
distribution function from a solution a Fokker-Planck type equation
for a non-linear system with a quartic term in the Hamiltonian. The
difference between the figures corresponds to solutions to the model
at a given time without (a) and with (b) the destruction of large scale
quantum coherence. The figure (c) shows the solution of a classical
Fokker-Planck equation for a classical probability density function.
The box represents a phase space area of 4~.

The model of Habib et al. (1998) provides a vivid exemplification of what it
means for classical dynamical behaviour to emerge from the quantum domain. In
10This is true for Gaussian smoothings but does not hold in general for any averaging (de Aguiar
and de Almeida 1990).
11See (Brody et al. 2024) for a quantum dynamical model that achieves Wigner positivity in finite
time without a von Neumann term, i.e. the first commutator on the right hand side of (9) in the
Joos-Zeh-model, but with a different, but still simple, form of the dissipator term.
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particular, for a quantum possibility space model evolving under an open quantum
dynamics to exhibit dynamical behaviour that displays a remarkable close corre-
spondence to that exhibited by a classical possibility space mode.

In a rich and insightful analysis of the Habib et al. (1998) model, Franklin
(2023) proposes that we can frame an account of the emergence of macro-worlds with
classical chaotic phenomenology based upon an underlying non-chaotic quantum
state.12 The claim runs as follows:

...we may think of the observed classically chaotic orbit of Hyperion
as observable evidence of the effects of decoherence in suppressing
quantum interference. Classically chaotic Hyperion counts as emer-
gent because much of the structure of the underlying quantum state
is conditionally irrelevant to the future dynamics of each classically
chaotic Hyperion. In macroscopic terms, what’s screened off are the
interference terms that would describe interactions with the Hyperi-
ons in other branches – thus rendering the other branches irrelevant
to each branch’s evolution. And the classically chaotic dynamics is
not instantiated in the quantum system absent environment induced
decoherence. (p. 10)

There is much to recommend in Franklin’s analysis as an account of emergence
and the relationship between classical and quantum phenomenology. However, one
must also bear in mind the foregoing detailed treatment of the structure of deco-
herence models based upon the Wigner function. Evidently, a partial interpretation
of a quasi-probability structure via possibility space model is a necessary ingredient
within any model of decoherence based upon the Wigner function (or, arguably,
more generally). One is already implicitly applying a generalised form of probabilis-
tic reasoning – in particular with regard to densities on possibility spaces – when
one models decoherence via dynamical equations for the Wigner function as derived
from quantum master equations.

Classical possibility space models do not emerge ab initio from a non-
probabilistic and uninterpreted formalism, but rather are emergent in the relevant
sense from a partially interpreted, quasi-probabilistic structure. The model of the
emergence of classical phenomenology that decoherence models based upon the
Wigner function provide is explicitly reliant on its role as a quasi-probability den-
sity function in inducing a possibility space measure. These models of decoherence
make ineliminable use of partially interpreted quasi-probabilistic structure within
the dynamical equations themselves. Decoherence must be understood as a basis

12Franklin’s account builds upon on the account of emergence described in Franklin and Robertson
(2021) which in turn builds on Ross (2000). See also Ladyman and Ross (2007), Wallace (2010)
and Mulder (2024).
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for quasi-probabilistic emergence rather than non-probabilistic emergence. Further-
more, as we saw earlier, the justification of the Wigner function as the privileged
representation of quasi-probability relies upon its unique ability to recover the ex-
perimentally confirmed marginals given by Born rule probabilities.

Furthermore, it is evident based upon our analysis in Section 3.3 that Wigner
positivity is necessary but not sufficient for us to interpret a model as a representa-
tion of a classical possibility space. In particular, the crucial features of conservation
and localisation will still fail, notwithstanding the Wigner function being positive.
On appropriate scales, we will still find the Gaussian-smoothed, positive Wigner
function acting in a manner that is irrecognisable with it being a classical probabil-
ity density. In particular, we will find the failure of localisability and conservation.

The scale at which non-classicality is relevant is all important. The failure
of conservation and localisability are all of order ~. Thus one can expect an approx-
imation relation to obtain between the Wigner function and a classical probability
distribution to the extent to which terms O(~) are understood to make negligible
quantitive contributions at the scale relevant to the description.13 For example, in a
simulation or plot where the grid or pixel size is big relative to ~. However, clearly
in circumstances where terms O(~) are understood to be salient, such a similarity
relation should not be understood to hold and in such circumstances decoherence
should not be understood to lead to the emergence of a possibility space model with
classical probabilistic structure.

We propose that one should understand classical probabilities to semi-
classically emerge from a post-decoherence, positive Wigner function formalism.
The sense of emergence we have in mind here is very close to the idea of coarse-
grained emergence introduced by (Palacios 2022, p.39). On this account a coarse-
grained description of a system emerges from a fine-grained description, if and only
if the former has terms denoting properties or behaviour that are novel and robust
with respect to the latter. In our case the ‘fine-grained’ description is the full quan-
tum phase space model and the ‘coarse-grained’ description is the semi-classical
phase space model which is such that the expectation values and expressions trun-
cated O(~) are isomorphic to a classical phase space model.

We find emergence in the sense of Palacios (2022) account of coarse-grained
emergence specifically since we have: (i) a fine-grained/coarse-grained distinction
picked out by phase space areas at order ~/at order much bigger than ~; (ii) the
coarse-grained description has features that are not features of the fine-grained de-
scription, specifically conservation and localisation of the (quasi)-probability den-
sity; (iii) the behaviour represented by the fine-grained description exists at the
same time as the behaviour represented by the coarse-grained description (i.e. we

13See (Wallace 2021, p.23) for related remarks regarding an ‘approximate isomorphism’ between
the dynamics of the quantum state and that of the classical probability distribution.
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have synchronic emergence); (iv) the coarse-grained description refers to some be-
haviour that is insensitive to variation of the microphysical details that characterise
a particular token (i.e. we have robustness in the sense of (Gryb et al. 2021)); (v)
the coarse-grained level depends on the fine-grained level in the sense that every
change in the coarse-grained level must imply a change in the fine-grained level (i.e.
we have supervenience).14

We can demonstrate this sense of semi-classical emergence obtains in the
case of classical and quantum possibility space models explicitly. Consider the cor-
respondence between the semi-classical and quantum possibility space models via
dynamical equations for the expectation values (first moments) of position and mo-
mentum. Assume a Hamiltonian of the standard form H = p2

2m
+ V (q). Explicit

application of the star product as a pseudo-differential operation then gives the
expression for the momentum expectation value:

d〈p〉
dt

= 〈{{p, V (q)}}〉(13)

= −〈dV (q)

dq
〉(14)

= −
∫
Γ

dV (q)

dq
Wdqdp(15)

and for the position expectation value we get:
d〈q〉
dt

=
1

2m
〈{{q, p2}}〉(16)

=
1

m
〈p〉(17)

=

∫
Γ

p

m
Wdqdp(18)

Following Ballentine and McRae (1998), the corresponding formulas in the
classical possibility space model is:

d〈p〉
dt

= −
∫
Γ

dV (q)

dq
ρdqdp(19)

d〈q〉
dt

=

∫
Γ

p

m
ρdqdp(20)

We thus have an isomorphism between the classical and quantum probabilistic phase
space formalism. The classical and quantum moment evolution first equations are
syntactically isomorphic with the Wigner function playing the role of a probability
density function.

14We do not have universality in the sense of (Gryb et al. 2021), since we do not have that
the coarse-grained description refers to some behaviour that is insensitive to variation of the
macroscopic details that characterise the type of system considered. This is weak autonomy in the
terminology of (Palacios 2022, p.39-40).
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To the extent to which we can treat the Wigner function as a probability den-
sity function the equations will describe identical phenomenology. A positive-definite
Wigner function then displays localisation and conservation behaviour identical to
that of a probability density function to the extent to which we can neglect terms
O(~). At such a scale a positive Wigner function is a real positive function that
is conserved and localisable and can be treated as a genuine probability density.
In particular, as shown in the Appendix A problems with σ-additivity are closely
connected to the failure of localisability. It is therefore possible to understand the
coarse-grained description as a classical possibility space model as per our earlier
formalisation.

We therefore have emergence with localisation and conservation the rele-
vant novel and robust behaviours. The coarse-grained description has terms de-
noting classical probability structure that is novel and robust with respect to the
fine-grained description. The quasi-probabilistic emergence via decoherence was de-
pendant on the decoherence time scale and is thus ‘diachronic’. By contrast, the
semi-classical emergence is dependent upon phase space areas in units of ~ and is
thus ‘synchronic’. A schematic diagram for the relevant pattern of interrelations is
provided in Figure 2.

Classical PSM

Wigner-Positive PSMQuantum PSM

Semi-classical emergence
(synchronic)

Quasi-probabilistic emergence
(diachronic)

Figure 2. Schematic diagram showing relationship between Quan-
tum and Classical Possibility Space Models (PSMs) quasi-probablitic
emergence via decoherence, which is diachronic, and semi-classical
emergence, which is synchronic. Inspired by (Palacios 2022, Fig.9).
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5. Recapitulation and Outlook

Let us return to the original dialectic with which we started our analysis of
probably and decoherence. Recall, in particular, that the arguments of Dawid and
Thébault (2015) amounted the the implication that a certain package of interpreta-
tive moves concerning probability and the quantum formalism lead to an incoherent
conclusion. The foregoing analysis allows us to consider the contraposition this ar-
gument. That is, we have now established a plausible framework for the analysis of
classical and quantum probability within which any coherent interpretation must
be expected to operate.

On our analysis, an account the role of probability in quantum mechanics
can most plausibly play out in only one of two ways. First, probability can be in-
troduced as a fully formed classical probability in connection with an extra posit
such as collapse, hidden variables, or observers. Second, one can abstain from extra
posits, and establish the probabilistic nature of quantum mechanics as an approxi-
mate, emergent concept. In the latter case, there is no plausible way to avoid adding
to pure wave mechanics a partial interpretation in terms of possibility weightings.
In particular, there is no way to understand decoherence in general, or the sup-
pression of small amplitudes in particular, absent a partially interpreted structure
that weights possibilities. The requirement for such a partial interpretation clearly
does not render the Many Worlds interpretation incoherent in itself. It does, how-
ever, place strong constraints upon the way in which such an interpretation can be
packaged together with an approach to probability and possibility. In particular, it
shows that there is no coherent prospect for an interpretational package that seeks
to combine an entirely non-probabilistic account of the emergence of ‘words’ with
a post-decoherence decision theoretic derivation of probability. In this sense the
claims of Dawid and Thébault (2015) can be understood to be vindicated against
those of Saunders (2021b) and Franklin (2023).

More importantly, our analysis indicates that any full interpretation of quan-
tum mechanics that does not seek to introduce probability via extra posits must
grapple with the quasi-probabilistic nature of the theory. That is, if probability is
not introduced as a fully formed classical concept in connection with an extra posit
such as collapse, hidden variables, or observers, then we will need to find a way
to attribute physical significance to quasi-probabilities (or quasi-measures) at the
level of the fundamental theory. We have no specific suggestion as to how this can
be achieved – although work on quantum measure theory is certainly interesting in
this regard (Sorkin 2010; Clements et al. 2017). Arguments from similarity, how-
ever, do not provide a solution to this problem. As a conceptual basis for neglecting
small amplitudes they fail; and using them as merely heuristic reasons for adding to
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quantum mechanics a prescription to neglect small amplitudes would subvert pre-
cisely the most attractive feature of Many Worlds interpretations: that of requiring
no posits beyond the wave function equations. Indeed, an appeal to decoherence as
a precondition of interpretational content would render the Many Worlds approach
of a piece with precisely the pragmatic, neo-Bohrian outlook that the Many Worlds
view motivated by rejecting. Things are possibly even worse for the Many Worlds
advocate: if the emergence of branching structure without a partial interpretation
is taken to be a necessary requirement for the justification of the Many Worlds
interpretation to be plausible at all, then our work serves to undermine such a
justification.

Many issues regarding decoherence and probability remain outstanding. We
conclude by highlighting a small selection. First, it would be satisfying to extend
the formalisation of Section 3 both to the history space formulations of classical and
quantum theories including decoherent histories (Gell-Mann and Hartle 1996; Halli-
well 2010), and, more generally, to towards an abstract and general characterisation
of the emergence of classical from quantum possibility space models via decoher-
ence. It can be proved that the diagonal elements of the decoherence functional are
equivalent to a ‘quantal-measure’ which is a specific form of our quasi-measure that
obeys a particular (non-classical) sum rule on the algebra of events (Sorkin 1994;
Dowker and Wilkes 2022). The decoherent histories framework thus is a partial in-
terpretation of a quasi-probability structure in precisely our terms. Since there is an
explicit dependance coarse-graining in this approach to the emergence of classical
probability there is plausible path for reconstructing our analysis in histories terms.

Second, and relatedly, it would be interesting to consider the connection
between our account of the emergence of probability and quantum measures in
terms a quasi-measure representation of the decoherence functional and the re-
sults of Feintzeig and Fletcher (2017). These results draw connections between non-
contextual hidden variable interpretations and the existence of a finite null cover
and this would appear to make difficult certain attempts to move from a partial to
full interpretation of the quasi-measure over possibility space.

Third, it would be of significant physical and philosophical interest to more
fully understanding the role of the ~ → 0 limit in the emergence of classical prob-
ability. In the ~ → 0 limit the bound on the Wigner function will be removed,
since W (q, p) ≤ 2

~ and thus localisability will obtain. However, the semi-classical
limit of the Wigner function is not always well-behaved (Berry 1977; Mariño 2021)
and, moreover, due to the dependance of the Wigner function on ~, we typically
find that the distribution becomes ‘spiky’ and approximates a δ-function (Curtright
et al. 2013). A particularly interesting question is the relation between our project
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and recent formal results regarding the relationship between decoherence, the semi-
classical limit, and the emergence of classical probability (Layton and Oppenheim
2023; Hernández et al. 2023). We leave exploration of such issues to future work.
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Appendix A. Localisability and σ-additivity

We prove that the quasi-measure induced by a set of Wigner functions cannot
be σ-additive if it is assumed that for any event in the algebra we can define a quasi-
probability density function which induces the quasi-measure that picks out the
possibility associated with that region only. In this sense Wigner functions induce
a measure that violates the Kolmogorov axioms will be violated notwithstanding
Wigner negativity (as such, this proof would also apply to the Q-function).

I Normalisation in terms of limit of phase space balls. A phase
space ball is a region of R2N that can be defined as:

Bn = {(q, p) | |q|2 + |p|2 ≤ rn}

where limn→∞ rn = ∞ and limn→∞Bn = R2N and we have suppressed an i

index on the qs and ps that would run i = 1, .., N . We can express the phase
space normalisation of Wigner function in terms of the limit of balls as:

lim
n→∞

∫
Bn

W (q, p)dqdp = 1

(Aniello 2016, Eq. 22).
II Induced quasi-measure and minimal volume. By analogy with the prob-

ability measure µ associated with a probability density function we can
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introduce a quasi-measure µ̃ associated with the Wigner quasi-probability
density functions via the equation:

µ̃(E) =

∫
E

W (q, p)dqdp

We assume that the quasi-measure is a real set-function on an algebra of sets
closed under finite union and complementation and given by regions of phase
space over which it is well defined. We also assume that for any event in the
algebra, as picked out by a region, we can define a quasi-probability density
function which induces the quasi-measure that picks out the possibility as-
sociated with that region only. By the condition on the essential support of
W , events cannot be given by regions smaller than a characteristic volume
of one in units of ~ (Dell’Antonio 2016).

III Balls as union of disjoint annular regions. Consider the family of
annuli Ak defined as:

Ak = {(q, p) | rk−1 < |q|2 + |p|2 ≤ rk}

where 0 = r0 < r1 < r2... and limk→∞ rk = ∞. We will then have that each
ball is equivalent to the union of n disjoint annuli:

Bn =
n⋃
k=1

Ak

IV Measurable balls. The quasi-measure can be concentrated within regions
of volume greater than order ~ thus assuming rn >> ~:

µ̃(Bn) =

∫
Bn

W (q, p)dqdp

V Ball-Annulus Decomposition. A ball radius rn can be decomposed into a
central ball radius rm and an annular region Ã:

Ã = {(q, p) | rm < |q|2 + |p|2 ≤ rn} =
n⋃

k=m

Ak

Thus we have that:
Bn = Ã ∪Bm

VI Proof by contradiction. We can now use I-V to prove by contradiction
µ̃ cannot be σ-additive. The σ-additivity of µ̃ implies:

µ̃(Bn) = µ̃
(
Ã ∪Bm

)
= µ̃(Ã) + µ̃(Bm)

This implies:
µ̃(Bn)− µ̃(Bm) = µ̃(Ã)

Now consider the this expression for r2n − r2m ≈ ~. Since rn, rm >> ~, we
can define quasi-measures, µ̃(Bn) and µ̃(Bm) that pick out the possibilities
associated with each of the balls is isolation. We then have that µ̃(Bn) −
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µ̃(Bm) must be well defined from the basic property of the event algebra.
However, the area of Ã is order ~ so by II the right hand side of the expression
cannot be well-defined since it picks out the possibility associated with a
region order ~ is isolation and is thus not in the essential support of W .
Thus, we have a contradiction.

�

BnBm

Ã

Figure 3. The decomposition of a ball Bn radius rn into a central
ball Bm radius rn and an annulus Ã = {(q, p) | rm < |q|2+ |p|2 ≤ rn}.
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